

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12

Intel
®
 OpenSource HD Graphics

Programmer’s Reference Manual (PRM)
Volume 1 Part 3: Graphics Core™ – Memory

Interface and Commands for the Render Engine
(Ivy Bridge)

For the 2012 Intel
®
 Core™ Processor Family

May 2012

Revision 1.0

NOTICE:
This document contains information on products in the design phase of development, and Intel
reserves the right to add or remove product features at any time, with or without changes to this
open source documentation.

2 5/29/2012 Doc Ref #: IHD-OS-V1 Pt 3 – 05 12

Creative Commons License

You are free to Share — to copy, distribute, display, and perform the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or licensor (but not in any
way that suggests that they endorse you or your use of the work).

No Derivative Works. You may not alter, transform, or build upon this work.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL

®
 PRODUCTS. NO

LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL
PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S
TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY
WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO
SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO
FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly
or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR
ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS
SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND
EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES
AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM
OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH
MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS
NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY
OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers
must not rely on the absence or characteristics of any features or instructions marked "reserved" or
"undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for
conflicts or incompatibilities arising from future changes to them. The information here is subject to
change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which
may cause the product to deviate from published specifications. Current characterized errata are
available on request.

Implementations of the I2C bus/protocol may require licenses from various entities, including Philips
Electronics N.V. and North American Philips Corporation.

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2012, Intel Corporation. All rights reserved.

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 3

Contents

1. Render Engine Command Streamer .. 4

1.1 Registers in Render Engine ... 4
1.1.1 Introduction ... 4
1.1.2 Outstanding Memory Requests Modulation Counters ... 6
1.1.3 Registers Used for Priority Field in Programmable Arbitration ... 9
1.1.4 Registers Used in Programmable Arbitration ... 12
1.1.5 Virtual Memory Control ... 29
1.1.6 GFX TLB In Use Virtual Address Registers ... 34
1.1.7 GFX Pending TLB Cycles Information Registers ... 39
1.1.8 Configuration Registers for Graphic Arbiter ... 45
1.1.9 Context Save Registers .. 47
1.1.10 Mode and Misc Ctrl Registers .. 54
1.1.11 RINGBUF — Ring Buffer Registers ... 75
1.1.12 Watchdog Timer Registers ... 81
1.1.13 Interrupt Control Registers ... 83
1.1.14 Logical Context Support ... 89
1.1.15 Pipelines Statistics Counter Registers ... 101
1.1.16 Predicate Render Registers ... 110
1.1.17 AUTO_DRAW Registers .. 112
1.1.18 MMIO Registers for GPGPU Indirect Dispatch .. 114
1.1.19 Memory Interface Registers ... 117

1.2 Memory Interface Commands for Rendering Engine .. 166
1.2.1 Introduction ... 166
1.2.2 Software Synchronization Commands ... 166
1.2.3 MI_ARB_CHECK .. 167
1.2.4 MI_ARB_ON_OFF .. 167
1.2.5 MI_BATCH_BUFFER_END ... 168
1.2.6 MI_CONDITIONAL_BATCH_BUFFER_END ... 168
1.2.7 MI_BATCH_BUFFER_START (Render) .. 169
1.2.8 MI_CLFLUSH ... 173
1.2.9 MI_DISPLAY_FLIP ... 174
1.2.10 MI_FLUSH .. 176
1.2.11 MI_LOAD_REGISTER_IMM .. 178
1.2.12 MI_NOOP ... 180
1.2.13 Surface Probing .. 180
1.2.14 MI_REPORT_HEAD ... 180
1.2.15 MI_SEMAPHORE_MBOX .. 181
1.2.16 MI_SET_CONTEXT ... 184
1.2.17 MI_STORE_DATA_IMM ... 186
1.2.18 MI_STORE_DATA_INDEX ... 187
1.2.19 MI_STORE_REGISTER_MEM .. 189
1.2.20 MI_SUSPEND_FLUSH .. 190
1.2.21 MI_UPDATE_GTT .. 191
1.2.22 MI_USER_INTERRUPT ... 192
1.2.23 MI_WAIT_FOR_EVENT ... 193
1.2.24 MI_LOAD_REGISTER_MEM ... 196
1.2.25 MI_URB_CLEAR .. 197
1.2.26 MI_PREDICATE ... 199
1.2.27 MI_TOPOLOGY_FILTER ... 201

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 4

1. Render Engine Command Streamer

1.1 Registers in Render Engine

1.1.1 Introduction

This chapter describes the memory-mapped registers associated with the Memory Interface, including

brief descriptions of their use. The functions performed by some of these registers are discussed in more

detail in the Memory Interface Functions, Memory Interface Instructions, and Programming Environment

chapters.

The registers detailed in this chapter are used across the family of products and are extentions to

previous projects. However, slight changes may be present in some registers (i.e., for features added or

removed), or some registers may be removed entirely. These changes are clearly marked within this

chapter.

1.1.1.1 ARB_MODE – Arbiter Mode Control register

ARB_MODE - Arbiter Mode Control register

Register Space: MMIO: 0/2/0

Source: RenderCS

Default Value: 0x00000000

Size (in bits): 32

Trusted Type: 1

Address: 04030h

DWord Bit Description

0 31:16 Mask Bits

Default Value: 00000000000000000b

Access: RO

Format: U16

Mask bits act as write enables for the bits in the lower bits of this register

14 GAM to Bypass GTT Translation (GAM2BGTTT)

Default Value: 0b

Access: R/W

Format: MBZ

GAM to bypass GTT translation and pass logical addresses through with 0’s padded on the MSBs to

form the physical address.

13 DC GDR (DC_GDR)

Default Value: 0b

Access: R/W

DC GDR

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 5

ARB_MODE - Arbiter Mode Control register

12 HIZ GDR (HIZ_GDR)

Default Value: 0b

Access: R/W

HIZ GDR

11 STC GDR (STC_GDR)

Default Value: 0b

Access: R/W

Format: U1

STC GDR

10 BLB GDR (STC_GDR)

Default Value: 0b

Access: R/W

BLB GDR

9 GAM PD GDR (GAMPD_GDR)

Default Value: 0b

Access: R/W

GAM PD GDR

8 Color/Depth Port Share Bit (CDPS)

Default Value: 00b

Access: R/W

Format: U1

Color/Depth port share bit

 This bit is used to force Color and Depth Caches to share an arbiter read request port. By default (Bit =

0) the Color Cache will NOT share the read request port with the Depth Cache.

5 Address Swizzling for Tiled Surfaces (AS4TS)

Access: R/W

Format: U1

Address Swizzling for Tiled-Surfaces. This register location is updated via GFX Driver prior to enabling

DRAM accesses. Driver needs to obtain the need for memory address swizzling via DRAM

configuration registers and set the following bits (in Display Engine and Render/Media access

streams).

Value Name

0b No address Swizzling

1b Address bit[6] needs to be swizzled for tiled surfaces

4 VMC GDR Enable (VMC_GDR_EN)

Access: R/W

When this bit is set, Data requested from the VMC client will be generated by the GDR algorithm

3 Texture Cache GDR Enable bit (TCGDREN)

Access: R/W

Format: U1

Texture Cache GDR enable bit When this bit is set, Data requested from the Texture Cache client will

be generated by the GDR algorithm (See GDR algorithm in xxx section)

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 6

ARB_MODE - Arbiter Mode Control register

2 Depth Cache GDR enable bit (DCGDREN)

Access: R/W

Format: U1

When this bit is set, Data requested from the Depth Cache client will be generated by the GDR

algorithm (See GDR algorithm in xxx section)

1 Color Cache GDR enable bit(CCGDREN)

Access: R/W

Format: U1

When this bit is set, Data requested from the Color Cache client will be generated by the GDR

algorithm (See GDR algorithm in xxx section)

0 GTT Accesses GDR (GTTAGDR)

Default Value: 0b

Access: R/W

Format: U1

When this bit is enabled along with the Client’s GDR bit, PPGTT and GGTT requests for this memory

access will also be tagged as GDR to SQ.

1.1.2 Outstanding Memory Requests Modulation Counters

1.1.2.1 GFX_PEND_TLB_0 – Max Outstanding Pending TLB Requests 0

GFX_PEND_TLB_0 - Max Outstanding Pending TLB Requests 0

Register Space: MMIO: 0/2/0

Source: RenderCS

Default Value: 0x00000000

Access: R/W

Size (in bits): 32

Trusted Type: 1

Address: 04034h-04037h

DWord Bit Description

0 31 TEX Limit Enable bit

Format: U1

This bit is used to enable the pending TLB requests limitation function for the Texture Cache. When

set, the number of internal pending read requests which require a TLB read will not exceed the

programmed counter value.

30 Reserved

Format: MBZ

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 7

GFX_PEND_TLB_0 - Max Outstanding Pending TLB Requests 0

29:24 TEX TLB Limit Count

Format: U6

This is the MAX number of Allowed internal pending read requests which require a TLB read.

23 ISC Limit Enable bit

Format: U1

This bit is used to enable the pending TLB requests limitation function for the Instruction Cache. When

set, the number of internal pending read requests which require a TLB read will not exceed the

programmed counter value.

22 Reserved

Format: MBZ

21:16 ISC TLB Limit Count

Format: U6

This is the MAX number of Allowed internal pending read requests which require a TLB read.

15 VF Limit Enable bit

Format: U1

This bit is used to enable the pending TLB requests limitation function for the Vertex Fetch. When set,

the number of internal pending read requests which require a TLB read will not exceed the

programmed counter value.

14 Reserved

Format: MBZ

13:8 VF TLB Limit Count

Format: U6

This is the MAX number of Allowed internal pending read requests which require a TLB read.

7 CS Limit Enable bit

Format: U1

This bit is used to enable the pending TLB requests limitation function for the Command Streamer.

When set, the number of internal pending read requests which require a TLB read will not exceed the

programmed counter value.

6 Reserved

Format: MBZ

5:0 CS TLB Limit Count

Format: U6

This is the MAX number of Allowed internal pending read requests which require a TLB read.

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 8

1.1.2.2 GFX_PEND_TLB_1 – Max Outstanding Pending TLB Requests 1

GFX_PEND_TLB_1 - Max Outstanding Pending TLB Requests 1

Register Space: MMIO: 0/2/0

Source: RenderCS

Default Value: 0x00000000

Access: R/W

Size (in bits): 32

Trusted Type: 1

Address: 04038h-0403Bh

DWord Bit Description

0 31:16 Reserved

Format: MBZ

15 RCZ Limit Enable bit

Format: U1

This bit is used to enable the pending TLB requests limitation function for the Render Depth Cache.

When set, the number of internal pending read requests which require a TLB read will not exceed the

programmed counter value.

14 Reserved

Format: MBZ

13:8 RCZ TLB Limit Count

Format: U6

This bit is used to enable the pending TLB requests limitation function for the Render Color Cache.

When set, the number of internal pending read requests which require a TLB read will not exceed the

programmed counter value.

7 RCC Limit Enable bit

Format: U1

This bit is used to enable the pending TLB requests limitation function for the Render Color Cache.

When set, the number of internal pending read requests which require a TLB read will not exceed the

programmed counter value.

6 Reserved

Format: MBZ

5:0 RCC TLB Limit Count

Format: U6

This is the MAX number of Allowed internal pending read requests which require a TLB read.

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 9

1.1.3 Registers Used for Priority Field in Programmable Arbitration

1.1.3.1 MIDARB_PRIO_HIT_REGISTER – Priority Field in Programmable
Arbitration for Hit

MIDARB_PRIO_HIT_REGISTER - Priority Field in Programmable
Arbitration for Hit

Register Space: MMIO: 0/2/0

Source: RenderCS

Default Value: 0x00000000

Access: R/W

Size (in bits): 16

Trusted Type: 1

Address: 043A0h

DWord Bit Description

0 31:12 Reserved

11:9 Encoded Programmable Priority for MIDARB_GOTOFIELD_HIT3 Register

Encoding Priority 1 Priority 2 Priority 3

000 CS/VF/ISC MT/CTC RCC

001 CS/VF/ISC RCC MT/CTC

010 RCC CS/VF/ISC MT/CTC

011 RCC MT/CTC CS/VF/ISC

100 MT/CTC CS/VF/ISC RCC

101 MT/CTC RCC CS/VF/ISC

110 Reserved Reserved Reserved

111 Reserved Reserved Reserved

8:6 Encoded Programmable Priority for MIDARB_GOTOFIELD_HIT2 Register

5:3 Encoded Programmable Priority for MIDARB_GOTOFIELD_HIT1 Register

2:0 Encoded Programmable Priority for MIDARB_GOTOFIELD_HIT0 Register

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 10

1.1.3.2 MIDARB_PRIO_MISS_REGISTER – Priority Field in Programmable
Arbitration for Miss

MIDARB_PRIO_MISS_REGISTER - Priority Field in Programmable
Arbitration for Miss

Register Space: MMIO: 0/2/0

Source: RenderCS

Default Value: 0x00000000

Access: R/W

Size (in bits): 32

Trusted Type: 1

Address: 04204h

DWord Bit Description

0 31:20 Reserved

19:15 Encoded Programmable Priority for MIDARB_GOTOFIELD_MISS3 Register

14:10 Encoded Programmable Priority for MIDARB_GOTOFIELD_MISS2 Register

9:5 Encoded Programmable Priority for MIDARB_GOTOFIELD_MISS1 Register

4:0 Encoded Programmable Priority for MIDARB_GOTOFIELD_MISS0 Register

1.1.3.3 MIDARB_PRIO_NP_REGISTER – Priority Field in Programmable
Arbitration for Hit-NP

MIDARB_PRIO_NP_REGISTER - Priority Field in Programmable
Arbitration for Hit-NP

Register Space: MMIO: 0/2/0

Source: RenderCS

Default Value: 0x00000000

Access: R/W

Size (in bits): 32

Trusted Type: 1

Address: 043A4h

Address: 04208h

DWord Bit Description

0 31:20 Reserved

19:15 Encoded Programmable Priority for MIDARB_GOTOFIELD_MISS3 Register

Encoding Priority 1 Priority 2 Priority 3 Priority 4

00000 CS/VF/ISC MT_CTC RCC RCZ_HiZ_Stnc

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 11

MIDARB_PRIO_NP_REGISTER - Priority Field in Programmable
Arbitration for Hit-NP

00001 CS/VF/ISC RCC MT_CTC RCZ_HiZ_Stnc

00010 RCC CS/VF/ISC MT_CTC RCZ_HiZ_Stnc

00011 RCC MT_CTC CS/VF/ISC RCZ_HiZ_Stnc

00100 MT_CTC CS/VF/ISC RCC RCZ_HiZ_Stnc

00101 MT_CTC RCC CS/VF/ISC RCZ_HiZ_Stnc

01000 CS/VF/ISC MT_CTC RCZ_HiZ_Stnc RCC

01001 CS/VF/ISC RCC RCZ_HiZ_Stnc MT_CTC

01010 RCC CS/VF/ISC RCZ_HiZ_Stnc MT_CTC

01011 RCC MT_CTC RCZ_HiZ_Stnc CS/VF/ISC

01100 MT_CTC CS/VF/ISC RCZ_HiZ_Stnc RCC

01101 MT_CTC RCC RCZ_HiZ_Stnc CS/VF/ISC

10000 CS/VF/ISC RCZ_HiZ_Stnc MT_CTC RCC

10001 CS/VF/ISC RCZ_HiZ_Stnc RCC MT_CTC

10010 RCC RCZ_HiZ_Stnc CS/VF/ISC MT_CTC

10011 RCC RCZ_HiZ_Stnc MT_CTC CS/VF/ISC

10100 MT_CTC RCZ_HiZ_Stnc CS/VF/ISC RCC

10101 MT_CTC RCZ_HiZ_Stnc RCC CS/VF/ISC

11000 RCZ_HiZ_Stnc CS/VF/ISC MT_CTC RCC

11001 RCZ_HiZ_Stnc CS/VF/ISC RCC MT_CTC

11010 RCZ_HiZ_Stnc RCC CS/VF/ISC MT_CTC

11011 RCZ_HiZ_Stnc RCC MT_CTC CS/VF/ISC

11100 RCZ_HiZ_Stnc MT_CTC CS/VF/ISC RCC

11101 RCZ_HiZ_Stnc MT_CTC RCC CS/VF/ISC

Other values Reserved

14:10 Encoded Programmable Priority for MIDARB_GOTOFIELD_NP2 Register

9:5 Encoded Programmable Priority for MIDARB_GOTOFIELD_NP1 Register

4:0 Encoded Programmable Priority for MIDARB_GOTOFIELD_NP0 Register

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 12

1.1.4 Registers Used in Programmable Arbitration

1.1.4.1 MIDARB_GOTOFIELD_HIT0_REGISTER – Goto Field in Programmable
Arbitration for Hit0

MIDARB_GOTOFIELD_HIT0 - Goto Field in Programmable Arbitration
for Hit0

Register Space: MMIO: 0/2/0

Source: RenderCS

Default Value: 0x00000000

Access: R/W

Size (in bits): 16

Trusted Type: 1

Address: 043B0h

DWord Bit Description

0 31:16 Reserved

Format: MBZ

15:14 Goto field when request vector is 111

Determines the GOTO and priority register to be used next:

Value Name Description

00b Use MIDARB_GOTOFIELD_HIT0 and MIDARB_PRIO_HIT_REGISTER[2:0]

01b Use MIDARB_GOTOFIELD_HIT1 and MIDARB_PRIO_HIT_REGISTER[5:3]

10b Use MIDARB_GOTOFIELD_HIT2 and MIDARB_PRIO_HIT_REGISTER[8:6]

11b Use MIDARB_GOTOFIELD_HIT3 and MIDARB_PRIO_HIT_REGISTER[11:9]

13:12 Goto field when request vector is 110b.

11:10 Goto field when request vector is 101b.

9:8 Goto field when request vector is 100b.

7:6 Goto field when request vector is 011b.

5:4 Goto field when request vector is 010b.

3:2 Goto field when request vector is 001b.

1:0 Goto field when request vector is 000b.

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 13

1.1.4.2 MIDARB_GOTOFIELD_HIT1_REGISTER – Goto Field in Programmable
Arbitration for Hit1

MIDARB_GOTOFIELD_HIT1 - Goto Field in Programmable Arbitration
for Hit1

Register Space: MMIO: 0/2/0

Source: RenderCS

Default Value: 0x00000000

Access: R/W

Size (in bits): 16

Trusted Type: 1

Address: 043B4h

DWord Bit Description

0 31:16 Reserved

Format: MBZ

15:14 Goto field when request vector is 111

Determines the GOTO and priority register to be used next

Value Name Description

00b Use MIDARB_GOTOFIELD_HIT0 and MIDARB_PRIO_HIT_REGISTER[2:0]

01b Use MIDARB_GOTOFIELD_HIT1 and MIDARB_PRIO_HIT_REGISTER[5:3]

10b Use MIDARB_GOTOFIELD_HIT2 and MIDARB_PRIO_HIT_REGISTER[8:6]

11b Use MIDARB_GOTOFIELD_HIT3 and MIDARB_PRIO_HIT_REGISTER[11:9]

13:12 Goto field when request vector is 110b.

11:10 Goto field when request vector is 101b.

9:8 Goto field when request vector is 100b.

7:6 Goto field when request vector is 011b.

5:4 Goto field when request vector is 010b.

3:2 Goto field when request vector is 001b.

1:0 Goto field when request vector is 000b.

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 14

1.1.4.3 MIDARB_GOTOFIELD_HIT2_REGISTER – Goto Field in Programmable
Arbitration for Hit2

MIDARB_GOTOFIELD_HIT2 - Goto Field in Programmable Arbitration
for Hit2

Register Space: MMIO: 0/2/0

Source: RenderCS

Default Value: 0x00000000

Access: R/W

Size (in bits): 16

Trusted Type: 1

Address: 043B8h

DWord Bit Description

0 31:16 Reserved

Format: MBZ

15:14 Goto field when request vector is 111.

Determines the GOTO and priority register to be used next

Value Name Description

00b Use MIDARB_GOTOFIELD_HIT0 and MIDARB_PRIO_HIT_REGISTER[2:0]

01b Use MIDARB_GOTOFIELD_HIT1 and MIDARB_PRIO_HIT_REGISTER[5:3]

10b Use MIDARB_GOTOFIELD_HIT2 and MIDARB_PRIO_HIT_REGISTER[8:6]

11b Use MIDARB_GOTOFIELD_HIT3 and MIDARB_PRIO_HIT_REGISTER[11:9]

13:12 Goto field when request vector is 110b.

11:10 Goto field when request vector is 101b.

9:8 Goto field when request vector is 100b.

7:6 Goto field when request vector is 011b.

5:4 Goto field when request vector is 010b.

3:2 Goto field when request vector is 001b.

1:0 Goto field when request vector is 000b.

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 15

1.1.4.4 MIDARB_GOTOFIELD_HIT3_REGISTER – Goto Field in Programmable
Arbitration for Hit3

MIDARB_GOTOFIELD_HIT3 - Goto Field in Programmable Arbitration
for Hit3

Register Space: MMIO: 0/2/0

Source: RenderCS

Default Value: 0x00000000

Access: R/W

Size (in bits): 16

Trusted Type: 1

Address: 043BCh

DWord Bit Description

0 31:16 Reserved

Format: MBZ

15:14 Goto field when request vector is 111.

Determines the GOTO and priority register to be used next.

 Field for arbitration on next clock cycle for request entries of 111 corresponding to arbitration

 action field entry of MIDARB_PRIO_HIT_REGISTER[11:9]

Value Name Description

00b Use MIDARB_GOTOFIELD_HIT0 and MIDARB_PRIO_HIT_REGISTER[2:0]

01b Use MIDARB_GOTOFIELD_HIT1 and MIDARB_PRIO_HIT_REGISTER[5:3]

10b Use MIDARB_GOTOFIELD_HIT2 and MIDARB_PRIO_HIT_REGISTER[8:6]

11b Use MIDARB_GOTOFIELD_HIT3 and MIDARB_PRIO_HIT_REGISTER[11:9]

13:12 Goto field when request vector is 110.

Field for arbitration on next clock cycle for request entries of 110 corresponding to arbitration

 action field entry of MIDARB_PRIO_HIT_REGISTER[11:9]

11:10 Goto field when request vector is 101.

Field for arbitration on next clock cycle for request entries of 101 corresponding to arbitration

 action field entry of MIDARB_PRIO_HIT_REGISTER[11:9]

9:8 Goto field when request vector is 100.

Field for arbitration on next clock cycle for request entries of 100 corresponding to arbitration

 action field entry of MIDARB_PRIO_HIT_REGISTER[11:9]

7:6 Goto field when request vector is 011.

Field for arbitration on next clock cycle for request entries of 011 corresponding to arbitration

 action field entry of MIDARB_PRIO_HIT_REGISTER[11:9]

5:4 Goto field when request vector is 010.

Field for arbitration on next clock cycle for request entries of 010 corresponding to arbitration

 action field entry of MIDARB_PRIO_HIT_REGISTER[11:9]

3:2 Goto field when request vector is 001.

Field for arbitration on next clock cycle for request entries of 001 corresponding to arbitration

 action field entry of MIDARB_PRIO_HIT_REGISTER[11:9]

1:0 Goto field when request vector is 000.

Field for arbitration on next clock cycle for request entries of 000 corresponding to arbitration

 action field entry of MIDARB_PRIO_HIT_REGISTER[11:9]

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 16

1.1.4.5 MIDARB_GOTOFIELD_NP0_REGISTER – Goto Field in Programmable
Arbitration for Hit-NP0

MIDARB_GOTOFIELD_NP0 - Goto Field in Programmable Arbitration
for Hit-NP0

Register Space: MMIO: 0/2/0

Source: RenderCS

Default Value: 0x00000000

Access: R/W

Size (in bits): 32

Trusted Type: 1

Address: 043C0h

DWord Bit Description

0 31:30 Goto field when request vector is 1111.

Determines the GOTO and priority register to be used next.

Value Name Description

00b Use MIDARB_GOTOFIELD_NP0 and MIDARB_PRIO_NP_REGISTER[4:0]

01b Use MIDARB_GOTOFIELD_NP1 and MIDARB_PRIO_NP_REGISTER[9:5]

10b Use MIDARB_GOTOFIELD_NP2 and MIDARB_PRIO_NP_REGISTER[14:10]

11b Use MIDARB_GOTOFIELD_NP3 and MIDARB_PRIO_NP_REGISTER[19:15]

29:28 Goto field when request vector is 1110b.

27:26 Goto field when request vector is 1101b.

25:24 Goto field when request vector is 1100b.

23:22 Goto field when request vector is 1011b.

21:20 Goto field when request vector is 1010b.

19:18 Goto field when request vector is 1001b.

17:16 Goto field when request vector is 1000b.

15:14 Goto field when request vector is 0111b.

13:12 Goto field when request vector is 0110b.

11:10 Goto field when request vector is 0101b.

9:8 Goto field when request vector is 0100b.

7:6 Goto field when request vector is 0011b.

5:4 Goto field when request vector is 0010b.

3:2 Goto field when request vector is 0001b.

1:0 Goto field when request vector is 0000b.

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 17

1.1.4.6 MIDARB_GOTOFIELD_NP1_REGISTER – Goto Field in Programmable
Arbitration for Hit-NP1

MIDARB_GOTOFIELD_NP1 - Goto Field in Programmable Arbitration
for Hit-NP1

Register Space: MMIO: 0/2/0

Source: RenderCS

Default Value: 0x00000000

Access: R/W

Size (in bits): 32

Trusted Type: 1

Address: 043C4h

DWord Bit Description

0 31:30 Goto field when request vector is 1111.

Determines the GOTO and priority register to be used next.

Value Name Description

00b Use MIDARB_GOTOFIELD_NP0 and MIDARB_PRIO_NP_REGISTER[4:0]

01b Use MIDARB_GOTOFIELD_NP1 and MIDARB_PRIO_NP_REGISTER[9:5]

10b Use MIDARB_GOTOFIELD_NP2 and MIDARB_PRIO_NP_REGISTER[14:10]

11b Use MIDARB_GOTOFIELD_NP3 and MIDARB_PRIO_NP_REGISTER[19:15]

29:28 Goto field when request vector is 1110b.

27:26 Goto field when request vector is 1101b.

25:24 Goto field when request vector is 1100b.

23:22 Goto field when request vector is 1011b.

21:20 Goto field when request vector is 1010b.

19:18 Goto field when request vector is 1001b.

17:16 Goto field when request vector is 1000b.

15:14 Goto field when request vector is 0111b.

13:12 Goto field when request vector is 0110b.

11:10 Goto field when request vector is 0101b.

9:8 Goto field when request vector is 0100b.

7:6 Goto field when request vector is 0011b.

5:4 Goto field when request vector is 0010b.

3:2 Goto field when request vector is 0001b.

1:0 Goto field when request vector is 0000b.

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 18

1.1.4.7 MIDARB_GOTOFIELD_NP2_REGISTER – Goto Field in Programmable
Arbitration for Hit-NP2

MIDARB_GOTOFIELD_NP2 - Goto Field in Programmable Arbitration
for Hit-NP2

Register Space: MMIO: 0/2/0

Source: RenderCS

Default Value: 0x00000000

Access: R/W

Size (in bits): 32

Trusted Type: 1

Address: 043C8h

DWord Bit Description

0 31:30 Goto field when request vector is 1111.

Determines the GOTO and priority register to be used next.

Value Name Description

00b Use MIDARB_GOTOFIELD_NP0 and MIDARB_PRIO_NP_REGISTER[4:0]

01b Use MIDARB_GOTOFIELD_NP1 and MIDARB_PRIO_NP_REGISTER[9:5]

10b Use MIDARB_GOTOFIELD_NP2 and MIDARB_PRIO_NP_REGISTER[14:10]

11b Use MIDARB_GOTOFIELD_NP3 and MIDARB_PRIO_NP_REGISTER[19:15]

29:28 Goto field when request vector is 1110b.

27:26 Goto field when request vector is 1101b.

25:24 Goto field when request vector is 1100b.

23:22 Goto field when request vector is 1011b.

21:20 Goto field when request vector is 1010b.

19:18 Goto field when request vector is 1001b.

17:16 Goto field when request vector is 1000b.

15:14 Goto field when request vector is 0111b.

13:12 Goto field when request vector is 0110b.

11:10 Goto field when request vector is 0101b.

9:8 Goto field when request vector is 0100b.

7:6 Goto field when request vector is 0011b.

5:4 Goto field when request vector is 0010b.

3:2 Goto field when request vector is 0001b.

1:0 Goto field when request vector is 0000b.

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 19

1.1.4.8 MIDARB_GOTOFIELD_NP3_REGISTER – Goto Field in Programmable
Arbitration for Hit-NP3

MIDARB_GOTOFIELD_NP3 - Goto Field in Programmable Arbitration
for Hit-NP3

Register Space: MMIO: 0/2/0

Source: RenderCS

Default Value: 0x00000000

Access: R/W

Size (in bits): 32

Trusted Type: 1

Address: 043CCh

DWord Bit Description

0 31:30 Goto field when request vector is 1111.

Determines the GOTO and priority register to be used next.

Value Name Description

00b Use MIDARB_GOTOFIELD_NP0 and MIDARB_PRIO_NP_REGISTER[4:0]

01b Use MIDARB_GOTOFIELD_NP1 and MIDARB_PRIO_NP_REGISTER[9:5]

10b Use MIDARB_GOTOFIELD_NP2 and MIDARB_PRIO_NP_REGISTER[14:10]

11b Use MIDARB_GOTOFIELD_NP3 and MIDARB_PRIO_NP_REGISTER[19:15]

29:28 Goto field when request vector is 1110b.

27:26 Goto field when request vector is 1101b.

25:24 Goto field when request vector is 1100b.

23:22 Goto field when request vector is 1011b.

21:20 Goto field when request vector is 1010b.

19:18 Goto field when request vector is 1001b.

17:16 Goto field when request vector is 1000b.

15:14 Goto field when request vector is 0111b.

13:12 Goto field when request vector is 0110b.

11:10 Goto field when request vector is 0101b.

9:8 Goto field when request vector is 0100b.

7:6 Goto field when request vector is 0011b.

5:4 Goto field when request vector is 0010b.

3:2 Goto field when request vector is 0001b.

1:0 Goto field when request vector is 0000b.

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 20

1.1.4.9 ARB_GAC_GAM_REQCNTS0 – GAC_GAM Arbitration Counters
Register 0

ARB_GAC_GAM_REQCNTS0 - GAC_GAM Arbitration Counters
Register 0

Register Space: MMIO: 0/2/0

Project: All

Source: RenderCS

Default Value: 0x00000000

Access: R/W

Size (in bits): 32

Trusted Type: 1

Address: 043A8h

DWord Bit Description

0 31:22 Reserved

21:16 Number of GAC WR requests to be accumulated before applying the arbitration

15:14 Reserved

13:8 Number of GAC R requests to be accumulated before applying the arbitration

7:6 Reserved

5:0 Number of GAC RO requests to be accumulated before applying the arbitration

1.1.4.10 ARB_GAC_GAM_REQCNTS1 – GAC_GAM Arbitration Counters
Register 1

ARB_GAC_GAM_REQCNTS1 - GAC_GAM Arbitration Counters
Register 1

Register Space: MMIO: 0/2/0

Project: All

Source: RenderCS

Default Value: 0x00000000

Access: R/W

Size (in bits): 32

Trusted Type: 1

Address: 043ACh

DWord Bit Description

0 31:22 Reserved

21:16 Number of GAC WR requests to be accumulated before applying the arbitration

15:14 Reserved

13:8 Number of GAC R requests to be accumulated before applying the arbitration

7:6 Reserved

5:0 Number of GAC RO requests to be accumulated before applying the arbitration

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 21

1.1.4.11 ARB_RO_GAC_GAM0 – GAC_GAM RO Arbitration Register 0

ARB_RO_GAC_GAM0 - GAC_GAM RO Arbitration Register 0

Register Space: MMIO: 0/2/0

Project: All

Source: RenderCS

Default Value: 0x00000000

Access: R/W

Size (in bits): 32

Trusted Type: 1

Address: 043D0h

DWord Bit Description

0 31:28 Reserved

27 Priority for entry 1

26:24 Goto field for entry 1 when request vector is 11b

23:21 Goto field for entry 1 when request vector is 10b

20:18 Goto field for entry 1 when request vector is 01b

17:15 Goto field for entry 1 when request vector is 00b

14:13 Reserved

12 Priority for entry 01

11:9 Goto field for entry 01 when request vector is 11b

8:6 Goto field for entry 01 when request vector is 10b

5:3 Goto field for entry 01 when request vector is 01b

2:0 Goto field for entry 01 when request vector is 00b

1.1.4.12 ARB_RO_GAC_GAM1 – GAC_GAM RO Arbitration Register 1

ARB_RO_GAC_GAM1 - GAC_GAM RO Arbitration Register 1

Register Space: MMIO: 0/2/0

Project: All

Source: RenderCS

Default Value: 0x00000000

Access: R/W

Size (in bits): 32

Trusted Type: 1

Address: 043D4h

DWord Bit Description

0 31:28 Reserved

27 Priority for entry 3

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 22

ARB_RO_GAC_GAM1 - GAC_GAM RO Arbitration Register 1

26:24 Goto field for entry 3 when request vector is 11b

23:21 Goto field for entry 3 when request vector is 10b

20:18 Goto field for entry 3 when request vector is 01b

17:15 Goto field for entry 3 when request vector is 00b

14:13 Reserved

12 Priority for entry 2

11:9 Goto field for entry 2 when request vector is 11b

8:6 Goto field for entry 2 when request vector is 10b

5:3 Goto field for entry 2 when request vector is 01b

2:0 Goto field for entry 2 when request vector is 00b

1.1.4.13 ARB_RO_GAC_GAM2 – GAC_GAM RO Arbitration Register 2

ARB_RO_GAC_GAM2 - GAC_GAM RO Arbitration Register 2

Register Space: MMIO: 0/2/0

Project: All

Source: RenderCS

Default Value: 0x00000000

Access: R/W

Size (in bits): 32

Trusted Type: 1

Address: 043D8h

DWord Bit Description

0 31:28 Reserved

27 Priority for entry 5

26:24 Goto field for entry 5 when request vector is 11b

23:21 Goto field for entry 5 when request vector is 10b

20:18 Goto field for entry 5 when request vector is 01b

17:15 Goto field for entry 5 when request vector is 00b

14:13 Reserved

12 Priority for entry 4

11:9 Goto field for entry 4 when request vector is 11b

8:6 Goto field for entry 4 when request vector is 10b

5:3 Goto field for entry 4 when request vector is 01b

2:0 Goto field for entry 4 when request vector is 00b

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 23

1.1.4.14 ARB_RO_GAC_GAM3 – GAC_GAM RO Arbitration Register 3

ARB_RO_GAC_GAM3 - GAC_GAM RO Arbitration Register 3

Register Space: MMIO: 0/2/0

Project: All

Source: RenderCS

Default Value: 0x00000000

Access: R/W

Size (in bits): 32

Trusted Type: 1

Address: 043DCh

DWord Bit Description

0 31:28 Reserved

27 Priority for entry 7

26:24 Goto field for entry 7 when request vector is 11b

23:21 Goto field for entry 7 when request vector is 10b

20:18 Goto field for entry 7 when request vector is 01b

17:15 Goto field for entry 7 when request vector is 00b

14:13 Reserved

12 Priority for entry 6

11:9 Goto field for entry 6 when request vector is 11b

8:6 Goto field for entry 6 when request vector is 10b

5:3 Goto field for entry 6 when request vector is 01b

2:0 Goto field for entry 6 when request vector is 00b

1.1.4.15 ARB_R_GAC_GAM0 – GAC_GAM R Arbitration Register 0

ARB_R_GAC_GAM0 - GAC_GAM R Arbitration Register 0

Register Space: MMIO: 0/2/0

Project: All

Source: RenderCS

Default Value: 0x00000000

Access: R/W

Size (in bits): 32

Trusted Type: 1

Address: 043E0h

DWord Bit Description

0 31:28 Reserved

27 Priority for entry 1

26:24 Goto field for entry 1 when request vector is 11b

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 24

ARB_R_GAC_GAM0 - GAC_GAM R Arbitration Register 0

23:21 Goto field for entry 1 when request vector is 10b

20:18 Goto field for entry 1 when request vector is 01b

17:15 Goto field for entry 1 when request vector is 00b

14:13 Reserved

12 Priority for entry 0

11:9 Goto field for entry 0 when request vector is 11b

8:6 Goto field for entry 0 when request vector is 10b

5:3 Goto field for entry 0 when request vector is 01b

2:0 Goto field for entry 0 when request vector is 00b

1.1.4.16 ARB_R_GAC_GAM1 – GAC_GAM R Arbitration Register 1

ARB_R_GAC_GAM1 - GAC_GAM R Arbitration Register 1

Register Space: MMIO: 0/2/0

Project: All

Source: RenderCS

Default Value: 0x00000000

Access: R/W

Size (in bits): 32

Trusted Type: 1

Address: 043E4h

DWord Bit Description

0 31:28 Reserved

27 Priority for entry 3

26:24 Goto field for entry 3 when request vector is 11b

23:21 Goto field for entry 3 when request vector is 10b

20:18 Goto field for entry 3 when request vector is 01b

17:15 Goto field for entry 3 when request vector is 00b

14:13 Reserved

12 Priority for entry 2

11:9 Goto field for entry 2 when request vector is 11b

8:6 Goto field for entry 2 when request vector is 10b

5:3 Goto field for entry 2 when request vector is 01b

2:0 Goto field for entry 2 when request vector is 00b

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 25

1.1.4.17 ARB_R_GAC_GAM2 – GAC_GAM R Arbitration Register 2

ARB_R_GAC_GAM2 - GAC_GAM R Arbitration Register 2

Register Space: MMIO: 0/2/0

Project: All

Source: RenderCS

Default Value: 0x00000000

Access: R/W

Size (in bits): 32

Trusted Type: 1

Address: 043E8h

DWord Bit Description

0 31:28 Reserved

27 Priority for entry 5

26:24 Goto field for entry 5 when request vector is 11b

23:21 Goto field for entry 5 when request vector is 10b

20:18 Goto field for entry 5 when request vector is 01b

17:15 Goto field for entry 5 when request vector is 00b

14:13 Reserved

12 Priority for entry 4

11:9 Goto field for entry 4 when request vector is 11b

8:6 Goto field for entry 4 when request vector is 10b

5:3 Goto field for entry 4 when request vector is 01b

2:0 Goto field for entry 4 when request vector is 00b

1.1.4.18 ARB_R_GAC_GAM3 – GAC_GAM R Arbitration Register 3

ARB_R_GAC_GAM3 - GAC_GAM R Arbitration Register 3

Register Space: MMIO: 0/2/0

Project: All

Source: RenderCS

Default Value: 0x00000000

Access: R/W

Size (in bits): 32

Trusted Type: 1

Address: 043ECh

DWord Bit Description

0 31:28 Reserved

27 Priority for entry 7

26:24 Goto field for entry 7 when request vector is 11b

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 26

ARB_R_GAC_GAM3 - GAC_GAM R Arbitration Register 3

23:21 Goto field for entry 7 when request vector is 10b

20:18 Goto field for entry 7 when request vector is 01b

17:15 Goto field for entry 7 when request vector is 00b

14:13 Reserved

12 Priority for entry 6

11:9 Goto field for entry 6 when request vector is 11b

8:6 Goto field for entry 6 when request vector is 10b

5:3 Goto field for entry 6 when request vector is 01b

2:0 Goto field for entry 6 when request vector is 00b

1.1.4.19 ARB_WR_GAC_GAM0 – GAC_GAM WR Arbitration Register 0

ARB_WR_GAC_GAM0 - GAC_GAM WR Arbitration Register 0

Register Space: MMIO: 0/2/0

Project: All

Source: RenderCS

Default Value: 0x00000000

Access: R/W

Size (in bits): 32

Trusted Type: 1

Address: 043F0h

DWord Bit Description

0 31:28 Reserved

27 Priority for entry 1

26:24 Goto field for entry 1 when request vector is 11b

23:21 Goto field for entry 1 when request vector is 10b

20:18 Goto field for entry 1 when request vector is 01b

17:15 Goto field for entry 1 when request vector is 00b

14:13 Reserved

12 Priority for entry 0

11:9 Goto field for entry 0 when request vector is 11b

8:6 Goto field for entry 0 when request vector is 10b

5:3 Goto field for entry 0 when request vector is 01b

2:0 Goto field for entry 0 when request vector is 00b

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 27

1.1.4.20 ARB_WR_GAC_GAM1 – GAC_GAM WR Arbitration Register 1

ARB_WR_GAC_GAM1 - GAC_GAM WR Arbitration Register 1

Register Space: MMIO: 0/2/0

Project: All

Source: RenderCS

Default Value: 0x00000000

Access: R/W

Size (in bits): 32

Trusted Type: 1

Address: 043F4h

DWord Bit Description

0 31:28 Reserved

27 Priority for entry 3

26:24 Goto field for entry 3 when request vector is 11b

23:21 Goto field for entry 3 when request vector is 10b

20:18 Goto field for entry 3 when request vector is 01b

17:15 Goto field for entry 3 when request vector is 00b

14:13 Reserved

12 Priority for entry 2

11:9 Goto field for entry 2 when request vector is 11b

8:6 Goto field for entry 2 when request vector is 10b

5:3 Goto field for entry 2 when request vector is 01b

2:0 Goto field for entry 2 when request vector is 00b

1.1.4.21 ARB_WR_GAC_GAM2 – GAC_GAM WR Arbitration Register 2

ARB_WR_GAC_GAM2 - GAC_GAM WR Arbitration Register 2

Register Space: MMIO: 0/2/0

Project: All

Source: RenderCS

Default Value: 0x00000000

Access: R/W

Size (in bits): 32

Trusted Type: 1

Address: 043F8h

DWord Bit Description

0 31:28 Reserved

27 Priority for entry 5

26:24 Goto field for entry 5 when request vector is 11b

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 28

ARB_WR_GAC_GAM2 - GAC_GAM WR Arbitration Register 2

23:21 Goto field for entry 5 when request vector is 10b

20:18 Goto field for entry 5 when request vector is 01b

17:15 Goto field for entry 5 when request vector is 00b

14:13 Reserved

12 Priority for entry 4

11:9 Goto field for entry 4 when request vector is 11b

8:6 Goto field for entry 4 when request vector is 10b

5:3 Goto field for entry 4 when request vector is 01b

2:0 Goto field for entry 4 when request vector is 00b

1.1.4.22 ARB_WR_GAC_GAM3 – GAC_GAM WR Arbitration Register 3

ARB_WR_GAC_GAM3 - GAC_GAM WR Arbitration Register 3

Register Space: MMIO: 0/2/0

Project: All

Source: RenderCS

Default Value: 0x00000000

Access: R/W

Size (in bits): 32

Trusted Type: 1

Address: 043FCh

DWord Bit Description

0 31:28 Reserved

27 Priority for entry 7

26:24 Goto field for entry 7 when request vector is 11b

23:21 Goto field for entry 7 when request vector is 10b

20:18 Goto field for entry 7 when request vector is 01b

17:15 Goto field for entry 7 when request vector is 00b

14:13 Reserved

12 Priority for entry 6

11:9 Goto field for entry 6 when request vector is 11b

8:6 Goto field for entry 6 when request vector is 10b

5:3 Goto field for entry 6 when request vector is 01b

2:0 Goto field for entry 6 when request vector is 00b

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 29

1.1.5 Virtual Memory Control

1.1.5.1 HWS_PGA — Hardware Status Page Address Register

Programming Note: If this register is written, a workload must subsequently be dispatched to the render

command streamer.

HWS_PGA - Hardware Status Page Address Register

Register Space: MMIO: 0/2/0

Source: RenderCS

Default Value: 0x00000000

Access: R/W

Size (in bits): 32

Trusted Type: 1

Address: 04080h

This register is used to program the 4 KB-aligned System Memory address of the Hardware Status Page used to

report hardware status into (typically cacheable) System Memory.

Programming Notes Project

If this register is written, a workload must subsequently be dispatched to the Render command streamer.

DWord Bit Description

0 31:12 Address

Format: GraphicsAddress[31:12]

This field is used by SW to specify Bits 31:12 of the 4 KB-aligned System Memory address of the 4 KB

page known as the Hardware Status Page. The Global GTT is used to map this page from the graphics

virtual address to physical address.

Programming Notes

If the Per-Process Virtual Address Space and Exec List Enable bit is set, HW requires that the status

page is programmed to allow for the context switch status to be reported.

11:0 Reserved

Format: MBZ

The following table defines the layout of the Hardware Status Page:

Hardware Status Page Layout

Source: RenderCS

Default

Value:

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 30

Hardware Status Page Layout

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 31

Hardware Status Page Layout

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 32

Hardware Status Page Layout

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000

DWord Bit Description

0 31:0 Interrupt Status Register Storage

Project: All

The content of the ISR register is written to this location whenever an “unmasked” bit of the ISR (as

determined by the HWSTAM register) changes state.

1..3 31:0 Reserved

Project: All

Must not be used.

4 31:0 Ring Head Pointer Storage

Project: All

The contents of the Ring Buffer Head Pointer register (register DWord 1) are written to this location

either as result of an MI_REPORT_HEAD instruction or as the result of an “automatic report” (see

RINGBUF registers).

5..15 31:0 Reserved

Project: All

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 33

Hardware Status Page Layout

Must not be used.

16..27 31:0 Context Status DWords

Project: All

28..30 31:0 Reserved

Project: All

Must not be used.

31 31:0 Last Written Status Offset

Project: All

32..1023 31:0 General Purpose

Project: All

These locations can be used for general purpose via the MI_STORE_DATA_INDEX or

MI_STORE_DATA_IMM instructions.

1.1.5.2 PP_DCLV – PPGTT Directory Cacheline Valid Register

PP_DCLV - PPGTT Directory Cacheline Valid Register

Register Space: MMIO: 0/2/0

Source: RenderCS

Default Value: 0x00000000, 0x00000000

Size (in bits): 64

Address: 02220h

Description Project

Access: R/W

This register controls update of the on-chip PPGTT Directory Cache during a context restore. Bits that are

set will trigger the load of the corresponding 16 directory entry group. This register is restored with context

(prior to restoring the on-chip directory cache itself). This register is also restored when switching to a

context whose LRCA matches the current CCID if the Force PD Restore bit is set in the context descriptor.

The context image of this register must be updated and maintained by SW; SW should not normally need to

read this register.

This register can also effectively be used to limit the size of a process's virtual address space. Any access

by a process that requires a PD entry in a set that is not enabled in this register will cause a fatal error, and

no fetch of the PD entry will be attempted.

Programming Notes Project

Page Directory Base Register is a Global Context Register (power context) and not maintained per context in

ring buffer mode of submission. One should explicitly load PP_DCLV followed by PP_DIR_BASE register

through Load Register Immediate commands in Ring Buffer before submitting a context. One should

program these registers after ensuring the pipe is completely flushed with TLB’s invalidated.

DWord Bit Description

0 63:32 Reserved

Project: All

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 34

PP_DCLV - PPGTT Directory Cacheline Valid Register

Format: MBZ

31:0 PPGTT Directory Cache Restore [1..32] 16 entries

Project: All

Format: BitMask[Enable]

If set, the [1st..32nd] 16 entries of the directory cache are considered valid and will be brought in on

context restore. If clear, these entries are considered invalid and fetch of these entries will not be

attempted.

1.1.6 GFX TLB In Use Virtual Address Registers

1.1.6.1 MTTLB_VA — MT Virtual Page Address Registers

MTTLB_VA - MT Virtual Page Address Registers

Register Space: MMIO: 0/2/0

Source: RenderCS

Default Value: 0x00000000

Access: RO

Size (in bits): 32

Trusted Type: 1

Address: 04800h-048FCh

DWord Bit Description

0 31:12 Address

Format: GraphicsAddress[31:12]

Page virtual address.

11:0 Reserved

Format: MBZ

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 35

1.1.6.2 MTTLB_VLD — Valid Bit Vector 0 for MTTLB

MTTLB_VLD0 - Valid Bit Vector 0 for MTTLB

Register Space: MMIO: 0/2/0

Source: RenderCS

Default Value: 0x00000000

Access: RO

Size (in bits): 32

Trusted Type: 1

Address: 04780h-04783h

This register contains the valid bits for entries 0-31 of MTTLB (Texture and constant cache TLB).

DWord Bit Description

0 31:0 Valid bits per entry

1.1.6.3 MTTLB_VLD — Valid Bit Vector 1 for MTTLB

MTTLB_VLD1 - Valid Bit Vector 1 for MTTLB

Register Space: MMIO: 0/2/0

Source: RenderCS

Default Value: 0x00000000

Access: RO

Size (in bits): 32

Trusted Type: 1

Address: 04784h-04787h

This register contains the valid bits for entries 0-31 of MTTLB (Texture and constant cache TLBVertex Fetch,

Instruction Cache, and Command Streamer TLB).

DWord Bit Description

0 31:0 Valid bits per entry

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 36

1.1.6.4 VICTLB_VA — VIC Virtual page Address Registers

VICTLB_VA - VIC Virtual page Address Registers

Register Space: MMIO: 0/2/0

Source: RenderCS

Default Value: 0x00000000

Access: RO

Size (in bits): 32

Trusted Type: 1

Address: 04900h-049FCh

These registers are directly mapped to the current Virtual Addresses in the VICTLB (Vertex Fetch, Instruction Cache,

and Command Streamer TLB.)

DWord Bit Description

0 31:12 Address

Format: GraphicsAddress[31:12]

Page virtual address.

11:0 Reserved

Format: MBZ

1.1.6.5 VICTLB_VLD — Valid Bit Vector 0 for MTVICTLB

VICTLB_VLD0 - Valid Bit Vector 0 for MTVICTLB

Register Space: MMIO: 0/2/0

Source: RenderCS

Default Value: 0x00000000

Access: RO

Size (in bits): 32

Trusted Type: 1

Address: 04788h-0478Bh

This register contains the valid bits for entries 0-31 of VICTLB (Vertex Fetch, Instruction Cache, and Command

Streamer TLB).

DWord Bit Description

0 31:0 Valid bits per entry

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 37

1.1.6.6 VICTLB_VLD — Valid Bit Vector 1 for MTVICTLB

MTVICTLB_VLD1 - Valid Bit Vector 1 for MTVICTLB

Register Space: MMIO: 0/2/0

Source: RenderCS

Default Value: 0x00000000

Access: RO

Size (in bits): 32

Trusted Type: 1

Address: 0478Ch-0478Fh

This register contains the valid bits for entries 0-31 of VICTLB (Vertex Fetch, Instruction Cache, and Command

Streamer TLB).

DWord Bit Description

0 31:0 Valid bits per entry

1.1.6.7 RCCTLB_VA — Virtual page Address Registers

RCCTLB_VA - RCC Virtual page Address Registers

Register Space: MMIO: 0/2/0

Source: RenderCS

Default Value: 0x00000000

Access: RO

Size (in bits): 32

Trusted Type: 1

Address: 04A00h-04AFCh

These registers are directly mapped to the current Virtual Addresses in the RCCTLB (Render Cache for Color TLB).

DWord Bit Description

0 31:12 Address

Project: All

Format: GraphicsAddress[31:12]

Page virtual address.

11:0 Reserved

Format: MBZ

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 38

1.1.6.8 RCCTLB_VLD — Valid Bit Vector 0 for RCCTLB

RCCTLB_VLD0 - Valid Bit Vector 0 for RCCTLB

Register Space: MMIO: 0/2/0

Source: RenderCS

Default Value: 0x00000000

Access: RO

Size (in bits): 32

Trusted Type: 1

Address: 04790h-04793h

This register contains the valid bits for entries 0-31 of RCCTLB (Render Cache for Color TLB).

DWord Bit Description

0 31:0 Valid bits per entry

1.1.6.9 RCZTLB_VA — RCZ Virtual Page Address Registers

RCZTLB_VA - RCZ Virtual Page Address Registers

Register Space: MMIO: 0/2/0

Source: RenderCS

Default Value: 0x00000000

Access: RO

Size (in bits): 32

Trusted Type: 1

Address: 04B00h-04BFCh

These registers are directly mapped to the current Virtual Addresses in the RCZTLB (Render Cache for Z (Depth), Hi

Z, and Stencil TLB).

DWord Bit Description

0 31:12 Address

Format: GraphicsAddress[31:12]

Page virtual address.

11:0 Reserved

Format: MBZ

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 39

1.1.6.10 RCZTLB_VLD0 — Valid Bit Vector 0 for RCZTLB

RCZTLB_VLD0 - Valid Bit Vector 0 for RCZTLB

Register Space: MMIO: 0/2/0

Source: RenderCS

Default Value: 0x00000000

Access: RO

Size (in bits): 32

Trusted Type: 1

Address: 04798h-0479Bh

This register contains the valid bits for entries 0-31 of RCZTLB (Render Cache for Z (Depth), Hi Z, and Stencil TLB).

DWord Bit Description

0 31:0 Valid bits per entry

1.1.6.11 RCZTLB_VLD1 — Valid Bit Vector 1 for RCZTLB

RCZTLB_VLD1 - Valid Bit Vector 1 for RCZTLB

Register Space: MMIO: 0/2/0

Source: RenderCS

Default Value: 0x00000000

Access: RO

Size (in bits): 32

Trusted Type: 1

Address: 0479Ch-0479Fh

This register contains the valid bits for entries 0-31 of RCZTLB (Render Cache for Z (Depth), Hi Z, and Stencil TLB).

DWord Bit Description

0 31:0 Valid bits per entry

1.1.7 GFX Pending TLB Cycles Information Registers

The following registers contain information about cycles that did not complete their TLB translation.

Information is organized as 64 entries, where each entry has a valid and ready bit, collapsed into

separate registers.

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 40

1.1.7.1 TLBPEND_VLD0 - Valid Bit Vector 0 for TLBPEND Registers

TLBPEND_VLD0 - Valid Bit Vector 0 for TLBPEND registers

Register Space: MMIO: 0/2/0

Source: RenderCS

Default Value: 0x00000000

Access: R/W

Size (in bits): 32

Trusted Type: 1

Address: 04700h-04703h

This register contains the valid bits for entries 0-31 of TLBPEND structure (Cycles pending TLB translation).

DWord Bit Description

0 31:0 Valid bits per entry

1.1.7.2 TLBPEND_VLD1 - Valid Bit Vector 1 for TLBPEND Registers

TLBPEND_VLD1 - Valid Bit Vector 1 for TLBPEND registers

Register Space: MMIO: 0/2/0

Source: RenderCS

Default Value: 0x00000000

Access: R/W

Size (in bits): 32

Trusted Type: 1

Address: 04704h-04707h

This register contains the valid bits for entries 32-63 of TLBPEND structure (Cycles pending TLB translation).

DWord Bit Description

0 31:0 Valid bits per entry

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 41

1.1.7.3 TLBPEND_RDY0 - Ready Bit Vector 0 for TLBPEND Registers

TLBPEND_RDY0 - Ready Bit Vector 0 for TLBPEND registers

Register Space: MMIO: 0/2/0

Source: RenderCS

Default Value: 0x00000000

Access: R/W

Size (in bits): 32

Trusted Type: 1

Address: 04708h-0470Bh

This register contains the ready bits for entries 0-31 of TLBPEND structure (Cycles pending TLB translation).

DWord Bit Description

0 31:0 Ready bits per entry

1.1.7.4 TLBPEND_RDY1 - Ready Bit Vector 1 for TLBPEND Registers

TLBPEND_RDY1 - Ready Bit Vector 1 for TLBPEND registers

Register Space: MMIO: 0/2/0

Source: RenderCS

Default Value: 0x00000000

Access: R/W

Size (in bits): 32

Trusted Type: 1

Address: 0470Ch-0470Fh

This register contains the ready bits for entries 32-63 of TLBPEND structure (Cycles pending TLB translation).

DWord Bit Description

0 31:0 Ready bits per entry

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 42

1.1.7.5 TLBPEND_SEC0 — Section 0 of TLBPEND Entry

TLBPEND_SEC0 - Section 0 of TLBPEND Entry

Register Space: MMIO: 0/2/0

Source: RenderCS

Default Value: 0x00000000

Access: R/W

Size (in bits): 32

Trusted Type: 1

Address: 04400h-044FCh

This register is directly mapped to the TLBPEND Array in the Graphic Arbiter.

DWord Bit Description

0 31 vtstatus

This bit will be used in conjunction with the ready bit to determine the stage of the translation. See table

below.

30:28 GTT bits

Bits 3:1 of the GTT entry used to translate the Virtual Address. 000 if translation is pending.

27:0 Current address

The value of this field depends on the stage of the TLB translation for this entry: VA – bits 27:20 = 00,

bits 19:0 = Bits 31:12 of the Virtual Address of the cycle.

VTDMODE Valid Ready Vtstatus
Meaning

DC 0
DC

DC
Entry is invalid

0 1 0 0 Entry was a TLB miss. Waiting for TLB translation.

0 1 0 1
Entry was a Hit not present. Waiting for TLB translation from a previous miss.

0 1 1 0 Not possible

0 1 1 1 TLB translation complete. Entry ready

1 1 0 0 Entry was a TLB miss. Waiting for TLB translation.

1 1 0 1
Entry was a Hit not present. Waiting for TLB translation from a previous miss.

1 1 1 0 GPA translation complete. Entry ready for VTD translation.

1 1 1 1 TLB translation complete. Entry ready

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 43

1.1.7.6 TLBPEND_SEC1 — Section 1 of TLBPEND entry

TLBPEND_SEC1 - Section 1 of TLBPEND Entry

Register Space: MMIO: 0/2/0

Source: RenderCS

Default Value: 0x00000000

Access: R/W

Size (in bits): 32

Trusted Type: 1

Address: 04500h-045FCh

This register is directly mapped to the current Virtual Addresses in the MTTLB (Texture and constant cache

TLBRender Cache for Z (Depth), Hi Z, and Stencil TLB).

DWord Bit Description

0 31:28 Current address

Bits 9:6 of the Virtual Address of the cycle.

27:24 Cacheability Control Bits

Bits 3:1 of the GTT entry used to translate the Virtual Address. 000 if translation is pending.

3

2 Graphics Data Type (GFDT). This field contains the GFDT bit for this surface when writes occur.

GFDT can also be set by the GTT. The effective GFDT is the logical OR of this field with the GFDT

from the GTT entry. This field is ignored for reads.

1:0 Cacheability Control. This field controls cacheability in the mid-level cache (MLC) and last-level

cache (LLC).

00: use cacheability control bits from GTT entry

01: data is not cached in LLC or MLC

10: data is cached in LLC but not MLC

11: data is cached in both LLC and MLC

23 ZLR bit

Flag to indicate this is a zero length read, a read used to calculate a physical address for a write.

22:4 TAG

Cycle identification TAG.

3:0 SRC ID

Encoding of unit generating this cycle .

Value Name

0000b CS_RD_SRCID

0001b VF_RD_SRCID

0010b ISC_SRCID

0011b MT_SRCID

0100b RCC_SRCID

0101b HZARB_SRCID

0110b RCZ_SRCID

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 44

TLBPEND_SEC1 - Section 1 of TLBPEND Entry

0111b CTC_SRCID

1000b CS_WR_SRCID

1001b MBC_SRCID

1010b Reserved

1011b CS_RD_PWRCTX

1100b RC_R4WRCMP

1101b RESRVD2_SRCID

1110b RESRVD1_SRCID

1111b RESRVD0_SRCID

1.1.7.7 TLBPEND_SEC2 — Section 2 of TLBPEND entry

TLBPEND_SEC2 - Section 2 of TLBPEND Entry

Register Space: MMIO: 0/2/0

Source: RenderCS

Default Value: 0x00000000

Access: R/W

Size (in bits): 32

Trusted Type: 1

Address: 04600h-046FCh

This register is directly mapped to the current Virtual Addresses in the MTTLB (Texture and constant cache TLB).

DWord Bit Description

0 31:14 Reserved

13 Big Page Attribute

This entry is using a 32K page.

12:8 Current Address

Format: GraphicsAddress[14:10]

Bits 14:10 of the Virtual Address of the cycle.

7:0 PAT Entry

Location of Physical Address in Physical Address Table.

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 45

1.1.8 Configuration Registers for Graphic Arbiter

1.1.8.1 ZSHR — Depth/Early Depth TLB Partitioning Register

ZSHR - Depth/Early Depth TLB Partitioning Register

Register Space: MMIO: 0/2/0

Source: RenderCS

Default Value: 0x00000020

Access: R/W

Size (in bits): 32

Trusted Type: 1

Address: 04050h

This register is used to determine the number of TLB entries from the total of 64 available to be used by the Depth

partition of the TLB. The rest of the entries are used for the Early Depth/Stencil TLB.

DWord Bit Description

0 31:6 Reserved

Format: MBZ

5:0 Number of TLB Entries Out of 64 used for Depth TLB

Default Value: 32

The rest are be used for Early Depth/Stencil TLB. Default value is 32.

1.1.8.2 Color/Depth Write FIFO Watermarks

CZWMRK - Color/Depth Write FIFO Watermarks

Register Space: MMIO: 0/2/0

Source: RenderCS

Default Value: 0x00000000

Access: R/W

Size (in bits): 32

Trusted Type: 1

Address: 04060h

This register is directly mapped to the current Virtual Addresses in the MTTLB (Texture and constant cache TLB).

DWord Bit Description

0 31:24 Reserved

Format: MBZ

23:18 Color Wr Burst Size

This is the maximum size of the requests burst, from the last High Watermark trip, before reevaluating

the High Watermark again.

17:16 Reserved

Format: MBZ

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 46

CZWMRK - Color/Depth Write FIFO Watermarks

15:12 Color Wr FIFO High Watermark

This is the number of accumulated Color writes that will trigger a Burst of Z Writes.

11:6 Z Wr Burst Size

This is the maximum size of the requests burst, from the last High Watermark trip, before reevaluating

the High Watermark again.

5:4 Reserved

Format: MBZ

3:0 Z Wr FIFO High Watermark

This is the number of accumulated Depth writes that will trigger a Burst of Z Writes.

1.1.8.3 PP_PFD[0:31] – PPGTT Page Fault Data Registers

PP_PFD[0:31] - PPGTT Page Fault Data Registers

Register Space: MMIO: 0/2/0

Source: RenderCS

Default Value: 0x00000000

Access: RO

Size (in bits): 32

Address: 04580h

The GTT Page Fault Log entries can be read from these registers.

4580h-4583h: Fault Entry 0

...

45FCh-45FFh: Fault Entry 31

DWord Bit Description

0 31:12 Fault Entry Page Address

Format: GraphicsAddress[31:12]

This RO field contains the faulting page address for this Fault Log entry. This field will contain a valid

fault address only if the bit in the GTT Page Fault Indication Register corresponding with the address

offset of this entry is set.

11:0 Reserved

Format: MBZ

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 47

1.1.9 Context Save Registers

1.1.9.1 SVG_CTX — SVG Context Save Register

SVG_CTX - SVG Context Save Register

Register Space: MMIO: 0/2/0

Source: RenderCS

Default Value: 0x00000000

Access: WO

Size (in bits): 32

Address: 06FFCh

This register is used to send messages to enable context saving. This register may not be written from CPU.

DWord Bit Description

0 31:16 Masks

Format: Mask[15:0]

A 1 in a bit in this field allows the modification of the corresponding bit in Bits 15:0

15:1 Reserved

Format: MBZ

0 Context Save Start

Default Value: 0h

Format: Enable

When a 1 is written to this bit with the mask bit set, it will kick off a context save. Once the save is

complete the bit will be cleared.

1.1.9.2 SVL_CTX— SVL Context Save Register

SVL_CTX - SVL Context Save Register

Register Space: MMIO: 0/2/0

Source: RenderCS

Default Value: 0x00000000

Access: RO

Size (in bits): 32

Address: 07FFCh

This register is used to send messages to enable context saving. This register may not be written from CPU.

DWord Bit Description

0 31:16 Masks

Format: Mask[15:0]

A 1 in a bit in this field allows the modification of the corresponding bit in Bits 15:0

15:1 Reserved

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 48

SVL_CTX - SVL Context Save Register

Format: MBZ

0 Context Save Start

Default Value: 0h

Format: Enable

When a 1 is written to this bit with the mask bit set, it will initiate a context save. Once the save is

complete the bit will be cleared.

1.1.9.3 WM_CTX— WM Context Save Register

WM_CTX - WM Context Save Register

Register Space: MMIO: 0/2/0

Source: RenderCS

Default Value: 0x00000000

Access: RO

Size (in bits): 32

Address: 05FFCh

This register is used to send messages to enable context saving. This register may not be written from CPU.

DWord Bit Description

0 31:16 Masks

Format: Mask[15:0]

A 1 in a bit in this field allows the modification of the corresponding bit in Bits 15:0

15:1 Reserved

Format: MBZ

0 Context Save Start

Default Value: 0h

Format: Enable

When a 1 is written to this bit with the mask bit set, it will kick off a context save. Once the save is

complete the bit will be cleared.

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 49

1.1.9.4 SC_CTX— SC Context Save Register

SC_CTX - SC Context Save Register

Register Space: MMIO: 0/2/0

Source: RenderCS

Default Value: 0x00000000

Access: RO

Size (in bits): 32

Address: 0E1FCh

Address: 0F1FCh

Name: SC_CTX_SLICE1

This register is used to send messages to enable context saving. This register may not be written from CPU.

DWord Bit Description

0 31:16 Masks

Format: Mask[15:0]

A 1 in a bit in this field allows the modification of the corresponding bit in Bits 15:0

15:5 Reserved

Format: MBZ

4 Context Save Start(MMIO and NP State)

Format: Enable

When a 1 is written to this bit with the mask bit set, it will kick off a context save. Once the save is

complete the bit will be cleared.

3:1 Reserved

Format: MBZ

0 Context Save Start(MMIO Only)

Format: Enable

When a 1 is written to this bit with the mask bit set, it will kick off a context save. Once the save is

complete the bit will be cleared.

1.1.9.5 DM_CTX — DM Context Save Register

DM_CTX - DM Context Save Register

Register Space: MMIO: 0/2/0

Source: RenderCS

Default Value: 0x00000000

Access: RO

Size (in bits): 32

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 50

DM_CTX - DM Context Save Register

Address: 0E0FCh

Address: 0F0FCh

Name: DM_CTX_SLICE1

This register is used to send messages to enable context saving. This register may not be written from CPU.

DWord Bit Description

0 31:16 Masks

Format: Mask[15:0]

A 1 in a bit in this field allows the modification of the corresponding bit in Bits 15:0.

15:1 Reserved

Format: MBZ

0 Context Save Start

Default Value: 0h

Format: Enable

When a 1 is written to this bit with the mask bit set, it will initiate a context save. Once the save is

complete the bit will be cleared.

1.1.9.6 SARB_CTX— SARB Context Save Register

SARB_CTX - SARB Context Save Register

Register Space: MMIO: 0/2/0

Source: RenderCS

Default Value: 0x00000000

Access: RO

Size (in bits): 32

Address: 0B1FCh

This register is used to send messages to enable context saving. This register may not be written from CPU.

DWord Bit Description

0 31:16 Masks

Format: Mask[15:0]

A 1 in a bit in this field allows the modification of the corresponding bit in Bits 15:0

15:1 Reserved

Format: MBZ

0 Context Save Start

Default Value: 0h

Format: Enable

When a 1 is written to this bit with the mask bit set, it will kick off a context save. Once the save is

complete the bit will be cleared.

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 51

1.1.9.7 VSC_CTX— VSC Context Save Register

VSC_CTX - VSC Context Save Register

Register Space: MMIO: 0/2/0

Source: RenderCS

Default Value: 0x00000000

Access: RO

Size (in bits): 32

Address: 051FCh

This register is used to send messages to enable context saving. This register may not be written from CPU.

DWord Bit Description

0 31:16 Masks

Format: Mask[15:0]

A 1 in a bit in this field allows the modification of the corresponding bit in Bits 15:0

15:1 Reserved

Format: MBZ

0 Context Save Start

Default Value: 0h

Format: Enable

When a 1 is written to this bit with the mask bit set, it will kick off a context save. Once the save is

complete, the bit will be cleared.

1.1.9.8 GPM_CTX— GPM Context Save Register

GPM_CTX - GPM Context Save Register

Register Space: MMIO: 0/2/0

Source: RenderCS

Default Value: 0x00000000

Access: RO

Size (in bits): 32

Address: 080FCh

This register is used to send messages to enable context saving. This register may not be written from CPU.

DWord Bit Description

0 31:16 Masks

Format: Mask[15:0]

A 1 in a bit in this field allows the modification of the corresponding bit in Bits 15:0

15:1 Reserved

Format: MBZ

0 Context Save Start

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 52

GPM_CTX - GPM Context Save Register

Default Value: 0h

Format: Enable

When a 1 is written to this bit with the mask bit set, it will initiate a context save. Once the save is

complete the bit will be cleared.

1.1.9.9 SOL_CTX— SOL Context Save Register

SOL_CTX - SOL Context Save Register

Register Space: MMIO: 0/2/0

Source: RenderCS

Default Value: 0x00000000

Access: RO

Size (in bits): 32

Address: 052FCh

This register is used to send messages to enable context saving. This register may not be written from CPU.

DWord Bit Description

0 31:6 Context Save Address/Offset

Default Value: 0h

Format: Address

This field specifies where the SOL context is to be saved.

If Power Context Save Mode is disabled, then the value of this field is the virtual address of the

location for SOL context to be saved.

If Power Context Save Mode is enabled, then the value of this field is the offset into the power context

image for SOL context to be saved.

5:2 Reserved

Format: MBZ

1 Power Context Save Mode

Default Value: 0h

Format: Enable

If set, then the save from SOL is for Power Context Save. If clear, then the save is for Ring Context

Save.

0 Context Save Start

Default Value: 0h

Format: Enable

When a 1 is written to this bit with the mask bit set, it will kick off a context save. Once the save is

complete, the bit will be cleared.

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 53

1.1.9.10 1.1.9.11 RING_BUFFER_HEAD_PREEMPT_REG

RING_BUFFER_HEAD_PREEMPT_REG -
RING_BUFFER_HEAD_PREEMPT_REG

Register Space: MMIO: 0/2/0

Default Value: 0x00000000

Access: R/W

Size (in bits): 32

Address: 0214Ch

Name: RCS RING_BUFFER_HEAD_PREEMPT_REG

ShortName: RCS_RING_BUFFER_HEAD_PREEMPT_REG

This register contains the Head pointer offset in the ring when the last PREEMPTABLE command was executed

and caused the head pointer to move due to the UHPTR register being valid. If the PREEMPTABLE command is

executed as part of the batch buffer then the value of the register will be the offset in the ring of the command past

the batch buffer start that contained the preemptable command.

This is a global register and context save restored as part of power context image.

Programming Notes

Programming Restriction:

This register should NEVER be programmed by driver. This is for HW internal use only.

DWord Bit Description

0 31:21 Reserved

Format: MBZ

20:2 Preempted Head Offset

Format: U19

This field contains the Head pointer offset in the ring when the last MI_ARB_CHECK command was

executed and caused the head pointer to move due to the UHPTR register being valid.

1:0 Ring/Batch Indicator

Format: Enabled

Value Name Description

0h Ring Preemptable command was executed in ring and caused head pointer to be updated.

1h Batch Preemptable command was executed in batch and caused head pointer to be updated.

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 54

1.1.9.11 BB_ADDR_DIFF—Batch Buffer Address Difference Register

BB_ADDR_DIFF - Batch Address Difference Register

Register Space: MMIO: 0/2/0

Source: RenderCS

Default Value: 0x00000000

Access: R/W

Size (in bits): 32

Address: 02154h

This register contains the difference between the start of the last batch and where the last initiated Batch Buffer is

currently fetching commands.

Programming Notes

Programming Restriction:

This register should NEVER be programmed by driver, this is for HW internal use only.

DWord Bit Description

0 31:2 Batch Buffer Address Difference

Format: GraphicsAddress[31:2]

This field specifies the DWord-aligned difference between the starting address of the batch buffer and

where the last initiated Batch Buffer is currently fetching commands.

1:0 Reserved

Format: MBZ

1.1.10 Mode and Misc Ctrl Registers

1.1.10.1 GT4 Mode Control Register

B/D/F/Type:MBCunit

Address Offset:9038-903Bh

Default Value:0h

Access: RW; RO;

Size:32 bits

Bit Access Default Value RST/PWR Description

1:0 R/W 00b Core
GT4 Usage mode:

00: Non-GT4

01: GT4 is used in Alternate Frame rendering Mode (AFR)

10: Basic Split Frame rendering Mode (SFR)

11: Complex Split Frame rendering Mode (SFR w/ CBR)

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 55

Basic Split Frame Rendering is like CBR for all units except Windower. Windower should not be doing

any checker boarding in basic SFR. The split programming should be done scissor range programming.

Complex Split Frame Rendering (aka CBR) is already defined in many DCNs

1.1.10.2 MI_MODE — Render Mode Register for Software Interface

MI_MODE - Render Mode Register for Software Interface

Register Space: MMIO: 0/2/0

Source: RenderCS

Default Value: 0x00000000

Access: R/W

Size (in bits): 32

Address: 0209Ch

The MI_MODE register contains information that controls software interface aspects of the Memory Interface

function.

DWord Bit Description

0 31:16 Masks

Format: Mask[15:0]

A 1 in a bit in this field allows the modification of the corresponding bit in Bits 15:0

14 Async Flip Performance mode

Format: U1

Value Name Description

0h Performance mode enabled [Default] The stall of the flip event is in the windower

1h Performance mode disabled The stall of the flip event is in the command stream

Programming Notes

This bit should be set to '1' on all projects disabling Async Flip Performance mode.

 When Async Flip Performance mode is enabled stall is in the Windower allowing the commands

following the MI_WAIT_FOR_EVENT to be parsed by command streamer, this breaks the usage

model of controlling the display message generation in display engine using

MI_LOAD_REGISTER_IMMEDIATE commands from ring buffer.

13 Flush Performance mode

Format: U1

Value Name Description

0h run fast restore [Default] No NonPipelined SV flush.

1h run slow legacy restore With NonPipelined SV flush.

11 Invalidate UHPTR enable

Format: Enable

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 56

MI_MODE - Render Mode Register for Software Interface

If bit set H/W clears the valid bit of UHPTR (2134h, bit 0) when current active head pointer is equal to

UHPTR.

10 Reserved

Format: MBZ

9 Rings Idle

Format: U1

Read Only Status bit

Value Name Description

0h Not Idle [Default] Parser not Idle or Ring Arbiter not Idle.

1h Idle Parser Idle and Ring Arbiter Idle.

Programming Notes

Writes to this bit are not allowed.

8 Stop Rings

Format: U1

Value Name Description

0h [Default] Normal Operation.

1h Parser is turned off and Ring arbitration is turned off.

Programming Notes

Software must set this bit to force the Rings and Command Parser to Idle. Software must read a 1 in

the Ring Idle bit after setting this bit to ensure that the hardware is idle.

Software must clear this bit for Rings to resume normal operation.

6 Vertex Shader Timer Dispatch Enable

Format: Enable

Value Name Description

0h Disable

[Default]

Disable the timer for dispatch of single vertices from the vertex shader. Vertex

shader will try to collect 2 vertices before a dispatch

1h Enable Enable the timer for dispatch of single vertices. Dispatch a single vertex shader

thread after the timer expires.

5 Reserved

Format: MBZ

4 Reserved

Format: MBZ

3:1 Reserved

Format: MBZ

0 Mask IIR disable

Format: Disable

Mask IIR disable. Nominally the Interrupt controller masks interrupts in the IIR register if an interrupt

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 57

MI_MODE - Render Mode Register for Software Interface

acknowledge from the 3gio interface is pending. Setting this bit to a 1 allows interrupts to be visible to

the interrupt controller while an interrupt acknowledge is pending.

1.1.10.3 FF_Mode - Thread Mode Register

FF_Mode - Thread Mode Register

Register Space: MMIO: 0/2/0

Source: RenderCS

 0x28A01010

Access: R/W

Size (in bits): 32

Address: 020A0h

This register is used to program the FF shader Mode.

DWord Bit Description

0 31 Reserved

Format: MBZ

30 Reserved

Format: MBZ

29:26 DS Hit Max Value

Format: U4

Description Project

If the number of hits reaches the DS Hit Max Value and there is a pending miss to be

dispatched, the DS will dispatch the pending miss vertex as a single dispatch.

Programming the value beyond the range will have undefined behavior.

Value Name Project

10 [Default]

[1,11]

25:20 VS Hit Max Value

Format: U6

Description Project

If the number of hits reaches the VS Hit Max Value and there is a pending miss to be

dispatched, the VS will dispatch the pending miss vertex as a single dispatch.

Programming the value beyond the range will have undefined behavior.

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 58

FF_Mode - Thread Mode Register

Value Name Project

10 [Default]

[1,58]

19 DS Reference Count Full Force Miss Enable

Project:

Format: Enable

Value Name Description

0b [Default] On a hit to the DS cache and the associated handle’s reference count is full then stall

until a derefernce.

1b On a hit to the DS cache and the associated handle’s reference count is full then force

the cycle as a miss and allocate a new handle.

18:17 TS Thread Dispatch Mode

Format: U2

Value Name Description

0h Load Balanced

[Default]

Thread Dispatch will load balance the half slices of the threads. Note: this will

cause possible corruption if input handles are reused due to instancing or

topologies that reuse vertices(i.e. strips and fans)

1h Half Slice 0 All threads will be dispatched to Half Slice 0.

2h Half Slice 1 All threads will be dispatched to Half Slice 1.

3h Reserved

16 TS Thread Dispatch Override Enable

Format: Enable

Value Name Description

0h Disable [Default] Hardware will decide which half slice the thread will dispatch.

1h Enable The value in the TS Thread Dispatch Mode will be used for dispatch.

15 VS Reference Count Full Force Miss Enable

Format: U1

Value Name Description

[0,1]

0b [Default] On a hit to the VS cache and the associated handle's reference count is full then stall

until a derefernce.

1b On a hit to the VS cache and the associated handle's reference count is full then force

the cycle as a miss and allocate a new handle.

14:13 VS Thread Dispatch Mode

Format: U2

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 59

FF_Mode - Thread Mode Register

Value Name Description

0h Load Balanced

[Default]

Thread Dispatch will load balance the half slices of the threads. Note: this will

cause possible corruption if input handles are reused due to instancing or

topologies that reuse vertices (i.e. strips and fans)

1h Half Slice 0 All threads will be dispatched to Half Slice 0.

2h Half Slice 1 All threads will be dispatched to Half Slice 1.

3h Reserved

12 VS Thread Dispatch Override Enable

Format: Enable

Value Name Description

0h Disable Hardware will decide which half slice the thread will dispatch.

1h Enable [Default] The value in the VS Thread Dispatch Mode will be used for dispatch.

11:7 Reserved

Format: MBZ

6:5 DS Thread Dispatch Mode

Format: U2

Value Name Description

0h Load Balanced

[Default]

Thread Dispatch will load balance the half slices of the threads. Note: this will

cause possible corruption if input handles are reused due to instancing or

topologies that reuse vertices (i.e., strips and fans).

1h Half Slice 0 All threads will be dispatched to Half Slice 0.

2h Half Slice 1 All threads will be dispatched to Half Slice 1.

3h Reserved

4 DS Thread Dispatch Override Enable

Format: Enable

Value Name Description

0h Disable Hardware will decide which half slice the thread will dispatch.

1h Enable [Default] The value in the DS Thread Dispatch Mode will be used for dispatch.

3:0 Reserved

Format: MBZ

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 60

1.1.10.4 GFX_MODE – Graphics Mode Register

GFX_MODE - Graphics Mode Register

Register Space: MMIO: 0/2/0

Project: All

Source: RenderCS

Default Value: 0x00000800

Size (in bits): 32

Trusted Type: 1

Address: 0229Ch

Description Project

This register contains a control bit for the new 2-level PPGTT functions.

DefaultValue = 00002800h

DWord Bit Description

0 31:16 Mask Bits

Format: Mask[15:0]

Must be set to modify corresponding bit in Bits 15:0. (All implemented bits)

14 Reserved

Project:

Format: MBZ

13 Flush TLB invalidation Mode

Format: U1

This field controls the invalidation if the TLB cache inside the hardware. When enabled this bit limits the

invalidation of the TLB only to batch buffer boundaries, to pipe_control commands which have the TLB

invalidation bit set and sync flushes. If disabled, the TLB caches are flushed for every full flush of the

pipeline.

12 Reserved

Project: All

Format: MBZ

11 Replay Mode

Format: U1 Context Switch Granularity

This field controls the granularity of the replay mechanism when coming back into a previously

preempted context.

Value Name Description Project

0h mid-triangle

preemption

Super span Level. Pipeline is not flushed. This implies commands

parsed are executed speculatively and may not complete before a

context switch.

1h mid-cmdbuffer

preemption [Default]

Drawcall Level. Pipeline is flushed before switching to the next

context. Commands parsed are commited to completing before a

context switch

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 61

GFX_MODE - Graphics Mode Register

Programming Notes

A fixed function pipe flush is required before modifying this fieldUnless pre-emption at a mid-triangle is

required the bit must be set.

10 Reserved

Project: All

Format: MBZ

9 Per-Process GTT Enable

Format: Enabled

Per-Process GTT Enable

Value Name Description

0h PPGTT

Disable

[Default]

When clear, the Global GTT will be used to translate memory access from

designated commands and for commands that select the PPGTT as their

translation space.

1h PPGTT

Enable

When set, the PPGTT will be used to translate memory access from designated

commands and for commands that select the PPGTT as their translation space.

The PD Offset and PD Cacheline Valid registers must be set in all pipes (blitter,

MFX, render) before any workload is submitted to hardware. This mode enables

support for big pages (32k)

8 Reserved

Format: MBZ

7 Reserved

Format: MBZ

6:1 Reserved

Format: MBZ

0 Reserved

Format: MBZ

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 62

1.1.10.5 GT_MODE – GT Mode Register

GT_MODE - GT Mode Register

Register Space: MMIO: 0/2/0

Source: RenderCS

Default Value: 0x00000200

Access: R/W

Size (in bits): 32

Trusted Type: 1

Address: 07008h

This Register is used to control the 6EU and 12EU configuration for GT.

Write 0x01FF01FF to this register enables the 6EU mode.

RegisterType = MMIO_SVL

DWord Bit Description

0 31:16 Mask Bits

Format: Mask[15:0]

Must be set to modify corresponding bit in Bits 15:0. (All implemented bits)

15 Reserved

Format: MBZ

14:11 Reserved

Format: MBZ

10 Reserved

Format: MBZ

9 WIZ Hashing Mode High Bit

Format: U1

This field adds additional hashing modes in combination with the WIZ Hashing Mode field. The Value

column in the table below refers to this field (high bit) and the WIZ Hashing Mode field (low bit).

This field is don’t care if the Hashing Disable bit is set.

Value Name Description

0h 8x8 Checkerboard hashing

1h [Default] 8x4 Checkerboard hashing

2h 16x4 Checkerboard hashing

3h Reserved

7 WIZ Hashing Mode

Project:

Format: U1

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 63

GT_MODE - GT Mode Register

Description Project

This field configures the Hashing mode in Windower. This field is don’t care if the

Hashing Disable bit is set.

The WIZ Hashing Mode High Bit field is combined with this field to enable additional

modes.

2 Reserved

Format: MBZ

0 Reserved

1.1.10.6 Cache_Mode_0— Cache Mode Register 0

Cache_Mode_0 - Cache Mode Register 0

Register Space: MMIO: 0/2/0

Project: All

Source: RenderCS

 0x00000004

Access: R/W

Size (in bits): 32

Address: 07000h

This register is used to control the operation of the Render and Sampler L2 Caches. All reserved bits are

implemented as read/write.

Before changing the value of this register, GFX pipeline must be idle i.e. full flush is required.

This Register is saved and restored as part of Context.

RegisterType = MMIO_SVL

DWord Bit Description

0 31:16 Masks

Format: Mask[15:0]

A 1 in a bit in this field allows the modification of the corresponding bit in Bits 15:0.

15 Sampler L2 Disable

Format: Disable

Value Name Description

0h [Default] Sampler L2 Cache Enabled.

1h Sampler L2 Cache Disabled all accesses are treated as misses.

14:12 Reserved

Format: MBZ

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 64

Cache_Mode_0 - Cache Mode Register 0

11 Reserved

Format: MBZ

10 Reserved

Format: MBZ

9 Sampler L2 TLB Prefetch Enable

Value Name Description

0h [Default] TLB Prefetch Disabled

1h TLB Prefetch Enabled

7:6 Sampler L2 Request Arbitration

Format: U2

Value Name Description

00b Round Robin

01b Fetch are Highest Priority

10b Constants are Highest Priority

11b Reserved

5 STC Eviction Policy

Format: Disable

If this bit is set, RCCunit will have LRA as replacement policy. The default value i.e. (when this bit is

reset) indicates that non-LRA eviction policy. This bit must be reset. LRA replacement policy is not

supported.

Note: If this bit is set to "1", bit 7 of 0x7010h must also be set to "1"

4 RCC Eviction Policy

Format: Disable

If this bit is set, RCCunit will have LRA as replacement policy. The default value i.e. (when this bit is

reset) indicates that non-LRA eviction policy. This bit must be reset. LRA replacement policy is not

supported.

Note: If this bit is set to "1", bit 7 of 0x7010h must also be set to "1"

3 Hierarchical Z Disable

Mask: MMIO(0x2120)#19

Format: U1

Value Name

0h Enable

1h Disable

2 Hierarchical Z RAW Stall Optimization Disable

Format: U1

The Hierarchical Z RAW Stall Optimization allows non-overlapping polygons in the same 8x4

pixel/sample area to be processed without stalling waiting for the earlier ones to write to Hierarchical Z

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 65

Cache_Mode_0 - Cache Mode Register 0

buffer.

Value Name Description

0h Enable Enables the hierarchical Z RAW Stall Optimization.

1h Disable [Default] Disables the hierarchical Z RAW Stall Optimization.

1 Disable clock gating in the pixel backend

Format: Disable

0 Render Cache Operational Flush Enable

Format: Enable

Value Name Description

0h Disable

[Default]

Operational Flush Disabled (recommended for performance when not rendering

to the front buffer)

1h Enable Operational Flush Enabled (required when rendering to the front buffer)

Errata Description Project

Erratum This bit must be set to ‘0’ (Disable)

1.1.10.7 Cache_Mode_1— Cache Mode Register 1

Cache_Mode_1 - Cache Mode Register 1

Register Space: MMIO: 0/2/0

Project: All

Source: RenderCS

Default Value: 0x00000180

Access: Read/32 bit Write Only

Size (in bits): 32

Address: 07004h

Description Project

RegisterType: MMIO_SVL

Before changing the value of this register, GFX pipeline must be idle; i.e., full flush is required. This Register

is saved and restored as part of Context.

DWord Bit Description

0 31:16 Mask Bits for 15:0

Format: Mask[15:0]

Must be set to modify corresponding data bit. Reads to this field returns zero.

15 Reserved

Project: All

Format: MBZ

14 Reserved

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 66

Cache_Mode_1 - Cache Mode Register 1

Format: MBZ

12 HIZ Eviction Policy

Project: All

Format: U1

If this bit is set, Hizunit will have LRA as replacement policy. The default value i.e. (when this bit is

reset) indicates the non-LRA eviction policy. For performance reasons, this bit must be reset.

Value Name Description Project

0h [Default] Non-LRA eviction Policy All

1h LRA eviction Policy All

Programming Notes Project

If this bit is set to "1", bit 3 of 0x7010h must also be set to "1"

11 Reserved

Format: MBZ

8:7 Sampler Cache Set XOR selection

Project: All

Format: U2

These bits have an impact only when the Sampler cache is configured in 16 way set associative mode.

If the cache is being used for immediate data or for blitter data these bits have no effect.

Value Name Description Project

00b None No XOR. All

01b Scheme 1
New_set_mask[3:0] = Tiled_address[16:13].

New_set[3:0] less than or = New_set_mask[3:0] ^Old_set[3:0].

Rationale: These bits can distinguish among 16 different equivalent

classes of virtual pages. These bits also represent the lsb for tile rows

ranging from a pitch of 1 tile to 16 tiles.

All

10b Scheme 2
New_set_mask[3] = Tiled_address[17] ^ Tiled_address[16].

New_set_mask[2] = Tiled_address[16] ^ Tiled_address[15].

New_set_mask[1] = Tiled_address[15] ^ Tiled_address[14].

New_set_mask[0] = Tiled_address[14] ^ Tiled_address[13].

All

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 67

Cache_Mode_1 - Cache Mode Register 1

New_set[3:0] less than or = New_set_mask[3:0] ^ Old_set[3:0].

Rationale: More bits on each XOR can give better statistical uniformity on

sets and since two lsbs are taken for each tile row size, it reduces the

chance of aliasing on sets.

11b Scheme 3

[Default] New_set_mask[3] = Tiled_address[22] ^ Tiled_address[21] ^

Tiled_address[20] ^ Tiled_address[19].

New_set_mask[2] = Tiled_address[18] ^ Tiled_address[17] ^

Tiled_address[16].

New_set_mask[1] = Tiled_address[15] ^ Tiled_address[14].

New_set_mask[0] = Tiled_address[13].

New_set[3:0] less than or = New_set_mask[3:0] ^ Old_set[3:0].

Rationale: More bits on each XOR can give better statistical uniformity on

sets and since each XOR has different bits, it reduces the chance of

aliasing on sets even more.

6 Pixel Backend sub-span collection Optimization Disable

Format: Disable

Value Name Description

0h [Default] Enables two contiguous quads to be collected as 4X2 access for RCZ interface. This

allows for less bank collision and less RAM power on RCZ.

1h Disables this optimization and therefore only one valid sub-span is sent to RCZ on the

4X2 interface.

Programming Notes Project

This bit must be set.

5 MCS Cache Disable

Format: Disable

For Programming restrictions please refer to the 3D Pipeline.

Value Name Description

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 68

Cache_Mode_1 - Cache Mode Register 1

0h [Default] MCS cache enabled. It allows RTs with MCS buffer enabled to be rendered using

either MSAA compression for MSRT OR with color clear feature for non MSRT.

1h MCS cache is disabled. Hence no MSAA compression for MSRT and no color clear for

non-MSRT.

4 Reserved

Format: MBZ

3 Depth Read Hit Write-Only Optimization Disable

Format: Disable

Description Project

This bit must always be reset to "0".

Value Name Description Project

0h [Default] Read Hit Write-only optimization is enabled in the Depth cache (RCZ).

1h Read Hit Write-only optimization is disabled in the Depth cache (RCZ).

2:1 Reserved

1.1.10.8 GAFS_MODE — Mode Register for GAFS

GAFS_MODE - Mode Register for GAFS

Register Space: MMIO: 0/2/0

Source: RenderCS

Default Value: 0x00000000

Access: R/W

Size (in bits): 32

Trusted Type: 1

Address: 0212Ch

DWord Bit Description

0 31:16 Mask Bits

Format: Mask[15:0]

Masks: These bits serve as write enables for bits 15:0. If this register is written with any of these bits

clear the corresponding bit in the field 15:0 will not be modified. Reading these bits always returns 0s.

15:10 Reserved

Format: MBZ

8:2 Reserved

Format: MBZ

0 Selection of Arbitration for GAFS

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 69

GAFS_MODE - Mode Register for GAFS

Format: MBZ

GAFS data return policy from FFROB is a round-robin. This bit freezes the round robin to FF pipeline

order.

1.1.10.9 INSTPM—Instruction Parser Mode Register

INSTPM - Instruction Parser Mode Register

Register Space: MMIO: 0/2/0

Project: All

Source: RenderCS

Default Value: 0x00000000

Access: R/W

Size (in bits): 32

Trusted Type: 1

Address: 020C0h

The INSTPM register is used to control the operation of the Instruction Parser. Certain classes of instructions can be

disabled (ignored) – often useful for detecting performance bottlenecks. Also, Synchronizing Flush operations can be

initiated – useful for ensuring the completion (vs. only parsing) of rendering instructions.

Programming Notes

 If an instruction type is disabled, the parser will read those instructions but not process them.

Error checking will be performed even if the instruction is ignored.

All Reserved bits are implemented.

This Register is saved and restored as part of Context.

DWor
d Bit Description

0 31:1

6

Mask Bits

Format: Mask[15:0]

Masks: These bits serve as write enables for bits 15:0. If this register is written with any of these bits clear

the corresponding bit in the field 15:0 will not be modified. Reading these bits always returns 0s.

14:1

3

Reserved

Format: MBZ

11 CLFLUSH Toggle

Format: U1

This bit changes polarity each time the MI_CLFLUSH command completes.

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 70

INSTPM - Instruction Parser Mode Register

10 Reserved

Format: MBZ

9 TLB Invalidate

Format: U1

If set, this bit allows the command stream engine to invalidate the 3D render TLBs. This bit is valid only

with the Sync flush enable. Note: GFX soft resets do not invalidate TLBs, it is up to GFX driver to explicitly

invalidate TLBs post reset.

8 Memory Sync Enable

Format: U1

If set, this bit allows the command stream engine to write out the data from the local caches to memory.

This bit is valid only with the Sync flush enable

7 Force Sync Command Ordering

Format: Enable

Description Project

By default, driver/OS synchronization commands (MI_STORE_DATA_IMM, for instance) can

execute out of order with respect to 3D state and 3D primitive commands. When set, this bit forces

ordering of these commands. See section 3.2.2 for a list of these commands.

[This bit should be programmed to 1.

Value Name

0b [Default]

1b

6 CONSTANT_BUFFER Address Offset Disable

Format: Disable

When this bit is clear, the 3DSTATE_CONSTANT_* Buffers’ Starting Address is used as a

DynamicStateOffset. That is, it serves as an offset from the Dynamic State Base Address. Accesses will be

subject to Dynamic State bounds checking.

 When this bit is set, the 3DSTATE_CONSTANT_* Buffers’ Starting Address is used as a true

GraphicsAddress (not an offset). No bounds checking will be performed during access.

5 Sync Flush Enable

Format: U1

This field is used to request a Sync Flush operation. The device will automatically clear this bit before

completing the operation. See Sync Flush (Programming Environment).

Programming Notes Project

 The command parser must be stopped prior to issuing this command by setting
the Stop Rings bit in register MI_MODE. Only after observing Rings Idle set in

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 71

INSTPM - Instruction Parser Mode Register

MI_MODE can a Sync Flush be issued by setting this bit. Once this bit becomes
clear again, indicating flush complete, the command parser is re-enabled by
clearing Stop Rings.

Workaround :

Write 0x2050[31:0] = 0x00010001 (disable sequence)

Write 0x2700[31:0] = 0x00000000 (Wake up CS but don't do anything)

Poll 0x22AC[3:0] = 0 (Guarantees render pipe is awake)

VT-d request(Sync Flush) (Normal VT-d cycles(Replace with Sync Flush Steps)

Write 0x2050[31:0] = 0x00010000 (Enable sequence (to enter RC6))

3 Media Instruction Disable

Format: U1

This bit instructs the Renderer instruction parser to parse and error-check Media instructions, but not

execute them. Format = Disable

2 3D Rendering Instruction Disable

Format: U1

This bit instructs the Renderer instruction parser to parse and error-check 3D Rendering instructions, but

not execute them. This bit must always be set by software if 3D State Instruction Disable is set. Setting

this bit without setting 3D State Instruction Disable is allowed.

Format = Disable

1 3D State Instruction Disable

Format: Disable

0 Texture Palette Load Instruction Disable

Format: U1

This bit instructs the Renderer instruction parser to parse and error-check Texture Palette Load

instructions, but not execute them. Format = Disable

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 72

1.1.10.10 EXCC—Execute Condition Code Register

EXCC - Execute Condition Code Register

Register Space: MMIO: 0/2/0

Project: All

Source: RenderCS

Default Value: 0x00000000

Access: R/W,RO

Size (in bits): 32

Trusted Type: 1

Address: 02028h

This register contains user defined and hardware generated conditions that are used by MI_WAIT_FOR_EVENT

commands. An MI_WAIT_FOR_EVENT instruction excludes the executing ring from arbitration if the selected event

evaluates to a 1, while instruction is discarded if the condition evaluates to a 0. Once excluded a ring is enabled into

arbitration when the selected condition evaluates to a 0.

This register also contains control for the invalidation of indirect state pointers on context restore.

DWord Bit Description

0 31:16 Mask Bits

Format: Mask[15:0]

These bits serves as a write enable for bits 15:0. If this register is written with any of these bits clear

the corresponding bit in the field 15:0 will not be modified. Reading these bits always returns 0s.

15:12 Reserved

Format: MBZ

11 Pending Indirect State Dirty Bit

This field keeps track of whether or not an indirect state pointer command has been parsed in the

current context. Clears either on a context save or explicitly through a flush command.

10:7 Pending Indirect State Counter

This field keeps track of the maximum number of indirect state pointers pending in the system.

When the register is saved/restored, it saves either a value of 1 or 0. This field is Read-Only.

6:5 Reserved

Format: MBZ

4:0 User Defined Condition Codes

The software may signal a Stream Semaphore by setting the Mask bit and Signal Bit together to

match the bit field specified in a WAIT_FOR_EVENT (Semaphore).

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 73

1.1.10.11 NOPID — NOP Identification Register

NOPID - NOP Identification Register

Register Space: MMIO: 0/2/0

Project: All

Source: RenderCS

Default Value: 0x00000000

Size (in bits): 32

Trusted Type: 1

Address: 02094h

Description Project

Access: RW

The NOPID register contains the Noop Identification value specified by the last MI_NOOP instruction that

enabled this register to be updated.

DWord Bit Description

0 31:22 Reserved

Format: MBZ

1.1.10.12 FBC RT BASE ADDRESS REGISTER

FBC_RT_BASE_ADDR_REGISTER -
FBC_RT_BASE_ADDR_REGISTER

Register Space: MMIO: 0/2/0

Source: RenderCS

Default Value: 0x00000000

Access: Read/32 bit Write Only

Size (in bits): 32

Address: 07020h

This Register is saved and restored as part of Context.

DWord Bit Description

0 31:12 FBC RT Base Address

Format: PPGraphicsAddress[31:12]

4KB aligned Base Address as mapped in the PPGTT or in the GGTT for the render target.

 Must be set to modify corresponding data bit. Reads to this field returns zero. This base address must

be the one that is either front buffer or the back-buffer (a flip target). It can be only programmed once

per context. It must be programmed before any draw call binding that render target base address.

11:2 Reserved

Format: MBZ

1 FBC Front Buffer Target

Format: Enable

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 74

FBC_RT_BASE_ADDR_REGISTER -
FBC_RT_BASE_ADDR_REGISTER

Value Name Description Project

0h [Default] FBC is targeting the Back Buffer for compression. This buffer can be cached in

the MLC/LLC, so a GFDT flush is required before FBC can begin compression.

1h FBC is targeting the Font Buffer for compression. This buffer cannot be cached

in the MLC/LLC. FBC compression can begin after any RC flush.

0 PPGTT Render Target Base Address Valid for FBC

Access: None

Exists If: Always

Format: Enable

Format: GraphicsAddress[31:0]U32

Value Name Description

0h [Default] Base address in this register [31:12] is not valid and therefore FBC will not get

any modifications from rendering.

1h Base address in this register [31:12] is valid and HW needs to compare the

current render target base address with this base address to provide

modifications to FBC.

Programming Notes

Workaround : Do not enable Render Command Streamer tracking for FBC.

Instead insert a LRI to address 0x50380 with data 0x00000004 after the

PIPE_CONTROL that follows each render submission.

1.1.10.13 RVSYNC – Render/Video Semaphore Sync Register

RVSYNC - Render/Video Semaphore Sync Register

Register Space: MMIO: 0/2/0

Source: RenderCS

Default Value: 0x00000000

Access: R/W

Size (in bits): 32

Trusted Type: 1

Address: 02040h

This register is written by VCS, read by CS.

DWord Bit Description

0 31:0 Semaphore Data

Semaphore data for synchronization between render engine and blitter engine.

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 75

1.1.10.14 RBSYNC – Render/Blitter Semaphore Sync Register

RBSYNC - Render/Blitter Semaphore Sync Register

Register Space: MMIO: 0/2/0

Source: RenderCS

Default Value: 0x00000000

Access: R/W

Size (in bits): 32

Trusted Type: 1

Address: 02044h

This register is written by BCS, read by CS.

DWord Bit Description

0 31:0 Semaphore Data

Semaphore data for synchronization between render engine and blitter engine.

1.1.11 RINGBUF — Ring Buffer Registers

See the “Device Programming Environment” chapter for detailed information on these registers

1.1.11.1 RING_BUFFER_TAIL

RING_BUFFER_TAIL - Ring Buffer Tail

Register Space: MMIO: 0/2/0

Default Value: 0x00000000

Access: R/W

Address: 02030h

Name: RCS Ring Buffer Tail

ShortName: RCS_RING_BUFFER_TAIL

Address: 12030h

Name: VCS Ring Buffer Tail

ShortName: VCS_RING_BUFFER_TAIL

Address: 22030h

Name: BCS Ring Buffer Tail

ShortName: BCS_RING_BUFFER_TAIL

These registers are used to define and operate the “ring buffer” mechanism which can be used to pass instructions

to the command interface. The buffer itself is located in a linear memory region. The ring buffer is defined by a 4

Dword register set that includes starting address, length, head offset, tail offset, and control information.

 Refer to the Programming Interface chapter for a detailed description of the parameters specified in this ring buffer

register set, restrictions on the placement of ring buffer memory, arbitration rules, and in how the ring buffer can be

used to pass instructions.

 Ring Buffer Tail Offsets must be properly programmed before ring is enabled. A Ring Buffer can be enabled when

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 76

RING_BUFFER_TAIL - Ring Buffer Tail

empty.

DWord Bit Description

0 31:21 Reserved

Format: MBZ

20:3 Tail Offset

Format: GraphicsAddress[20:3]

This field is written by software to specify where the valid instructions placed in the ring buffer end. The

value written points to the QWord past the last valid QWord of instructions. In other words, it can be

defined as the next QWord that software will write instructions into.

 Software must write subsequent instructions to QWords following the Tail Offset, possibly wrapping

around to the top of the buffer (i.e., software can’t skip around within the buffer).

 Note that all DWords prior to the location indicated by the Tail Offset must contain valid instruction

data – which may require instruction padding by software. See Head Offset for more information.

2:0 Reserved

Format: MBZ

1.1.11.2 RING_BUFFER_HEAD

RING_BUFFER_HEAD - Ring Buffer Head

Register Space: MMIO: 0/2/0

Default Value: 0x00000000

Access: R/W

Address: 02034h

Name: RCS Ring Buffer Head

ShortName: RCS_RING_BUFFER_HEAD

Address: 12034h

Name: VCS Ring Buffer Head

ShortName: VCS_RING_BUFFER_HEAD

Address: 22034h

Name: BCS Ring Buffer Head

ShortName: BCS_RING_BUFFER_HEAD

This register is used to define and operate the ring buffer mechanism which can be used to pass instructions to the

command interface. The buffer itself is located in a physical memory region. The ring buffer is defined by a 4 Dword

register set that includes starting address, length, head offset, tail offset, and control information. Refer to the

Programming Interface chapter for a detailed description of the parameters specified in this ring buffer register set,

restrictions on the placement of ring buffer memory, arbitration rules, and in how the ring buffer can be used to pass

instructions.

Ring Buffer Head Offsets must be properly programmed before ring is enabled. A Ring Buffer can be

enabled when empty.

DWord Bit Description

0 31:21 Wrap Count

Format: U11 count of ring buffer wraps

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 77

RING_BUFFER_HEAD - Ring Buffer Head

This field is incremented by 1 whenever the Head Offset wraps from the end of the buffer back to the

start (i.e., whenever it wraps back to 0). Appending this field to the Head Offset field effectively creates

a virtual 4GB Head “Pointer” which can be used as a tag associated with instructions placed in a ring

buffer. The Wrap Count itself will wrap to 0 upon overflow.

20:2 Head Offset

Format: GraphicsAddress[20:2] DWord Offset

This field indicates the offset of the next instruction DWord to be parsed. Software will initialize this field

to select the first DWord to be parsed once the RB is enabled. (Writing the Head Offset while the RB is

enabled is UNDEFINED). Subsequently, the device will increment this offset as it executes instructions

– until it reaches the QWord specified by the Tail Offset. At this point the ring buffer is considered

“empty”.

Programming Notes

A RB can be enabled empty or containing some number of valid instructions.

1 Reserved

Format: MBZ

0 Wait for Condition Indicator

Source: RenderCS

This is a read only value used to indicate whether or not the command streamer is currently waiting for

a conditional code to be cleared from 0x2028

0 Reserved

Source: BlitterCS, VideoCS, VideoCS2, VideoEnhancementCS

Format: MBZ

1.1.11.3 RING_BUFFER_START

RING_BUFFER_START - Ring Buffer Start

Register Space: MMIO: 0/2/0

Default Value: 0x00000000

Access: R/W

Address: 02038h

Name: RCS Ring Buffer Start

ShortName: RCS_RING_BUFFER_START

Address: 12038h

Name: VCS Ring Buffer Start

ShortName: VCS_RING_BUFFER_START

Address: 22038h

Name: BCS Ring Buffer Start

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 78

RING_BUFFER_START - Ring Buffer Start

ShortName: BCS_RING_BUFFER_START

These registers are used to define and operate the “ring buffer” mechanism which can be used to pass instructions

to the command interface. The buffer itself is located in a physical memory region. The ring buffer is defined by a 4

Dword register set that includes starting address, length, head offset, tail offset, and control information. Refer to the

Programming Interface chapter for a detailed description of the parameters specified in this ring buffer register set,

restrictions on the placement of ring buffer memory, arbitration rules, and in how the ring buffer can be used to pass

instructions.

DWord Bit Description

0 31:12 Starting Address

Format: GraphicsAddress[31:12]RingBuffer

This field specifies Bits 31:12 of the 4KB-aligned starting Graphics Address of the ring buffer.

Address bits 31 down to 29 must be zero.

 All ring buffer pages must map to Main Memory (uncached) pages. Ring Buffer addresses are

always translated through the global GTT.

11:0 Reserved

Format: MBZ

1.1.11.4 RING_BUFFER_CONTROL

RING_BUFFER_CTL - Ring Buffer Control

Register Space: MMIO: 0/2/0

Default Value: 0x00000000

Access: R/W

Address: 0203Ch

Name: RCS Ring Buffer Control

ShortName: RCS_RING_BUFFER_CTL

Address: 1203Ch

Name: VCS Ring Buffer Control

ShortName: VCS_RING_BUFFER_CTL

Address: 2203Ch

Name: BCS Ring Buffer Control

ShortName: BCS_RING_BUFFER_CTL

These registers are used to define and operate the ring buffer mechanism which can be used to pass instructions to

the command interface. The buffer itself is located in a physical memory region. The ring buffer is defined by a 4

Dword register set that includes starting address, length, head offset, tail offset, and control information. Refer to the

Programming Interface chapter for a detailed description of the parameters specified in this ring buffer register set,

restrictions on the placement of ring buffer memory, arbitration rules, and in how the ring buffer can be used to pass

instructions.

Ring Buffer Head and Tail Offsets must be properly programmed before it is enabled. A Ring Buffer can be

enabled when empty.

DWord Bit Description

0 31:21 Reserved

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 79

RING_BUFFER_CTL - Ring Buffer Control

Format: MBZ

20:12 Buffer Length

Format: U9-1 in 4 KB pages – 1

This field is written by SW to specify the length of the ring buffer in 4 KB Pages.Range = [0 = 1 page =

4 KB, 1FFh = 512 pages = 2 MB]

Value Name Description

0 1 page = 4 KB

1FFh 512 pages = 2 MB

11 RBWait

Indicates that this ring has executed a WAIT_FOR_EVENT instruction and is currently waiting.

Software can write a “1” to clear this bit, write of “0” has no effect. When the RB is waiting for an event

and this bit is cleared, the wait will be terminated and the RB will be returned to arbitration.

10 Semaphore Wait

Description Project

Indicates that this ring has executed a MI_SEMAPHORE_MBOX instruction with register

compare and is currently waiting.

9 Reserved

Format: MBZ

8 Reserved

Source: RenderCS, BlitterCS

Format: MBZ

8 Disable Register Accesses

Source: VideoCS, VideoCS2, VideoEnhancementCS

Value Name Description

0 R/W Ring is allowed to access (read or write) MMIO space.

1 Read Only Ring is not allowed to write MMIO space. Ring is allowed to read registers.

7:3 Reserved

Format: MBZ

2:1 Automatic Report Head Pointer

Source: BlitterCS, VideoCS, VideoCS2, VideoEnhancementCS

Description Project

This field is written by software to control the automatic “reporting” (write) of this ring buffer’s

“Head Pointer” register (register DWord 1) to the corresponding location within the Hardware

Status Page. Automatic reporting can either be disabled or enabled at 4KB, 64KB or 128KB

boundaries within the ring buffer.

The head pointer will be reported to the head pointer location in the Per-Process Hardware

Status Page when it passes each 4KB page boundary. When the above-mentioned bit is set,

reporting will behave just as on the prior devices (as documented above), and option 2 is not

legal.

Value Name Description

0 MI_AUTOREPORT_OFF Automatic reporting disabled

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 80

RING_BUFFER_CTL - Ring Buffer Control

1 MI_AUTOREPORT_64KB Report every 16 pages (64KB)

2 MI_AUTOREPORT_4KB Report every page (4KB)This mode must not be enabled in Ring

Buffer mode of scheduling to minimize the auto reports.

3 MI_AUTOREPORT_128KB Report every 32 pages (128KB)

2:1 Reserved

Source: RenderCS

Format: MBZ

0 Ring Buffer Enable

Format: Enable

This field is used to enable or disable this ring buffer. It can be enabled or disabled regardless of

whether there are valid instructions pending. If disabled and the ring head equals ring tail, all state

currently loaded in hardware is considered invalid.

Programming Notes Project

SW should follow the below programming notes while enabling render engine's ring buffer for

the first time, this would be coming out of boot, standby, hibernate or reset.

SW should set the Force Wakeup bit to prevent GT from entering C6.

SW should dispatch workload (dummy) to initialize render engine with default state such that
any context switches that occur subsequently (Power Save) will save and restore coherent
device state. Indirect pointers used in 3D states should point to valid graphics surface existing
in memory. PP_DCLV followed by PP_DIR_BASE register should be programmed as part of
initialization workload if PPGTT is enabled in GFX_MODE register.
Once the render engine is programmed with valid state and the configuration, Force Wakeup
bit should be reset to enable C6 entry.

1.1.11.5 UHPTR — Pending Head Pointer Register

UHPTR - Pending Head Pointer Register

Register Space: MMIO: 0/2/0

Default Value: 0x00000000

Access: R/W

Address: 02134h

Name: RCS Pending Head Pointer Register

ShortName: RCS_UHPTR

Address: 12134h

Name: VCS Pending Head Pointer Register

ShortName: VCS_UHPTR

Address: 22134h

Name: BCS Pending Head Pointer Register

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 81

UHPTR - Pending Head Pointer Register

ShortName: BCS_UHPTR

Programming Notes

Once SW uses UHPTR to preempt the existing workload, should explicitly program MI_SET_CONTEXT to save the

preempted context status before submitting the new workload. In case SW doesn’t want to save the state of the

preempted context, it should at the minimum program RS_PREEMPT_STATUS to 0x0 so that the register status

doesn’t interfere with the new workloads.

DWord Bit Description

0 31:3 Head Pointer Address

Format: GraphicsAddress[31:3]

This register represents the GFX address offset where execution should continue in the ring buffer

following execution of an MI_ARB_CHECK command.

2:1 Reserved

Format: MBZ

0 Head Pointer Valid

This bit is set by the software to request a pre-emption.

 It is reset by hardware when an MI_ARB_CHECK command is parsed by the command streamer.

The hardware uses the head pointer programmed in this register at the time the reset is generated.

Value Name Description

0 InValid No valid updated head pointer register, resume execution at the current location in the

ring buffer

1 Valid Indicates that there is an updated head pointer programmed in this register

1.1.12 Watchdog Timer Registers

These 2 registers together implement a watchdog timer. Writing ones to the control register enables the

counter, and writing zeroes disables the counter. The 2nd register is programmed with a threshold value

which, when reached, signals an interrupt then resets the counter to 0. Program the threshold value

before enabling the counter or extremely frequent interrupts may result.

Note that the counter itself is not observable. It increments with the main render clock.

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 82

1.1.12.1 PR_CTR_CTL—Render Watchdog Counter Control

PR_CTR_CTL - Render Watchdog Counter Control

Register Space: MMIO: 0/2/0

Project: All

Source: RenderCS

Default Value: 0x00000000

Access: R/W

Size (in bits): 32

Address: 02178h

DWord Bit Description

0 31 Count Select

Format: select

0 – Use the timestamp to increment the watchdog count (every 640ns)1 – Use the fixed function clock

(csclk) to increment the watchdog count

30:0 Counter Logic Op

This field specifies the action to be taken by the clock counter to generate interrupts. Writing 0 into this

register causes a core render clock counter to be kicked off. Writing 1 into this register causes a core

render clock counter to be stopped and reset to 0.

1.1.12.2 PR_CTR_THRSH—Render Watchdog Counter Threshold

PR_CTR_THRSH - Render Watchdog Counter Threshold

Register Space: MMIO: 0/2/0

Project: All

Source: RenderCS

Default Value: 0x00150000

Access: R/W

Size (in bits): 32

Address: 0217Ch

DWord Bit Description

0 31:0 Counter logic Threshold

Default Value: 00150000h

Format: U32

This field specifies the threshold that the hardware checks against for the value of the render clock

counter before generating an interrupt. The counter in hardware generates an interrupt when the

threshold is reached, rolls over and starts counting again. The interrupt generated is the “Media Hang

Notify” interrupt since this watchdog timer is intended primarily to remedy VLD hangs on the main

pipeline.

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 83

1.1.12.3 PR_CTR—Render Watchdog Counter

PR_CTR - Render Watchdog Counter

Register Space: MMIO: 0/2/0

Project: All

Source: RenderCS

Default Value: 0x00000000

Access: RO

Size (in bits): 32

Address: 02190h

DWord Bit Description

0 31:0 Counter Value

Format: U32

This register reflects the render watchdog counter value itself. It cannot be written to.

1.1.13 Interrupt Control Registers

The Interrupt Control Registers described in this section all share the same bit definition. The bit definition

is as follows:

Bit Definition for Interrupt Control Registers

Source: RenderCS

Default Value: 0x00000000

DWord Bit Description

0 31:12 Reserved

Format: MBZ

Reserved for other command streamers - can not be allocated by main command streamer.

11:10 Reserved

Format: MBZ

These bits may be assigned to interrupts on future products/steppings.

9 Performance Monitoring Buffer Half-Full Interrupt

For internal trigger (timerbased) based reporting, if the report buffer crosses half full limit, this interrupt

is generated.

8 Context Switch Interrupt

7 Page Fault

Project: All

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 84

Bit Definition for Interrupt Control Registers

Description Project

This bit is set whenever there is a pending GGTT/PPGTT (page or directory) fault in Render

command streamer.

6 Timeout Counter Expired

Set when the render pipe timeout counter (0x02190) has reached the timeout thresh-hold value

(0x0217c).

5 Reserved

Format: MBZ

4 PIPE_CONTROL Notify Interrupt

The Pipe Control packet (Fences) specified in 3D pipeline document may optionally generate an

Interrupt. The Store QW associated with a fence is completed ahead of the interrupt.

3 Render Command Parser Master Error

When this status bit is set, it indicates that the hardware has detected an error. It is set by the device

upon an error condition and cleared by a CPU write of a one to the appropriate bit contained in the

Error ID register followed by a write of a one to this bit in the IIR. Further information on the source of

the error comes from the "Error Status Register" which along with the "Error Mask Register" determine

which error conditions will cause the error status bit to be set and the interrupt to occur.

Page Table Error: Indicates a page table error.

Instruction Parser Error: The Render Instruction Parser encounters an error while parsing an

instruction.

2 Sync Status

This bit is set in the Hardware Status Page DW offset 0 when the Instruction Parser completes a flush

with the sync enable bit active in the INSTPM register. The toggle event will happen after the render

engine is flushed. The HW Status DWord write resulting from this toggle will cause the CPU’s view of

graphics memory to be coherent as well (flush and invalidate the render cache). It is the driver's

responsibility to clear this bit before the next sync flush with HWSP write enabled.

0 Render Command Parser User Interrupt

This status bit is set when an MI_USER_INTERRUPT instruction is executed on the Render Command

Parser. Note that instruction execution is not halted and proceeds normally. A mechanism such as an

MI_STORE_DATA instruction is required to associate a particular meaning to a user interrupt.

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 85

The following table specifies the settings of interrupt bits stored upon a “Hardware Status Write” due to

ISR changes:

Bit Interrupt Bit

ISR bit Reporting via Hardware
Status Write (when unmasked

via HWSTAM)

9 Performance Monitoring Buffer Half-Full Interrupt
Set when event occurs, cleared

when event cleared

8 Context Switch Interrupt: Set when a context switch has just occurred.
Not supported to be unmasked

7 Page Fault: This bit is set whenever there is a pending PPGTT (page or

directory) fault.

Set when event occurs, cleared

when event cleared

6 Media Decode Pipeline Counter Exceeded Notify Interrupt: The

counter threshold for the execution of the media pipeline is exceeded.

Driver needs to attempt hang recovery.

Not supported to be unmasked

5 L3 Parity interrupt

4
PIPE_CONTROL packet - Notify Enable 0

3
Master Error Set when error occurs, cleared

when error cleared

2
Sync Status Toggled every SyncFlush Event

1 Reserved

0
User Interrupt 0

1.1.13.1 HWSTAM — Hardware Status Mask Register

HWSTAM - Hardware Status Mask Register

Register Space: MMIO: 0/2/0

Project: All

Source: RenderCS

Default Value: 0xFFFFFFFF

Access: R/W,RO

Size (in bits): 32

Trusted Type: 1

Address: 02098h

The HWSTAM register has the same format as the Interrupt Control Registers. The bits in this register are mask bits

that prevent the corresponding bits in the Interrupt Status Register from generating a Hardware Status Write (PCI

write cycle). Any unmasked interrupt bit (HWSTAM bit set to 0) will allow the Interrupt Status Register to be written to

the ISR location (within the memory page specified by the Hardware Status Page Address Register) when that

Interrupt Status Register bit changes state.

Programming Notes

 To write the interrupt to the HWSP, the corresponding IMR bit must also be clear (enabled).

 At most 1 bit can be unmasked at any given time.

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 86

DWord Bit Description

0 31:0 Hardware Status Mask Register

Default Value: FFFFFFFFh

Format: Array of Masks

Refer to the Interrupt Control Register section for bit definitions. Reserved bits are RO.

1.1.13.2 IMR—Interrupt Mask Register

IMR - Interrupt Mask Register

Register Space: MMIO: 0/2/0

Project: All

Source: RenderCS

Default Value: 0xFFFFFFFF

Access: R/W,RO

Size (in bits): 32

Address: 020A8h

The IMR register is used by software to control which Interrupt Status Register bits are masked or unmasked.

Unmasked bits will be reported in the IIR, possibly triggering a CPU interrupt, and will persist in the IIR until cleared

by software. Masked bits will not be reported in the IIR and therefore cannot generate CPU interrupts.

DWord Bit Description

0 31:0 Interrupt Mask Bits

Format: InterruptMask[32] Refer to the Interrupt Control Register section for bit definitions.

This field contains a bit mask which selects which interrupt bits (from the ISR) are reported in the IIR.

Reserved bits in the Interrupt Control Register are RO.

Value Name Description

FFFF FFFFh [Default]

0h Not Masked Will be reported in the IIR

1h Masked Will not be reported in the IIR

1.1.13.3 Hardware-Detected Error Bit Definitions (for EIR, EMR, ESR)

This section defines the Hardware-Detected Error bit definitions and ordering that is common to the EIR,

EMR and ESR registers. The EMR selects which error conditions (bits) in the ESR are reported in the

EIR. Any bit set in the EIR will cause the Master Error bit in the ISR to be set. EIR bits will remain set until

the appropriate bit(s) in the EIR is cleared by writing the appropriate EIR bits with ‘1’ (except for the

unrecoverable bits described below).

The following table describes the Hardware-Detected Error bits:

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 87

Hardware-Detected Error Bit Definitions

Source: RenderCS

Default Value: 0x00000000

DWord Bit Description

0 31:3 Reserved

Format: MBZ

2 Reserved

Format: MBZ

1 Reserved

Format: MBZ

0 Instruction Error

This bit is set when the Renderer Instruction Parser detects an error while parsing an instruction.

 Instruction errors include:

Client ID value (Bits 31:29 of the Header) is not supported (only MI, 2D and 3D are supported).

Defeatured MI Instruction Opcodes:

Value Name Description

1 Instruction Error detected

Programming Notes

This error indications cannot be cleared except by reset (i.e., it is a fatal error).

1.1.13.3.1 EIR — Error Identity Register

EIR - Error Identity Register

Register Space: MMIO: 0/2/0

Project: All

Source: RenderCS

Default Value: 0x00000000

Access: R/W,RO

Size (in bits): 32

Address: 020B0h

The EIR register contains the persistent values of Hardware-Detected Error Condition bits. Any bit set in this register

will cause the Master Error bit in the ISR to be set. The EIR register is also used by software to clear detected errors

(by writing a 1 to the appropriate bit(s)), except for the unrecoverable bits described.)

DWord Bit Description

0 31:16 Reserved

Format: MBZ

15:0 Error Identity Bits

Format: Array of Error condition bits See the table titled Hardware-Detected Error Bits.

This register contains the persistent values of ESR error status bits that are unmasked via the EMR

register. (See Table Table 3-3. Hardware-Detected Error Bits). The logical OR of all (defined) bits in

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 88

EIR - Error Identity Register

this register is reported in the Master Error bit of the Interrupt Status Register. In order to clear an error

condition, software must first clear the error by writing a 1 to the appropriate bit(s) in this field. If

required, software should then proceed to clear the Master Error bit of the IIR. Reserved bits are RO.

Value Name

1h Error occurred

Programming Notes

Writing a 1 to a set bit will cause that error condition to be cleared. However, neither the Page Table

Error bit (Bit 4) nor the Instruction Error bit (Bit 0) can be cleared except by reset (i.e., it is a fatal error).

1.1.13.3.2 EMR—Error Mask Register

EMR - Error Mask Register

Register Space: MMIO: 0/2/0

Project: All

Source: RenderCS

Default Value: 0x000000FF

Access: R/W,RO

Size (in bits): 32

Address: 020B4h

The EMR register is used by software to control which Error Status Register bits are masked or unmasked.

Unmasked bits will be reported in the EIR, thus setting the Master Error ISR bit and possibly triggering a CPU

interrupt, and will persist in the EIR until cleared by software. Masked bits will not be reported in the EIR and

therefore cannot generate Master Error conditions or CPU interrupts. Reserved bits are RO.

DWord Bit Description

0 31:8 Reserved

Format: Must Be One

Programming Notes

These bits are not implemented in HW and must be set to ’1’

7:0 Error Mask Bits

Format: Array of error condition mask bits See the table titled Hardware-Detected Error Bits.

This register contains a bit mask that selects which error condition bits (from the ESR) are

reported in the EIR.

Value Name Description

FFh [Default]

0h Not Masked Will be reported in the EIR

1h Masked Will not be reported in the EIR

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 89

1.1.13.3.3 ESR—Error Status Register

ESR - Error Status Register

Register Space: MMIO: 0/2/0

Project: All

Source: RenderCS

Default Value: 0x00000000

Access: RO

Size (in bits): 32

Address: 020B8h

The ESR register contains the current values of all Hardware-Detected Error condition bits (these are all by definition

persistent). The EMR register selects which of these error conditions are reported in the persistent EIR (i.e., set bits

must be cleared by software) and thereby causing a Master Error interrupt condition to be reported in the ISR.

DWord Bit Description

0 31:16 Reserved

Format: MBZ

15:0 Error Status Bits

Format: Array of error condition bits See the table titled Hardware-Detected Error Bits.

This register contains the non-persistent values of all hardware-detected error condition bits.

Value Name

1h Error Condition Detected

1.1.14 Logical Context Support

1.1.14.1 BB_ADDR — Batch Buffer Head Pointer

BB_ADDR - Batch Buffer Head Pointer Register

Register Space: MMIO: 0/2/0

Default Value: 0x00000000

Access: RO

Size (in bits): 32

Address: 02140h

Name: RCS Batch Buffer Head Pointer Register

ShortName: RCS_BB_ADDR

Address: 12140h

Name: VCS Batch Buffer Head Pointer Register

ShortName: VCS_BB_ADDR

Address: 1A140h

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 90

BB_ADDR - Batch Buffer Head Pointer Register

Name: VECS Batch Buffer Head Pointer Register

ShortName: VECS_BB_ADDR

Address: 22140h

Name: BCS Batch Buffer Head Pointer Register

ShortName: BCS_BB_ADDR

This register contains the current DWord Graphics Memory Address of the last-initiated batch buffer.

Programming Notes

Programming Restriction: This register should NEVER be programmed by driver. This is for HW internal use only.

DWord Bit Description

0 31:3 Batch Buffer Head Pointer

Source: BlitterCS, VideoCS, VideoCS2, VideoEnhancementCS

Format: GraphicsAddress[31:3]

This field specifies the DWord-aligned Graphics Memory Address where the last initiated Batch Buffer is

currently fetching commands. If no batch buffer is currently active, the Valid bit will be 0 and this field will

be meaningless.

31:2 Batch Buffer Head Pointer

Source: RenderCS

Format: GraphicsAddress[31:2]

This field specifies the DWord-aligned Graphics Memory Address where the last initiated Batch Buffer is

currently fetching commands. If no batch buffer is currently active, the Valid bit will be 0 and this field will

be meaningless.

2 Reserved

Source: BlitterCS, VideoCS, VideoCS2, VideoEnhancementCS

Format: MBZ

1 Reserved

Format: MBZ

0 Valid

Format: U1

Value Name Description

0h Invalid [Default] Batch buffer Invalid

1h Valid Batch buffer Valid

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 91

1.1.14.2 BB_STATE – Batch Buffer State Register

BB_STATE - Batch Buffer State Register

Register Space: MMIO: 0/2/0

Source: RenderCS

Default Value: 0x00000000

Access: RO

Size (in bits): 32

Address: 02110h

Name: RCS Batch Buffer State Register

ShortName: RCS_BB_STATE

This register contains the attributes of the current batch buffer initiated from the Ring Buffer. These include the

security indicator.

This register should not be written by software. These fields should only get written by a context restore. Software

should always set these fields via the MI_BATCH_BUFFER_START command when initiating a batch buffer.

This register is saved and restored with context.

DWord Bit Description

0 31:9 Reserved

Format: MBZ

8 Reserved

Format: MBZ

7 Reserved

Format: MBZ

5 Address Space Indicator

Value Name Description

0h GGTT [Default] This batch buffer is located in GGTT memory

1h PPGTT This batch buffer is located in PPGTT memory.

3:0 Reserved

Format: MBZ

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 92

1.1.14.3 CCID—Current Context Register

CCID - Current Context Register

Register Space: MMIO: 0/2/0

Source: RenderCS

Default Value: 0x00000000

Access: R/W

Size (in bits): 32

Address: 02180h

This register contains the current logical rendering context address associated with the ring buffer in ring buffer mode

of scheduling. This register contents are not valid in Exec-List mode of scheduling.

Programming Notes

The CCID register must not be written directly (via MMIO) unless the Command Streamer is completely idle (i.e., the

Ring Buffer is empty and the pipeline is idle). Note that, under normal conditions, the CCID register should only be

updated from the command stream using the MI_SET_CONTEXT command.

DWord Bit Description

0 31:12 Logical Render Context Address (LRCA)

Default Value: 0h

Format: GraphicsAddress[31:11]

This field contains the 4 KB-aligned Graphics Memory Address of the current Logical Rendering

Context. Bit 11 MBZ.

11:10 Reserved

Format: MBZ

8 Reserved

Format: Must Be One

7:4 Reserved

Format: MBZ

3 Extended State Save Enable

Format: Enable

If set, the extended state identified in the Logical Context Data section of the Memory Data Formats

chapter, is saved as part of switching away from this logical context.

2 Extended State Restore Enable

Format: Enable

If set, the extended state identified in the Logical Context Data section of the Memory Data Formats

chapter, was loaded (or restored) as part of switching to this logical context.

1 Reserved

Format: MBZ

0 Valid

Format: U1

Value Name Description

0h Invalid

[Default]

The other fields of this register are invalid. A switch away from the context will

not invoke a context save operation.

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 93

CCID - Current Context Register

1h Valid The other fields of this register are valid, and a switch from the context will

invoke the normal context save/restore operations.

1.1.14.4 CXT_SIZE—Context Sizes

CXT_SIZE - Context Sizes

Register Space: MMIO: 0/2/0

Source: RenderCS

Default Value: 0x48A7B8CD

Access: R/W

Size (in bits): 32

Trusted Type: 1

Address: 021A8h

The actual size of a logical rendering context is the amount of data stored/restored during a context switch and is

measured in 64B cache lines. This register will be power context save/restored. Note that this register will default to

the correct value, so software should not have to modify it.

DWord Bit Description

0 31:25 Power Context Size

Default Value: 24h

This field indicates the Power context data that need to be save restored.

24:22 Ring Context Size

Default Value: 2h

This field indicates the Ring context data that need to be save restored.

21:16 Render Context Size

Default Value: 27h

This field indicates the render context data that need to be save restored when extended mode is not

enabled for a context.

15:9 Extended Context Size

Default Value: 5Ch

This field indicates the render context data that need to be save restored when extended mode is

enabled for a context. Note: Render context is subset of this context.

8:6 GT1 Mode

Default Value: 3h

This field indicates the amount of data that need not be save/restored from render context in GT1

mode. Note: This is the amount of data not save/restored from TDL and SC in GT1 mode.

5:0 VF State Context Size

Default Value: Dh

This field indicates the amount of VF unit data context save/restored in cachelines.

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 94

1.1.14.5 MTCH_CID_RST – Matched Context ID Reset Register

MTCH_CID_RST - Matched Context ID Reset Register

Register Space: MMIO: 0/2/0

Project: All

Source: RenderCS

Default Value: 0x00000000

Access: R/W

Size (in bits): 32

Address: 0222Ch

This register is used to generate a Context ID specific reset (Render Only). To initiate a reset, the register is written

with the pending bit set. Hardware compares the current context ID with the register and on match generates a

Render Only reset. After reset is complete, HW clears the pending bit and can be programmed to generate an

interrupt. The match bit is set. If the current context ID does not match this register, the pending bit is reset and an

interrupt is generated. The match bit is reset.The match indicates the result of the last comparison, and its valid only

when pending bit is zero.Please see MCIDRST interrupt bit assignment in the Interrupt Control Registers.

DWord Bit Description

0 31:12 Match Context ID

Format: U20

Contains the context ID to be compared with the currently running context ID.

11:2 Reserved

Format: MBZ

1 Match

Format: U20

This bit indicates the result of the match operation; 1 means the Current Context ID matches the

Match Context ID field.

0 Pending

Format: U20

This bit indicates that a matched context ID reset is pending. The bit should be set when the register

is written (in order to have a pending MTCH_CID_RST request), and will be reset by hardware to

indicate that the operation is completed (Either with a match or mismatch)

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 95

1.1.14.6 SYNC_FLIP_STATUS – Wait for Event and Display Flip Flags Register

SYNC_FLIP_STATUS - Wait For Event and Display Flip Flags
Register

Register Space: MMIO: 0/2/0

Project: All

Default Value: 0x00000000

Access: R/W

Size (in bits): 32

Address: 022D0h

Name: RCS Wait For Event and Display Flip Flags Register

ShortName: RCS_SYNC_FLIP_STATUS

This register is the saved value of what wait for events are still valid. This register is part of context save and restore

for RC6 feature.

Programming Notes

Programming Restriction:

 This register should NEVER be programmed by SW, this is for HW internal use only.

DWord Bit Description

0 31 Reserved

Format: MBZ

30 Display Plane A Asyncronous Display Flip Pending

Format: Enable

This field enables a wait for the duration of a Display Plane A “Flip Pending” condition. If a flip request is

pending, the parser will wait until the flip operation has completed (i.e., the new front buffer address has

now been loaded into the active front buffer registers). See Display Flip Pending Condition (in the Device

Programming Interface chapter of MI Functions.

29 Display Plane A Syncronous Flip Display Pending

Format: Enable

This field enables a wait for the duration of a Display Plane A “Flip Pending” condition. If a flip request is

pending, the parser will wait until the flip operation has completed (i.e., the new front buffer address has

now been loaded into the active front buffer registers). See Display Flip Pending Condition (in the Device

Programming Interface chapter of MI Functions.

28 Display Sprite A Syncronous Flip Display Pending

Format: Enable

This field enables a wait for the duration of a Display Sprite A “Flip Pending” condition. If a flip request is

pending, the parser will wait until the flip operation has completed (i.e., the new front buffer address has

now been loaded into the active front buffer registers). See Display Flip Pending Condition in the Device

Programming Interface chapter of MI Functions.

27 Reserved

Format: MBZ

26 Display Plane B Asyncronous Display Flip Pending

Format: Enable

This field enables a wait for the duration of a Display Plane B “Flip Pending” condition. If a flip request is

pending, the parser will wait until the flip operation has completed (i.e., the new front buffer address has

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 96

SYNC_FLIP_STATUS - Wait For Event and Display Flip Flags
Register

now been loaded into the active front buffer registers). See Display Flip Pending Condition (in the Device

Programming Interface chapter of MI Functions.

25 Display Plane B Syncronous Flip Display Pending

Format: Enable

This field enables a wait for the duration of a Display Plane B Flip Pending condition. If a flip request is

pending, the parser will wait until the flip operation has completed (i.e., the new front buffer address has

now been loaded into the active front buffer registers). See Display Flip Pending Condition (in the Device

Programming Interface chapter of MI Functions.

24 Display Sprite B Syncronous Flip Display Pending

Format: Enable

This field enables a wait for the duration of a Display Sprite B Flip Pending condition. If a flip request is

pending, the parser will wait until the flip operation has completed (i.e., the new front buffer address has

now been loaded into the active front buffer registers). See Display Flip Pending Condition in the Device

Programming Interface chapter of MI Functions.

23 Display Plane A Asyncronous Performance Flip Pending Wait Enable

Source: RenderCS

Format: Enable

This field enables a wait for the duration of a Display Plane A Flip Pending condition. If a flip request is

pending, the parser will wait until the flip operation has completed (i.e., the new front buffer address has

now been loaded into the active front buffer registers). See Display Flip Pending Condition (in the Device

Programming Interface chapter of MI Functions.

22 Display Plane A Asyncronous Flip Pending Wait Enable

Format: Enable

This field enables a wait for the duration of a Display Plane A Flip Pending condition. If a flip request is

pending, the parser will wait until the flip operation has completed (i.e., the new front buffer address has

now been loaded into the active front buffer registers). See Display Flip Pending Condition (in the Device

Programming Interface chapter of MI Functions.

21 Display Plane A Syncronous Flip Pending Wait Enable

Format: Enable

This field enables a wait for the duration of a Display Plane A Flip Pending condition. If a flip request is

pending, the parser will wait until the flip operation has completed (i.e., the new front buffer address has

now been loaded into the active front buffer registers). See Display Flip Pending Condition (in the Device

Programming Interface chapter of MI Functions.

20 Display Sprite A Syncronous Flip Pending Wait Enable

Format: Enable

This field enables a wait for the duration of a Display Sprite A Flip Pending condition. If a flip request is

pending, the parser will wait until the flip operation has completed (i.e., the new front buffer address has

now been loaded into the active front buffer registers). See Display Flip Pending Condition in the Device

Programming Interface chapter of MI Functions.

19 Reserved

Format: MBZ

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 97

SYNC_FLIP_STATUS - Wait For Event and Display Flip Flags
Register

18 Display Pipe A Scan Line Wait Enable

Format: Enable

This field enables a wait while a Display Pipe A Scan Line condition exists. This condition is defined as

the the start of the scan line specified in the Pipe A Display Scan Line Count Range Compare Register.

See Scan Line Event in the Device Programming Interface chapter of MI Functions.

17 Display Pipe A Vertical Blank Wait Enable

Format: Enable

This field enables a wait until the next Display Pipe A Vertical Blank event occurs. This event is defined as

the start of the next Display Pipe A vertical blank period. Note that this can cause a wait for up to an entire

refresh period. See Vertical Blank Event (See Programming Interface).

16 Display Pipe A H Blank Wait Enable

Format: Enable

This field enables a wait until the start of next Display Pipe A Horizontal Blank event occurs. This event is

defined as the start of the next Display A Horizontal blank period. Note that this can cause a wait for up to

a line. See Horizontal Blank Event in the Device Programming Interface chapter of MI Functions.

15 Display Plane B Asyncronous Performance Flip Pending Wait Enable

Source: RenderCS

Format: Enable

This field enables a wait for the duration of a Display Plane B Flip Pending condition. If a flip request is

pending, the parser will wait until the flip operation has completed (i.e., the new front buffer address has

now been loaded into the active front buffer registers). See Display Flip Pending Condition (in the Device

Programming Interface chapter of MI Functions.

14 Display Plane B Asyncronous Flip Pending Wait Enable

Format: Enable

This field enables a wait for the duration of a Display Plane B Flip Pending condition. If a flip request is

pending, the parser will wait until the flip operation has completed (i.e., the new front buffer address has

now been loaded into the active front buffer registers). See Display Flip Pending Condition (in the Device

Programming Interface chapter of MI Functions.

13 Display Plane B Syncronous Flip Pending Wait Enable

Format: Enable

This field enables a wait for the duration of a Display Plane B Flip Pending condition. If a flip request is

pending, the parser will wait until the flip operation has completed (i.e., the new front buffer address has

now been loaded into the active front buffer registers). See Display Flip Pending Condition (in the Device

Programming Interface chapter of MI Functions.

12 Display Sprite B Syncronous Flip Pending Wait Enable

Format: Enable

This field enables a wait for the duration of a Display Sprite B Flip Pending condition. If a flip request is

pending, the parser will wait until the flip operation has completed (i.e., the new front buffer address has

now been loaded into the active front buffer registers). See Display Flip Pending Condition in the Device

Programming Interface chapter of MI Functions.

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 98

SYNC_FLIP_STATUS - Wait For Event and Display Flip Flags
Register

11 Reserved

Format: MBZ

10 Display Pipe B Scan Line Wait Enable

Format: Enable

This field enables a wait while a Display Pipe B Scan Line condition exists. This condition is defined as

the the start of the scan line specified in the Pipe B Display Scan Line Count Range Compare Register.

See Scan Line Event in the Device Programming Interface chapter of MI Functions.

9 Display Pipe B Vertical Blank Wait Enable

Format: Enable

This field enables a wait until the next Display Pipe B Vertical Blank event occurs. This event is defined as

the start of the next Display Pipe B vertical blank period. Note that this can cause a wait for up to an entire

refresh period. See Vertical Blank Event (See Programming Interface).

8 Display Pipe B H Blank Wait Enable

Format: Enable

This field enables a wait until the start of next Display Pipe B Horizontal Blank event occurs. This event is

defined as the start of the next Display B Horizontal blank period. Note that this can cause a wait for up to

a line. See Horizontal Blank Event in the Device Programming Interface chapter of MI Functions.

7:5 Reserved

Format: MBZ

4:0 Condition Code Wait Select

This field enables a wait for the duration that the corresponding condition code is active. These enable

select one of 15 condition codes in the EXCC register, that cause the parser to wait until that condition-

code in the EXCC is cleared.

Value Name Description

0h Not Enabled Condition Code Wait not enabled

1h-5h Enabled Condition Code select enabled; selects one of 5 codes, 0 – 4

6h-15h Reserved

Programming Notes

Note that not all condition codes are implemented. The parser operation is UNDEFINED if an

unimplemented condition code is selected by this field. The description of the EXCC register (Memory

Interface Registers) lists the codes that are implemented.

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 99

1.1.14.7 SYNC_FLIP_STATUS_1 – Wait for Event and Display Flip Flags Register
1

SYNC_FLIP_STATUS_1 - Wait For Event and Display Flip Flags
Register 1

Register Space: MMIO: 0/2/0

Default Value: 0x00000000

Access: R/W

Size (in bits): 32

Address: 022D4h

Name: RCS Wait For Event and Display Flip Flags Register 1

ShortName: RCS_SYNC_FLIP_STATUS_1

This register is the saved value of what wait for events are still valid. This register is part of context save and restore

for RC6 feature.

DWord Bit Description

0 31:27 Reserved

Format: MBZ

26:15 Reserved

Format: MBZ

11 SyncFlush Status

Format: Enable

This field toggles on completion of sync flush. This bit toggle generates Interrupt and also reports

interrupt status to HWSP on sync flush done.

10 Display Plane C Asyncronous Display Flip Pending

Format: Enable

This field enables a wait for the duration of a Display Plane C Flip Pending condition. If a flip request is

pending, the parser will wait until the flip operation has completed (i.e., the new front buffer address

has now been loaded into the active front buffer registers). See Display Flip Pending Condition (in the

Device Programming Interface chapter of MI Functions.

9 Display Plane C Syncronous Flip Display Pending

Format: Enable

This field enables a wait for the duration of a Display Plane C Flip Pending condition. If a flip request is

pending, the parser will wait until the flip operation has completed (i.e., the new front buffer address

has now been loaded into the active front buffer registers). See Display Flip Pending Condition (in the

Device Programming Interface chapter of MI Functions.

8 Display Sprite C Syncronous Flip Display Pending

Format: Enable

This field enables a wait for the duration of a Display Sprite C Flip Pending condition. If a flip request is

pending, the parser will wait until the flip operation has completed (i.e., the new front buffer address

has now been loaded into the active front buffer registers). See Display Flip Pending Condition in the

Device Programming Interface chapter of MI Functions.

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 100

SYNC_FLIP_STATUS_1 - Wait For Event and Display Flip Flags
Register 1

7 Display Plane C Asyncronous Performance Flip Pending Wait Enable

Source: RenderCS

Format: Enable

This field enables a wait for the duration of a Display Plane C Flip Pending condition. If a flip request is

pending, the parser will wait until the flip operation has completed (i.e., the new front buffer address

has now been loaded into the active front buffer registers). See Display Flip Pending Condition (in the

Device Programming Interface chapter of MI Functions.

6 Display Plane C Asyncronous Flip Pending Wait Enable

Format: Enable

This field enables a wait for the duration of a Display Plane C “Flip Pending” condition. If a flip request

is pending, the parser will wait until the flip operation has completed (i.e., the new front buffer address

has now been loaded into the active front buffer registers). See Display Flip Pending Condition (in the

Device Programming Interface chapter of MI Functions.

5 Display Plane C Syncronous Flip Pending Wait Enable

Format: Enable

This field enables a wait for the duration of a Display Plane C Flip Pending condition. If a flip request is

pending, the parser will wait until the flip operation has completed (i.e., the new front buffer address

has now been loaded into the active front buffer registers). See Display Flip Pending Condition (in the

Device Programming Interface chapter of MI Functions.

4 Display Sprite C Syncronous Flip Pending Wait Enable

Format: Enable

This field enables a wait for the duration of a Display Sprite C Flip Pending condition. If a flip request is

pending, the parser will wait until the flip operation has completed (i.e., the new front buffer address

has now been loaded into the active front buffer registers). See Display Flip Pending Condition in the

Device Programming Interface chapter of MI Functions.

3 Reserved

Format: MBZ

2 Display Pipe C Scan Line Wait Enable

Format: Enable

This field enables a wait while a Display Pipe C Scan Line condition exists. This condition is defined as

the the start of the scan line specified in the Pipe C Display Scan Line Count Range Compare Register.

See Scan Line Event in the Device Programming Interface chapter of MI Functions.

1 Display Pipe C Vertical Blank Wait Enable

Format: Enable

This field enables a wait until the next Display Pipe C Vertical Blank event occurs. This event is defined

as the start of the next Display Pipe C vertical blank period. Note that this can cause a wait for up to an

entire refresh period. See Vertical Blank Event (See Programming Interface).

0 Display Pipe C H Blank Wait Enable

Format: Enable

This field enables a wait until the start of next Display Pipe C Horizontal Blank event occurs. This event

is defined as the start of the next Display C Horizontal blank period. Note that this can cause a wait for

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 101

SYNC_FLIP_STATUS_1 - Wait For Event and Display Flip Flags
Register 1

up to a line. See Horizontal Blank Event in the Device Programming Interface chapter of MI Functions.

1.1.15 Pipelines Statistics Counter Registers

These registers keep continuous count of statistics regarding the 3D pipeline. They are saved and

restored with context but should not be changed by software except to reset them to 0 at context creation

time. These registers may be read at any time; however, to obtain a meaningful result, a pipeline flush

just prior to reading the registers is necessary in order to synchronize the counts with the primitive stream.

1.1.15.1 IA_VERTICES_COUNT — Reported Vertices Counter

IA_VERTICES_COUNT

Register Space: MMIO: 0/2/0

Project: All

Source: RenderCS

Default Value: 0x00000000, 0x00000000

Access: R/W

Size (in bits): 64

Trusted Type: 1

Address: 02310h

This register stores the count of vertices processed by VF. This register is part of the context save and restore.

DWord Bit Description

0 63:0 IA Vertices Count Report

Total number of vertices fetched by the VF stage. This count is updated for every input vertex as long as

Statistics Enable is set in VF_STATE (see the Vertex Fetch Chapter in the 3D Volume.)

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 102

1.1.15.2 IA_PRIMITIVES_COUNT — Reported Vertex Fetch Output Primitives
Counter

IA_PRIMITIVES_COUNT

Register Space: MMIO: 0/2/0

Project: All

Source: RenderCS

Default Value: 0x00000000, 0x00000000

Access: R/W

Size (in bits): 64

Trusted Type: 1

Address: 02318h

This register stores the count of primitives generated by VF. This register is part of the context save and restore.

DWord Bit Description

0 63:0 IA Primitives Count Report

Total number of primitives output by the Vertex Fetch (IA) stage. This count is updated for every

primitive output by the VF stage, as long as Statistics Enable is set in VF_STATE (see the Vertex Fetch

Chapter in the 3D Volume.)

1.1.15.3 VS_INVOCATION_COUNT— Reported Vertex Shader Invocation
Counter

VS_INVOCATION_COUNT

Register Space: MMIO: 0/2/0

Project: All

Source: RenderCS

Default Value: 0x00000000, 0x00000000

Access: R/W

Size (in bits): 64

Trusted Type: 1

Address: 02320h

This register stores the value of the vertex count shaded by VS. This register is part of the context save and restore.

DWord Bit Description

0 63:0 VS Invocation Count Report

Number of vertices that are dispatched as threads by the VS stage. Updated only when Statistics

Enable is set in VS_STATE (see the Vertex Shader Chapter in the 3D Volume.)

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 103

1.1.15.4 HS_INVOCATION_COUNT— Reported Hull Shader Invocation Counter

HS_INVOCATION_COUNT

Register Space: MMIO: 0/2/0

Project: All

Source: RenderCS

Default Value: 0x00000000, 0x00000000

Access: R/W

Size (in bits): 64

Trusted Type: 1

Address: 02300h

This register stores the number of patch objects processed by the HS unit. E.g., A PATCHLIST_2 topology with 6

vertices would cause this counter to increment by 3 (there are 3 2-vertex patch objects in that topology).This register

is part of the context save and restore.

DWord Bit Description

0 63:0 HS Invocation Count

Number of patch objects processed by the HS stage. Updated only when HS Enable and HS

Statistics Enable are set in 3DSTATE_HS

1.1.15.5 DS_INVOCATION_COUNT— Reported Domain Shader Invocation
Counter

DS_INVOCATION_COUNT

Register Space: MMIO: 0/2/0

Project: All

Source: RenderCS

Default Value: 0x00000000, 0x00000000

Access: R/W

Size (in bits): 64

Trusted Type: 1

Address: 02308h

This register stores the number of domain points shaded by the DS threads. Domain points which hit in the DS cache

will not cause this register to increment. Note that the spawning of a DS thread which shades two domain points will

cause this counter to increment by two.This register is part of the context save and restore.

DWord Bit Description

0 63:0 DS Invocation Count

Number of domain points shaded by the DS threads. Updated only when DS Function Enable and

Statistics Enable are set in 3DSTATE_DS

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 104

1.1.15.6 GS_INVOCATION_COUNT — Reported Geometry Shader Thread
Invocation Counter

GS_INVOCATION_COUNT

Register Space: MMIO: 0/2/0

Project: All

Source: RenderCS

Default Value: 0x00000000, 0x00000000

Access: R/W

Size (in bits): 64

Trusted Type: 1

Address: 02328h

This register stores the number of objects that are part of geometry shader threads. This register is part of the

context save and restore.

DWord Bit Description

0 63:0 GS Invocation Count

Number of objects that are dispatched as a geometry shader threads invoked by the GS stage. Updated

only when Statistics Enable is set in GS_STATE (see the Geometry Shader Chapter in the 3D

Volume.)

1.1.15.7 GS_PRIMITIVES_COUNT — Reported Geometry Shader Output
Primitives Counter

GS_PRIMITIVES_COUNT

Register Space: MMIO: 0/2/0

Project: All

Source: RenderCS

Default Value: 0x00000000, 0x00000000

Access: R/W

Size (in bits): 64

Trusted Type: 1

Address: 02330h

This register reflects the total number of primitives that have been output by the Geometry Shader stage. This

register is part of the context save and restore.

DWord Bit Description

0 63:0 GS Primitives Count

Total number of primitives output by the geometry stage. Updated only when Statistics Enable is set in

GS_STATE (see the Geometry Shader Chapter in the 3D Volume.)

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 105

1.1.15.8 CL_INVOCATION_COUNT— Reported Clipper Thread Invocation
Counter

CL_INVOCATION_COUNT

Register Space: MMIO: 0/2/0

Project: All

Source: RenderCS

Default Value: 0x00000000, 0x00000000

Access: R/W

Size (in bits): 64

Trusted Type: 1

Address: 02338h

This register stores the count of objects entering the Clipper stage. This register is part of the context save and

restore.

DWord Bit Description

0 63:0 CL Invocation Count Report

Number of objects entering the clipper stage. Updated only when Statistics Enable is set in

CLIP_STATE (see the Clipper Chapter in the 3D Volume.)

1.1.15.9 CL_PRIMITIVES_COUNT— Reported Clipper Output Primitives Counter

CL_PRIMITIVES_COUNT

Register Space: MMIO: 0/2/0

Project: All

Source: RenderCS

Default Value: 0x00000000, 0x00000000

Access: R/W

Size (in bits): 64

Trusted Type: 1

Address: 02340h

This register reflects the total number of primitives that have been output by the clipper. This register is part of the

context save and restore.

DWord Bit Description

0 63:0 Clipped Primitives Output Count

Total number of primitives output by the clipper stage. This count is updated for every primitive output by

the clipper stage, as long as Statistics Enable is set in SF_STATE (see the Clipper and SF Chapters in

the 3D Volume.)

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 106

1.1.15.10 PS_INVOCATION_COUNT— Reported Pixels Shaded Counter

PS_INVOCATION_COUNT

Register Space: MMIO: 0/2/0

Project: All

Source: RenderCS

Default Value: 0x00000000, 0x00000000

Access: R/W

Size (in bits): 64

Trusted Type: 1

Address: 02348h

DWord Bit Description

0 63:0 PS Invocation Count

Reflects a count of the total number of pixels (including unlit “helper pixels” within a subspan that need to

go through the PS shader to provide 2x2 gradients) that are dispatched to pixel shader invocations while

Statistics Enable is set in the Windower. See the Windower chapter of the 3D volume for details. This

count will generally be much greater than the actual count of PS threads since a single thread may

process up to 32 pixels.

1.1.15.11 PS_DEPTH_COUNT — Reported Pixels Passing Depth Test Counter

PS_DEPTH_COUNT

Register Space: MMIO: 0/2/0

Project: All

Source: RenderCS

Default Value: 0x00000000, 0x00000000

Access: R/W

Size (in bits): 64

Trusted Type: 1

Address: 02350h

This register stores the value of the count of pixels that have passed the depth test. This register is part of the

context save and restore. Note that the value of this register can be obtained in a pipeline-synchronous fashion

without a pipeline flush by using the 3DCONTROL command. See 3D Overview in the 3D volume.

DWord Bit Description

0 63:0 Depth Count

This register reflects the total number of pixels that have passed the depth test (i.e., will be visible). All

pixels are counted when Statistics Enable is set in the Windower State. See the Windower chapter of the

3D volume for details. Pixels that pass the depth test but fail the stencil test will not be counted.

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 107

1.1.15.12 TIMESTAMP — Reported Timestamp Count

TIMESTAMP - Reported Timestamp Count

Register Space: MMIO: 0/2/0

Project: All

Source: RenderCS

Default Value: 0x00000000, 0x00000000

Access: RO. This register is not set by the context restore.

Size (in bits): 64

Address: 02358h

This register provides an elapsed real-time value that can be used as a timestamp for GPU events over short periods

of time. Note that the value of this register can be obtained in a 3D pipeline-synchronous fashion without a pipeline

flush by using the PIPE_CONTROL command. See 3D Geometry Pipeline in the “3D and Media” volume.This

register (effectively) counts at a constant frequency by adjusting the increment amount according to the actual

reference clock frequency. SW therefore does not need to know the reference clock frequency.This register is not

reset by a graphics reset. It will maintain its value unless a full chipset reset is performed.

 Note: This timestamp register reflects the value of the PCU TSC. The PCU TSC counts 10ns increments; this

timestamp reflects bits 38:3 of the TSC (i.e. 80ns granularity, rolling over every 1.5 hours).

DWord Bit Description

0 63:36 Reserved

Format: MBZ

35:0 Timestamp Value

Format: U32

This register toggles every 80 ns. The upper 28 bits are zero.

1.1.15.13 SO_NUM_PRIMS_WRITTEN[0:3]— Stream Output Num Primitives
Written Counters

SO_NUM_PRIMS_WRITTEN[0:3] - Stream Output Num Primitives
Written Counter

Register Space: MMIO: 0/2/0

Source: RenderCS

Default Value: 0x00000000, 0x00000000

Access: R/W

Size (in bits): 64

Address: 05200h-0521Fh

There is one 64-bit register for each of the 4 supported streams:5200h-5207h SO_NUM_PRIMS_WRITTEN0 (for

Stream Out Stream #0)5208h-520Fh SO_NUM_PRIMS_WRITTEN1 (for Stream Out Stream #1)5210h-5217h

SO_NUM_PRIMS_WRITTEN2 (for Stream Out Stream #2)5218h-521Fh SO_NUM_PRIMS_WRITTEN3 (for Stream

Out Stream #3)These registers are used to count the number of primitives (aka objects: points, lines, triangles) which

the SO stage has successfully written to a particular “stream’s” Streamed Vertex Output buffers, subject to buffer

overflow detection. (See the Stream Output section of the 3D pipeline volume).These registers are part of the context

save and restore.

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 108

DWord Bit Description

0 63:0 Num Prims Written Count

Format: U64

This count is incremented (by one) every time a GS thread outputs a DataPort Streamed Vertex Buffer

Write message with the Increment Num Prims Written bit set in the message header (see the Geometry

Shader and Data Port chapters in the 3D Volume.)

1.1.15.14 SO_PRIM_STORAGE_NEEDED[0:3] —Stream Output Primitive Storage
Needed Counters

SO_PRIM_STORAGE_NEEDED[0:3] - Stream Output Primitive
Storage Needed Counters

Register Space: MMIO: 0/2/0

Source: RenderCS

Default Value: 0x00000000, 0x00000000

Access: RO. This register is set by the context restore.

Size (in bits): 64

Address: 05240h-0525Fh

There is one 64-bit register for each of the 4 supported streams:

5240h-5247h SO_PRIM_STORAGE_NEEDED0 (for Stream Out Stream #0)

5248h-524Fh SO_PRIM_STORAGE_NEEDED1 (for Stream Out Stream #1)

5250h-5257h SO_PRIM_STORAGE_NEEDED2 (for Stream Out Stream #2)

5258h-525Fh SO_PRIM_STORAGE_NEEDED3 (for Stream Out Stream #3)

These registers are used to count the number of primitives (aka objects: points, lines, triangles) which the SO stage

has or would have written to a particular “stream’s” Streamed Vertex Output buffers if all buffers had been large

enough to accommodate the writes. (See the Stream Output section of the 3D pipeline volume).

These registers are part of the context save and restore.

DWord Bit Description

0 63:0 Prim Storage Needed Count

Format: U64

This count is incremented (by one) by the SOL stage for each object (point, line, triangle) it writes or

attempts to write to the corresponding stream’s output buffers. The count is not affected by the actual

number of buffers bound to the stream.

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 109

1.1.15.15 SO_WRITE_OFFSET[0:3] —Stream Output Write Offsets

SO_WRITE_OFFSET[0:3] - Stream Output Write Offsets

Register Space: MMIO: 0/2/0

Source: RenderCS

Default Value: 0x00000000

Access: RW. This register is set by the context restore.

Size (in bits): 32

Address: 05280h-0528Fh

There is one R/W 32-bit register for each of the 4 supported stream output buffer slots:

5280h-5283h SO_WRITE_OFFSET0 (for Stream Out Buffer #0)

5284h-5287h SO_ WRITE_OFFSET1 (for Stream Out Buffer #1)

5288h-528Bh SO_ WRITE_OFFSET2 (for Stream Out Buffer #2)

528Ch-528Fh SO_ WRITE_OFFSET3 (for Stream Out Buffer #3)

These registers are used to set and track a DWord-granular Write Offset for each of the 4 Stream Output Buffer

slots. Software can directly write them via MI_LOAD_REGxxx commands. The SOL stage will increment them as

part of stream output processing. Software can cause them to be written to memory via MI_STORE_REGxxx

commands. (See the Stream Output section of the 3D pipeline volume).

These registers are part of the context save and restore.

Programming Notes

 Software must ensure that no HW stream output operations can be in process or otherwise pending at the
point that the MI_LOAD/STORE commands are processed. This will likely require a pipeline flush.

 The SOL stage will effectively advance the write offset by the buffer’s Surface Pitch after each vertex is written
(assuming no overflow is detected in any targetted SO buffer). Under “normal” conditions one would expect
software to initialize the WriteOffset to some (possibly zero) multiple of Surface Pitch in order to align vertex
writes to the buffer’s Base Address, though it is not required to do so.

DWord Bit Description

0 31:2 Write Offset

Format: U30

This field contains a DWord offset from the corresponding SO buffer’s Base Address value. The SOL

stage uses this value as a write offset when performing writes to the buffer. The SOL stage will

increment this value as a part of performing stream output to the buffer. Note that the SOL stage uses

the buffer’s Surface Pitch to advance the Write Offset, without regard to the buffer’s Base Address (see

Programming Notes above).

1:0 Reserved

Format: MBZ

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 110

1.1.16 Predicate Render Registers

1.1.16.1 MI_PREDICATE_SRC0 - Predicate Rendering Temporary Register0

MI_PREDICATE_SRC0 - Predicate Rendering Temporary Register0

Register Space: MMIO: 0/2/0

Project: All

Source: RenderCS

Default Value: 0x00000000, 0x00000000

Access: R/W

Size (in bits): 64

Address: 02400h-02407h

DWord Bit Description

0 63:0 MI_PREDICATE_SRC0

This register is a temporary register for Predicate Rendering. See Predicate Rendering section for more

details.

1.1.16.2 1.1.16.2 MI_PREDICATE_SRC1– Predicate Rendering Temporary
Register1

MI_PREDICATE_SRC1 - Predicate Rendering Temporary Register1

Register Space: MMIO: 0/2/0

Source: RenderCS

Default Value: 0x00000000, 0x00000000

Access: R/W

Address: 02408h-0240Fh

DWord Bit Description

0 63:0 MI_PREDICATE_SRC1

This register is a temporary register for Predicate Rendering. See Predicate Rendering section for more

details.

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 111

1.1.16.3 MI_PREDICATE_DATA– Predicate Rendering Data Storage

MI_PREDICATE_DATA - Predicate Rendering Data Storage

Register Space: MMIO: 0/2/0

Project: All

Source: RenderCS

Default Value: 0x00000000, 0x00000000

Access: R/W

Size (in bits): 64

Address: 02410h-02417h

DWord Bit Description

0 63:0 MI_PREDICATE_DATA

This register is used either as computed value based off the MI_PREDICATE_SRC0 and

MI_PREDICATE_SRC1 or a temporary register. See Predicate Rendering section for more details.

1.1.16.4 MI_PREDICATE_RESULT – Predicate Rendering Data Result

MI_PREDICATE_RESULT - Predicate Rendering Data Result

Register Space: MMIO: 0/2/0

Project: All

Source: RenderCS

Default Value: 0x00000000

Access: R/W

Size (in bits): 32

Address: 02418h

DWord Bit Description

0 31:1 Reserved

Format: MBZ

0 MI_PREDICATE_RESULT

This bit is the result of the last MI_PREDICATE.

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 112

1.1.17 AUTO_DRAW Registers

1.1.17.1 3DPRIM_END_OFFSET – Auto Draw End Offset

3DPRIM_END_OFFSET - Auto Draw End Offset

Register Space: MMIO: 0/2/0

Source: RenderCS

Default Value: 0x00000000

Access: R/W

Size (in bits): 32

Address: 02420h-02423h

DWord Bit Description

0 31:0 End Offset

Format: U32

This register is used to store the end offset value used by the Vertex Fetch to determine when to stop

processing the 3D_PRIMITIVE command. This register is valid when the End Offset Enable is set in the

3D_PRIMITIVE command.

1.1.17.2 3DPRIM_START_VERTEX – Load Indirect Start Vertex

3DPRIM_START_VERTEX - Load Indirect Start Vertex

Register Space: MMIO: 0/2/0

Source: RenderCS

Default Value: 0x00000000

Access: R/W

Size (in bits): 32

Address: 02430h-02433h

DWord Bit Description

0 31:0 Start Vertex

Format: U32

This register is used to store the Start Vertex of the 3D_PRIMITIVE command when Load Indirect

Enable is set.

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 113

1.1.17.3 3DPRIM_VERTEX_COUNT – Load Indirect Vertex Count

3DPRIM_VERTEX_COUNT - Load Indirect Vertex Count

Register Space: MMIO: 0/2/0

Source: RenderCS

Default Value: 0x00000000

Access: R/W

Size (in bits): 32

Address: 02434h-02437h

DWord Bit Description

0 31:0 Vertex Count

Format: U32

This register is used to store the Vertex Count of the 3D_PRIMITIVE command when Load Indirect

Enable is set.

1.1.17.4 3DPRIM_INSTANCE_COUNT – Load Indirect Instance Count

3DPRIM_INSTANCE_COUNT - Load Indirect Instance Count

Register Space: MMIO: 0/2/0

Source: RenderCS

Default Value: 0x00000000

Access: R/W

Size (in bits): 32

Address: 02438h-0243Bh

DWord Bit Description

0 31:0 Instance Count

This register is used to store the Instance Count of the 3D_PRIMITIVE command when Load Indirect

Enable is set.

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 114

1.1.17.5 3DPRIM_START_INSTANCE – Load Indirect Start Instance

3DPRIM_START_INSTANCE - Load Indirect Start Instance

Register Space: MMIO: 0/2/0

Source: RenderCS

Default Value: 0x00000000

Access: R/W

Size (in bits): 32

Address: 0243Ch-0243Fh

DWord Bit Description

0 31:0 Start Vertex

Format: U32

This register is used to store the Start Instance of the 3D_PRIMITIVE command when Load Indirect

Enable is set.

1.1.17.6 3DPRIM_BASE_VERTEX – Load Indirect Base Vertex

3DPRIM_BASE_VERTEX - Load Indirect Base Vertex

Register Space: MMIO: 0/2/0

Source: RenderCS

Default Value: 0x00000000

Access: R/W

Size (in bits): 32

Address: 02440h-02443h

DWord Bit Description

0 31:0 Base Vertex

Format: S31

This register is used to store the Base Vertex of the 3D_PRIMITIVE command when Load Indirect

Enable is set.

1.1.18 MMIO Registers for GPGPU Indirect Dispatch

This register is normally written with the MI_LOAD_REGISTER_MEMORY command rather than from the

CPU.

 These registers should not be written with 0 for these projects. To avoid this, the

MI_LOAD_REGISTER_MEMORY command which writes them from an address in memory which was

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 115

written by a previous GPGPU_WALKER command will need to be checked with the following command

sequence. The commands in red are the additional commands to implement the workaround:

MI_LOAD_REGISTER_MEMORY Xaddress, GPGPU_DISPATCHDIMX

MI_CONDITIONAL_BATCH_BUFFER_END Xaddress, 0 // Compare X dimension to 0, end batch buffer if

0

MI_LOAD_REGISTER_MEMORY GPGPU_DISPATCHDIMY

MI_CONDITIONAL_BATCH_BUFFER_END Yaddress, 0 // Compare Y dimension to 0, end batch buffer if

0

MI_LOAD_REGISTER_MEMORY GPGPU_DISPATCHDIMZ

MI_CONDITIONAL_BATCH_BUFFER_END Zaddress, 0 // Compare Z dimension to 0, end batch buffer if

0

GPGPU_WALKER // Walker with indirect dispatch

This way, if any dimension is 0 we would not execute the GPGPU_WALKER. This has the limitation that

the indirect GPGPU_WALKER has to be the last WALKER of the batch buffer.

1.1.18.1 GPGPU_DISPATCHDIM(X/Y/Z) - GPGPU Dispatch Dimension (X/Y/Z)

These registers are normally written with the MI_LOAD_REGISTER_MEMORY command rather than

from the CPU.

GPGPU_DISPATCHDIMX - GPGPU Dispatch Dimension X

Register Space: MMIO: 0/2/0

Source: RenderCS

Default Value: 0x00000000

Access: R/W

Size (in bits): 32

Address: 02500h

DWord Bit Description

0 31:0 Dispatch Dimension X

Format: U32

The number of thread groups to be dispatched in the X dimension (max x + 1).

Value Name Project

1,FFFFFFFFh

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 116

GPGPU_DISPATCHDIMY - GPGPU Dispatch Dimension Y

Register Space: MMIO: 0/2/0

Source: RenderCS

Default Value: 0x00000000

Access: R/W

Size (in bits): 32

Address: 02504h

DWord Bit Description

0 31:0 Dispatch Dimension Y

Format: U32

The number of thread groups to be dispatched in the Y dimension (max y + 1

Value Name Project

1,FFFFFFFFh

GPGPU_DISPATCHDIMZ - GPGPU Dispatch Dimension Z

Register Space: MMIO: 0/2/0

Source: RenderCS

Default Value: 0x00000000

Access: R/W

Size (in bits): 32

Address: 02508h

DWord Bit Description

0 31:0 Dispatch Dimension Z

Format: U32

The number of thread groups to be dispatched in the Zdimension (max Z + 1)

Value Name Project

1,FFFFFFFFh

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 117

1.1.18.2 TS_GPGPU_THREADS_DISPATCHED – Count Active Channels
Dispatched

TS_GPGPU_THREADS_DISPATCHED - Count Active Channels
Dispatched

Register Space: MMIO: 0/2/0

Project: All

Source: RenderCS

Default Value: 0x00000000, 0x00000000

Access: R/W

Size (in bits): 64

Trusted Type: 1

Address: 02290h

This register is used to count the number of active channels that TS sends for dispatch. For each dispatch the active

bits in the execution mask are summed and added to this register. This register is reset when a write occurs to 2290h

DWord Bit Description

0 63:0 GPGPU_THREADS_DISPATCHED

Format: U64

This count is increased by the number of active bits in the execution mask each time the TS sends a

GPGPU dispatch.

1.1.19 Memory Interface Registers

1.1.19.1 PWRCTX_REST_DONE - Power Context Restore Done

PWRCTX_REST_DONE - Power Context Restore Done

Register Space: MMIO: 0/2/0

Default Value: 0x00000000

Address: 04000h-04003h

Power Context Restore Done

DWord Bit Description

0 31:16 Mask Bits

Default Value: 0000h

Access: RO

Mask Bits

15:1 Extra Mask Bits

Default Value: 000000000000000b

Access: R/W

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 118

PWRCTX_REST_DONE - Power Context Restore Done

Extra Mask Bits

0 Restore Done

Default Value: 0b

Access: R/W

GAM - CS will write to indicate ‘restore done’

It is a config message register between CS & GAM

1.1.19.2 WR_WATERMARK - Write Watermark

WR_WATERMARK - Write Watermark

Register Space: MMIO: 0/2/0

Default Value: 0x000FFEA4

Address: 04028h-0402Bh

Write Watermark

DWord Bit Description

0 31:20 Counter Extra Bits

Default Value: 000000000000b

Access: R/W

Counter Extra Bits

19 Watermark Timeout Enable

Default Value: 1b

Access: R/W

Watermark timeout enable.

18:8 Watermark Timeout

Default Value: 11111111110b

Access: R/W

Number of clocks that the write pipe queue is allowed to keep a ready write cycle, without reads or

writes to the queue. Once this value is met, and if the feature is enabled, the watermark will be

considered reach, and all pending write requests will be issued.

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 119

WR_WATERMARK - Write Watermark

7 Watermark En

Default Value: 1b

Access: R/W

Enable write request grouping

6:0 High Watermark

Default Value: 0100100b

Access: R/W

This is the number of write requests to be collected before initiating a write burst. Once a burst is

initiated, it will continue until all the available writes are requested.

1.1.19.3 GFX_PRIO_CTRL - GFX Arbiter Client Priority Control

GFX_PRIO_CTRL - GFX Arbiter Client Priority Control

Register Space: MMIO: 0/2/0

Default Value: 0x00011D10

Address: 0402Ch-0402Fh

GFX Arbiter Client Priority Control

DWord Bit Description

0 31:17 Extra 402C Register

Default Value: 000000000000000b

Access: R/W

Extra 402C Register

16:12 Read Rstrm Max Reject

Default Value: 10001b

Access: R/W

Read Rstrm Max Reject

11:9 gapc_gam_c_priority

Default Value: 110b

Access: R/W

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 120

GFX_PRIO_CTRL - GFX Arbiter Client Priority Control

gapc_gam_c_priority - Lowest Bit [9] is not used

8:6 gapc_gam_z_priority

Default Value: 100b

Access: R/W

gapc_gam_z_priority - Lowest Bit [6] is not used

5:3 gapc_gam_l3_priority

Default Value: 010b

Access: R/W

gapc_gam_l3_priority - Lowest Bit [3] is not used

2:0 gafm_gam_priority

Default Value: 000b

Access: R/W

Client Priority control bitss

gafm_gam_priority - Lowest Bit [0] is not used

1.1.19.4 1.1.19.4 GFX_PEND_TLB_0 - Max Outstanding Pending TLB Requests
0

GFX_PEND_TLB_0 - Max Outstanding Pending TLB Requests 0

Register Space: MMIO: 0/2/0

Default Value: 0x00000000

Address: 04034h-04037h

GFX_PEND_TLB_0 - Max Outstanding Pending TLB Requests 0

DWord Bit Description

0 31 TEX Limit Enable Bit

Default Value: 0b

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 121

GFX_PEND_TLB_0 - Max Outstanding Pending TLB Requests 0

Access: R/W

TEX Limit Enable bit Project: All Format: U1

This bit is used to enable the pending TLB requests limitation function for the Texture Cache

When set, the number of internal pending read requests which require a TLB read will not exceed the

programmed counter value.

30 Reserved Bit

Default Value: 0b

Access: RO

Reserved Project: All Format: MBZ

29:24 TEX TLB Limit Count

Default Value: 000000b

Access: R/W

TEX TLB Limit Count Project: All Format: U6

This is the MAX number of Allowed internal pending read requests which require a TLB read

23 DC Limit Enable bit

Default Value: 0b

Access: R/W

DC Limit Enable bit Project: All Format: U1

This bit is used to enable the pending TLB requests limitation function for the Instruction Cache.

When set, the number of internal pending read requests which require a TLB read will not exceed the

programmed counter value.

22 Reserved Bit

Default Value: 0b

Access: RO

Reserved Project: All Format: MBZ

21:16 DC TLB Limit Count

Default Value: 000000b

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 122

GFX_PEND_TLB_0 - Max Outstanding Pending TLB Requests 0

Access: R/W

DC TLB Limit Count Project:All Format:U6

This is the MAX number of Allowed internal pending read requests which require a TLB read.

15 VF Limit Enable bit

Default Value: 0b

Access: R/W

VF Limit Enable bit Project: All Format: U1

This bit is used to enable the pending TLB requests limitation function for the Vertex Fetch

When set, the number of internal pending read requests which require a TLB read will not exceed the

programmed counter value.

14 Reserved Bit

Default Value: 0b

Access: RO

Reserved Project: All Format: MBZ

13:8 VF TLB Limit Count

Default Value: 000000b

Access: R/W

VF TLB Limit Count Project: All Format: U6

This is the MAX number of Allowed internal pending read requests which require a TLB read.

7 VMC Limit Enable bit

Default Value: 0b

Access: R/W

VMC Limit Enable bit Project: All Format: U1

This bit is used to enable the pending TLB requests limitation function for the Video Motion

Compensation . When set, the number of internal pending read requests which require a TLB read will

not exceed the programmed counter value.

6 Reserved Bit

Default Value: 0b

Access: RO

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 123

GFX_PEND_TLB_0 - Max Outstanding Pending TLB Requests 0

Reserved Project: All Format: MBZ

5:0 VMC TLB Limit Count

Default Value: 000000b

Access: R/W

VMC TLB Limit Count Project: All Format: U6

This is the MAX number of Allowed internal pending read requests which require a TLB read.

B/D/F/Type:0/0/0/GAMunit_Config

Address Offset:4034-4037h

Default Value:00000000h

Access: RO; RW;

Size:32 bits

GFX_PEND_TLB_0 - Max Outstanding Pending TLB Requests 0

Bit Access
Default
Value RST/PWR Description

31 RW 0b Core
TEX Limit Enable Bit (TEXLEN):

TEX Limit Enable bit Project: All Format: U1

This bit is used to enable the pending TLB requests limitation function for the

Texture Cache

When set, the number of internal pending read requests which require a TLB

read will not exceed the programmed counter value.

30 RO 0b Core
Reserved Bit (RSVD):

Reserved Project: All Format: MBZ

29:24 RW 000000b Core
TEX TLB Limit Count (TEXTLBLCNT):

TEX TLB Limit Count Project: All Format: U6

This is the MAX number of Allowed internal pending read requests which require

a TLB read

23 RW 0b Core
DC Limit Enable bit (DCLEN):

DC Limit Enable bit Project: All Format: U1

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 124

Bit Access
Default
Value RST/PWR Description

This bit is used to enable the pending TLB requests limitation function for the

Instruction Cache.

When set, the number of internal pending read requests which require a TLB

read will not exceed the programmed counter value.

22 RO 0b Core
Reserved Bit (RSVD):

Reserved Project: All Format: MBZ

21:16 RW 000000b Core
DC TLB Limit Count (DCTLBLCNT):

DC TLB Limit Count Project:All Format:U6

This is the MAX number of Allowed internal pending read requests which require

a TLB read.

15 RW 0b Core
VF Limit Enable bit (VFLEN):

VF Limit Enable bit Project: All Format: U1

This bit is used to enable the pending TLB requests limitation function for the

Vertex Fetch

When set, the number of internal pending read requests which require a TLB

read will not exceed the programmed counter value.

14 RO 0b Core
Reserved Bit (RSVD):

Reserved Project: All Format: MBZ

13:8 RW 000000b Core
VF TLB Limit Count (VFTLBLCNT):

VF TLB Limit Count Project: All Format: U6

This is the MAX number of Allowed internal pending read requests which require

a TLB read.

7 RW 0b Core
VMC Limit Enable bit (VMCLEN):

VMC Limit Enable bit Project: All Format: U1

This bit is used to enable the pending TLB requests limitation function for the

Video Motion Compensation. When set, the number of internal pending read

requests which require a TLB read will not exceed the programmed counter

value.

6 RO 0b Core
Reserved Bit (RSVD):

Reserved Project: All Format: MBZ

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 125

Bit Access
Default
Value RST/PWR Description

5:0 RW 000000b Core
VMC TLB Limit Count (VMCTLBLCNT):

VMC TLB Limit Count Project: All Format: U6

This is the MAX number of Allowed internal pending read requests which require

a TLB read.

1.1.19.5 GFX_PEND_TLB_1 - Max Outstanding Pending TLB Requests 1

GFX_PEND_TLB_1 - Max Outstanding Pending TLB Requests 1

Register Space: MMIO: 0/2/0

Default Value: 0x00000000

Address: 04038h-0403Bh

GFX_PEND_TLB_1 - Max Outstanding pending TLB requests 1

DWord Bit Description

0 31 SOL Limit Enable bit

Default Value: 0b

Access: R/W

SOL Limit Enable bit Project: All Format: U1

This bit is used to enable the pending TLB requests limitation function for the SOL. When set, the

number of internal pending read requests which require a TLB read will not exceed the programmed

counter value.

30 Reserved Bits

Default Value: 0b

Access: RO

Reserved Project: All Format: MBZ

29:24 SOL TLB Limit Count

Default Value: 000000b

Access: R/W

SOL TLB Limit Count Project: All Format: U6

This is the MAX number of Allowed internal pending read requests which require a TLB read.

23 L3 Limit Enable bit

Default Value: 0b

Access: R/W

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 126

GFX_PEND_TLB_1 - Max Outstanding Pending TLB Requests 1

L3 Limit Enable bit Project: All Format: U1

This bit is used to enable the pending TLB requests limitation function for the L3. When set, the

number of internal pending read requests which require a TLB read will not exceed the programmed

counter value.

22 Reserved Bit

Default Value: 0b

Access: RO

Reserved Project: All Format: MBZ

21:16 L3 TLB Limit Count

Default Value: 000000b

Access: R/W

L3 TLB Limit Count Project: All Format: U6

This is the MAX number of Allowed internal pending read requests which require a TLB read.

15 RCZ Limit Enable bit

Default Value: 0b

Access: R/W

RCZ Limit Enable bit Project: All Format: U1

This bit is used to enable the pending TLB requests limitation function for the Render Depth Cache

When set, the number of internal pending read requests which require a TLB read will not exceed the

programmed counter value.

14 Reserved Bit

Default Value: 0b

Access: RO

Reserved Project: All Format: MBZ

Programming Notes

""

13:8 RCZ TLB Limit Count

Default Value: 000000b

Access: R/W

RCZ TLB Limit Count Project: All Format: U6

This is the MAX number of Allowed internal pending read requests which require a TLB read.

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 127

GFX_PEND_TLB_1 - Max Outstanding Pending TLB Requests 1

7 RCC Limit Enable bit

Default Value: 0b

Access: R/W

RCC Limit Enable bit Project: All Format: U1

This bit is used to enable the pending TLB requests limitation function for the Render Color Cache.

When set, the number of internal pending read requests which require a TLB read will not exceed the

programmed counter value.

6 Reserved Bit

Default Value: 0b

Access: RO

Reserved Project: All Format: MBZ

5:0 RCC TLB Limit Count

Default Value: 000000b

Access: R/W

RCC TLB Limit Count Project: All Format: U6

This is the MAX number of Allowed internal pending read requests which require a TLB read.

1.1.19.6 L3_LRA_0 - L3 LRA 0

L3_LRA_0 - L3 LRA 0

Register Space: MMIO: 0/2/0

Default Value: 0x3F201F00

Address: 0403Ch-0403Fh

L3 LRA 0

DWord Bit Description

0 31:24 L3 LRA1 Max

Default Value: 00111111b

Access: R/W

L3 LRA1 Max Project: All Format: U6

Maximum value of programmable LRA1

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 128

L3_LRA_0 - L3 LRA 0

23:16 L3 LRA1 Min

Default Value: 00100000b

Access: R/W

L3 LRA1 Min Project: All Format: U6

Minimum value of programmable LRA1

15:8 L3 LRA0 Max

Default Value: 00011111b

Access: R/W

L3 LRA0 Max Project: All Format: U6

Maximum value of programmable LRA0

7:0 L3 LRA0 Min

Default Value: 00000000b

Access: R/W

L3 LRA0 Min Project: All Format: U6

Minimum value of programmable LRA1

1.1.19.7 L3_LRA_1 - L3 LRA 1

L3_LRA_1 - L3 LRA 1

Register Space: MMIO: 0/2/0

Default Value: 0x0900FF40

Address: 04040h-04043h

L3 LRA 1

DWord Bit Description

0 31:30 Reserved Bits

Default Value: 00b

Access: RO

Reserved Bits

29:28 DC

Default Value: 00b

Access: R/W

Which LRA should DC use

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 129

L3_LRA_1 - L3 LRA 1

27:26 TEXTURE

Default Value: 10b

Access: R/W

Which LRA should TEXTURE use

25:24 L3

Default Value: 01b

Access: R/W

Which LRA should L3 use

23:16 Reserved Bits

Default Value: 00000000b

Access: RO

Reserved Bits

15:8 L3 LRA2 Max

Default Value: 11111111b

Access: R/W

L3 LRA2 Max Project: All Format: U6

Maximum value of programmable LRA2

7:0 L3 LRA2 Min

Default Value: 01000000b

Access: R/W

L3 LRA2 Min Project: All Format: U6

Minimum value of programmable LRA2

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 130

1.1.19.8 CVS_TLB_LRA_0 - CVS TLB LRA 0

CVS_TLB_LRA_0 - CVS TLB LRA 0

Register Space: MMIO: 0/2/0

Default Value: 0x1F080700

Address: 04044h-04047h

CVS TLB LRA 0

DWord Bit Description

0 31:29 Reserved Bits

Default Value: 000b

Access: RO

Reserved Project: All Format: MBZ

28:24 CVS LRA1 Max

Default Value: 11111b

Access: R/W

CVS LRA1 Max Project: All Format: MBZ

Maximum value of programmable LRA1

23:21 Reserved Bits

Default Value: 000b

Access: RO

Reserved Project: All Format: MBZ

20:16 CVS LRA1 Min

Default Value: 01000b

Access: R/W

CVS LRA1 Min Project: All Format: U6

Minimum value of programmable LRA1

15:13 Reserved Bits

Default Value: 000b

Access: RO

Reserved Project: All Format: MBZ

12:8 CVS LRA0 Max

Default Value: 00111b

Access: R/W

CVS LRA0 Max Project: All Format: MBZ

Maximum value of programmable LRA0

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 131

CVS_TLB_LRA_0 - CVS TLB LRA 0

7:5 Reserved Bits

Default Value: 000b

Access: RO

Reserved Project: All Format: MBZ

4:0 CVS LRA0 Min

Default Value: 00000b

Access: R/W

CVS LRA0 Min Project: All Format: U6

Minimum value of programmable LRA0

1.1.19.9 _TLB_LRA_1 - CVS TLB LRA 1

CVS_TLB_LRA_1 - CVS TLB LRA 1

Register Space: MMIO: 0/2/0

Default Value: 0x00001F18

Address: 04048h-0404Bh

CVS TLB LRA 1

DWord Bit Description

0 31:13 Reserved Bits

Default Value: 0000000000000000000b

Access: RO

Reserved Project: All Format: MBZ

12:8 CVS LRA2 Max

Default Value: 11111b

Access: R/W

CVS LRA2 Max Project: All Format: MBZ

Maximum value of programmable LRA2

7:5 Reserved Bits

Default Value: 000b

Access: RO

Reserved Project: All Format: MBZ

4:0 CVS LRA2 Min

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 132

CVS_TLB_LRA_1 - CVS TLB LRA 1

Default Value: 11000b

Access: R/W

CVS LRA2 Min Project: All Format: U6

Minimum value of programmable LRA2

1.1.19.10 CVS_TLB_LRA_2 - CVS TLB LRA 2

CVS_TLB_LRA_2 - CVS TLB LRA 2

Register Space: MMIO: 0/2/0

Default Value: 0x00000005

Address: 0404Ch-0404Fh

CVS TLB LRA 2

DWord Bit Description

0 31:6 Reserved Bits

Default Value: 00000000000000000000000000b

Access: RO

Reserved Project: All Format: MBZ

5:4 CS LRA

Default Value: 00b

Access: R/W

CS LRA Project: All Format: U6

Which LRA should CS use

3:2 VF LRA

Default Value: 01b

Access: R/W

VF LRA Project: All Format: U1

Which LRA should VF use

1:0 SO LRA

Default Value: 01b

Access: R/W

SO LRA Project: All Format: MBZ

Which LRA should SO use

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 133

1.1.19.11 ZTLB_LRA_0 - ZTLB LRA 0

ZTLB_LRA_0 - ZTLB LRA 0

Register Space: MMIO: 0/2/0

Default Value: 0x1F107F00

Address: 04050h-04053h

ZTLB TLB LRA 0

DWord Bit Description

0 31 Reserved Bits

Default Value: 0b

Access: RO

Reserved Bits

30:24 ZTLB LRA1 Max

Default Value: 0011111b

Access: R/W

ZTLB LRA1 Max Project: All Format: U6

Maximum value of programmable LRA1

23 Reserved Bit

Default Value: 0b

Access: RO

Reserved Project: All Format: U1

22:16 ZTLB LRA1 Min

Default Value: 0010000b

Access: R/W

ZTLB LRA1 Min Project: All Format: MBZ

Minimum value of programmable LRA1

15 Reserved Bits

Default Value: 0b

Access: RO

Reserved Bits

14:8 ZTLB LRA0 Max

Default Value: 1111111b

Access: R/W

ZTLB LRA0 Max Project: All Format: U1

Maximum value of programmable LRA0

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 134

ZTLB_LRA_0 - ZTLB LRA 0

7 Reserved Bit

Default Value: 0b

Access: RO

Reserved Project: All Format: U1

6:0 ZTLB LRA0 Min

Default Value: 0000000b

Access: R/W

ZTLB LRA0 Min Project: All Format: U6

Minimum value of programmable LRA0

1.1.19.12 ZTLB_LRA_1 - ZTLB LRA 1

ZTLB_LRA_1 - ZTLB LRA 1

Register Space: MMIO: 0/2/0

Default Value: 0x00002F20

Address: 04054h-04057h

ZTLB TLB LRA 1

DWord Bit Description

0 31:22 Reserved Bits

Default Value: 0000000000b

Access: RO

Reserved Project: All Format: MBZ

21:20 STC LRA

Default Value: 00b

Access: R/W

STC LRA Project: All Format: U6

Which LRA should STC use

19:18 HIZ LRA

Default Value: 00b

Access: R/W

HIZ LRA Project: All Format: U1

Which LRA should HIZ use

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 135

ZTLB_LRA_1 - ZTLB LRA 1

17:16 RCZ LRA

Default Value: 00b

Access: R/W

RCZ LRA Project: All Format: MBZ

Which LRA should RCZ use

15 Reserved Bits

Default Value: 0b

Access: RO

Reserved Bits

14:8 ZTLB LRA2 Max

Default Value: 0101111b

Access: R/W

ZTLB LRA2 Max Project: All Format: U1

Maximum value of programmable LRA2

7 Reserved Bits

Default Value: 0b

Access: RO

Reserved Project: All Format: MBZ

6:0 ZTLB LRA2 Min

Default Value: 0100000b

Access: R/W

ZTLB LRA2 Min Project: All Format: U6

Minimum value of programmable LRA2

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 136

1.1.19.13 RCC_LRA_0 - RCC LRA 0

RCC_LRA_0 - RCC LRA 0

Register Space: MMIO: 0/2/0

Default Value: 0x3F100F00

Address: 04058h-0405Bh

RCC LRA 0

DWord Bit Description

0 31:30 Reserved Bit

Default Value: 00b

Access: RO

Reserved Project: All Format: U1

29:24 RCC LRA1 Max

Default Value: 111111b

Access: R/W

RCC LRA1 Max Project: All Format: U6

Maximum value of programmable LRA1

23:22 Reserved Bit

Default Value: 00b

Access: RO

Reserved Project: All Format: U1

21:16 RCC LRA1 Min

Default Value: 010000b

Access: R/W

RCC LRA1 Min Project: All Format: MBZ

Minimum value of programmable LRA1

15:14 Reserved Bit

Default Value: 00b

Access: RO

Reserved Project: All Format: U1

13:8 RCC LRA0 Max

Default Value: 001111b

Access: R/W

RCC LRA0 Max Project: All Format: U1

Maximum value of programmable LRA0

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 137

RCC_LRA_0 - RCC LRA 0

7:6 Reserved Bit

Default Value: 00b

Access: RO

Reserved Project: All Format: U1

5:0 RCC LRA0 Min

Default Value: 000000b

Access: R/W

RCC LRA0 Min Project: All Format: U6

Minimum value of programmable LRA0

1.1.19.14 RCC_LRA_1 - RCC LRA 1

RCC_LRA_1 - RCC LRA 1

Register Space: MMIO: 0/2/0

Default Value: 0x00010000

Address: 0405Ch-0405Fh

RCC LRA 1

DWord Bit Description

0 31:20 Reserved Bits

Default Value: 000000000000b

Access: RO

Reserved Project: All Format: MBZ

19:18 MSC LRA

Default Value: 00b

Access: R/W

MSC LRA Project: All Format: U1

Which LRA should MSC use

17:16 RCC LRA

Default Value: 01b

Access: R/W

RCC LRA Project: All Format: MBZ

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 138

RCC_LRA_1 - RCC LRA 1

Which LRA should RCC use

15:0 Reserved Bits

Default Value: 0000000000000000b

Access: RO

Reserved Project: All Format: MBZ

1.1.19.15 CASC_LRA_0 - CASC LRA 0

CASC_LRA_0 - CASC LRA 0

Register Space: MMIO: 0/2/0

Default Value: 0x1F100F00

Address: 04060h-04063h

CASC LRA 0

DWord Bit Description

0 31:24 CASC LRA1 Max

Default Value: 00011111b

Access: R/W

CASC LRA1 Max Project: All Format: U6

Maximum value of programmable LRA1

Maximum Allow Value: 159

23:16 CASC LRA1 Min

Default Value: 00010000b

Access: R/W

CASC LRA1 Min Project: All Format: U6

Minimum value of programmable LRA1

15:8 CASC LRA0 Max

Default Value: 00001111b

Access: R/W

CASC LRA0 Max Project: All Format: U6

Maximum value of programmable LRA0

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 139

CASC_LRA_0 - CASC LRA 0

Maximum Allow Value: 159

7:0 CASC LRA0 Min

Default Value: 00000000b

Access: R/W

CASC LRA0 Min Project: All Format: U6

Minimum value of programmable LRA1

1.1.19.16 CASC_LRA_1 - CASC LRA 1

CASC_LRA_1 - CASC LRA 1

Register Space: MMIO: 0/2/0

Default Value: 0x3F302F20

Address: 04064h-04067h

CASC LRA 1

DWord Bit Description

0 31:24 CASC LRA3 Max

Default Value: 00111111b

Access: R/W

CASC LRA3 Max Project: All Format: U6

Maximum value of programmable LRA3

23:16 CASC LRA3 Min

Default Value: 00110000b

Access: R/W

CASC LRA3 Min Project: All Format: U6

Minimum value of programmable LRA3

15:8 CASC LRA2 Max

Default Value: 00101111b

Access: R/W

CASC LRA2 Max Project: All Format: U6

Maximum value of programmable LRA2

7:0 CASC LRA2 Min

Default Value: 00100000b

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 140

CASC_LRA_1 - CASC LRA 1

Access: R/W

CASC LRA2 Min Project: All Format: U6

Minimum value of programmable LRA2

1.1.19.17 CASC_LRA_2 - CASC LRA 2

CASC_LRA_2 - CASC LRA 2

Register Space: MMIO: 0/2/0

Default Value: 0x00009F40

Address: 04068h-0406Bh

CASC LRA 2

DWord Bit Description

0 31:16 Reserved Bits

Default Value: 0000h

Access: RO

Reserved Project: All Format: MBZ

15:8 CASC LRA4 Max

Default Value: 10011111b

Access: R/W

CASC LRA4 Max Project: All Format: U6

Maximum value of programmable LRA4

Maximum Allow Value: 159

7:0 CASC LRA4 Min

Default Value: 01000000b

Access: R/W

CASC LRA4 Min Project: All Format: U6

Minimum value of programmable LRA4

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 141

1.1.19.18 CASC_LRA_3 - CASC LRA 3

CASC_LRA_3 - CASC LRA 3

Register Space: MMIO: 0/2/0

Default Value: 0x000014E4

Address: 0406Ch-0406Fh

CASC LRA 3

DWord Bit Description

0 31:18 Reserved Bits

Default Value: 00000000000000b

Access: RO

Reserved Project: All Format: MBZ

17:15 BCS LRA

Default Value: 000b

Access: R/W

BCS LRA Project: All Format: U6

Which LRA should use

14:12 BLB LRA

Default Value: 001b

Access: R/W

BLB LRA Project: All Format: U6

Which LRA should use

11:9 VCS LRA

Default Value: 010b

Access: R/W

VCS LRA Project: All Format: U6

Which LRA should use

8:6 VMX LRA

Default Value: 011b

Access: R/W

VMX LRA Project: All Format: U6

Which LRA should use

5:3 VMC LRA

Default Value: 100b

Access: R/W

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 142

CASC_LRA_3 - CASC LRA 3

VMC LRA Project: All Format: U6

Which LRA should use

2:0 VCR LRA

Default Value: 100b

Access: R/W

VCR LRA Project: All Format: U6

Which LRA should use

1.1.19.19 MEDIA_MAX_REQ_COUNT - MAX Requests Allowed - CASC

MEDIA_MAX_REQ_COUNT - MAX Requests Allowed - CASC

Register Space: MMIO: 0/2/0

Default Value: 0x10202020

Address: 04070h-04073h

Programmable Request Count - CASC

DWord Bit Description

0 31:24 GFX Max Request Limit Count

Default Value: 00010000b

Access: R/W

This is the MAX number of Allowed Requests Count - These counters keep track of the accepted

requests from each engine . Requests are counted, regardless of kind of cycle (Miss/Hit/Present)

Minimum count value must be = 1

23:16 MFX/BLT Max Request Limit Count

Default Value: 00100000b

Access: R/W

This is the MAX number of Allowed Requests Count - These counters keep track of the accepted

requests from each engine . Requests are counted, regardless of kind of cycle (Miss/Hit/Present)

Minimum count value must be = 1

15:14 Reserved Bits

Default Value: 00b

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 143

MEDIA_MAX_REQ_COUNT - MAX Requests Allowed - CASC

Access: RO

Reserved Bits

13:8 VLF Max Request Limit Count

Default Value: 100000b

Access: R/W

This is the MAX number of Allowed Requests Count - These counters keep track of the accepted

requests from each client. Requests are counted, regardless of kind of cycle (Miss/Hit/Present)

Minimum count value must be = 1

7:6 Reserved Bits

Default Value: 00b

Access: RO

Reserved Project: All Format: MBZ

5:0 CASC Max Request Limit Count

Default Value: 100000b

Access: R/W

This is the MAX number of Allowed Requests Count - These counters keep track of the accepted

requests from each client. Requests are counted, regardless of kind of cycle (Miss/Hit/Present)

Minimum count value must be = 1

1.1.19.20 GFX_MAX_REQ_COUNT - MAX Requests Allowed - GAM

GFX_MAX_REQ_COUNT - MAX Requests Allowed - GAM

Register Space: MMIO: 0/2/0

Default Value: 0x43F20101

Address: 04074h-04077h

Programmable Request Count - GAM

DWord Bit Description

0 31:26 GAP Writes Max Request Limit Count

Default Value: 010000b

Access: R/W

This is the MAX number of Allowed Write Requests Count - These counters keep track of the

accepted write requests from all GAP clients (RCZ, HiZ,Stc, RCC, L3).

Minimum count value must be = 1

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 144

GFX_MAX_REQ_COUNT - MAX Requests Allowed - GAM

25:20 CVS Max Request Limit Count

Default Value: 111111b

Access: R/W

This is the MAX number of Allowed Requests Count - These counters keep track of the accepted

requests from each client. Requests are counted, regardless of kind of cycle (Miss/Hit/Present)

Minimum count value must be = 1

19 Reserved Bits

Default Value: 0b

Access: RO

Reserved Project: All Format: MBZ

18:13 L3 Max Request Limit Count

Default Value: 010000b

Access: R/W

This is the MAX number of Allowed Requests Count - These counters keep track of the accepted

requests from each client. Requests are counted, regardless of kind of cycle (Miss/Hit/Present)

Minimum count value must be = 1

12 Reserved Bits

Default Value: 0b

Access: RO

Reserved Project: All Format: MBZ

11:6 Z Request Limit Count

Default Value: 000100b

Access: R/W

This is the MAX number of Allowed Requests Count - These counters keep track of the accepted

requests from each client. Requests are counted, regardless of kind of cycle (Miss/Hit/Present)

Minimum count value must be = 1

5:0 RCC Request Limit Count

Default Value: 000001b

Access: R/W

This is the MAX number of Allowed Requests Count - These counters keep track of the accepted

requests from each client. Requests are counted, regardless of kind of cycle (Miss/Hit/Present)

Minimum count value must be = 1

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 145

1.1.19.21 GAM_HWSP_REG - GAM Hardware Status Page Address Register

GAM_HWSP_REG - GAM Hardware Status Page Address Register

Register Space: MMIO: 0/2/0

Default Value: 0x00000000

Address: 04080h-04083h

This register is used to program the 4 KB-aligned System Memory address of the Hardware Status Page used to

report hardware status into (typically cacheable) System Memory. This address in this register is translated using

the Global GTT in memory. The mapping type of the GTT entry determines the snoop nature of the transaction to

memory.

DWord Bit Description

0 31:12 GAM HWSP Register

Default Value: 00000h

Access: R/W

11:0 Reserved Bits

Default Value: 000h

Access: RO

1.1.19.22 GFX_ENG_FR - Graphics Engine Fault Register

GFX_ENG_FR - Graphics Engine Fault Register

Register Space: MMIO: 0/2/0

Default Value: 0x00000000

Address: 04094h-04097h

Graphics Engine Fault Register

DWord Bit Description

0 31:12 Virtual Address of Fault

Default Value: 00000h

Access: R/W

This is the original Address of the Page that generated the First fault for this engine.

This value is locked and not updated on subsequent faults, until the valid bit of this register is cleared

by SW

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 146

GFX_ENG_FR - Graphics Engine Fault Register

11 GTTSEL

Default Value: 0b

Access: R/W

This bit indicates if the valid bit happened while using PPGTT or GGTT: 0 - PPGTT, 1 - GGTT

This value is locked and not updated on subsequent faults, until the valid bit of this register is cleared

by SW

10:3 SRCID of Fault

Default Value: 00h

Access: R/W

This is the Source ID of the unit that requested the cycle that generated the First Page fault for this

engine.

This value is locked and not updated on subsequent faults, until the valid bit of this register is cleared

by SW

2:1 Fault Type

Default Value: 00b

Access: R/W

Type of Fault recorded:

00 - Page Fault.

01 - Invalid PD Fault

10 - Unloaded PD Fault

11 - Invalid and Unloaded PD fault

This value is locked and not updated on subsequent faults, until the valid bit of this register is cleared

by SW

0 Valid Bit

Default Value: 0b

Access: R/W

This bit indicates that the first fault for this engine has been recorded. It can only be cleared by SW,

which will also clear the other fields.

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 147

1.1.19.23 ERROR - Main Graphic Arbiter Error Report

ERROR - Main Graphic Arbiter Error Report

Register Space: MMIO: 0/2/0

Default Value: 0x00000000

Address: 040A0h-040A3h

This register is used to report differet error conditions. Error bits are writable.

DWord Bit Description

0 31:16 Reserved Bits

Default Value: 0000h

Access: RO

Reserved Bits

15 Reserved Error Bits 15

Default Value: 0b

Access: R/W

Reserved Error bits (Future expansion)

14 Reserved Error Bits 14

Default Value: 0b

Access: R/W

Reserved Error bits (Future expansion)

13 Reserved Error Bits 13

Default Value: 0b

Access: R/W

Reserved Error bits (Future expansion)

12 Reserved Error Bits 12

Default Value: 0b

Access: R/W

Reserved Error bits (Future expansion)

11 Reserved Error Bits 11

Default Value: 0b

Access: R/W

Reserved Error bits (Future expansion)

10 Reserved Error Bits 10

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 148

ERROR - Main Graphic Arbiter Error Report

Default Value: 0b

Access: R/W

Reserved Error bits (Future expansion)

9 Reserved Error Bits 9

Default Value: 0b

Access: R/W

Reserved Error bits (Future expansion)

8 Unloaded PD Error

Default Value: 0b

Access: R/W

Unloaded PD error

The Cache Line containing a PD entry being accessed, was marked as invalid in the last PD load

cycle.

7 Reserved Error Bits 7

Default Value: 0b

Access: R/W

Reserved Error bits (Future expansion)

6 Page Directory Entry VTD Translation Error

Default Value: 0b

Access: R/W

Page Directory entry VTD translation error

PD entry’s VTD translation generated an error (HPA is not accessible for DMA read or write)

4 TLB Page VTD Translation Error

Default Value: 0b

Access: R/W

TLB Page VTD translation error

A TLB Page’s VTD translation generated an error (HPA is not accessible for DMA read or write)

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 149

ERROR - Main Graphic Arbiter Error Report

2 Invalid Page Directory Entry Error

Default Value: 0b

Access: R/W

Invalid Page Directory entry error

PD entry’s valid bit is 0

0 TLB Page Fault Error

Default Value: 0b

Access: R/W

TLB Page Fault error

A TLB Page’s GTT translation generated a page fault (GTT entry not valid)

1.1.19.24 DONE_REG - Gam Fub Done Lookup Register

DONE_REG - Gam Fub Done Lookup Register

Register Space: MMIO: 0/2/0

Default Value: 0x00000000

Address: 040B0h-040B3h

Gam Fub Done Lookup Register

DWord Bit Description

0 31:0 Gam Fub Done Lookup Reg

Default Value: 00000000h

Access: RO

31 CVS Credit Fifo is Empty

30 CVS TLB Don’t have any Cycles

29 Z Credit fifo is empty

28 ZTLB Don’t have any cycles

27 RCC Credit Fifo is empty

26 RCC TLB Don’t have any cycles

25 L3 Credit fifo is empty

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 150

DONE_REG - Gam Fub Done Lookup Register

24 L3 TLB is don’t have any Cycles

23 VLF Credit fifo is empty

22 VLF TLB don’t have any cycles

21 CASC Credit fifo empty

20 CASC TLB don’t have any Cycles

19 Miss Fub Done

18 Read Stream Done

17 Read Steam Fifo is empty

16 Recycle Fifo in rstrm is empty

15 TLB Pend Done

14 TLB Pend PQ Array Is done

13 TLB pend PB Array is done

12 Read route fub is done

11 Gafm Data fifo is empty

10 GAP data fifo is empty

9 GAC data fifo is empty

8 Wrdp is done with all the cycles

7 Wrdp RID fifo is empty

6 No hold from midarb to RTSTRM

5 No hold from TLBPEND to MIDARB

4 VTD Mode

3 Tied to "1" - to be defined

2 Fence FSM are IDLE

1 Non PD Load Done

0 Tied to "1" - to be defined

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 151

1.1.19.25 GAC_HWSP_REG - GAC Hardware Status Page Address Register

GAC_HWSP_REG - GAC Hardware Status Page Address Register

Register Space: MMIO: 0/2/0

Default Value: 0x00000000

Address: 04180h-04183h

This register is used to program the 4 KB-aligned System Memory address of the Hardware Status Page used to

report hardware status into (typically cacheable) System Memory. The address in this register is translated using the

Global GTT in memory. The mapping type of the GTT entry determines the snoop nature of the transaction to

memory.

DWord Bit Description

0 31:12 GAC HWSP Register

Default Value: 00000h

Access: R/W

11:0 Reserved Bits

Default Value: 000h

Access: RO

1.1.19.26 MEDIA_ENG_FR - Media Engine Fault Register

MEDIA_ENG_FR - Media Engine Fault Register

Register Space: MMIO: 0/2/0

Default Value: 0x00000000

Address: 04194h-04197h

Media Engine Fault Register

DWord Bit Description

0 31:12 Virtual Address of Fault

Default Value: 00000h

Access: R/W

This is the original Address of the Page that generated the First fault for this engine.

This value is locked and not updated on subsequent faults, until the valid bit of this register is cleared

by SW

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 152

MEDIA_ENG_FR - Media Engine Fault Register

11 GTTSEL

Default Value: 0b

Access: R/W

This bit indicates if the valid bit happened while using PPGTT or GGTT: 0 - PPGTT, 1 - GGTT

This value is locked and not updated on subsequent faults, until the valid bit of this register is cleared

by SW

10:3 SRCID of Fault

Default Value: 00h

Access: R/W

This is the Source ID of the unit that requested the cycle that generated the First Page fault for this

engine.

This value is locked and not updated on subsequent faults, until the valid bit of this register is cleared

by SW

2:1 Fault Type

Default Value: 00b

Access: R/W

Type of Fault recorded:

00 - Page Fault.

01 - Invalid PD Fault

10 - Unloaded PD Fault

11 - Invalid and Unloaded PD fault

This value is locked and not updated on subsequent faults, until the valid bit of this register is cleared

by SW

0 Valid Bit

Default Value: 0b

Access: R/W

This bit indicates that the first fault for this engine has been recorded. It can only be cleared by SW,

which will also clear the other fields.

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 153

1.1.19.27 GAB_HWSP_REG - GAB Hardware Status Page Address Register

GAB_HWSP_REG - GAB Hardware Status Page Address Register

Register Space: MMIO: 0/2/0

Default Value: 0x00000000

Address: 04280h-04283h

This register is used to program the 4 KB-aligned System Memory address of the Hardware Status Page used to

report hardware status into (typically cacheable) System Memory. The address in this register is translated using

the Global GTT in memory. The mapping type of the GTT entry determines the snoop nature of the transaction to

memory.

DWord Bit Description

0 31:12 GAB HWSP Register

Default Value: 00000h

Access: R/W

11:0 Reserved Bits

Default Value: 000h

Access: RO

1.1.19.28 BLT_ENG_FR - Blitter Engine Fault Register

BLT_ENG_FR - Blitter Engine Fault Register

Register Space: MMIO: 0/2/0

Default Value: 0x00000000

Address: 04294h-04297h

Blitter Engine Fault Register

DWord Bit Description

0 31:12 Virtual Address of Page Fault

Default Value: 00000h

Access: R/W

This is the original Address of the Page that generated the First fault for this engine.

This value is locked and not updated on subsequent faults, until the valid bit of this register is cleared

by SW

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 154

BLT_ENG_FR - Blitter Engine Fault Register

11 Blitter GTTSEL

Default Value: 0b

Access: R/W

This bit indicates if the valid bit happened while using PPGTT or GGTT: 0 - PPGTT, 1 - GGTT

This value is locked and not updated on subsequent faults, until the valid bit of this register is cleared

by SW

10:3 SRCID of Fault

Default Value: 00h

Access: R/W

This is the Source ID of the unit that requested the cycle that generated the First Page fault for this

engine.

This value is locked and not updated on subsequent faults, until the valid bit of this register is cleared

by SW

2:1 Fault Type

Default Value: 00b

Access: R/W

Type of Fault recorded:

00 - Page Fault.

01 - Invalid PD Fault

10 - Unloaded PD Fault

11 - Invalid and Unloaded PD fault

This value is locked and not updated on subsequent faults, until the valid bit of this register is cleared

by SW

0 Valid Bit

Default Value: 0b

Access: R/W

This bit indicates that the first fault for this engine has been recorded. It can only be cleared by SW,

which will also clear the other fields.

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 155

1.1.19.29 TLB_RD_ADDR - TLB_RD_ADDRESS Register

TLB_RD_ADDR - TLB_RD_ADDRESS Register

Register Space: MMIO: 0/2/0

Default Value: 0x00000000

Address: 04700h-04703h

TLB Read Address

DWord Bit Description

0 31:10 Reserved Bits

Default Value: 0000000000000000000000b

Access: RO

Reserved Bits

9:0 TLB Read Address

Default Value: 0000000000b

Access: R/W

TLB Read Address

MSB<9:X> :

TLB Select <9:X> PAT MSB: Section of the PAT used.

PAT_MSB_VLFTLB 00000 32 entries - 32

PAT_MSB_CVSTLB 00001 32 entries - 32

PAT_MSB_RCCTLB 0001 64 entries - 64

PAT_MSB_ZTLB 001 128 entries - 128

PAT_MSB_L3TLB 01 160 entries - 256

PAT_MSB_CASCTLB 10 140 entries - 256

LSB <X:0> :

GEN RAM ADDRES in Selected TLB

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 156

1.1.19.30 TLB_RD_DATA - TLB_RD_DATA Register

TLB_RD_DATA - TLB_RD_DATA Register

Register Space: MMIO: 0/2/0

Default Value: 0x00000000

Address: 04704h-04707h

TLB_READ_DATA Register

DWord Bit Description

0 31:0 TLB_READ_DATA Register

Default Value: 00000000h

Access: RO

Return data

1.1.19.31 VLFTLB_VLD_0 - Valid Bit Vector 0 for VLF

VLFTLB_VLD_0 - Valid Bit Vector 0 for VLF

Register Space: MMIO: 0/2/0

Default Value: 0x00000000

Address: 04720h-04723h

This register contains the valid bits for entries 0-31 of VLFTLB

DWord Bit Description

0 31:0 Valid Bit Vector 0 for VLF

Default Value: 00000000h

Access: RO

Valid bits per entry

1.1.19.32 CVSTLB_VLD_0 - Valid Bit Vector 0 for CVS

CVSTLB_VLD_0 - Valid Bit Vector 0 for CVS

Register Space: MMIO: 0/2/0

Default Value: 0x00000000

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 157

CVSTLB_VLD_0 - Valid Bit Vector 0 for CVS

Address: 04724h-04727h

This register contains the valid bits for entries 0-31 of CVSTLB

DWord Bit Description

0 31:0 Valid Bit Vector 0 for CVS

Default Value: 00000000h

Access: RO

Valid bits per entry

1.1.19.33 RCCTLB_VLD_0 - Valid Bit Vector 0 for RCC

RCCTLB_VLD_0 - Valid Bit Vector 0 for RCC

Register Space: MMIO: 0/2/0

Default Value: 0x00000000

Address: 04728h-0472Bh

This register contains the valid bits for entries 0-31 of RCCTLB

DWord Bit Description

0 31:0 Valid Bit Vector 0 for RCC

Default Value: 00000000h

Access: RO

Valid bits per entry

1.1.19.34 RCCTLB_VLD_1 - Valid Bit Vector 1 for RCC

RCCTLB_VLD_1 - Valid Bit Vector 1 for RCC

Register Space: MMIO: 0/2/0

Default Value: 0x00000000

Address: 0472Ch-0472Fh

This register contains the valid bits for entries 0-31 of RCCTLB

DWord Bit Description

0 31:0 Valid Bit Vector 1 for RCC

Default Value: 00000000h

Access: RO

Valid bits per entry

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 158

1.1.19.35 ZTLB_VLD_0 - Valid Bit Vector 0 for Z

ZTLB_VLD_0 - Valid Bit Vector 0 for Z

Register Space: MMIO: 0/2/0

Default Value: 0x00000000

Address: 04730h-04733h

This register contains the valid bits for entries 0-31 of ZTLB

DWord Bit Description

0 31:0 Valid Bit Vector 0 for Z

Default Value: 00000000h

Access: RO

Valid bits per entry

1.1.19.36 ZTLB_VLD_1 - Valid Bit Vector 1 for Z

ZTLB_VLD_1 - Valid Bit Vector 1 for Z

Register Space: MMIO: 0/2/0

Default Value: 0x00000000

Address: 04734h-04737h

This register contains the valid bits for entries 0-31 of ZTLB

DWord Bit Description

0 31:0 Valid Bit Vector 1 for Z

Default Value: 00000000h

Access: RO

Valid bits per entry

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 159

1.1.19.37 ZTLB_VLD_2 - Valid Bit Vector 2 for Z

ZTLB_VLD_2 - Valid Bit Vector 2 for Z

Register Space: MMIO: 0/2/0

Default Value: 0x00000000

Address: 04738h-0473Bh

This register contains the valid bits for entries 0-31 of ZTLB

DWord Bit Description

0 31:0 Valid Bit Vector 2 for Z

Default Value: 00000000h

Access: RO

Valid bits per entry

1.1.19.38 ZTLB_VLD_3 - Valid Bit Vector 3 for Z

ZTLB_VLD_3 - Valid Bit Vector 3 for Z

Register Space: MMIO: 0/2/0

Default Value: 0x00000000

Address: 0473Ch-0473Fh

This register contains the valid bits for entries 0-31 of ZTLB

DWord Bit Description

0 31:0 Valid Bit Vector 3 for Z

Default Value: 00000000h

Access: RO

Valid bits per entry

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 160

1.1.19.39 L3TLB_VLD_0 - Valid Bit Vector 0 for L3

L3TLB_VLD_0 - Valid Bit Vector 0 for L3

Register Space: MMIO: 0/2/0

Default Value: 0x00000000

Address: 04740h-04743h

This register contains the valid bits for entries 0-31 of L3TLB

DWord Bit Description

0 31:0 Valid Bit Vector 0 for L3

Default Value: 00000000h

Access: RO

Valid bits per entry

1.1.19.40 L3TLB_VLD_1 - Valid Bit Vector 1 for L3

L3TLB_VLD_1 - Valid Bit Vector 1 for L3

Register Space: MMIO: 0/2/0

Default Value: 0x00000000

Address: 04744h-04747h

This register contains the valid bits for entries 0-31 of L3TLB

DWord Bit Description

0 31:0 Valid Bit Vector 1 for L3

Default Value: 00000000h

Access: RO

Valid bits per entry

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 161

1.1.19.41 L3TLB_VLD_2 - Valid Bit Vector 2 for L3

L3TLB_VLD_2 - Valid Bit Vector 2 for L3

Register Space: MMIO: 0/2/0

Default Value: 0x00000000

Address: 04748h-0474Bh

This register contains the valid bits for entries 0-31 of L3TLB

DWord Bit Description

0 31:0 Valid Bit Vector 2 for L3

Default Value: 00000000h

Access: RO

Valid bits per entry

1.1.19.42 L3TLB_VLD_3 - Valid Bit Vector 3 for L3

L3TLB_VLD_3 - Valid Bit Vector 3 for L3

Register Space: MMIO: 0/2/0

Default Value: 0x00000000

Address: 0474Ch-0474Fh

This register contains the valid bits for entries 0-31 of L3TLB

DWord Bit Description

0 31:0 Valid Bit Vector 3 for L3

Default Value: 00000000h

Access: RO

Valid bits per entry

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 162

1.1.19.43 L3TLB_VLD_4 - Valid Bit Vector 4 for L3

L3TLB_VLD_4 - Valid Bit Vector 4 for L3

Register Space: MMIO: 0/2/0

Default Value: 0x00000000

Address: 04750h-04753h

This register contains the valid bits for entries 0-31 of L3TLB

DWord Bit Description

0 31:0 Valid Bit Vector 4 for L3

Default Value: 00000000h

Access: RO

Valid bits per entry

1.1.19.44 L3TLB_VLD_5 - Valid Bit Vector 5 for L3

L3TLB_VLD_5 - Valid Bit Vector 5 for L3

Register Space: MMIO: 0/2/0

Default Value: 0x00000000

Address: 04754h-04757h

This register contains the valid bits for entries 0-31 of L3TLB

DWord Bit Description

0 31:0 Valid Bit Vector 5 for L3

Default Value: 00000000h

Access: RO

Valid bits per entry

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 163

1.1.19.45 L3TLB_VLD_6 - Valid Bit Vector 6 for L3

L3TLB_VLD_6 - Valid Bit Vector 6 for L3

Register Space: MMIO: 0/2/0

Default Value: 0x00000000

Address: 04758h-0475Bh

This register contains the valid bits for entries 0-31 of L3TLB

DWord Bit Description

0 31:0 Valid Bit Vector 6 for L3

Default Value: 00000000h

Access: RO

Valid bits per entry

1.1.19.46 L3TLB_VLD_7 - Valid Bit Vector 7 for L3

L3TLB_VLD_7 - Valid Bit Vector 7 for L3

Register Space: MMIO: 0/2/0

Default Value: 0x00000000

Address: 0475Ch-0475Fh

This register contains the valid bits for entries 0-31 of L3TLB

DWord Bit Description

0 31:0 Valid Bit Vector 7 for L3

Default Value: 00000000h

Access: RO

Valid bits per entry

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 164

1.1.19.47 CASCTLB_VLD_0 - Valid Bit Vector 0 for CASC

CASCTLB_VLD_0 - Valid Bit Vector 0 for CASC

Register Space: MMIO: 0/2/0

Default Value: 0x00000000

Address: 04760h-04763h

This register contains the valid bits for entries 0-31 of CASCTLB

DWord Bit Description

0 31:0 Valid Bit Vector 0 for CASC

Default Value: 00000000h

Access: RO

Valid bits per entry

1.1.19.48 CASCTLB_VLD_1 - Valid Bit Vector 1 for CASC

CASCTLB_VLD_1 - Valid Bit Vector 1 for CASC

Register Space: MMIO: 0/2/0

Default Value: 0x00000000

Address: 04764h-04767h

This register contains the valid bits for entries 0-31 of CASCTLB

DWord Bit Description

0 31:0 Valid Bit Vector 1 for CASC

Default Value: 00000000h

Access: RO

Valid bits per entry

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 165

1.1.19.49 CASCTLB_VLD_2 - Valid Bit Vector 2 for CASC

CASCTLB_VLD_2 - Valid Bit Vector 2 for CASC

Register Space: MMIO: 0/2/0

Default Value: 0x00000000

Address: 04768h-0476Bh

This register contains the valid bits for entries 0-31 of CASCTLB

DWord Bit Description

0 31:0 Valid Bit Vector 2 for CASC

Default Value: 00000000h

Access: RO

Valid bits per entry

1.1.19.50 CASCTLB_VLD_3 - Valid Bit Vector 3 for CASC

L3TLB_VLD_3 - Valid Bit Vector 3 for L3

Register Space: MMIO: 0/2/0

Default Value: 0x00000000

Address: 0474Ch-0474Fh

This register contains the valid bits for entries 0-31 of L3TLB

DWord Bit Description

0 31:0 Valid Bit Vector 3 for L3

Default Value: 00000000h

Access: RO

Valid bits per entry

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 166

1.1.19.51 CASCTLB_VLD_4 - Valid Bit Vector 4 for CASC

CASCTLB_VLD_4 - Valid Bit Vector 4 for CASC

Register Space: MMIO: 0/2/0

Default Value: 0x00000000

Address: 04770h-04773h

This register contains the valid bits for entries 0-31 of CASCTLB

DWord Bit Description

0 31:0 Valid Bit Vector 4 for CASC

Default Value: 00000000h

Access: RO

Valid bits per entry

1.2 Memory Interface Commands for Rendering Engine

1.2.1 Introduction

This chapter describes the formats of the “Memory Interface” commands, including brief descriptions of

their use. The functions performed by these commands are discussed fully in the Memory Interface

Functions Device Programming Environment chapter.

This chapter describes MI Commands for the original graphics processing engine. The term “for

Rendering Engine” in the title has been added to differentiate this chapter from a similar one describing

the MI commands for the Media Decode Engine.

The commands detailed in this chapter are used across products within the Ivy Bridge family. However,

slight changes may be present in some commands (i.e., for features added or removed), or some

commands may be removed entirely. Refer to the Preface chapter for product specific summary.

1.2.2 Software Synchronization Commands

To support mid-triangle interruption, certain commands need to be placed in a temporary location in

hardware until primitive commands are complete. This introduces out-of-order command execution.

Below show the commands that are affected. Note that the INSTPM register has a bit that is used to force

in-order execution. If set, however, mid-triangle modes like PSMI cannot be enabled.

Command Qualifications

MI_NOOP When writing to the NOOPID register

MI_USER_INTERRUPT Always

MI_SEMAPHORE_MBOX Memory write

MI_STORE_DATA_IMM Always

MI_STORE_DATA_INDEX Always

MI_LOAD_REGISTER_IMM Always

MI_UPDATE_GTT Always

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 167

Command Qualifications

MI_STORE_REGISTER_MEM Register read is done in-order, register write done out-of-order

1.2.3 MI_ARB_CHECK

MI_ARB_CHECK

Source: RenderCS

Length Bias: 1

The MI_ARB_CHECK instruction is used to check the ring buffer double buffered head pointer (register UHPTR).

This instruction can be used to pre-empt the current execution of the ring buffer. Note that the valid bit in the updated

head pointer register needs to be set for the command streamer to be pre-empted.

Programming Notes

 The current head pointer is loaded with the updated head pointer register independent of the location of the
updated head

 If the current head pointer and the updated head pointer register are equal, hardware will automatically reset
the valid bit corresponding to the UHPTR

 This instruction can be in either a ring buffer or batch buffer.

 For pre-emption, the wrap count in the ring buffer head register is no longer maintained by hardware. The
hardware updates the wrap count to the value in the UHPTR register.

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

Format: OpCode

28:23 MI Command Opcode

Default Value: 05h MI_ARB_CHECK

Format: OpCode

22:0 Reserved

Format: MBZ

1.2.4 MI_ARB_ON_OFF

MI_ARB_ON_OFF

Source: RenderCS

Length Bias: 1

The MI_ARB_ON_OFF instruction is used to disable/enable context switching. Note that context switching will

remain disabled until re-enabled through use of this command.

 This command will also prevent a switch in the case of waiting on events, running out of commands. These will

effectively hang the device if allowed to occur while arbitration is off (context switching is disabled.) This command

should always be used as an off-on pair with the sequence of instructions to be protected from context switch

between MI_ARB_OFF and MI_ARB_ON. Software must use this arbitration control with caution since it has the

potential to increase the response time of the Render Engine to pre-emption requests. This is a privileged command;

it will not be effective (will be converted to a no-op) if executed from within a non-privileged batch buffer.

DWord Bit Description

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 168

MI_ARB_ON_OFF

0 31:29 Command Type

Default Value: 0h MI_COMMAND

Format: OpCode

28:23 MI Command Opcode

Default Value: 08h MI_ARB_ON_OFF

Format: OpCode

22:1 Reserved

Format: MBZ

0 Arbitration Enable

Format: Enable

This field enables or disables context switches due to pre-emption .

1.2.5 MI_BATCH_BUFFER_END

MI_BATCH_BUFFER_END

Source: RenderCS

Length Bias: 1

The MI_BATCH_BUFFER_END command is used to terminate the execution of commands stored in a batch buffer

initiated using a MI_BATCH_BUFFER_START command.

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

Format: OpCode

28:23 MI Command Opcode

Default Value: 0Ah MI_ BATCH_BUFFER_END

Format: OpCode

22:0 Reserved

Format: MBZ

1.2.6 MI_CONDITIONAL_BATCH_BUFFER_END

MI_CONDITIONAL_BATCH_BUFFER_END

Source: RenderCS

Length Bias: 2

The MI_BATCH_BUFFER_END command is used to conditionally terminate the execution of commands stored in a

batch buffer initiated using a MI_BATCH_BUFFER_START command.

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 169

MI_CONDITIONAL_BATCH_BUFFER_END

Format: OpCode

28:23 MI Command Opcode

Default Value: 36h MI_CONDITIONAL_BATCH_BUFFER_END

Format: OpCode

22 Use Global GTT

Default Value: 0h

Format: U1

If set, this command will use the global GTT to translate the Compare Address and this command

must be executing from a privileged (secure) batch buffer. If clear, the PPGTT will be used to translate

the Compare Address.

21 Compare Semaphore

Default Value: 0h

Format: U1

If set, the value from the Compare Data Dword is compared to the value from the Compare Address in

memory. If the value at Compare Address is greater than the Compare Data Dword, execution of

current command buffer should continue. If clear, no comparison takes place.

19:8 Reserved

Format: MBZ

7:0 DWord Length

Default Value: 0h

Format: =n Total Length - 2. Excludes DWord (0,1).

1 31:0 Compare Data Dword

Data dword to compare memory. The Data dword is supplied by software to control execution of the

command buffer. If the compare is enabled and the data at Compare Address is greater than this

dword, the execution of the command buffer should continue.

2 31:3 Compare Address

Qword address to fetch Data Dword(DW0) from memory.

HW will compare the Data Dword(DW0) with Compare Data Dword

2:0 Reserved

Format: MBZ

1.2.7 MI_BATCH_BUFFER_START (Render)

MI_BATCH_BUFFER_START

Source: RenderCS

Length Bias: 2

The MI_BATCH_BUFFER_START command is used to initiate the execution of commands stored in a batch buffer.

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 170

MI_BATCH_BUFFER_START

For restrictions on the location of batch buffers, see Batch Buffers in the Device Programming Interface chapter of MI

Functions.

Programming Notes

It is essential that the address location beyond the current page be populated inside the GTT. HW performs over-fetch

of the command addresses and any over-fetch requires a valid TLB entry. A single extra page beyond the batch buffer

is sufficient. Prior to sending batch buffer start command with clear command buffer enable set, software has to

ensure pipe is flushed explicitly by sending MI_FLUSH.

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

Format: OpCode

28:23 MI Command Opcode

Default Value: 31h MI_BATCH_BUFFER_START

Format: OpCode

22 Reserved

Format: MBZ

21:17 Reserved

Format: MBZ

16 Reserved

Format: MBZ

15 Reserved

Format: MBZ

14 Reserved

Format: MBZ

13 Reserved

Format: MBZ

11 Clear Command Buffer Enable

Format: Enable

The address of the batch buffer is an offset into the WOPCM area. This batch buffer needs to be

preceded by a MI_FLUSH command or PIPE_CONTROL with CS Stall set.

10 Reserved

Format: MBZ

8 Address Space Indicator

Description Project

SW must ensure the "Address Space Indicator" of the chained batch buffer to be same as the

initial batch buffer. Ex: If the MI_BATCH_BUFFER_START executed from Ring Buffer has

"Address Space Indicator" as "PPGTT" then all subsequent chained batch buffers (not second

level Batch Buffers) must be in "PPGTT".

 Not complying to above programming will result in unknown behavior of HW.

 Second level batch buffer can select its "Address space Indicator" independent of the parent

batch buffer.

This field must be '0' unless the Per-Process GTT Enable is '1'

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 171

MI_BATCH_BUFFER_START

Value Name Description

0h GGTT This batch buffer will be accessed via the GGTT.

1h PPGTT This batch buffer will be accessed via the PPGTT.

7:0 DWord Length

Default Value: 0h Excludes DWord (0,1)

Format: =n Total - Bias

1 31:2 Batch Buffer Start Address

Format: GraphicsAddress[31:2]BatchBuffer

This field specifies Bits 31:2 of the starting address of the batch buffer.

1:0 Reserved

Format: MBZ

1.2.7.1 Command Access of Privileged Memory

Memory space mapped through the global GTT is considered “privileged” memory. Commands that have

the capability of accessing both privileged and unprivileged (PPGTT space) memory will contain a bit that,

if set, will attempt a “privileged” access through the GGTT rather than an unprivileged access through the

context-local PPGTT.

“User mode” command buffers should not be able to access privileged memory under any circumstances.

These command buffers will be issued by the kernel mode driver with the batch buffer’s Buffer Security

Indicator set to “non-secure”. Commands in such a batch buffer are not allowed to access privileged

memory.

“Kernel mode” command buffers are allowed to access privileged memory. The batch buffers Buffer

Security indicator is set to “secure” in this case. In some of the commands that access memory in a

secure batch buffer, a bit is provided in the command to steer the access to Per process or Global virtual

space. Secure batch buffers are executed from the global GTT.

Commands in ring buffers and commands in batch buffers that are marked as secure (by the kernel mode

driver) are allowed to access both privileged and unprivileged memory and may choose on a command-

by-command basis.

GGTT and PPGTT Usage by Command

Command Address Allowed Access

MI_BATCH_BUFFER_START* Command Address Selectable

MI_DISPLAY_FLIP Display Buffer Base GGTT Only

MI_STORE_DATA_IMM* Storage Address Selectable

MI_STORE_DATA_INDEX** Storage Offset Selectable

MI_STORE_REGISTER_MEM* Storage Address Selectable

MI_SEMAPHORE_MBOX Semaphore Address Selectable

PIPE_CONTROL STDW Address Selectable

*Command has a GGTT/PPGTT selector added to it vs. previous products.

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 172

**Added bit allows offset to apply to global HW Status Page or PP HW Status Page found in context

image.

2.1.7.2 Privileged Commands

A subset of the commands are privileged. These commands may be issued only from a secure batch

buffer or directly from a ring. If one of these commands is parsed in a non-secure batch buffer, an error is

flagged and the command is dropped. For commands that generates a write, the hardware will complete

the transaction but the byte enables are turned off. Batch buffers from the User mode driver are passed

directly to the kernel mode driver which does not validate them but issues them with the Security Indicator

set to ‘non-secure’ to protect the system from an attack using these privileged commands.

Privileged Commands

Privileged Command
Function in non-privileged batch buffers

MI_LOAD_REGISTER_IMM Byte enables are turned off

MI_UPDATE_GTT Byte enabled are turned off

MI_STORE_DATA_IMM
Command is translated using the Per-process GTT if Per-Process Virtual Address

Space is set

MI_STORE_DATA_INDEX

MI_STORE_REGISTER_MEM Command is translated and completed with byte enables turned off

MI_DISPLAY_FLIP Command is ignored by the hardware

Parsing one of the commands in the table above from a non-secure batch buffer will flag an error and

convert the command to a NOOP.

1.2.7.2 User Mode Privileged Commands

A subset of the commands are privileged. These commands may be issued only from a secure batch

buffer or directly from a ring. If one of these commands is parsed in a non-secure batch buffer, an error is

flagged and the command is dropped. For commands that generates a write, the hardware will complete

the transaction but the byte enables are turned off. Batch buffers from the User mode driver are passed

directly to the kernel mode driver which does not validate them but issues them with the Security Indicator

set to ‘non-secure’ to protect the system from an attack using these privileged commands.

User Mode Privileged Commands

User Mode Privileged Command Function in non-privileged batch buffers

MI_LOAD_REGISTER_IMM Command is converted to NOOP

MI_UPDATE_GTT Command is converted to NOOP

MI_STORE_DATA_IMM
Command is converted to NOOP if Use Global GTT is enabled.

MI_STORE_DATA_INDEX
Command is converted to NOOP if Use Global GTT is enabled.

MI_STORE_REGISTER_MEM Command is converted to NOOP

MI_DISPLAY_FLIP Command is converted to NOOP

MI_ARB_ON_OFF Command is converted to NOOP

MI_ARB_CHECK Command is converted to NOOP

MI_WAIT_FOR_EVENT Command is converted to NOOP

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 173

1.2.8 MI_CLFLUSH

MI_CLFLUSH

Source: RenderCS

Length Bias: 2

Flushes out the page given in the command out to system memory. This command is specific to the render engine.

This command is not privileged.

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

Format: OpCode

28:23 MI Command Opcode

Default Value: 27h Store DW MI_CLFLUSH

Format: OpCode

22 Use Global GTT

This bit will be ignored and treated as if clear when executing from a non-privileged batch buffer. It is

allowed for this bit to be clear when executing this command from a privileged (secure) batch buffer.

This bit must be 1 if the Per Process GTT Enable bit is clear.

Value Name Description

0h Per Process

Graphics Address

1h Global Graphics

Address

This command will use the global GTT to translate the Address and this

command must be executing from a privileged (secure) batch buffer.

21:10 Reserved

Format: MBZ

9:0 DWord Length

Default Value: 0h

Format: =n Total Length - 2. Excludes DWord (0,1).

1 31:12 Page Base Address

Format: GraphicsAddress[31:12]

4KB aligned Page Address which software requires hardware to flush to DRAM.

11:6 Starting Cacheline Offset

Format: U6 Zero based starting cacheline offset to the Page Base Address.

5:0 Reserved

Format: MBZ

2 31:16 Address

15:0 Page Base Address

Format: GraphicsAddress[47:32]

This field specifies the 4GB aligned base address of gfx 4GB virtual address space within the host’s

64-bit virtual address space.

3..n 31:0 DW Representing ½ Cache Line

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 174

MI_CLFLUSH

Format: MBZ

The information given to hardware is the DW itself, not the contents. Hardware uses the DW count of

the command to determine the offset from the base to flush out. The offset is ½ cache line (8 DW =

1HW) granular so for a full page, the command will need 4096 bytes / 4 bytes per DW / 8 DW per HW

= 128 DW.

Programming Notes

Always even number of "DW Representing 1/2 cacheline" terms must be programmed.

1.2.9 MI_DISPLAY_FLIP

MI_DISPLAY_FLIP

Source: RenderCS

Length Bias: 2

The MI_DISPLAY_FLIP command is used to request a specific display plane to switch (flip) to display a new buffer.

The buffer is specified with a starting address and pitch. The tiled attribute of the buffer start address is programmed

as part of the packet. The operation this command performs is also known as a “display flip request” operation – in

that the flip operation itself will occur at some point in the future. This command specifies when the flip operation is to

occur: either synchronously with vertical retrace to avoid tearing artifacts (possibly on a future frame), or

asynchronously (as soon as possible) to minimize rendering stalls at the cost of tearing artifacts.

Programming Notes

This command simply requests a display flip operation -- command execution then continues normally. There is no

guarantee that the flip (even if asynchronous) will occur prior to subsequent commands being executed. (Note that

completion of the PIPE_CONTROL command does not guarantee that outstanding flip operations have completed).

The MI_WAIT_FOR_EVENT command must be used to provide this synchronization to avoid back to back

MI_DISPLAY_FLIP commands to the same display plane – by pausing command execution until a pending flip has

actually completed. This synchronization can also be performed by use of the Display Flip Pending hardware

status.

After a display flip operation is requested, software is responsible for initiating any required synchronization with

subsequent buffer clear or rendering operations. For multi-buffering (e.g., double buffering) operations, this will

typically require updating SURFACE_STATE or the binding table to change the rendering (back) buffer. In addition,

prior to any subsequent clear or rendering operations, software must typically ensure that the new rendering buffer

is not actively being displayed. Again, the MI_WAIT_FOR_EVENT command or Display Flip Pending hardware

status can be used to provide this synchronization. See Display Flip Synchronization in the Device Programming

Interface chapter of MI Functions.

The display buffer command uses the X and Y offset for the tiled buffers from the Display Interface registers.

Software is allowed to change the offset via the MMIO interface irrespective of the flip commands enqueued in the

command stream. For tiled buffers, the display subsystem uses the X and Y offset in generation of the final request

to memory. The offset is always updated on the next vblank for both Synchronous and Asynch Flips. It is not

necessary to have a flip enqueued to update the X and Y offset The display buffer command uses the linear dword

offset for the linear buffers from the Display Interface registers. Software is allowed to change the offset via the

MMIO interface irrespective of the flip commands enqueued in the command stream. For linear buffers, the display

subsystem uses the dword offset in generation of the final request to memory. For synchronous flips the offset is

updated on the next vblank. It is not necessary to have a sync flip enqueued to update the dword offset. Linear

memory does not support asynchronous flips DWord 3 (Left Eye Display Buffer Base Address) must not be set with

synchronous flips or asynchronous flips.

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 175

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

Format: OpCode

28:23 MI Command Opcode

Default Value: 14h MI_DISPLAY_FLIP

Format: OpCode

22 Async Flip Indicator

Format: Enable

This bit should always be set if DW2 [1:0] == ‘01’ (async flip). This field is required due to HW

limitations. This bit is used by the render pipe while DW2 is used by the display hardware.

21:19 Display (Plane) Select

Format: U3

This field selects which display plane is to perform the flip operation.

Value Name Project

0h Display Plane A

1h Display Plane B

2h Display Sprite A

3h Display Sprite B

4h Display Plane C

5h Display Sprite C

18:8 Reserved

Format: MBZ

7:0 DWord Length

Format: =n

Total Length - 2. Excludes DWord (0,1).

For Synchronous Flips and Asynchronous Flips, this field must be programmed to 1h for a total length

of 3.

Value Name

0h [Default]

1h For Synchronous Flips and Asynchronous Flips

1 31 Reserved

Format: MBZ

30:16 Reserved

Format: MBZ

15:6 Display Buffer Pitch

Default Value: 0h

Format: U10

For Synchronous Flips, this field specifies the 64-byte aligned pitch of the new display buffer. For

Asynchronous Flips, this parameter is programmed so that all the flips in a flip chain should maintain

the same pitch as programmed with the last synchronous flip or direct through MMIO.

5:1 Reserved

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 176

MI_DISPLAY_FLIP

Format: MBZ

0 Tile Parameter

Format: Enable

For Asynchronous Flips, this parameter cannot be changed. All the flips in a flip chain should maintain

the same tile parameter as programmed with the last synchronous flip or direct thru mmio.

Value Name Description

0h Linear [Default] For Syncronous Flips Only

1h Tiled X

2 31:12 Display Buffer Base Address

Format: GraphicsAddress[31:12]

This field specifies Bits 31:12 of the Graphics Address of the new display buffer.

Programming Notes

The Display buffer must reside completely in Main Memory

This address is always translated via the global (rather than per-process) GTT

11:3 Reserved

Format: MBZ

1:0 Flip Type

This field specifies whether the flip operation should be performed asynchronously to vertical retrace.

Value Name Description

00b Sync Flip

[Default]

The flip will occur during the vertical blanking interval – thus avoiding any

tearing artifacts.

01b Async Flip The flip will occur "as soon as possible" – and may exhibit tearing artifacts

11b Reserved

Programming Notes

Asynch flips are Supported on X-Tiled Frame buffers only.

For Asynch Flips the Buffers used must be 32KB aligned.

1.2.10 MI_FLUSH

MI_FLUSH

Source: RenderCS

Length Bias: 1

Description Project

The MI_FLUSH command is used to perform an internal flush operation. The parser pauses on an internal

flush until all drawing engines have completed any pending operations and the read caches are invalidated

including the texture cache accessed via the Sampler or the data port. In addition, this command can also be

used to:

2.

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 177

MI_FLUSH

Flush any dirty data in the Render Cache to memory. This is done by default, however this can be
inhibited.

3.
Invalidate the state and command cache.

Usage note: After this command is completed and followed by a Store DWord-type command, CPU access

to graphics memory will be coherent (assuming the Render Cache flush is not inhibited). This command is

specific to the render engine. Other engines use MI_FLUSH_DW.

 In order to use this command, bit 12 in the MI_MODE(0x209c) must be enabled.

 If GFX_MODE(0x229C) bit 13, this command will cause a config write to MMIO register space with the

address 0x4f100.

MI_FLUSH command is no longer validated or supported. Use at your own risk.

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

Format: OpCode

28:23 MI Command Opcode

Default Value: 04h MI_FLUSH

Format: OpCode

22:7 Reserved

Format: MBZ

5 Indirect State Pointers Disable

Format: Disable

At the completion of the flush, the indirect state pointers in the hardware will be considered as invalid ie

the indirect pointers will not be restored for the context.

4 Generic Media State Clear

Format: Disable

If set, all generic media state context information will not be included with the next context save,

assuming no new state is initiated after the flush. If clear, the generic media state context save state

will not be affected. An MI_FLUSH with this bit set should be issued once all the Media Objects that will

be processed by a given persistent root thread have been issued or when an MI_SET_CONTEXT

switching from a generic media context to a 3D context completes. When using MI_SET_CONTEXT,

once state is programmed, it will be saved and restarted as part of any context each time that context is

saved/restored until an MI_FLUSH with this bit set is issued in that context.

3 Global Snapshot Count Reset

Format: Boolean

 The Statistics Counters are also reset; SW should never set this bit during normal operation since the

Statistics Counters are intended to be free running.

Value Name Description

0h Don’t

Reset

Do not reset the snapshot counts or Statistics Counters.

1h Reset Reset the snapshot count for all the units and reset the Statistics Counters except as

noted above.

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 178

MI_FLUSH

Programming Notes

TIMESTAMP are not reset by MI_FLUSH with this bit set. TIMESTAMP and PS_DEPTH_COUNT can

be reset by writing 0 to them

2 Render Cache Flush Inhibit

Format: Boolean

If set, the Render Cache is not flushed as part of the processing of this command.

Value Name Description

0h Flush Flush the Render Cache

1h Don’t Flush Do not flush the Render Cache

1 State/Instruction Cache Invalidate

Format: Boolean

If set, Invalidates the State and Instruction Cache

Value Name Description

0h Don’t Invalidate Leave State/Instruction Cache unaffected

1h Invalidate Invalidate State/Instruction Cache

0 Reserved

Format: MBZ

1.2.11 MI_LOAD_REGISTER_IMM

MI_LOAD_REGISTER_IMM

Source: RenderCS

Length Bias: 2

The MI_LOAD_REGISTER_IMM command requests a write of up to a DWord constant supplied in the command to

the specified Register Offset (i.e., offset into Memory-Mapped Register Range).

Programming Notes Project

A stalling flush must be sent down pipeline before issuing this command. The behavior of this command is

controlled by Dword 3, Bit 8 (Disable Register Access) of the RINGBUF register. If this command is

disallowed then the command stream converts it to a NOOP.

If this command is executed from a BB then the behavior of this command is controlled by Dword 0, Bit 8

(Security Indicator) of the BATCH_BUFFER_START Command. If the batch buffer is insecure then the

command stream converts this command to a NOOP. Note that the corresponding ring buffer must allow a

register update for this command to execute.

To ensure this command gets executed before upcoming commands in the ring, either a stalling

pipeControl should be sent after this command, or MMIO 0x20C0 bit 7 should be set to 1.

When base address of 0x180000 is added to the Register Offset, when executed will result in updating of

the register in the other GT in GTB mode of operation then the GT from which this instruction is executed.

When this instruction is executed by Command Streamer with COREID-0 will result in updating the register

in GT with COREID-1 and vice versa, when base address of 0x180000 is added to the register offset.

The following addresses should NOT be used for LRIs:

1. 0x8800 - 0x88FF

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 179

MI_LOAD_REGISTER_IMM

2. >= 0xC0000

Limited LRI cycles to the Display Engine 0x40000-0xBFFFF) are allowed, but must be spaced to allow only

one pending at a time. This can be done by issuing an SRM to the same address immediately after each

LRI.

MI_LOAD_REGISTER_IMM command to program Scanline Register followed by Wait For Event command

with Scanline Wait, should always be programmed in the same cacheline together without any commands

(including pipe control) in between and also should be submitted in the same ring dispatch.

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

Format: OpCode

28:23 MI Command Opcode

Default Value: 22h MI_LOAD_REGISTER_IMM

Format: OpCode

22:12 Reserved

Format: MBZ

11:8 Byte Write Disables

Format: Enable[4] Bit 8 corresponds to Data DWord [7:0]

Range: Must specify a valid register write operation

If [11:8] is '1111b', then this command will behave as a NOOP.

 Otherwise, the value is forwarded to the destination register.

7:0 DWord Length

Default Value: 1h

Format: =n Total Length - 2. Excludes DWord (0,1).

1 31:2 Register Offset

Format: MmioAddress[31:2]

This field specifies bits [31:2] of the offset into the Memory Mapped Register Range (i.e., this field

specifies a DWord offset). When the base address of 0x180000 is added to the Register Offset, when

executed will result in updating of the register in the other GT in GTB mode of operation then the GT

from which this instruction is executed. When this instruction is executed by Command Streamer with

COREID-0 will result in updating the register in GT with COREID-1 and vice versa, when base address

of 0x180000 is added to the register offset.

1:0 Reserved

Format: MBZ

2 31:0 Data DWord

Mask: Bytes Write Disables

Format: U32

This field specifies the DWord value to be written to the targeted location.

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 180

1.2.12 MI_NOOP

MI_NOOP

Source: RenderCS

Length Bias: 1

The MI_NOOP command basically performs a “no operation” in the command stream and is typically used to pad the

command stream (e.g., in order to pad out a batch buffer to a QWord boundary). However, there is one minor

(optional) function this command can perform – a 22-bit value can be loaded into the MI NOPID register. This

provides a general-purpose command stream tagging (“breadcrumb”) mechanism (e.g., to provide sequencing

information for a subsequent breakpoint interrupt).

Programming Notes Project

Performance : The MI_NOOP process time is reduced to 1 clock. An example use of the improved NOOP

throughput is for some multi-pass media applications where some unwanted media object commands are

replaced by MI_NOOP commands without repacking the commands in a batch buffer.

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

28:23 MI Command Opcode

Default Value: 0h MI_NOOP

22 Identification Number Register Write Enable

Format: Enable

This field enables the value in the Identification Number field to be written into the MI NOPID

register. If disabled, that register is unmodified, making this command an effective "no operation"

function.

Value Name Description

0h Disable Do not write the NOP_ID register.

1h Enable Write the NOP_ID register.

21:0 Identification Number

Format: U22

This field contains a 22-bit number which can be written to the MI NOPID register.

1.2.13 Surface Probing

These commands are only valid when the “Surface Fault Enable” bit is set in the GFX_MODE register.

1.2.14 MI_REPORT_HEAD

MI_REPORT_HEAD

Source: RenderCS

Length Bias: 1

The MI_REPORT_HEAD command causes the Head Pointer value of the active ring buffer to be written to a

cacheable (snooped) system memory location. The location written is relative to the address programmed in the

Hardware Status Page Address Register.

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 181

MI_REPORT_HEAD

Programming Notes

This command must not be executed from a Batch Buffer. (Refer to the description of the HWS_PGA register.)

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

Format: OpCode

28:23 MI Command Opcode

Default Value: 07h MI_REPORT_HEAD

Format: OpCode

22:0 Reserved

Format: MBZ

1.2.15 MI_SEMAPHORE_MBOX

MI_SEMAPHORE_MBOX

Source: RenderCS

Length Bias: 2

This command is provided as alternative to MI_SEMAPHORE to provide mailbox-type semaphores where there is

no update of the semaphore by the checking process (the consumer). Single-bit compare-and-update semantics are

also provided. In either case, atomic access of semaphores need not be guaranteed by hardware as with the

previous command. This command should eventually supersede the previous command.

Synchronization between contexts (especially between contexts running on two different engines) is provided by the

MI_SEMAPHORE_MBOX command. Note that contexts attempting to synchronize in this fashion must be able to

access a common_sli memory location. This means the contexts must share the same virtual address space (have

the same page directory), must have a common physical page mapped into both of their respective address spaces,

or the semaphore commands must be executing from a secure batch buffer or directly from a ring with the Use

Global GTT bit set such that they are privileged and will use the (always shared) global GTT.

MI_SEMAPHORE with the Update Semaphore bit set (and the Compare Semaphore bit clear) implements the

Signal command, while the Wait command is indicated by Compare Semaphore being set. Note that Wait can

cause a context switch. Signal increments unconditionally.

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

Format: OpCode

28:23 MI Command Opcode

Default Value: 16h MI_SEMAPHORE_MBOX

Format: OpCode

22 Use Global GTT

If set, this command will use the global GTT to translate the Semaphore Address and this command

must be executing from a privileged (secure) batch buffer. If clear, the PPGTT will be used to translate

the Semaphore Address.

This bit will be ignored (and treated as if clear) if this command is executed from a non-privileged

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 182

MI_SEMAPHORE_MBOX

batch buffer. It is allowed for this bit to be clear when executing this command from a privileged

(secure) batch buffer or directly from a ring buffer.

Programming Notes

This field is only valid when Compare Register Field is reset.

21 Update Semaphore

If set, the value from the Semaphore Data Dword is written to memory. If Compare Semaphore is

also set, the semaphore is not updated if the semaphore comparison fails. If clear, the data at

Semaphore Address is not changed.

Programming Notes

This field should be always clear when Compare Register Field is set.

20 Compare Semaphore

If set, the value from the Semaphore Data Dword is compared to the value from the Semaphore

Address in memory when Compare Register is clear. If set, the value from the Semaphore Data

Dword is compared to the value from MMIO Register selected by Register Select field when

Compare Register is set. If the value at Semaphore Address/MMIO Register is greater than the

Semaphore Data Dword, execution is continued from the current command buffer. If clear, no

comparison takes place. Update Semaphoremust be set in this case.

19 Reserved

Format: MBZ

18 Compare Register

If set, data in MMIO register will be used for compare. If clear, data in memory will be used for

compare.

Programming Notes

Compare Register field should be always set.

17:16 Register Select

Format: Register Select

If Compare Register is set in bit[18], this field indicates which register will be used.

Value Name Description

0h RVSYNC VCS Register

2h RBSYNC BCS Register

3h Use General Register Select

15:14 Reserved

Format: MBZ

13:8 Reserved

Format: MBZ

7:0 DWord Length

Default Value: 0h

Format: =n Total Length - 2. Excludes DWord (0,1).

1 31:0 Semaphore Data Dword

Format: U32

Data dword to compare/update memory. The Data dword is supplied by software to control execution

of the command buffer. If the compare is enabled and the data at Semaphore Address is greater than

this dword, the execution of the command buffer continues.

2 31:2 PointerBitFieldName/MMIO Register Address

Format: GraphicsVirtualAddress[31:2]Semaphore

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 183

MI_SEMAPHORE_MBOX

If Compare Register bit[18] is cleared, this field is the Graphics Memory Address of the 32-bit value for

the semaphore. If Compare Register bit[18] is set, this field is the MMIO address of the register for the

semaphore.

1:0 Reserved

Format: MBZ

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 184

1.2.16 MI_SET_CONTEXT

MI_SET_CONTEXT

Source: RenderCS

Length Bias: 2

The MI_SET_CONTEXT command is used to specify the logical context associated with the hardware context. A

logical context is an area in memory used to store hardware context information, and the context is referenced via a

2KB-aligned pointer. If the (new) logical context is different (i.e., at a different memory address), the device saves

the current HW context values to the current logical context address, and then restores (loads) the new logical

context by reading the context from the new address and loading it into the hardware context state. If the logical

context address specified in this command matches the current logical context address, this command is effectively

treated as a NOOP. Specific to the Render command stream only.

This command also includes some controls over the context save/restore process.

 The Force Restore bit can be used to refresh the on-chip device state from the same memory address if the

indirect state buffers have been modified.

 The Restore Inhibit bit can be used to prevent the new context from being loaded at all. This must be used to

prevent an uninitialized context from being loaded. Once software has initialized a context (by setting all state
variables to initial values via commands), the context can then be stored and restored normally.

 This command needs to be always followed by a single MI_NOOP instruction to workaround a silicon issue.

 When switching from a generic media context to a 3D context, the generic media state must be cleared via the
Generic Media State Clear bit 16 in PIPE_CONTROL (or bit 4 in MI_FLUSH) before saving 3D context.

 MI_SET_CONTEXT commands are permitted only within a ring buffer (not within a batch buffer).

Programming Notes Project

Workaround : If Flush TLB Invalidation Mode is enabled it is the driver’s responsibility to invalidate the

TLBs at least once after the previous context switch after any GTT mappings changed (including new GTT

entries). This can be done by a pipelined PIPE_CONTROL with TLB inv bit set immediately before

MI_SET_CONTEXT.

MI_ARB_ON_OFF with 'Arbitration Enable Reset' set should be programmed before an MI_SET_CONTEXT

command. MI_ARB_ON_OFF with 'Arbitration Enable' set should be programmed after an

MI_SET_CONTEXT command. This programming ensures that PSMI context switch flows do not conflict

with MI_SET_CONTEXT flows.

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

Format: OpCode

28:23 MI Command Opcode

Default Value: 18h MI_SET_CONTEXT

Format: OpCode

22:8 Reserved

Format: MBZ

7:0 DWord Length

Default Value: 0h

Format: =n Total Length - 2. Excludes DWord (0,1).

1 31:12 Logical Context Address

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 185

MI_SET_CONTEXT

Format: GraphicsAddress[31:12]LogicalContext

Description Project

This field contains the 4KB-aligned graphics memory address of the Logical Context that is to

be loaded into the hardware context. If this address is equal to the CCID register associated

with the current ring, no load will occur. Prior to loading this new context, the device will save

the existing context as required. After the context switch operation completes, this address will

be loaded into the associated CCID register.

This field needs to be 4KB aligned virtual address.

11:10 Reserved

Format: MBZ

9 Reserved

Format: MBZ

8 Reserved, Must be 1

Format: Must Be One

7:5 Reserved

Format: MBZ

4 Reserved

Format: MBZ

3 Extended State Save Enable

Format: Enable

If set, the extended state identified in the Logical Context Data section of the Memory Data Formats

chapter is saved as part of switching away from this logical context. This bit will be stored in the

associated CCID register to control the context save operation when switching away from this context

(as part of a subsequent MI_SET_CONTEXT command). This bit must be 1 when RS2 power state is

enabled (via MCHBAR, offset 0x11B8)

2 Extended State Restore Enable

Format: Enable

If set, the extended state identified in the Logical Context Data section of the Memory Data Formats

chapter is loaded (or restored) as part of switching to this logical context. This method can be used to

restore things such as filter coefficients using the indirect state restore followed by a restore of the

extended logical context data. This bit affects the switch (if required) to the context specified in Logical

Context Address. This bit will also be stored in the associated CCID register to control a subsequent

context save operation when switching to this context (as part of a subsequent ring buffer switch). This

bit must be 1 when RS2 power state is enabled (via MCHBAR, offset 0x11B8)

1 Force Restore

When switching to this logical context a comparison between Logical Context Address and the contests

of the CCID register is performed. Normally, matching addresses prevent a context restore from

occurring; however, when this bit is set a context restore is forced to occur. This bit cannot be set with

Restore Inhibit. Note: This bit is not saved in the associated CCID register. It only affects the

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 186

MI_SET_CONTEXT

processing of this command.

0 Restore Inhibit

If set, the restore of the HW context from the logical context specified by Logical Context Address is

inhibited (i.e., the existing HW context values are maintained). This bit must be used to prevent the

loading of an uninitialized logical context. If clear, the context switch proceeds normally. This bit cannot

be set with Force Restore. Note: This bit is not saved in the associated CCID register. It only affects the

processing of this command.

1.2.17 MI_STORE_DATA_IMM

MI_STORE_DATA_IMM

Project: All

Source: RenderCS

Length Bias: 2

The MI_STORE_DATA_IMM command requests a write of the QWord constant supplied in the packet to the

specified Memory Address. As the write targets a System Memory Address, the write operation is coherent with the

CPU cache (i.e., the processor cache is snooped).

Programming Notes

This command should not be used within a "non-privilege" batch buffer to access global virtual space, doing so will
be treated as privilege access violation. Refer “User Mode Privilege Command” in MI_BATCH_BUFFER_START
command section to know HW behavior on encountering privilege access violation. This command can be used
within ring buffers and/or privilege batch buffers to access global virtual space.

This command can be used for general software synchronization through variables in cacheable memory (i.e.,
where software does not need to poll un-cached memory or device registers).

This command simply initiates the write operation with command execution proceeding normally. Although the
write operation is guaranteed to complete eventually, there is no mechanism to synchronize command execution
with the completion (or even initiation) of these operations.

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

Format: OpCode

28:23 MI Command Opcode

Default Value: 20h MI_STORE_DATA_IMM

Format: OpCode

22 Use Global GTT

Project: All

Format: Boolean

If set, this command will use the global GTT to translate the Address and this command must be

executing from a privileged (secure) batch buffer. If clear, the PPGTT will be used. It is allowed for this

bit to be clear when executing this command from a privileged (secure) batch buffer. This bit must be

‘1’ if the Per Process GTT Enable bit is clear.

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 187

MI_STORE_DATA_IMM

21 Reserved

Format: MBZ

20:10 Reserved

Format: MBZ

9:0 DWord Length

Default Value: 2h

Format: =n Total Length - 2. Excludes DWord (0,1)

Programming Notes

DWord Length programmed must not exceed 0x3FE

1

31:0 Reserved

Format: MBZ

2

31:2 Address

Format: GraphicsAddress[31:2]U32(2)

This field specifies Bits 31:2 of the Address where the DWord will be stored. As the store address must

be DWord-aligned, Bits 1:0 of that address MBZ. This address must be 8B aligned for a store "QW"

command.

1:0 Reserved

Format: MBZ

3 31:0 Data DWord 0

Format: U32

This field specifies the DWord value to be written to the targeted location.For a QWord write this

DWord is the lower DWord of the QWord to be reported (DW 0).

4 31:0 Data DWord 1

Format: U32

This field specifies the upper DWord value to be written to the targeted QWord location (DW 1).

1.2.18 MI_STORE_DATA_INDEX

MI_STORE_DATA_INDEX

Source: RenderCS

Length Bias: 2

The MI_STORE_DATA_INDEX command requests a write of the data constant supplied in the packet to the

specified offset from the System Address defined by the Hardware Status Page Address Register. As the write

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 188

MI_STORE_DATA_INDEX

targets a System Address, the write operation is coherent with the CPU cache (i.e., the processor cache is snooped).

Programming Notes

-

 Use of this command with an invalid or uninitialized value in the Hardware Status Page Address Register is
UNDEFINED.

 This command can be used for general software synchronization through variables in cacheable memory (i.e.,
where software does not need to poll uncached memory or device registers).

 This command simply initiates the write operation with command execution proceeding normally. Although the
write operation is guaranteed to complete eventually, there is no mechanism to synchronize command
execution with the completion (or even initiation) of these operations.

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

Format: OpCode

28:23 MI Command Opcode

Default Value: 21h MI_STORE_DATA_INDEX

Format: OpCode

22 Reserved

21 Reserved

Format: MBZ

20:8 Reserved

Format: MBZ

7:0 DWord Length

Default Value: 1h

Format: =n Total Length - 2. Excludes DWord (0,1) = 1 for DWord, 2 for QWord.

1 31:12 Reserved

Format: MBZ

11:2 Offset

Format: U10 zero-based DWord offset into the HW status page.

Format: HardwareStatusPageOffset[11:2]U32

This field specifies the offset (into the hardware status page) to which the data will be written. Note that

the first few DWords of this status page are reserved for special-purpose data storage – targeting these

reserved locations via this command is UNDEFINED. This address must be 8B aligned for a store QW

command.

Value Name

[16, 1023]

1:0 Reserved

Format: MBZ

2 31:0 Data DWord 0

Format: U32

This field specifies the DWord value to be written to the targeted location.For a QWord write this

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 189

MI_STORE_DATA_INDEX

DWord is the lower DWord of the QWord to be reported (DW 0).

3 31:0 Data DWord 1

Format: U32

This field specifies the upper DWord value to be written to the targeted QWord location (DW 1).

1.2.19 MI_STORE_REGISTER_MEM

MI_STORE_REGISTER_MEM

Project: All

Source: RenderCS

Length Bias: 2

The MI_STORE_REGISTER_MEM command requests a register read from a specified memory mapped register

location in the device and store of that DWord to memory. The register address is specified along with the command

to perform the read.

Programming Notes

The command temporarily halts command execution.

The memory address for the write is snooped on the host bus.

This command should not be used from within a "non-privilege" batch buffer to access global virtual space. doing
so will be treated as privilege access violation. Refer "User Mode Privilege Command" in
MI_BATCH_BUFFER_START command section to know HW behavior on encountering privilege access violation.
This command can be used within ring buffers and/or "privilege" batch buffers to access global virtual space.

This command will cause undefined data to be written to memory if given register addresses for the
PGTBL_CTL_0 or FENCE registers.

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

Format: OpCode

28:23 MI Command Opcode

Default Value: 24h MI_STORE_REGISTER_MEM

Format: OpCode

22 Use Global GTT

It is allowed for this bit to be set when executing this command from a privileged (secure) batch or ring

buffer. This bit must be clear when programmed from within a non-privileged batch buffer. This bit

must be 1 if the Per Process GTT Enable bit is clear.

Value Name Description Project

0h Per Process

Graphics Address

1h Global Graphics This command will use the global GTT to translate the Address and

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 190

MI_STORE_REGISTER_MEM

Address this command must be executing from a privileged (secure) batch

buffer.

21 Reserved

Format: MBZ

20:8 Reserved

Format: MBZ

7:0 DWord Length

Default Value: 1h Excludes DWord (0,1)

Format: =n Total Length - 2

1 31:26 Reserved

Format: MBZ

25:2 Register Address

Format: MMIOAddress[25:2]MMIO_Register

This field specifies Bits 25:2 of the Register offset the DWord will be read from. As the register

address must be DWord-aligned, Bits 1:0 of that address MBZ.

Programming Notes

 Storing a VGA register is not permitted and will store an UNDEFINED value.

 The values of PGTBL_CTL0 or any of the FENCE registers cannot be stored to memory;
UNDEFINED values will be written to memory if the addresses of these registers are specified.

1:0 Reserved

Format: MBZ

2 31:2 Memory Address

Format: GraphicsAddress[31:2]MMIO_Register

This field specifies the address of the memory location where the register value specified in the

DWord above will be written. The address specifies the DWord location of the data.Range =

GraphicsVirtualAddress[31:2] for a DWord register

1:0 Reserved

Format: MBZ

1.2.20 MI_SUSPEND_FLUSH

MI_SUSPEND_FLUSH

Source: RenderCS

Length Bias: 1

Description Project

Blocks MMIO sync flush or any flushes related to VT-d while enabled.

Programming Notes Project

SW must ensure MI_SUSPEND_FLUSH with "Suspend Flush" enabled have a corresponding

MI_SUSPEND_FLUSH with "Suspend Flush" disabled in the same ring dispatch. SW must also ensure not

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 191

MI_SUSPEND_FLUSH

to program MI_WAIT_FOR_EVENT command when "Suspend Flush" is enabled.

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

Format: OpCode

28:23 MI Command Opcode

Default Value: 0Bh MI_SUSPEND_FLUSH

Format: OpCode

22:1 Reserved

Format: MBZ

0 Suspend Flush

Format: Enable

Description Project

This field suspends flush due and IOTLB invalidation.

Programming Notes Project

Workaround: Make sure that Suspend Flush Enabled and Suspend Flush Disabled are in

the same tail update.

1.2.21 MI_UPDATE_GTT

MI_UPDATE_GTT

Source: RenderCS

Length Bias: 2

The MI_UPDATE_GTT command is used to update GTT page table entries in a coherent manner and at a

predictable place in the command flow.

An MI_FLUSH should be placed before this command, since work associated with preceding commands that are

still in the pipeline may be referencing GTT entries that will be changed by its execution. The flush also invalidates

TLBs and read caches that may become invalid as a result of the changed GTT entries. MI_FLUSH is not required if

it can be guaranteed that the pipeline is free of any work that relies on changing GTT entries (such as

MI_UPDATE_GTT contained in a paging DMA buffer that is doing only update/mapping activities and no rendering).

This is a privileged command.

Note that MI_UPDATE_GTT is mainly for the pages that are strictly used by GT. If driver chooses to update the

CPU used pages thru MI_UPDATE_GTT, it needs to write any value to MMIO address 0x101008 to ensure system

agent TLBs are invalidated before the new pages can be used.

PPGTT updates cannot be done via MI_UPDATE_GTT; gfx driver will have to use MI_STORE_DATA_IMM for

PPGTT inline updates.

DWord Bit Description

0 31:29 Command Type

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 192

MI_UPDATE_GTT

Default Value: 0h MI_COMMAND

Format: OpCode

28:23 MI Command Opcode

Default Value: 23h MI_UPDATE_GTT

Format: OpCode

22 Use Global GTT

Reserved: Must be 1h. Updating Per Process Graphics Address is not supported.

Value Name Description

0h Per Process Graphics Address

1h Global Graphics Address

21:8 Reserved

Format: MBZ

7:0 DWord Length

Default Value: 0h

Format: =n Total Length - 2. Excludes DWord (0,1).

1 31:12 Entry Address

Format: GraphicsAddress[31:12]

This field simply holds the DW offset of the first table entry to be modified. Note that one or more of

the upper bits may need to be 0, i.e., for a 2G aperture, bit 31 MBZ.

11:0 Reserved

Format: MBZ

2..n 31:0 Entry Data

Format: Table Entry

This Dword becomes the new page table entry. See PPGTT/Global GTT Table Entries (PTEs) in

Memory Interface Registers.

1.2.22 MI_USER_INTERRUPT

MI_USER_INTERRUPT

Source: RenderCS

Length Bias: 1

The MI_USER_INTERRUPT command is used to generate a User Interrupt condition. The parser will continue

parsing after processing this command. See User Interrupt.

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

Format: OpCode

28:23 MI Command Opcode

Default Value: 02h MI_USER_INTERRUPT

Format: OpCode

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 193

MI_USER_INTERRUPT

22:0 Reserved

Format: MBZ

1.2.23 MI_WAIT_FOR_EVENT

MI_WAIT_FOR_EVENT

Source: RenderCS

Length Bias: 1

Description Project

The MI_WAIT_FOR_EVENT command is used to pause command stream processing of this pipe only

until a specific event occurs or while a specific condition exists. See Wait Events/Conditions, Device

Programming Interface in MI Functions. Only one event/condition can be specified. Specifying multiple

events is UNDEFINED.

Once parsed, the parser will halt (and suspend command arbitration) until the event/condition occurs. Note

that if a specified condition does not exist (the condition code is inactive) at the time the parser executes

this command, the parser proceeds, treating this command as a no-operation.

If CSunit is waiting for V-blank or flip done, HW can go into RC1/RC6 state.

MI_NOOP setting NOP register (or any other benign command) must be set after MI_WAIT_FOR_EVENT

under the following conditions:

 Back-to-back MI_WAIT_FOR_EVENT commands

 MI_WAIT_FOR_EVENT is the last command before head = tail

Events must be unmasked in the Display Engine Render Response Mask Register

 (DE RRMR 0x44050) prior to waiting for them with a MI_WAIT_FOR_EVENT command, or in the case of

flips

 or scanlines, prior to starting the flip or loading the scanline. Unmasked events will wake command

 streamer as they occur, so for improved power savings it is recommended to only unmask events that are

 required. Programming the DE RRMR register can be done through MMIO or a

LOAD_REGISTER_IMMEDIATE

 command.

Programming Notes Project

Software must always program MI_NOOP command with “Identification Number Register Write Enable” set

following MI_WAIT_FOR_EVENT command to avoid know HW issue.

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

Format: OpCode

28:23 MI Command Opcode

Default Value: 03h MI_WAIT_FOR_EVENT

Format: OpCode

22 Display Pipe C Horizontal Blank Wait Enable

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 194

MI_WAIT_FOR_EVENT

Format: Enable

This field enables a wait until the start of next Display Pipe C Horizontal Blank event occurs. This

event is described as the start of the next Display C Horizontal blank period. Note that this can cause

a wait for up to a line.

21 Display Pipe C Vertical Blank Wait Enable

Format: Enable

This field enables a wait until the next Display Pipe C Vertical Blank event occurs. This event is

described as the start of the next Display C vertical blank period. Note that this can cause a wait for up

to an entire refresh period.

20 Display Sprite C Flip Pending Wait Enable

Format: Enable

This field enables a wait for the duration of a Display Sprite C Flip Pending condition. If a flip request is

pending, the parser will wait until the flip operation has completed (i.e., the new front buffer address

has now been loaded into the active front buffer registers).

19:16 Condition Code Wait Select

This field enables a wait for the duration that the corresponding condition code is active. These enable

select one of 15 condition codes in the EXCC register, that cause the parser to wait until that

condition-code in the EXCC is cleared.

Value Name Description

0h Not enabled Condition Code Wait Not Enabled

1h-5h Enable Condition Code Select Enabled; selects one of 5 codes, 0 – 4

6h-15h Reserved

Programming Notes

Note that not all condition codes are implemented. The parser operation is UNDEFINED if an

unimplemented condition code is selected by this field. The description of the EXCC register (Memory

Interface Registers) lists the codes that are implemented.

15 Display Plane C Flip Pending Wait Enable

Format: Enable

This field enables a wait for the duration of a Display Plane C “Flip Pending” condition. If a flip request

is pending, the parser will wait until the flip operation has completed (i.e., the new front buffer address

has now been loaded into the active front buffer registers).

14 Display Pipe C Scan Line Wait Enable

Format: Enable

This field enables a wait while a Display Pipe C Scan Line condition exists. This condition is defined as

the start of the scan line specified in the Pipe C Display Scan Line Count Range Compare Register.

13 Display Pipe B Horizontal Blank Wait Enable

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 195

MI_WAIT_FOR_EVENT

Format: Enable

This field enables a wait until the start of next Display Pipe B “Horizontal Blank” event occurs. This

event is described as the start of the next Display B Horizontal blank period. Note that this can cause a

wait for up to a line.

12 Reserved

Format: MBZ

11 Display Pipe B Vertical Blank Wait Enable

Format: U32

This field enables a wait until the next Display Pipe B “Vertical Blank” event occurs. This event is

described as the start of the next Display Pipe B vertical blank period. Note that this can cause a wait

for up to an entire refresh period.

10 Display Sprite B Flip Pending Wait Enable

Format: Enable

This field enables a wait for the duration of a Display Sprite B “Flip Pending” condition. If a flip request

is pending, the parser will wait until the flip operation has completed (i.e., the new front buffer address

has now been loaded into the active front buffer registers).

9 Display Plane B Flip Pending Wait Enable

Format: Enable

This field enables a wait for the duration of a Display Plane B Flip Pending condition. If a flip request is

pending, the parser will wait until the flip operation has completed (i.e., the new front buffer address

has now been loaded into the active front buffer registers.

8 Display Pipe B Scan Line Wait Enable

Format: Enable

This field enables a wait while a Display Pipe B Scan Line condition exists. This condition is defined as

the start of the scan line specified in the Pipe B Display Scan Line Count Range Compare Register.

7:6 Reserved

Format: MBZ

5 Display Pipe A Horizontal Blank Wait Enable

Format: U32

This field enables a wait until the start of next Display Pipe A Horizontal Blank event occurs. This

event is described as the start of the next Display A Horizontal blank period. Note that this can cause a

wait for up to a line.

4 Reserved

Format: MBZ

3 Display Pipe A Vertical Blank Wait Enable

Format: U32

This field enables a wait until the next Display Pipe A “Vertical Blank” event occurs. This event is

described as the start of the next Display Pipe A vertical blank period. Note that this can cause a wait

for up to an entire refresh period.

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 196

MI_WAIT_FOR_EVENT

2 Display Sprite A Flip Pending Wait Enable

Format: Enable

This field enables a wait for the duration of a Display Sprite A “Flip Pending” condition. If a flip request

is pending, the parser will wait until the flip operation has completed (i.e., the new front buffer address

has now been loaded into the active front buffer registers).

1 Display Plane A Flip Pending Wait Enable

Format: Enable

This field enables a wait for the duration of a Display Plane A “Flip Pending” condition. If a flip request

is pending, the parser will wait until the flip operation has completed (i.e., the new front buffer address

has now been loaded into the active front buffer registers).

0 Display Pipe A Scan Line Wait Enable

Format: Enable

This field enables a wait while a Display Pipe A “Scan Line” condition exists. This condition is defined

as the start of the scan line specified in the Pipe A Display Scan Line Count Range Compare Register.

1.2.24 MI_LOAD_REGISTER_MEM

MI_LOAD_REGISTER_MEM

Source: RenderCS

Length Bias: 2

The MI_LOAD_REGISTER_MEM command requests from a memory location and stores that DWord to a register.

Programming Notes

The command temporarily halts commands that will cause cycles down the 3D pipeline.

This command should not be used within a non-privilege batch buffer to access global virtual space, doing so will
be treated as privilege access violation. Refer "User Mode Privilege Command" in MI_BATCH_BUFFER_START
command section to know HW behavior on encountering privilege access violation.

This command is not allowed to update the privilege register range when executed from a non-privilege batch
buffer.

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

Format: OpCode

28:23 MI Command Opcode

Default Value: 29h MI_LOAD_REGISTER_MEM

Format: OpCode

22 Use Global GTT

This bit if set when executing from a non-privileged batch buffer will be treated as privilege access

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 197

MI_LOAD_REGISTER_MEM

violation. It is allowed for this bit to be clear when executing this command from a privileged (secure)

batch buffer or ring buffer.

Value Name Description

0h Per Process

Graphics Address

1h Global Graphics

Address

This command will use the global GTT to translate the Address and this

command must be executing from a privileged (secure) batch buffer.

21 Async Mode Enable

Description Project

If this bit is set then the command stream will not wait for completion of this command before

executing the next command. Please refer to the LOAD_INDIRECT and Predicate registers

for usage of this bit.

20:8 Reserved

Format: MBZ

7:0 DWord Length

Default Value: 1h

Format: =n Total Length - 2. Excludes DWord (0,1).

1 31:26 Reserved

Format: MBZ

25:2 Register Address

Format: MMIOAddress[22:2]MMIO_Register

This field specifies Bits 25:2 of the Register offset the DWord will be written to. As the register address

must be DWord-aligned, Bits 1:0 of that address MBZ.

1:0 Reserved

Format: MBZ

2 31:2 Memory Address

Format: GraphicsAddress[31:2]MMIO_Register

This field specifies the address of the memory location where the register value specified in the

DWord above will read from. The address specifies the DWord location of the data.

Range = GraphicsVirtualAddress[31:2] for a DWord register

1:0 Reserved

Format: MBZ

1.2.25 MI_URB_CLEAR

MI_URB_CLEAR

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 198

MI_URB_CLEAR

Source: RenderCS

Length Bias: 2

The MI_URB_CLEAR command allows SW to clear (write zero) to a section in the URB.

Programming Notes

 The command temporarily halts command execution.

 This command is part of context save/restore. Only the last instance will be part of context.

 This command requires the 3D pipeline to be flushed before execution.

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

Format: OpCode

28:23 MI Command Opcode

Default Value: 19h MI_URB_CLEAR

Format: OpCode

22:8 Reserved

Format: MBZ

7:0 DWord Length

Default Value: 0h

Format: =n Total Length - 2. Excludes DWord (0,1).

1

31:30 Reserved

Format: MBZ

29 Reserved

Format: MBZ

28:16 URB Clear Length

This field specifies the number of 256b entries in the URB to be cleared to zero.

Value Name

[0,8191]

15 Reserved

Format: MBZ

14 Reserved

Format: MBZ

13:0 URB Address

Format: URBAddress[18:5] 256b aligned

This field specifies Bits 18:5 of the URB Address

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 199

1.2.26 MI_PREDICATE

The MI_PREDICATE command is used to control the Predicate state bit, which in turn can be used to

enable/disable the processing of 3DPRIMITIVE commands.

MI_PREDICATE

Source: RenderCS

Length Bias: 1

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

Format: OpCode

28:23 MI Command Opcode

Default Value: 0Ch MI_PREDICATE

Format: OpCode

22:8 Reserved

Format: MBZ

7:6 Load Operation

This field controls if/how the Predicate state bit is modified.

Value Name Description

0h LOADOP_KEEP The Predicate state bit is unmodified.

1h Reserved

2h LOADOP_LOAD The Predicate state bit is loaded with the combine operation result.

3h LOADOP_LOADINV The Predicate state bit is loaded with the inverted combine operation result.

5 Reserved

Format: MBZ

4:3 Combine Operation

This field controls if/how the result of the compare operation is combined with the current Predicate

state bit.

Value Name Description

0h COMBINEOP_SET The combine operation output the compare result unmodified.

1h COMBINEOP_AND The combine operation outputs the AND of the compare result and the

current Predicate state bit.

2h COMBINEOP_OR The combine operation outputs the OR of the compare result and the

current Predicate state bit.

3h COMBINEOP_XOR The combine operation outputs the XOR of the compare result and the

current Predicate state bit.

2 Reserved

Format: MBZ

1:0 Compare Operation

This field controls how Data DWord 0 and Data DWord 1 fields are used to generate a compare

operation result and possibly modify the PredicateData register.

Value Name Description

0h COMPAREOP_TRUE The compare operation outputs TRUE. The PredicateData

register is unmodified.

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 200

MI_PREDICATE

1h COMPAREOP_FALSE The compare operation outputs FALSE. The PredicateData

register is unmodified.

2h COMPAREOP_SRCS_EQUAL (MItemp0 – MItemp1) is computed and loaded into the

PredicateData register. The compare operation outputs

(MItemp0 == MItemp1).

3h COMPAREOP_DELTAS_EQUAL (MItemp0 – MItemp1) is computed and compared to the

PredicateData register. If the values are equal, the compare

operation outputs TRUE, otherwise it outputs FALSE. The

PredicateData register is unmodified.

1.2.26.1 Predicated Rendering Support in HW

DX10 defines predicated rendering, where sequences of rendering commands can be discarded based

on the result of a previous predicate test. A new state bit, Predicate, has been added to the command

stream. In addition, a PredicateEnable bit is added to 3DPRIMITIVE. When the PredicateEnable bit is set,

the command is ignored if the Predicate state bit is set.

A new command, MI_PREDICATE, is added. It contains several control fields which specify how the

Predicate bit is generated.

Refer to the diagram below and the command description for details.

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 201

 MI_PREDICATE Function

MI_LOAD_REGISTER_MEM commands can be used to load the MItemp0, MItemp1 and PredicateData

registers prior to MI_PREDIATE. In order to ensure the memory sources of the

MI_LOAD_REGISTER_MEM commands are coherent with previous 3D_PIPECONTROL store-dword

operations, software can use the new Pipe Control Flush Enable bit in the PIPE_CONTROL command.

1.2.27 MI_TOPOLOGY_FILTER

MI_TOPOLOGY_FILTER

Source: RenderCS

Length Bias: 1

This command is used to specify a specific 3DPrimType value, where the CS will ignore all 3DPRIMITIVE commands

that do no have a matching 3DPrimType. This primitive culling is optional (turned off by using this command with a

Topology Filter Value of 0). This command is specific to the Render command stream only.

DWord Bit Description

0 31:29 Command Type

Default Value: 0h MI_COMMAND

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 202

MI_TOPOLOGY_FILTER

Format: OpCode

28:23 MI Command Opcode

Default Value: 0Dh MI_TOPOLOGY_FILTER

Format: OpCode

22:6 Reserved

Format: MBZ

5:0 Topology Filter Value

Format: 3D_PrimTopoType

When non-zero, the CS will discard all 3DPRIMITIVE commands which do not match the specified

3DPrimTopologyType. When zero, no filtering is performed (normal operation).

Doc Ref #: IHD-OS-V1 Pt 3 – 05 12 5/31/2012 203

Revision History

Revision Number Description Revision Date

1.0 First 2012 OpenSource edition May 2012

§§

