

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12

Intel
®
 OpenSource HD Graphics

Programmer’s Reference Manual (PRM)

Volume 1 Part 1: Graphics Core™
(Ivy Bridge)

For the 2012 Intel
®
 Core™ Processor Family

May 2012

Revision 1.0

NOTICE:
This document contains information on products in the design phase of development, and Intel
reserves the right to add or remove product features at any time, with or without changes to this
open source documentation.

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 5/29/2012 2

Creative Commons License

You are free to Share — to copy, distribute, display, and perform the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or licensor (but not in any
way that suggests that they endorse you or your use of the work).

No Derivative Works. You may not alter, transform, or build upon this work.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL

®
 PRODUCTS. NO

LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL
PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S
TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY
WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO
SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO
FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly
or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR
ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS
SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND
EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES
AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM
OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH
MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS
NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY
OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers
must not rely on the absence or characteristics of any features or instructions marked "reserved" or
"undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for
conflicts or incompatibilities arising from future changes to them. The information here is subject to
change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which
may cause the product to deviate from published specifications. Current characterized errata are
available on request.

Implementations of the I2C bus/protocol may require licenses from various entities, including Philips
Electronics N.V. and North American Philips Corporation.

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2012, Intel Corporation. All rights reserved.

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 5/29/2012 3

Contents

1. Introduction ... 6

1.1 Reserved Bits and Software Compatibility ... 7
1.2 Terminology ... 8

2. Graphics Device Overview ... 15

2.1 Graphics Processing Unit (GPU) ... 15
3. Graphics Processing Engine (GPE) .. 16

3.1 Introduction to the GPE .. 16
3.2 Overview .. 16

3.2.1 Graphics Processing Engine Block Diagram .. 17
3.2.2 Command Stream (CS) Unit ... 17
3.2.3 3D Pipeline ... 17
3.2.4 Media Pipeline .. 17
3.2.5 Subsystem .. 18
3.2.6 Execution Units (EUs) .. 18
3.2.7 GPE Function IDs ... 18

3.3 Pipeline Selection ... 18
3.4 Memory Object Control State ... 19

3.4.1 MEMORY_OBJECT_CONTROL_STATE .. 20
3.5 Memory Access Indirection .. 21

3.5.1 STATE_BASE_ADDRESS ... 22
3.5.2 SWTESS_BASE_ADDRESS ... 28

3.6 Instruction and State Prefetch .. 30
3.6.1 STATE_PREFETCH ... 30

3.7 System Thread Configuration .. 31
3.7.1 STATE_SIP .. 31

3.8 Command Ordering Rules ... 32
3.8.1 PIPELINE_SELECT ... 33
3.8.2 PIPE_CONTROL .. 33
3.8.3 URB-Related State-Setting Commands ... 34
3.8.4 Common Pipeline State-Setting Commands .. 34
3.8.5 3D Pipeline-Specific State-Setting Commands .. 34
3.8.6 Media Pipeline-Specific State-Setting Commands ... 35
3.8.7 CONSTANT_BUFFER (CURBE Load) .. 35
3.8.8 3DPRIMITIVE ... 35
3.8.9 MEDIA_OBJECT .. 35

4. Video Codec Engine .. 36

4.1 Video Command Streamer (VCS) .. 36
5. Graphics Command Formats ... 38

5.1 Command Formats .. 38
5.1.1 Memory Interface Commands .. 38
5.1.2 2D Commands .. 39
5.1.3 3D/Media Commands ... 39
5.1.4 Video Codec Commands .. 39
5.1.5 Command Header .. 39

5.2 Command Map ... 41
5.2.1 Memory Interface Command Map .. 41
5.2.2 2D Command Map ... 43
5.2.3 3D/Media Command Map ... 44
5.2.4 Video Codec Command Map ... 47

6. Memory Data Formats ... 50

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 5/29/2012 4

6.1 Memory Object Overview ... 50
6.1.1 Memory Object Types .. 50

6.2 Channel Formats .. 51
6.2.1 Unsigned Normalized (UNORM) .. 51
6.2.2 Gamma Conversion (SRGB) .. 51
6.2.3 Signed Normalized (SNORM) .. 51
6.2.4 Unsigned Integer (UINT/USCALED) .. 51
6.2.5 Signed Integer (SINT/SSCALED) ... 52
6.2.6 Floating Point (FLOAT) ... 52
6.2.7 Non-Video Surface Formats ... 55
6.2.8 Surface Format Naming ... 55
6.2.9 Intensity Formats .. 55
6.2.10 Luminance Formats .. 55
6.2.11 R1_UNORM (same as R1_UINT) and MONO8 ... 56
6.2.12 Palette Formats .. 56

6.3 Compressed Surface Formats ... 58
6.3.1 FXT Texture Formats ... 58
6.3.2 DXT Texture Formats ... 67
6.3.3 BC4 ... 72
6.3.4 BC5 ... 73
6.3.5 BC6H .. 75
6.3.6 BC7 ... 86

6.4 Video Pixel/Texel Formats ... 95
6.4.1 Packed Memory Organization .. 95
6.4.2 Planar Memory Organization .. 95

6.5 Additional Video Formats ... 97
6.6 Raw Format .. 102
6.7 Surface Memory Organizations ... 102
6.8 Graphics Translation Tables .. 102
6.9 Hardware Status Page ... 103
6.10 Instruction Ring Buffers .. 103
6.11 Instruction Batch Buffers... 103
6.12 2D Render Surfaces ... 103
6.13 2D Monochrome Source ... 103
6.14 2D Color Pattern ... 104
6.15 3D Color Buffer (Destination) Surfaces .. 104
6.16 3D Depth Buffer Surfaces ... 104
6.17 3D Separate Stencil Buffer Surfaces .. 105
6.18 Surface Layout .. 105

6.18.1 Buffers .. 105
6.18.2 Structured Buffers ... 106
6.18.3 1D Surfaces .. 106
6.18.4 2D Surfaces .. 107
6.18.5 Cube Surfaces .. 112
6.18.6 3D Surfaces .. 114

6.19 Surface Padding Requirements .. 116
6.19.1 Sampling Engine Surfaces ... 116
6.19.2 Render Target and Media Surfaces ... 117

6.20 BSD Logical Context Data (MFX) ... 117
6.20.1 Register/State Context ... 117
6.20.2 The Per-Process Hardware Status Page ... 118

6.21 Copy Engine Logical Context Data ... 119
6.21.1 Register/State Context ... 119
6.21.2 The Per-Process Hardware Status Page ... 120

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 5/29/2012 5

6.22 Render Logical Context Data ... 120
6.22.1 Overall Context Layout ... 120
6.22.2 Pipelined State Page .. 132
6.22.3 Ring Buffer .. 132
6.22.4 The Per-Process Hardware Status Page ... 133

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 5/29/2012 6

1. Introduction
This Intel

®
 HD Graphics Open Source Programmer’s Reference Manual (PRM) describes the

architectural behavior and programming environment of the Ivy Bridge chipset family. The Graphics
Controller (GC) contains an extensive set of registers and instructions for configuration, 2D, 3D, and
video systems. The PRM describes the register, instruction, and memory interfaces, and the device
behaviors as controlled and observed through those interfaces. The PRM also describes the registers
and instructions, and provides detailed bit/field descriptions.

The PRM is organized into four volumes, with each volume split into multiple parts for easy accessibility:

PRM Volume 1: Intel Graphics Core™

This volume contains an introduction to the:

 Graphics Processing Unit (GPU)

 Graphics Processing Engine (GPE)

The GPE is a collective term for 3D, Media, the subsystem, and the parts of the memory interface
that are used by these units. Display, blitter, and their memory interfaces are not included in the

GPE.

 Graphics Memory Interface Functions

 Device Programming Environment

 Command Streamers, including the Render, Blitter, and Video Codec command streamers

 GT Interface Registers

 L3 Cache and Unified Return Buffer

PRM Volume 2: 3D / Media

This volume includes:

 An introduction to the 3D Pipeline and its stages, including Vertex Fetch, Vertex Shader, Hull
Shader, Tesselation Engine, Domain Shader, Geometry Shader, Stream Output Logic, Clip,
Strips and Fans, Windower and Color Calculator stages

 The single Media fixed function, Variable Length Decode (VLD), describing how to initiate generic
threads using the thread spawner (TS). Generic threads are used for the majority of media
functions. Programmable kernels handle the algorithms for media functions such as IDCT, Motion
Compensation, and Motion Estimation (used for encoding MPEG streams).

 Details about the Media pipeline, which is positioned in parallel with the 3D fixed function pipeline.

 The Multi-Format Codec (MFX) engine, the hardware fixed-function popeline for decoding and
encoding.

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 6/21/2012 7

PRM Volume 3: Display Registers

Volume 3 describes the control registers for the display. This information includes:

 VGA and Extended VGA Registers

 PCI Registers

 North Display Engine Registers

 South Display Engine Registers

PRM Volume 4: Subsystem and Cores/ Shared Functions

The subsystem contains the programmable cores, or Executable Units (EUs), and the “shared functions”
that are shared by more than one EU and perform I/O functions and complex math functions.

The shared functions consist of the sampler:

 Extended math unit

 Data port (the interface to memory for 3D and media)

 Unified Return Buffer (URB)

 The Message Gateway used by EU threads to signal each other

The EUs use messages to send data to and receive data from the subsystem; the messages are
described with the shared functions. The generic message ‘send EU instruction’ is described with the rest
of the instructions in the Instruction Set Architecture (ISA) chapters.

The latter part of this volume describes the GMHC core, or EU, and the associated instructions used to
program it. The instruction descriptions make up an Instruction Set Architecture, or ISA. The ISA
describes all of the instructions that the core can execute, along with the registers that are used to store
local data.

1.1 Reserved Bits and Software Compatibility

In many register, instruction, and memory layout descriptions, certain bits are marked as “Reserved”.

When bits are marked as reserved, it is essential for compatibility with future devices that the software

treat these bits as having a future, though unknown, effect. The behavior of reserved bits should be

regarded as undefined and unpredictable. Software should follow these guidelines in dealing with

reserved bits:

1. Do not depend on the states of any reserved bits when testing values of registers that contain
such bits.

2. Mask out the reserved bits before testing.

3. Do not depend on the states of any reserved bits when storing to an instruction or to a
register.

4. When loading a register or formatting an instruction, always load the reserved bits with the
values indicated in the documentation (if any), or reload them with the values previously read
from the register.

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 5/29/2012 8

1.2 Terminology
Term Abbr. Definition

3D Pipeline --
One of the two pipelines supported in the GPE. The 3D Pipeline is a set of fixed-

function units arranged in a pipelined fashion, which process 3D-related commands

by spawning EU threads. Typically this processing includes rendering primitives.

See 3D Pipeline.

Adjacency --
One can consider a single line object as existing in a strip of connected lines. The

neighboring line objects are called “adjacent objects”, with the non-shared endpoints

called the “adjacent vertices.” The same concept can be applied to a single triangle

object, considering it as existing in a mesh of connected triangles. Each triangle

shares edges with three other adjacent triangles, each defined by an non-shared

adjacent vertex. Knowledge of these adjacent objects/vertices is required by some

object processing algorithms (e.g., silhouette edge detection). See 3D Pipeline.

Application IP AIP Application Instruction Pointer. This is part of the control registers for exception

handling for a thread. Upon an exception, hardware moves the current IP into this

register and then jumps to SIP.

Architectural

Register File

ARF A collection of architecturally visible registers for a thread such as address registers,

accumulator, flags, notification registers, IP, null, etc. ARF should not be mistaken as

just the address registers.

Array of Cores -- Refers to a group of EUs, which are physically organized in two or more rows. The

fact that the EUs are arranged in an array is (to a great extent) transparent to CPU

software or EU kernels.

Binding Table -- Memory-resident list of pointers to surface state blocks (also in memory).

Binding Table

Pointer

BTP Pointer to a binding table, specified as an offset from the Surface State Base Address

register.

Bypass Mode -- Mode where a given fixed function unit is disabled and forwards data down the

pipeline unchanged. Not supported by all FF units.

Byte B A numerical data type of 8 bits, B represents a signed byte integer.

Child Thread A branch-node or a leaf-node thread that is created by another thread. It is a kind of

thread associated with the media fixed function pipeline. A child thread is originated

from a thread (the parent) executing on an EU and forwarded to the Thread

Dispatcher by the TS unit. A child thread may or may not have child threads

depending on whether it is a branch-node or a leaf-node thread. All pre-allocated

resources such as URB and scratch memory for a child thread are managed by its

parent thread.

Clip Space -- A 4-dimensional coordinate system within which a clipping frustum is defined. Object

positions are projected from Clip Space to NDC space via “perspecitive divide” by the

W coordinate, and then viewport mapped into Screen Space

Clipper -- 3D fixed function unit that removes invisible portions of the drawing sequence by

discarding (culling) primitives or by “replacing” primitives with one or more primitives

that replicate only the visible portion of the original primitive.

Color Calculator CC Part of the Data Port shared function, the color calculator performs fixed-function

pixel operations (e.g., blending) prior to writing a result pixel into the render cache.

Command -- Directive fetched from a ring buffer in memory by the Command Streamer and routed

down a pipeline. Should not be confused with instructions which are fetched by the

instruction cache subsystem and executed on an EU.

Command Streamer CS or CSI Functional unit of the Graphics Processing Engine that fetches commands, parses

them and routes them to the appropriate pipeline.

Constant URB Entry CURBE A UE that contains “constant” data for use by various stages of the pipeline.

Control Register CR The read-write registers are used for thread mode control and exception handling for

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 6/21/2012 9

Term Abbr. Definition

a thread.

Data Port DP Shared function unit that performs a majority of the memory access types on behalf of

programs. The Data Port contains the render cache and the constant cache and

performs all memory accesses requested by programs except those performed by the

Sampler. See DataPort.

Degenerate Object -- Object that is invisible due to coincident vertices or because does not intersect any

sample points (usually due to being tiny or a very thin sliver).

Destination -- Describes an output or write operand.

Destination Size The number of data elements in the destination of an SIMD instruction.

Destination Width The size of each of (possibly) many elements of the destination of an SIMD

instruction.

Double Quad word

(DQword)

DQ A fundamental data type, DQ represents 16 bytes.

Double word

(DWord)

D or DW A fundamental data type, D or DW represents 4 bytes.

Drawing Rectangle --
A screen-space rectangle within which 3D primitives are rendered. An objects

screen-space positions are relative to the Drawing Rectangle origin. See Strips and

Fans.

End of Block EOB A 1-bit flag in the non-zero DCT coefficient data structure indicating the end of an 8x8

block in a DCT coefficient data buffer.

End Of Thread EOT a message sideband signal on the Output message bus signifying that the message

requester thread is terminated. A thread must have at least one SEND instruction

with the EOT bit in the message descriptor field set in order to properly terminate.

Exception -- Type of (normally rare) interruption to EU execution of a thread’s instructions. An

exception occurrence causes the EU thread to begin executing the System Routine

which is designed to handle exceptions.

Execution Channel --

Execution Size ExecSize Execution Size indicates the number of data elements processed by an SIMD

instruction. It is one of the instruction fields and can be changed per instruction.

Execution Unit EU Execution Unit. An EU is a multi-threaded processor within the multi-processor

system. Each EU is a fully-capable processor containing instruction fetch and

decode, register files, source operand swizzle and SIMD ALU, etc. An EU is also

referred to as a Core.

Execution Unit

Identifier

EUID The 4-bit field within a thread state register (SR0) that identifies the row and column

location of the EU a thread is located. A thread can be uniquely identified by the EUID

and TID.

Execution Width ExecWidth The width of each of several data elements that may be processed by a single SIMD

instruction.

Extended Math Unit EM A Shared Function that performs more complex math operations on behalf of several

EUs.

FF Unit
--

A Fixed-Function Unit is the hardware component of a 3D Pipeline Stage. A FF Unit

typically has a unique FF ID associated with it.

Fixed Function FF Function of the pipeline that is performed by dedicated (vs. programmable) hardware.

Fixed Function ID FFID Unique identifier for a fixed function unit.

FLT_MAX fmax The magnitude of the maximum representable single precision floating number

according to IEEE-754 standard. FLT_MAX has an exponent of 0xFE and a mantissa

of all one’s.

Gateway GW See Message Gateway.

 Core Alternative name for an EU in the multi-processor system.

General Register

File

GRF Large read/write register file shared by all the EUs for operand sources and

destinations. This is the most commonly used read-write register space organized as

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 5/29/2012 10

Term Abbr. Definition

an array of 256-bit registers for a thread.

General State Base

Address

--
The Graphics Address of a block of memory-resident “state data”, which includes

state blocks, scratch space, constant buffers and kernel programs. The contents of

this memory block are referenced via offsets from the contents of the General State

Base Address register. See Graphics Processing Engine.

Geometry Shader GS
Fixed-function unit between the vertex shader and the clipper that (if enabled)

dispatches “geometry shader” threads on its input primitives. Application-supplied

geometry shaders normally expand each input primitive into several output primitives

in order to perform 3D modeling algorithms such as fur/fins. See Geometry Shader.

Graphics Address The GPE virtual address of some memory-resident object. This virtual address gets

mapped by a GTT or PGTT to a physical memory address. Note that many memory-

resident objects are referenced not with Graphics Addresses, but instead with offsets

from a “base address register”.

Graphics

Processing Engine

GPE Collective name for the Subsystem, the 3D and Media pipelines, and the Command

Streamer.

Guardband GB Region that may be clipped against to make sure objects do not exceed the

limitations of the renderer’s coordinate space.

Horizontal Stride HorzStride The distance in element-sized units between adjacent elements of a region-based

GRF access.

Immediate floating

point vector

VF A numerical data type of 32 bits, an immediate floating point vector of type VF

contains 4 floating point elements with 8-bit each. The 8-bit floating point element

contains a sign field, a 3-bit exponent field and a 4-bit mantissa field. It may be used

to specify the type of an immediate operand in an instruction.

Immediate integer

vector

V A numerical data type of 32 bits, an immediate integer vector of type V contains 8

signed integer elements with 4-bit each. The 4-bit integer element is in 2’s

compliment form. It may be used to specify the type of an immediate operand in an

instruction.

Index Buffer IB Buffer in memory containing vertex indices.

In-loop Deblocking

Filter

ILDB
The deblocking filter operation in the decoding loop. It is a stage after MC in the

video decoding pipe.

Instance In the context of the VF unit, an instance is one of a sequence of sets of similar

primitive data. Each set has identical vertex data but may have unique instance data

that differentiates it from other sets in the sequence.

Instruction -- Data in memory directing an EU operation. Instructions are fetched from memory,

stored in a cache and executed on one or more cores. Not to be confused with

commands which are fetched and parsed by the command streamer and dispatched

down the 3D or Media pipeline.

Instruction Pointer IP The address (really an offset) of the instruction currently being fetched by an EU.

Each EU has its own IP.

Instruction Set

Architecture

ISA The ISA describes the instructions supported by an EU.

Instruction State

Cache

ISC On-chip memory that holds recently-used instructions and state variable values.

Interface Descriptor -- Media analog of a State Descriptor.

Intermediate Z IZ Completion of the Z (depth) test at the front end of the Windower/Masker unit when

certain conditions are met (no alpha, no pixel-shader computed Z values, etc.)

Inverse Discrete

Cosine Transform

IDCT the stage in the video decoding pipe between IQ and MC

Inverse

Quantization

IQ A stage in the video decoding pipe between IS and IDCT.

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 6/21/2012 11

Term Abbr. Definition

Inverse Scan IS
A stage in the video decoding pipe between VLD and IQ. In this stage, a sequence

of none-zero DCT coefficients are converted into a block (e.g. an 8x8 block) of

coefficients. VFE unit has fixed functions to support IS for both MPEG-2.

Jitter Just-in-time compiler.

Kernel -- A sequence of instructions that is logically part of the driver or generated by the jitter.

Differentiated from a Shader which is an application supplied program that is

translated by the jitter to instructions.

Least Significant Bit LSB

MathBox -- See Extended Math Unit

Media -- Term for operations such as video decode and encode that are normally performed

by the Media pipeline.

Media Pipeline -- Fixed function stages dedicated to media and “generic” processing, sometimes

referred to as the generic pipeline.

Message -- Messages are data packages transmitted from a thread to another thread, another

shared function or another fixed function. Message passing is the primary

communication mechanism of architecture.

Message Gateway -- Shared function that enables thread-to-thread message

communication/synchronization used solely by the Media pipeline.

Message Register

File

MRF Write-only registers used by EUs to assemble messages prior to sending and as the

operand of a send instruction.

Most Significant Bit MSB

Motion

Compensation

MC Part of the video decoding pipe.

Motion Picture

Expert Group

MPEG MPEG is the international standard body JTC1/SC29/WG11 under ISO/IEC that has

defined audio and video compression standards such as MPEG-1, MPEG-2, and

MPEG-4, etc.

Motion Vector Field

Selection

MVFS A four-bit field selecting reference fields for the motion vectors of the current

macroblock.

Multi Render

Targets

MRT Multiple independent surfaces that may be the target of a sequence of 3D or Media

commands that use the same surface state.

Normalized Device

Coordinates

NDC Clip Space Coordinates that have been divided by the Clip Space “W” component.

Object -- A single triangle, line or point.

Open GL OGL A Graphics API specification associated with Linux.

Parent Thread -- A thread corresponding to a root-node or a branch-node in thread generation

hierarchy. A parent thread may be a root thread or a child thread depending on its

position in the thread generation hierarchy.

Pipeline Stage -- A abstracted element of the 3D Pipeline, providing functions performed by a

combination of the corresponding hardware FF unit and the threads spawned by that

FF unit.

Pipelined State

Pointers

PSP Pointers to state blocks in memory that are passed down the pipeline.

Pixel Shader PS Shader that is supplied by the application, translated by the jitter and is dispatched to

the EU by the Windower (conceptually) once per pixel.

Point -- A drawing object characterized only by position coordinates and width.

Primitive -- Synonym for object: triangle, rectangle, line or point.

Primitive Topology -- A composite primitive such as a triangle strip, or line list. Also includes the objects

triangle, line and point as degenerate cases.

Provoking Vertex -- The vertex of a primitive topology from which vertex attributes that are constant

across the primitive are taken.

Quad Quad word

(QQword)

QQ A fundamental data type, QQ represents 32 bytes.

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 5/29/2012 12

Term Abbr. Definition

Quad Word

(QWord)

QW A fundamental data type, QW represents 8 bytes.

Rasterization Conversion of an object represented by vertices into the set of pixels that make up

the object.

Region-based

addressing

-- Collective term for the register addressing modes available in the EU instruction set

that permit discontiguous register data to be fetched and used as a single operand.

Render Cache RC Cache in which pixel color and depth information is written prior to being written to

memory, and where prior pixel destination attributes are read in preparation for

blending and Z test.

Render Target RT A destination surface in memory where render results are written.

Render Target

Array Index

-- Selector of which of several render targets the current operation is targeting.

Root Thread -- A root-node thread. A thread corresponds to a root-node in a thread generation

hierarchy. It is a kind of thread associated with the media fixed function pipeline. A

root thread is originated from the VFE unit and forwarded to the Thread Dispatcher by

the TS unit. A root thread may or may not have child threads. A root thread may have

scratch memory managed by TS. A root thread with children has its URB resource

managed by the VFE.

Sampler -- Shared function that samples textures and reads data from buffers on behalf of EU

programs.

Scratch Space -- Memory allocated to the subsystem that is used by EU threads for data storage that

exceeds their register allocation, persistent storage, storage of mask stack entries

beyond the first 16, etc.

Shader -- A program that is supplied by the application in a high level shader language, and

translated to instructions by the jitter.

Shared Function SF Function unit that is shared by EUs. EUs send messages to shared functions; they

consume the data and may return a result. The Sampler, Data Port and Extended

Math unit are all shared functions.

Shared Function ID SFID Unique identifier used by kernels and shaders to target shared functions and to

identify their returned messages.

Single Instruction

Multiple Data

SIMD The term SIMD can be used to describe the kind of parallel processing architecture

that exploits data parallelism at instruction level. It can also be used to describe the

instructions in such architecture.

Source -- Describes an input or read operand

Spawn -- To initiate a thread for execution on an EU. Done by the thread spawner as well as

most FF units in the 3D Pipeline.

Sprite Point -- Point object using full range texture coordinates. Points that are not sprite points use

the texture coordinates of the point’s center across the entire point object.

State Descriptor -- Blocks in memory that describe the state associated with a particular FF, including its

associated kernel pointer, kernel resource allowances, and a pointer to its surface

state.

State Register SR The read-only registers containing the state information of the current thread,

including the EUID/TID, Dispatcher Mask, and System IP.

State Variable SV An individual state element that can be varied to change the way given primitives are

rendered or media objects processed. On state variables persist only in memory and

are cached as needed by rendering/processing operations except for a small amount

of non-pipelined state.

Stream Output -- A term for writing the output of a FF unit directly to a memory buffer instead of, or in

addition to, the output passing to the next FF unit in the pipeline. Currently only

supported for the Geometry Shader (GS) FF unit.

Strips and Fans SF Fixed function unit whose main function is to decompose primitive topologies such as

strips and fans into primitives or objects.

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 6/21/2012 13

Term Abbr. Definition

Sub-Register
Subfield of a SIMD register. A SIMD register is an aligned fixed size register for a

register file or a register type. For example, a GRF register, r2, is 256-bit wide, 256-

bit aligned register. A sub-register, r2.3:d, is the fourth dword of GRF register r2.

Subsystem -- The name given to the resources shared by the FF units, including shared functions

and EUs.

Surface -- A rendering operand or destination, including textures, buffers, and render targets.

Surface State -- State associated with a render surface including

Surface State Base

Pointer

-- Base address used when referencing binding table and surface state data.

Synchronized Root

Thread

-- A root thread that is dispatched by TS upon a ‘dispatch root thread’ message.

System IP SIP There is one global System IP register for all the threads. From a thread’s point of

view, this is a virtual read only register. Upon an exception, hardware performs some

bookkeeping and then jumps to SIP.

System Routine -- Sequence of instructions that handles exceptions. SIP is programmed to point to this

routine, and all threads encountering an exception will call it.

Thread An instance of a kernel program executed on an EU. The life cycle for a thread starts

from the executing the first instruction after being dispatched from Thread Dispatcher

to an EU to the execution of the last instruction – a send instruction with EOT that

signals the thread termination. Threads in the system may be independent from each

other or communicate with each other through Message Gateway share function.

Thread Dispatcher TD Functional unit that arbitrates thread initiation requests from Fixed Functions units

and instantiates the threads on EUs.

Thread Identifier TID The field within a thread state register (SR0) that identifies which thread slots on an

EU a thread occupies. A thread can be uniquely identified by the EUID and TID.

Thread Payload Prior to a thread starting execution, some amount of data will be pre-loaded in to the

thread’s GRF (starting at r0). This data is typically a combination of control

information provided by the spawning entity (FF Unit) and data read from the URB.

Thread Spawner TS The second and the last fixed function stage of the media pipeline that initiates new

threads on behalf of generic/media processing.

Topology See Primitive Topology.

Unified Return

Buffer

URB The on-chip memory managed/shared by Fixed Functions in order for a thread to

return data that will be consumed either by a Fixed Function or other threads.

Unsigned Byte

integer

UB A numerical data type of 8 bits.

Unsigned Double

Word integer

UD A numerical data type of 32 bits. It may be used to specify the type of an operand in

an instruction.

Unsigned Word

integer

UW A numerical data type of 16 bits. It may be used to specify the type of an operand in

an instruction.

Unsynchronized

Root Thread

-- A root thread that is automatically dispatched by TS.

URB Dereference --

URB Entry UE URB Entry: A logical entity stored in the URB (such as a vertex), referenced via a

URB Handle.

URB Entry

Allocation Size

-- Number of URB entries allocated to a Fixed Function unit.

URB Fence Fence Virtual, movable boundaries between the URB regions owned by each FF unit.

URB Handle -- A unique identifier for a URB entry that is passed down a pipeline.

URB Reference --

Variable Length

Decode

VLD The first stage of the video decoding pipe that consists mainly of bit-wide operations.

The GPU supports hardware VLD acceleration in the VFE fixed function stage.

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 5/29/2012 14

Term Abbr. Definition

VC-1 VC-1
VC-1 is the informal name of the SMPTE 421M video codec standard

Vertex Buffer VB Buffer in memory containing vertex attributes.

Vertex Cache VC Cache of Vertex URB Entry (VUE) handles tagged with vertex indices. See the VS

chapter for details on this cache.

Vertex Fetcher VF The first FF unit in the 3D Pipeline responsible for fetching vertex data from memory.

Sometimes referred to as the Vertex Formatter.

Vertex Header -- Vertex data required for every vertex appearing at the beginning of a Vertex URB

Entry.

Vertex ID -- Unique ID for each vertex that can optionally be included in vertex attribute data sent

down the pipeline and used by kernel/shader threads.

Vertex Index --
Offset (in vertex-sized units) of a given vertex in a vertex buffer. Not unique per

vertex instance.

Vertex Sequence

Number

--
Unique ID for each vertex sent down the south bus .

Vertex Shader VS An API-supplied program that calculates vertex attributes. Also refers to the FF unit

that dispatches threads to “shade” (calculate attributes for) vertices.

Vertex URB Entry VUE A URB entry that contains data for a specific vertex.

Vertical Stride VertStride The distance in element-sized units between 2 vertically-adjacent elements of a

region-based GRF access.

Video Front End VFE The first fixed function in the generic pipeline; performs fixed-function media

operations.

Viewport VP

Windower IZ WIZ Term for Windower/Masker that encapsulates its early (“intermediate”) depth test

function.

Windower/Masker WM Fixed function triangle/line rasterizer.

Word W A numerical data type of 16 bits, W represents a signed word integer.

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 6/21/2012 15

2. Graphics Device Overview

2.1 Graphics Processing Unit (GPU)

The Graphics Processing Unit is controlled by the CPU through a direct interface of memory-mapped IO
registers, and indirectly by parsing commands that the CPU has placed in memory. The display interface
and blitter (block image transferrer) are controlled primarily by direct CPU register addresses, while the
3D and Media pipelines and the parallel Video Codec Engine (VCE) are controlled primarily through
instruction lists in memory.

The subsystem contains an array of cores, or execution units, with a number of “shared functions”, which
receive and process messages at the request of programs running on the cores. The shared functions
perform critical tasks, such as sampling textures and updating the render target (usually the frame buffer).
The cores themselves are described by an instruction set architecture, or ISA.

 Logical Block Diagram

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 5/29/2012 16

3. Graphics Processing Engine (GPE)

3.1 Introduction to the GPE

This chapter serves two purposes:

 It provides a high-level description of the Graphics Processing Engine (GPE) of the Graphics

Processing Unit (GPU).

 It also specifies the programming and behaviors of the functions common to both pipelines (3D,

Media) within the GPE. However, details specific to either pipeline are not addressed here.

3.2 Overview

The Graphics Processing Engine (GPE) performs the bulk of the graphics processing provided by the

GPU. It consists of the 3D and Media fixed-function pipelines, the Command Streamer (CS) unit that

feeds them, and the Subsystem that provides the bulk of the computations required by the pipelines.

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 6/21/2012 17

3.2.1 Graphics Processing Engine Block Diagram

The Graphics Processing Engine

3.2.2 Command Stream (CS) Unit

The Command Stream (CS) unit manages the use of the 3D and Media pipelines; it performs switching

between pipelines and forwarding command streams to the currently active pipeline. It manages

allocation of the URB and helps support the Constant URB Entry (CURBE) function.

3.2.3 3D Pipeline

The 3D Pipeline provides specialized 3D primitive processing functions. These functions are provided by

a pipeline of “fixed function” stages (units) and threads spawned by these units. See 3D Pipeline

Overview.

3.2.4 Media Pipeline

The Media pipeline provides both specialized media-related processing functions and the ability to

perform more general (“generic”) functionality. These Media-specific functions are provided by a Video

Front End (VFE) unit. A Thread Spawner (TS) unit is utilized to spawn threads requested by the VFE

unit, or as required when the pipeline is used for general processing. See Media Pipeline Overview.

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 5/29/2012 18

3.2.5 Subsystem

The Subsystem is the collective name for the programmable cores, the Shared Functions accessed by

them (including the Sampler, Extended Math Unit (“MathBox”), the DataPort, and the Inter-Thread

Communication (ITC) Gateway), and the Dispatcher that manages threads running on the cores.

3.2.6 Execution Units (EUs)

While the number of EU cores in the subsystem is almost entirely transparent to the programming model,

there are a few areas where this parameter comes into play:

 The amount of scratch space required is a function of (#EUs * #Threads/EU)

Device # of EUs #Threads/EU

Ivy Bridge 16 8

Ivy Bridge 6 6

3.2.7 GPE Function IDs

The following table lists the assignments (encodings) of the Shared Function and Fixed Function IDs

used within the GPE. A Shared Function is a valid target of a message initiated via a ‘send’ instruction. A

Fixed Function is an identifiable unit of the 3D or Media pipeline. Note that the Thread Spawner is both a

Shared Function and Fixed Function.

Function IDs

ID[3:0] SFID Shared Function FFID Fixed Function

0x0 SFID_NULL Null FFID_NULL Null

0x1 Reserved --- Reserved ---

0x2 SFID_SAMPLER Sampler Reserved ---

0x3 SFID_GATEWAY Message Gateway Reserved ---

0x4 SFID_DP_SAMPLER Sampler Cache Data Port FFID_HS Hull Shader

0x5 SFID_DP_RC Render Cache Data Port FFID_DS Domain Shader

0x6 SFID_URB URB Reserved ---

0x7 SFID_SPAWNER Thread Spawner FFID_SPAWNER Thread Spawner

0x8 SFID_VME Video Motion Estimation FFID_VFE Video Front End

0x9 SFID_DP_CC Constant Cache Data Port FFID_VS Vertex Shader

0xA SFID_DP_DC Data Cache Data Port FFID_CS Command Stream

0xB SFID_PI Pixel Interpolator FFID_VF Vertex Fetch

0xC Reserved --- FFID_GS Geometry Shader

0xD Reserved --- FFID_CLIP Clipper Unit

0xE Reserved --- FFID_SF Strip/Fan Unit

0xF Reserved --- FFID_WM Windower/Masker Unit

3.3 Pipeline Selection

The PIPELINE_SELECT command is used to specify which GPE pipeline (3D or Media orGPGPU) is to

be considered the “current” active pipeline. Issuing 3D-pipeline-specific commands when the Media

pipeline is selected, or vice versa, is UNDEFINED.

This command causes the URB deallocation of the previously selected pipe. For example, switching from

the 3D pipe to the Media pipe (either within or between contexts) will cause the CS to send a

“Deallocating Flush” down the 3D pipe, and each 3D FF will start a URB deallocation sequence after the

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 6/21/2012 19

current tasks are done. Then, the WM will de-reference the current Constant URB Entry, and all 3D URB

entries will be deallocated (after some north bus delay) , which allows the CS to set the URB fences for

the media pipe. The process relatively is the same for switching from Media to 3D pipes. The deallocating

flush goes down the Media pipe, causing each Media function to start a URB deallocation sequence, and

the WM will de-reference the current Constant URB entry and all media entries will be de-allocated to

allow the CS to set the 3D pipe.

Programming Restriction:

Software must ensure the current pipeline is flushed via an MI_FLUSH or PIPE_CONTROL prior to the

execution of PIPELINE_SELECT.

DWord Bit Description

0
31:29

Instruction Type = GFXPIPE = 3h

28:16
3D Instruction Opcode = PIPELINE_SELECT

GFXPIPE[28:27 = 1h, 26:24 = 1h, 23:16 = 04h] (Single DW, Non-pipelined)

15:2 Reserved: MBZ

1: 0
Pipeline Select

0: 3D Pipeline is selected

1: Media pipeline is selected (Includes and generic media workloads)

2: GPGPU pipeline is selected

3: Reserved

The Pipeline Select state is contained within the logical context.

3.4 Memory Object Control State

The memory object control state defines behavior of memory accesses beyond the graphics core,

graphics data type that allows selective flushing of data from outer caches, and ability to control

cacheability in the outer caches.

This control uses several mechanisms. Control state for all memory accesses can be defined page by

page in the GTT entries. Memory objects that are defined by state per surface generally have additional

memory object control state in the state structure that defines the other surface attributes. Memory

objects without state defining them have memory object state control defined per class in the

STATE_BASE_ADDRESS command, with class divisions the same as the base addresses. Finally, some

memory objects only have the GTT entry mechanism for defining this control. The table below

enumerates the memory objects and location the the control state for each:

Memory Object Location of Control State

surfaces defined by SURFACE_STATE: sampling engine surfaces,

render targets, media surfaces, pull constant buffers, streamed vertex

buffers

SURFACE_STATE

depth, stencil, and hierarchical depth buffers corresponding state command that defined

the buffer attributes

stateless buffers accessed by data port STATE_BASE_ADDRESS

indirect state objects STATE_BASE_ADDRESS

kernel instructions STATE_BASE_ADDRESS

push constant buffers 3DSTATE_CONSTANT_(VS | GS | PS)

index buffers 3DSTATE_INDEX_BUFFER

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 5/29/2012 20

Memory Object Location of Control State

vertex buffers 3DSTATE_VERTEX_BUFFERS

indirect media object STATE_BASE_ADDRESS

generic state prefetch GTT control only

ring/batch buffers GTT control only

context save buffers GTT control only

store dword GTT control only

3.4.1 MEMORY_OBJECT_CONTROL_STATE

MEMORY_OBJECT_CONTROL_STATE

Default Value: 0x00000000

DWord Bit Description

0 2 Graphics Data Type (GFDT)

Format: U1

This field contains the GFDT bit for this surface when writes occur. GFDT can also be set by the GTT.

The effective GFDT is the logical OR of this field with the GFDT from the GTT entry. This field is ignored

for reads.

The GFDT bit is stored in the LLC and selective cache flushing of lines with GFDT set is supported. It is

intended to be set on displayable data, which enables efficient flushing of data to be displayed after

rendering, since display engine does not snoop the rendering caches. Note that MLC would need to be

completely flushed as it does not allow selective flushing.

1 LLC Cacheability Control (LLCCC)

This is the field used in GT interface block to determine what type of access need to be generated to

uncore. For the cases where the LLCCC is set, cacheable transaction are generated to enable LLC

usage for particular stream.

0: use cacheability controls from GTT entry

1: Data is cached in LLC

0 L3 Cacheability Control (L3CC)

This field is used to control the L3 cacheability (allocation) of the stream.

0: not cacheable within L3

1: cacheable in L3

Note: even if the surface is not cacheable in L3, it is still kept coherent with L3 content.

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 6/21/2012 21

3.5 Memory Access Indirection

The GPE supports the indirection of certain graphics (GTT-mapped) memory accesses. This support

comes in the form of two base address state variables used in certain memory address computations with

the GPE.

The intent of this functionality is to support the dynamic relocation of certain driver-generated memory

structures after command buffers have been generated but prior to the their submittal for execution. For

example, as the driver builds the command stream it could append pipeline state descriptors, kernel

binaries, etc. to a general state buffer. References to the individual items would be inserting in the

command buffers as offsets from the base address of the state buffer. The state buffer could then be

freely relocated prior to command buffer execution, with the driver only needing to specify the final base

address of the state buffer. Two base addresses are provided to permit surface-related state (binding

tables, surface state tables) to be maintained in a state buffer separate from the general state buffer.

While the use of these base addresses is unconditional, the indirection can be effectively disabled by

setting the base addresses to zero. The following table lists the various GPE memory access paths and

which base address (if any) is relevant.

Base Address Utilization

Base Address Used Memory Accesses

General State Base

Address

DataPort memory accesses resulting from ‘stateless’ DataPort Read/Write requests. See

DataPort for a definition of the ‘stateless’ form of requests.

Dynamic State Base

Address only

Sampler reads of SAMPLER_STATE data and associated

SAMPLER_BORDER_COLOR_STATE.

Viewport states used by CLIP, SF, and WM/CC

COLOR_CALC_STATE, DEPTH_STENCIL_STATE, and BLEND_STATE

Push Constants (depeding on state of INSTPM<CONSTANT_BUFFER Address Offset

Disable>)

Instruction Base

Address only

Normal EU instruction stream (non-system routine)

System routine EU instruction stream (starting address = SIP)

Surface State Base

Address

Sampler and DataPort reads of BINDING_TABLE_STATE, as referenced by BT pointers

passed via 3DSTATE_BINDING_TABLE_POINTERS

Sampler and DataPort reads of SURFACE_STATE data

Indirect Object Base

Address

MEDIA_OBJECT Indirect Data accessed by the CS unit .

None CS unit reads from Ring Buffers, Batch Buffers

CS writes resulting from PIPE_CONTROL command

All VF unit memory accesses (Index Buffers, Vertex Buffers)

All Sampler Surface Memory Data accesses (texture fetch, etc.)

All DataPort memory accessesexcept ‘stateless’ DataPort Read/Write requests (e.g., RT

accesses.) See DataPort for a definition of the ‘stateless’ form of requests.

Memory reads resulting from STATE_PREFETCH commands

Any physical memory access by the device

GTT-mapped accesses not included above (i.e., default)

Push Constants (depeding on state of INSTPM<CONSTANT_BUFFER Address Offset

Disable>)

The following notation is used in the BSpec to distinguish between addresses and offsets:

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 5/29/2012 22

Notation Definition

PhysicalAddress[n:m] Corresponding bits of a physical graphics memory byte address (not mapped by a GTT)

GraphicsAddress[n:m] Corresponding bits of an absolute, virtual graphics memory byte address (mapped by a

GTT)

GeneralStateOffset[n:m] Corresponding bits of a relative byte offset added to the General State Base Address

value, the result of which is interpreted as a virtual graphics memory byte address

(mapped by a GTT)

DynamicStateOffset[n:m] Corresponding bits of a relative byte offset added to the Dynamic State Base Address

value, the result of which is interpreted as a virtual graphics memory byte address

(mapped by a GTT)

InstructionBaseOffset[n:m] Corresponding bits of a relative byte offset added to the Instruction Base Address value,

the result of which is interpreted as a virtual graphics memory byte address (mapped by a

GTT)

SurfaceStateOffset[n:m] Corresponding bits of a relative byte offset added to the Surface State Base Address

value, the result of which is interpreted as a virtual graphics memory byte address

(mapped by a GTT)

3.5.1 STATE_BASE_ADDRESS

The STATE_BASE_ADDRESS command sets the base pointers for subsequent state, instruction, and

media indirect object accesses by the GPE. (See Memory Access Indirection for details)

Programming Notes:

 The following commands must be reissued following any change to the base addresses:

o 3DSTATE_PIPELINE_POINTERS

o 3DSTATE_BINDING_TABLE_POINTERS

o MEDIA_STATE_POINTERS.

 Execution of this command causes a full pipeline flush, thus its use should be minimized for higher
performance.

STATE_BASE_ADDRESS

Length Bias: 2

The STATE_BASE_ADDRESS command sets the base pointers for subsequent state, instruction, and media

indirect object accesses by the GPE. (See Table: Base Address Utilization for details)

Programming Notes

The following commands must be reissued following any change to the base addresses

 3DSTATE_CC_POINTERS

 3DSTATE_BINDING_TABLE_POINTERS

 3DSTATE_SAMPLER_STATE_POINTERS

 3DSTATE_VIEWPORT_STATE_POINTERS

 MEDIA_STATE_POINTERS

Execution of this command causes a full pipeline flush, thus its use should be minimized for higher performance

DWord Bit Description

0 31:29 Command Type

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 6/21/2012 23

STATE_BASE_ADDRESS

Default Value: 3h GFXPIPE

28:27 Command SubType

Default Value: 0h GFXPIPE_COMMON

26:24 3D Command Opcode

Default Value: 1h GFXPIPE_NONPIPELINED

23:16 3D Command Sub Opcode

Default Value: 01h STATE_BASE_ADDRESS

15:8 Reserved

Format: MBZ

7:0 DWord Length

Project: All

Format: =n Total Length - 2

Value Name Description

8h DWORD_COUNT_n [Default] Excludes DWord (0,1)

1 31:12 General State Base Address

Format: GraphicsAddress[31:12]

Specifies the 4K-byte aligned base address for general state accesses. See Table 4-3 for details on

where this base address is used.

11:8 General State Memory Object Control State

Format: MEMORY_OBJECT_CONTROL_STATE

Specifies the memory object control state for indirect state using the General State Base Address, with

the exception of the stateless data port accesses.

7:4 Stateless Data Port Access Memory Object Control State

Format: MEMORY_OBJECT_CONTROL_STATE

Specifies the memory object control state for stateless data port accesses.

3 Stateless Data Port Access Force Write Thru

Format: U1

0: If the stateless data port access memory object control indicates L3 cachable the accesses will be

write back cacheable.

1: If the stateless data port access memory object control indicates L3 cachable the accesses will be

write thru cacheable.

2:1 Reserved

Format: MBZ

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 5/29/2012 24

STATE_BASE_ADDRESS

0 General State Base Address Modify Enable

Format: Enable

The other fields in this dword are updated only when this bit is set.

Value Name Description Project

0h Disable Ignore the updated address

1h Enable Modify the address

2 31:12 Surface State Base Address

Format: GraphicsAddress[31:12]

Specifies the 4K-byte aligned base address for binding table and surface state accesses. See Table 4-

3 for details on where this base address is used.

11:8 Surface State Memory Object Control State

Project: All

Format: MEMORY_OBJECT_CONTROL_STATE

Specifies the memory object control state for indirect state using the Surface State Base Address.

7:1 Reserved

Format: MBZ

0 Surface State Base Address Modify Enable

Format: Enable

The other fields in this dword are updated only when this bit is set.

Value Name Description Project

0h Disable Ignore the updated address

1h Enable Modify the address

3 31:12 Dynamic State Base Address

Format: GraphicsAddress[31:12]

Specifies the 4K-byte aligned base address for sampler and viewport state accesses. See Table 4-3 for

details on where this base address is used.

11:8 Dynamic State Memory Object Control State

Project: All

Format: MEMORY_OBJECT_CONTROL_STATE

Specifies the memory object control state for indirect state using the Dynamic State Base Address.

Push constants defined in 3DSTATE_CONSTANT_(VS | GS | PS) commands do not use this control

state, although they can use the corresponding base address. The memory object control state for

push constants is defined within the command.

7:1 Reserved

Project: All

Format: MBZ

0 Dynamic State Base Address Modify Enable

Project: All

Format: Enable

The other fields in this dword are updated only when this bit is set.

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 6/21/2012 25

STATE_BASE_ADDRESS

Value Name Description Project

0h Disable Ignore the updated address All

1h Enable Modify the address All

4 31:12 Indirect Object Base Address

Project: All

Format: GraphicsAddress[31:12]

Specifies the 4K-byte aligned base address for indirect object load in MEDIA_OBJECT command. See

Table 4-3 for details on where this base address is used.

11:8 Indirect Object Memory Object Control State

Project: All

Format: MEMORY_OBJECT_CONTROL_STATE

Specifies the memory object control state for indirect objects using the Indirect Object Base Address.

7:1 Reserved

Project: All

Format: MBZ

0 Indirect Object Base Address Modify Enable

Project: All

Format: Enable

The other fields in this dword are updated only when this bit is set.

Value Name Description Project

0h Disable Ignore the updated address All

1h Enable Modify the address All

5 31:12 Instruction Base Address

Project: All

Format: GraphicsAddress[31:12]

Specifies the 4K-byte aligned base address for all EU instruction accesses.

11:8 Instruction Memory Object Control State

Project: All

Format: MEMORY_OBJECT_CONTROL_STATE

Specifies the memory object control state for EU instructions using the Instruction Base Address.

7:1 Reserved

Project: All

Format: MBZ

0 Instruction Base Address Modify Enable

Project: All

Format: Enable

The other fields in this dword are updated only when this bit is set.

Value Name Description Project

0h Disable Ignore the updated address All

1h Enable Modify the address All

6 31:12 General State Access Upper Bound

Project: All

Format: GraphicsAddress[31:12]

Specifies the 4K-byte aligned (exclusive) maximum Graphics Memory address for

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 5/29/2012 26

STATE_BASE_ADDRESS

 general state accesses. This includes all accesses that are offset from

General State Base Address (see Table 4-3). Read accesses from this address

 and beyond will return UNDEFINED values. Data port writes to this address and beyond

 will be “dropped on the floor” (all data channels will be disabled so no writes occur).

 Setting this field to 0 will cause this range check to be ignored.

If non-zero, this address must be greater than the General State Base Address.

11:1 Reserved

Project: All

Format: MBZ

0 General State Access Upper Bound Modify Enable

Project: All

Format: Enable

The bound in this dword is updated only when this bit is set.

Value Name Description Project

0h Disable Ignore the updated bound All

1h Enable Modify the bound All

7 31:12 Dynamic State Access Upper Bound

Project: All

Format: GraphicsAddress[31:12]

Specifies the 4K-byte aligned (exclusive) maximum Graphics Memory address for dynamic state

accesses. This includes all accesses that are offset from Dynamic State Base Address (see Table 4-

3). Read accesses from this address and beyond will return UNDEFINED values. Data port writes to

this address and beyond will be “dropped on the floor” (all data channels will be disabled so no writes

occur). Setting this field to 0 will cause this range check to be ignored.

If non-zero, this address must be greater than the Dynamic State Base Address.

11:1 Reserved

Project: All

Format: MBZ

0 Dynamic State Access Upper Bound Modify Enable

Project: All

Format: Enable

The bound in this dword is updated only when this bit is set.

Value Name Description Project

0h Disable Ignore the updated bound All

1h Enable Modify the bound All

8 31:12 Indirect Object Access Upper Bound

Project: All

Format: GraphicsAddress[31:12]

This field specifies the 4K-byte aligned (exclusive) maximum Graphics Memory address access by an

indirect object load in a MEDIA_OBJECT command. Indirect data accessed at this address and

beyond will appear to be 0. Setting this field to 0 will cause this range check to be ignored.

If non-zero, this address must be greater than the Indirect Object Base Address.

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 6/21/2012 27

STATE_BASE_ADDRESS

Hardware ignores this field if indirect data is not present.

Setting this field to FFFFFh will cause this range check to be ignored.

11:1 Reserved

Project: All

Format: MBZ

0 Indirect Object Access Upper Bound Modify Enable

Project: All

Format: Enable

The bound in this dword is updated only when this bit is set.

Value Name Description Project

0h Disable Ignore the updated bound All

1h Enable Modify the bound All

9 31:12 Instruction Access Upper Bound

Project: All

Format: GraphicsAddress[31:12]

This field specifies the 4K-byte aligned (exclusive) maximum Graphics Memory address access by an

EU instruction. Instruction data accessed at this address and beyond will return UNDEFINED values.

Setting this field to 0 will cause this range check to be ignored.

If non-zero, this address must be greater than the Instruction Base Address.

11:1 Reserved

Project: All

Format: MBZ

0 Instruction Access Upper Bound Modify Enable

Project: All

Format: Enable

The bound in this dword is updated only when this bit is set.

Value Name Description Project

0h Disable Ignore the updated bound All

1h Enable Modify the bound All

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 5/29/2012 28

3.5.2 SWTESS_BASE_ADDRESS

The SWTESS_BASE_ADDRESS command sets the base pointers for SW Tessellation data read

accesses by the TE unit.

SWTESS_BASE_ADDRESS

Length Bias: 2

The SWTESS_BASE_ADDRESS command sets the base pointers for SW Tessellation data read access by the TE

unit.

Programming Notes

This base address must also be comprehended in the SURFACE_STATE used by the HS kernel to write the SW

tessellation data.

Execution of this command causes a full pipeline flush, thus its use should be minimized for higher performance.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

28:27 Command SubType

Default Value: 0h GFXPIPE_COMMON

26:24 3D Command Opcode

Default Value: 1h GFXPIPE_NONPIPELINED

23:16 3D Command Sub Opcode

Default Value: 03h SWTESS_BASE_ADDRESS

15:8 Reserved

Project: All

Format: MBZ

7:0 DWord Length

Project: All

Format: =n Total Length - 2

Value Name Description

0h DWORD_COUNT_n [Default] Excludes DWord (0,1)

1 31:12 SW Tessellation Base Address [31:12]

Project: All

Format: GraphicsAddress[31:12]

Specifies the 4K-byte aligned base address for TE unit SW tessellation data read accesses.

11:8 SW Tessellation Memory Object Control State

Project: All

Format: MEMORY_OBJECT_CONTROL_STATE

Specifies the memory object control state used by the TE unit to read SW tessellation data from

memory.

7:0 Reserved

Project: All

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 6/21/2012 29

SWTESS_BASE_ADDRESS

Format: MBZ

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 5/29/2012 30

3.6 Instruction and State Prefetch

The STATE_PREFETCH command is provided strictly as an optional mechanism to possibly enhance

pipeline performance by prefetching data into the GPE’s Instruction and State Cache (ISC).

3.6.1 STATE_PREFETCH

STATE_PREFETCH

Project: All

Length Bias: 2

(This command is provided strictly for performance optimization opportunities, and likely requires some

experimentation to evaluate the overall impact of additional prefetching.)

The STATE_PREFETCH command causes the GPE to attempt to prefetch a sequence of 64-byte cache lines into

the GPE-internal cache (“L2 ISC”) used to access EU kernel instructions and fixed/shared function indirect state

data. While state descriptors, surface state, and sampler state are automatically prefetched by the GPE, this

command may be used to prefetch data not automatically prefetched, such as: 3D viewport state; Media pipeline

Interface Descriptors; EU kernel instructions.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

28:27 Command SubType

Default Value: 0h GFXPIPE_COMMON

26:24 3D Command Opcode

Default Value: 0h GFXPIPE_PIPELINED

23:16 3D Command Sub Opcode

Default Value: 03h STATE_PREFETCH

15:8 Reserved

Project: All

Format: MBZ

7:0 DWord Length

Project: All

Format: =n Total Length - 2

Value Name Description

0h DWORD_COUNT_n [Default] Excludes DWord (0,1)

1 31:6 Prefetch Pointer

Project: All

Format: GraphicsAddress[31:6]

Specifies the 64-byte aligned address to start the prefetch from. This pointer is an absolute virtual

address, it is not relative to any base pointer.

5:3 Reserved

Project: All

Format: MBZ

2:0 Prefetch Count

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 6/21/2012 31

STATE_PREFETCH

Project: All

Format: U3-1 count of cache lines

Indicates the number of contiguous 64-byte cache lines that will be prefetched.

Value Name Description

[0,7] indicating a count of [1,8]

3.7 System Thread Configuration

3.7.1 STATE_SIP

STATE_SIP

Project: All

Length Bias: 2

The STATE_SIP command specifies the starting instruction location of the System Routine that is shared by all

threads in execution.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

28:27 Command SubType

Default Value: 0h GFXPIPE_COMMON

26:24 3D Command Opcode

Default Value: 1h GFXPIPE_NONPIPELINED

23:16 3D Command Sub Opcode

Default Value: 02h STATE_SIP

15:8 Reserved

Project: All

Format: MBZ

7:0 DWord Length

Project: All

Format: =n Total Length - 2

Value Name Description Project

0h DWORD_COUNT_n [Default] Excludes DWord (0,1)

1 31:4 System Instruction Pointer (SIP)

Format: InstructionBaseOffset[31:4]Kernel

Specifies the instruction address of the system routine associated with the current context as a 128-bit

granular offset from the Instruction Base Address. SIP is shared by all threads in execution. The

address specifies the double quadword aligned instruction location.

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 5/29/2012 32

STATE_SIP

3:0 Reserved

Project: All

Format: MBZ

3.8 Command Ordering Rules

There are several restrictions regarding the ordering of commands issued to the GPE. This subsection
describes these restrictions along with some explanation of why they exist. Refer to the various command
descriptions for additional information.

The following flowchart illustrates an example ordering of commands which can be used to perform
activity within the GPE.

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 6/21/2012 33

3.8.1 PIPELINE_SELECT

The previously-active pipeline needs to be flushed via the MI_FLUSH command immediately before

switching to a different pipeline via use of the PIPELINE_SELECT command. Refer to GPE Function IDs

for details on the PIPELINE_SELECT command.

PIPELINE_SELECT

Length Bias: 1

The PIPELINE_SELECT command is used to specify which GPE pipeline (3D or Media or GPGPU) is to be

considered the "current" active pipeline. Issuing 3D-pipeline-specific commands when the Media pipeline is selected,

or vice versa, is UNDEFINED. This command causes the URB deallocation of the previously selected pipe. For

example, switching from the 3D pipe to the Media pipe (either within or between contexts) will cause the CS to send

a "Deallocating Flush" down the 3D pipe, and each 3D FF will start a URB deallocation sequence after the current

tasks are done. Then, the WM will de-reference the current Constant URB Entry, and all 3D URB entries will be

deallocated (after some north bus delay) , which allows the CS to set the URB fences for the media pipe. The

process relatively is the same for switching from Media to 3D pipes. The deallocating flush goes down the Media

pipe, causing each Media function to start a URB deallocation sequence, and the WM will de-reference the current

Constant URB entry and all media entries will be de-allocated to allow the CS to set the 3D pipe.

Programming Notes Project

Software must ensure the current pipeline is flushed via an MI_FLUSH or PIPE_CONTROL prior to the

execution of PIPELINE_SELECT.

Software must send a dummy DRAW after every MI_SET_CONTEXT and after any PIPELINE_SELECT that

is enabling 3D mode. A dummy draw is a 3DPRIMITIVE command with Indirect Parameter Enable set to 0,

UAV Coherency Required set to 0, Predicate Enable set to 0, End Offset Enable set to 0, and Vertex Count

Per Instance set to 0. All other parameters are a don't care.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE

28:27 Command SubType

Default Value: 1h GFXPIPE_COMMON

26:24 3D Command Opcode

Value Name Project

1h GFXPIPE_NONPIPELINED [Default]

23:16 3D Command Sub Opcode

Default Value: 04h GFXPIPE

15:2 Reserved

1:0 Pipeline Select

Value Name Description

0 3D 3D pipeline is selected

1 Media Media pipeline is selected (Includes HD Video playback and generic media

workloads)

3.8.2 PIPE_CONTROL

The PIPE_CONTROL command does not require URB fencing/allocation to have been performed, nor

does it rely on any other pipeline state. It is intended to be used on both the 3D pipe and the Media pipe.

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 5/29/2012 34

It has special optimizations to support the pipelining capability in the 3D pipe which do not apply to the

Media pipe.

3.8.3 URB-Related State-Setting Commands

Several commands are used (among other things) to set state variables used in URB entry allocation ---

specifically, the Number of URB Entries and the URB Entry Allocation Size state variables associated

with various pipeline units. These state variables must be set-up prior to the issuing of a URB_FENCE

command. (See the subsection on URB_FENCE.)

CS_URB_STATE (only) specifies these state variables for the common CS FF unit.

3DSTATE_PIPELINED_POINTERs sets the state variables for FF units in the 3D Pipeline, and

MEDIA_STATE_POINTERS sets them for the Media pipeline. Depending on which pipeline is currently

active, only one of these commands needs to be used. Note that these commands can also be reissued

at a later time to change other state variables, though if a change is made to (a) any Number of URB

Entries and the URB Entry Allocation Size state variables or (b) the Maximum Number of Threads

state for the GS or CLIP FF units, a URB_FENCE command must follow.

3.8.4 Common Pipeline State-Setting Commands

The following commands are used to set state common to both the 3D and Media pipelines. This state is

comprised of CS FF unit state, non-pipelined global state (EU, etc.), and Sampler shared-function state.

 STATE_BASE_ADDRESS

 STATE_SIP

 3DSTATE_SAMPLER_PALETTE_LOAD

 3DSTATE_CHROMA_KEY

The state variables associated with these commands must be set appropriately prior to initiating activity

within a pipeline (i.e., 3DPRIMITIVE or MEDIA_OBJECT).

3.8.5 3D Pipeline-Specific State-Setting Commands

The following commands are used to set state specific to the 3D Pipeline.

 3DSTATE_PIPELINED_POINTERS

 3DSTATE_BINDING_TABLE_POINTERS

 3DSTATE_VERTEX_BUFFERS

 3DSTATE_VERTEX_ELEMENTS

 3DSTATE_INDEX_BUFFERS

 3DSTATE_VF_STATISTICS

 3DSTATE_DRAWING_RECTANGLE

 3DSTATE_CONSTANT_COLOR

 3DSTATE_DEPTH_BUFFER

 3DSTATE_POLY_STIPPLE_OFFSET

 3DSTATE_POLY_STIPPLE_PATTERN

 3DSTATE_LINE_STIPPLE

 3DSTATE_GLOBAL_DEPTH_OFFSET

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 6/21/2012 35

The state variables associated with these commands must be set appropriately prior to issuing

3DPRIMITIVE.

3.8.6 Media Pipeline-Specific State-Setting Commands

The following command is used to set state specific to the Media pipeline:

 MEDIA_STATE_POINTERS

The state variables associated with this command must be set appropriately prior to issuing

MEDIA_OBJECT.

3.8.7 CONSTANT_BUFFER (CURBE Load)

The CONSTANT_BUFFER command is used to load constant data into the CURBE URB entries owned

by the CS unit. In order to write into the URB, CS URB fencing and allocation must have been

established. Therefore, CONSTANT_BUFFER can only be issued after CS_URB_STATE and

URB_FENCE commands have been issued, and prior to any other pipeline processing (i.e.,

3DPRIMITIVE or MEDIA_OBJECT). See the definition of CONSTANT_BUFFER for more details.

Modifying the CS URB allocation via URB_FENCE invalidates any previous CURBE entries. Therefore

software must subsequently [re]issue a CONSTANT_BUFFER command before CURBE data can be

used in the pipeline.

3.8.8 3DPRIMITIVE

Before issuing a 3DPRIMITIVE command, all state (with the exception of MEDIA_STATE_POINTERS)

needs to be valid. Thus the commands used to assigned that state must be issued before issuing

3DPRIMITIVE.

3.8.9 MEDIA_OBJECT

Before issuing a MEDIA_OBJECT command, all state (with the exception of 3D-pipeline-specific state)

needs to be valid. Therefore the commands used to set this state need to have been issued at some point

prior to the issue of MEDIA_OBJECT.

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 5/29/2012 36

4. Video Codec Engine
The parallel Video Codec Engine (VCE) is a fixed function video decoder and encoder engine. It is also

referred to as the multi-format codec (MFX) engine, as a unified fixed function pipeline is implemented to

support multiple video coding standards such as MPEG2, VC1 and AVC.

 VCS – VCE Command Streamer unit (also referred to as BCS)

 BSD – Bitstream Decoder unit

 VDS – Video Dispatcher unit

 VMC – Video Motion Compensation unit

 VIP – Video Intra Prediction unit

 VIT – Video Inverse Transform unit

 VLF – Video Loop Filter unit

 VFT – Video Forward Transform unit (encoder only)

 BSC – Bitstream Encoder unit (encoder only)

4.1 Video Command Streamer (VCS)

VCS (Video Command Streamer) unit is primarily served as the software programming interface between

the O/S driver and the MFD Engine. It is responsible for fetching, decoding, and dispatching of data

packets (Media Commands with the header DW removed) to the front end interface module of MFX

Engine.

Its logic functions include

 MMIO register programming interface.

 Management of the Head pointer for the Ring Buffer.

 Decode of ring data and sending it to the appropriate destination; AVC, VC1 or MPEG2 engine

 Handling of user interrupts and ring context switch interrupt.

 Flushing the MFX Engine

 Handle NOP

The register programming (RM) bus is a dword interface bus that is driven by the Gx Command Streamer.

The VCS unit will only claim memory mapped I/O cycles that are targeted to its range of 0x4000 to

0x4FFFF. The Gx and MFX Engines use semaphore to synchronize their operations.

Any interaction and control protocols between the VCS and Gx CS in IronLake will remain the same as in

Cantiga. But in Gesher, VCS will operate completely independent of the Gx CS.

The simple sequence of events is as follows: a ring (say PRB0) is programmed by a memory-mapped

register write cycle. The DMA inside VCS is kicked off. The DMA fetches commands from memory based

on the starting address and head pointer. The DMA requests cache lines from memory (one cacheline CL

at a time). There is guaranteed space in the DMA FIFO (16 CL deep) for data coming back from memory.

The DMA control logic has copies of the head pointer and the tail pointer. The DMA increments the head

pointer after making requests for ring commands. Once the DMA copy of the head pointer becomes equal

to the tail pointer, the DMA stops requesting.

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 6/21/2012 37

The parser starts executing once the DMA FIFO has valid commands. All the commands have a header

dword packet. Based on the encoding in the header packet, the command may be targeted towards

AVC/VC1/MPEG2 engine or the command parser. After execution of every command, the actual head

pointer is updated. The ring is considered empty when the head pointer becomes equal to the tail pointer.

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 5/29/2012 38

5. Graphics Command Formats

5.1 Command Formats

This section describes the general format of the graphics device commands.

Graphics commands are defined with various formats. The first DWord of all commands is called the

header DWord. The header contains the only field common to all commands -- the client field that

determines the device unit that will process the command data. The Command Parser examines the

client field of each command to condition the further processing of the command and route the command

data accordingly.

Some devices include two Command Parsers, each controlling an independent processing engine. These

will be referred to in this document as the Render Command Parser (RCP) and the Video Codec

Command Parser (VCCP).

Valid client values for the Render Command Parser are:

Client # Client

0 Memory Interface (MI_xxx)

1
Miscellaneous

2 2D Rendering (xxx_BLT_xxx)

3 Graphics Pipeline (3D and Media)

4-7 Reserved

Valid client values for the Video Codec Command Parser are:

Client # Client

0 Memory Interface (MI_xxx)

1-2 Reserved

3 AVC and VC1 State and Object Commands

4-7 Reserved

Graphics commands vary in length, though are always multiples of DWords. The length of a command is

either:

 Implied by the client/opcode

 Fixed by the client/opcode yet included in a header field (so the Command Parser

explicitly knows how much data to copy/process)

 Variable, with a field in the header indicating the total length of the command

Note that command sequences require QWord alignment and padding to QWord length to be placed in

Ring and Batch Buffers.

The following subsections provide a brief overview of the graphics commands by client type provides a

diagram of the formats of the header DWords for all commands. Following that is a list of command

mnemonics by client type.

5.1.1 Memory Interface Commands

Memory Interface (MI) commands are basically those commands which do not require processing by the

2D or 3D Rendering/Mapping engines. The functions performed by these commands include:

Intel Confidential 6/21/2012 39

Control of the command stream (e.g., Batch Buffer commands, breakpoints, ARB On/Off, etc.)

Hardware synchronization (e.g., flush, wait-for-event)

Software synchronization (e.g., Store DWORD, report head)

Graphics buffer definition (e.g., Display buffer, Overlay buffer)

Miscellaneous functions

Refer to the Memory Interface Commands chapter for a description of these commands.

5.1.2 2D Commands

The 2D commands include various flavors of BLT operations, along with commands to set up BLT engine

state without actually performing a BLT. Most commands are of fixed length, though there are a few

commands that include a variable amount of "inline" data at the end of the command.

See the 2D Commands chapter for a description of these commands.

5.1.3 3D/Media Commands

The 3D/Media commands are used to program the graphics pipelines for 3D or media operations.

Refer to the 3D chapter for a description of the 3D state and primitive commands and the Media chapter

for a description of the media-related state and object commands.

5.1.4 Video Codec Commands

5.1.4.1 MFX Commands

The MFX (MFD for decode and MFC for encode) commands are used to program the multi-format codec

engine attached to the Video Codec Command Parser. See the MFD and MFC chapters for a description

of these commands.

5.1.5 Command Header

RCP Command Header Format

Bits

TYPE 31:29 28:24 23 22 21:0

Memory

Interface

(MI)

000
Opcode

00h – NOP

0Xh – Single DWord

Commands

1Xh – Two+ DWord Commands

2Xh – Store Data Commands

3Xh – Ring/Batch Buffer Cmds

Identification No./DWord Count

Command Dependent Data

5:0 – DWord Count

5:0 – DWord Count

5:0 – DWord Count

Reserved 001 Opcode – 11111
23:19

Sub Opcode 00h –

18:16

Re-served

15:0

DWord Count

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 5/29/2012 40

Bits

TYPE 31:29 28:24 23 22 21:0

01h

2D 010 Opcode
Command Dependent Data

4:0 – DWord Count

TYPE 31:29 28:27 26:24 23:16 15:8 7:0

Common 011 00 Opcode – 000 Sub Opcode Data DWord Count

Common (NP) 011 00 Opcode – 001 Sub Opcode Data DWord Count

Reserved 011 00 Opcode – 010 – 111

Single Dword

Command

011 01 Opcode – 000 – 001 Sub Opcode N/A

Reserved 011 01 Opcode – 010 – 111

Media State 011 10 Opcode – 000 Sub Opcode Dword Count

Media Object 011 10 Opcode – 001 – 010 Sub Opcode Dword Count

Reserved 011 10 Opcode – 011 – 111

3DState 011 11 Opcode – 000 Sub Opcode Data DWord Count

3DState (NP) 011 11 Opcode – 001 Sub Opcode Data DWord Count

PIPE_Control 011 11 Opcode – 010 Data DWord Count

3DPrimitive 011 11 Opcode – 011 Data DWord Count

Reserved 011 11 Opcode – 100 – 111

Reserved 100 XX

Reserved 101 XX

Reserved 110 XX

Fulsim2
111 XX

Notes:

1. The qualifier “NP” indicates that the state variable is non-pipelined and the render pipe is flushed
before such a state variable is updated. The other state variables are pipelined (default).

2. [31:29] == '111' is reserved for fulsim command decodings. It is invalid for HW to parse this
command.

VCCP Command Header Format

Bits

TYPE 31:29 28:24 23 22 21:0

Memory

Interface

(MI)

000
Opcode

00h – NOP

0Xh – Single DWord Commands

1Xh – Reserved

2Xh – Store Data Commands

3Xh – Ring/Batch Buffer Cmds

Identification No./DWord Count

Command Dependent Data

5:0 – DWord Count

5:0 – DWord Count

5:0 – DWord Count

TYPE 31:29 28:27 26:24 23:16 15:0

Reserved 011 00 XXX XX

MFX Single DW 011 01 000 Opcode: 0h 0

Reserved 011 01 1XX

Reserved 011 10 0XX

AVC State 011 10 100 Opcode: 0h – 4h DWord Count

Intel Confidential 6/21/2012 41

Bits

TYPE 31:29 28:24 23 22 21:0

AVC Object 011 10 100 Opcode: 8h DWord Count

VC1 State 011 10 101 Opcode: 0h – 4h DWord Count

VC1 Object 011 10 101 Opcode: 8h DWord Count

Reserved 011 10 11X

Reserved 011 11 XXX

TYPE 31:29 28:27 26:24 23:21 20:16 15:0

MFX Common 011 10 000 000 subopcode DWord Count

Reserved 011 10 000 001-111 subopcode DWord Count

AVC Common 011 10 001 000 subopcode DWord Count

AVC Dec 011 10 001 001 subopcode DWord Count

AVC Enc 011 10 001 010 subopcode DWord Count

Reserved 011 10 001 011-111 subopcode DWord Count

Reserved (for VC1 Common) 011 10 010 000 subopcode DWord Count

VC1 Dec 011 10 010 001 subopcode DWord Count

Reserved (for VC1 Enc) 011 10 010 010 subopcode DWord Count

Reserved 011 10 010 011-111 subopcode DWord Count

Reserved (MPEG2 Common) 011 10 011 000 subopcode DWord Count

MPEG2 Dec 011 10 011 001 subopcode DWord Count

Reserved (for MPEG2 Enc) 011 10 011 010 subopcode DWord Count

Reserved 011 10 011 011-111 subopcode DWord Count

Reserved 011 10 100-111 XXX

5.2 Command Map

This section provides a map of the graphics command opcodes.

5.2.1 Memory Interface Command Map

All the following commands are defined in Memory Interface Commands.

Memory Interface Commands for RCP

Opcode
(28:23) Command

Pipe

Render

Blitter

1-DWord

00h MI_NOOP All
All

All All

01h

02h MI_USER_INTERRUPT All
All

All All

03h MI_WAIT_FOR_EVENT All
All

All All

04h All

05h MI_ARB_CHECK All
All

All All

06h

07h MI_REPORT_HEAD All
All

All All

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 5/29/2012 42

Opcode
(28:23) Command

Pipe

Render

Blitter

1-DWord

08h
MI_ARB_ON_OFF

0Ah MI_BATCH_BUFFER_END All
All

All All

0Bh MI_SUSPEND_FLUSH

0Ch MI_PREDICATE

0Dh MI_TOPOLOGY_FILTER

0Eh MI_SET_APPID

2+ DWord

10h Reserved

11h
Reserved

12h
Reserved

13h
Reserved

14h
MI_DISPLAY_FLIP

All

15h Reserved

16h
MI_SEMAPHORE_MBOX

17h Reserved

18h MI_SET_CONTEXT All

19h

1Ah MI_MATH

1Dh–1Fh Reserved

Store Data

20h MI_STORE_DATA_IMM All All All All

21h MI_STORE_DATA_INDEX All All All All

22h MI_LOAD_REGISTER_IMM All All All All

23h
MI_UPDATE_GTT

24h MI_STORE_REGISTER_MEM All All All All

25h

26h
MI_FLUSH_DW

27h
MI_CLFLUSH

28h
MI_REPORT_PERF_COUNT

29h
MI_LOAD_REGISTER_MEM

2Ah

2Bh

2Ch

2Dh

Intel Confidential 6/21/2012 43

Opcode
(28:23) Command

Pipe

Render

Blitter

1-DWord

2Eh

2Fh

Ring/Batch Buffer

30h Reserved

31h MI_BATCH_BUFFER_START All All All All

32h–35h Reserved

36h
MI_CONDITIONAL_BATCH_BUFFER_

END

37h–3Fh Reserved

5.2.2 2D Command Map

All the following commands are defined in Blitter Instructions.

2D Command Map

Opcode (28:22) Command

00h Reserved

01h XY_SETUP_BLT

02h Reserved

03h XY_SETUP_CLIP_BLT

04h-10h Reserved

11h XY_SETUP_MONO_PATTERN_SL_BLT

12h-23h Reserved

24h XY_PIXEL_BLT

25h XY_SCANLINES_BLT

26h XY_TEXT_BLT

27h-30h Reserved

31h XY_TEXT_IMMEDIATE_BLT

32h-3Fh Reserved

40h COLOR_BLT

41h-42h Reserved

43h SRC_COPY_BLT

44h-4Fh Reserved

50h XY_COLOR_BLT

51h XY_PAT_BLT

52h XY_MONO_PAT_BLT

53h XY_SRC_COPY_BLT

54h XY_MONO_SRC_COPY_BLT

55h XY_FULL_BLT

56h XY_FULL_MONO_SRC_BLT

57h XY_FULL_MONO_PATTERN_BLT

58h XY_FULL_MONO_PATTERN_MONO_SRC_BLT

59h XY_MONO_PAT_FIXED_BLT

5Ah-70h Reserved

71h XY_MONO_SRC_COPY_IMMEDIATE_BLT

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 5/29/2012 44

Opcode (28:22) Command

72h XY_PAT_BLT_IMMEDIATE

73h XY_SRC_COPY_CHROMA_BLT

74h XY_FULL_IMMEDIATE_PATTERN_BLT

75h XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT

76h XY_PAT_CHROMA_BLT

77h XY_PAT_CHROMA_BLT_IMMEDIATE

78h-7Fh Reserved

5.2.3 3D/Media Command Map

For all commands listed in 6.2.3, 3D/Media Command Map, the Pipeline Type (bits 28:27) is 3h,

indicating the 3D Pipeline.

3D/Media Command Map

Opcode
Bits 26:24

Sub Opcode
Bits 23:16 Command Definition Chapter

0h 03h Reserved

0h 04h
3DSTATE_CLEAR_PARAMS

3D Pipeline

0h 05h
3DSTATE_DEPTH_BUFFER

3D Pipeline

0h 06h
3DSTATE_STENCIL_BUFFER

3D Pipeline

0h 07h
3DSTATE_HIER_DEPTH_BUFFER

3D Pipeline

0h 08h 3DSTATE_VERTEX_BUFFERS Vertex Fetch

0h 09h 3DSTATE_VERTEX_ELEMENTS Vertex Fetch

0h 0Ah 3DSTATE_INDEX_BUFFER Vertex Fetch

0h 0Bh 3DSTATE_VF_STATISTICS Vertex Fetch

0h 0Ch Reserved

0h 0Dh
3DSTATE_VIEWPORT_STATE_POINTERS

3D Pipeline

0h 10h
3DSTATE_VS

Vertex Shader

0h 11h
3DSTATE_GS

Geometry Shader

0h 12h
3DSTATE_CLIP

Clipper

0h 13h
3DSTATE_SF

Strips & Fans

0h 14h
3DSTATE_WM

Windower

0h 15h
3DSTATE_CONSTANT_VS

Vertex Shader

0h 16h
3DSTATE_CONSTANT_GS

Geometry Shader

0h 17h
3DSTATE_CONSTANT_PS

Windower

0h 18h
3DSTATE_SAMPLE_MASK

Windower

Intel Confidential 6/21/2012 45

Opcode
Bits 26:24

Sub Opcode
Bits 23:16 Command Definition Chapter

0h 19h
3DSTATE_CONSTANT_HS

Hull Shader

0h 1Ah
3DSTATE_CONSTANT_DS

Domain Shader

0h 1Bh
3DSTATE_HS

Hull Shader

0h 1Ch
3DSTATE_TE

Tesselator

0h 1Dh
3DSTATE_DS

Domain Shader

0h 1Eh
3DSTATE_STREAMOUT

HW Streamout

0h 1Fh
3DSTATE_SBE

Setup

0h 20h
3DSTATE_PS

Pixel Shader

0h 21h Reserved

0h 22h
3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP

Strips & Fans

0h 23h
3DSTATE_VIEWPORT_STATE_POINTERS_CC

Windower

0h 24h
3DSTATE_BLEND_STATE_POINTERS

Pixel Shader

0h 25h
3DSTATE_DEPTH_STENCIL_STATE_POINTERS

Pixel Shader

0h 26h
3DSTATE_BINDING_TABLE_POINTERS_VS

Vertex Shader

0h 27h
3DSTATE_BINDING_TABLE_POINTERS_HS

Hull Shader

0h 28h
3DSTATE_BINDING_TABLE_POINTERS_DS

Domain Shader

0h 29h
3DSTATE_BINDING_TABLE_POINTERS_GS

Geometry Shader

0h 2Ah
3DSTATE_BINDING_TABLE_POINTERS_PS

Pixel Shader

0h 2Bh
3DSTATE_SAMPLER_STATE_POINTERS_VS

Vertex Shader

0h 2Ch
3DSTATE_SAMPLER_STATE_POINTERS_HS

Hull Shader

0h 2Dh
3DSTATE_SAMPLER_STATE_POINTERS_DS

Domain Shader

0h 2Eh
3DSTATE_SAMPLER_STATE_POINTERS_GS

Geometry Shader

0h 2Fh Reserved

0h 30h
3DSTATE_URB_VS

Vertex Shader

0h 31h
3DSTATE_URB_HS

Hull Shader

0h 32h
3DSTATE_URB_DS

Domain Shader

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 5/29/2012 46

Opcode
Bits 26:24

Sub Opcode
Bits 23:16 Command Definition Chapter

0h 33h
3DSTATE_URB_GS

Geometry Shader

0h 48h-4Bh
Reserved

0h 4Ch 3DSTATE_WM_CHROMA_KEY Windower

0h 4Dh 3DSTATE_PS_BLEND Windower

0h 4Eh 3DSTATE_WM_DEPTH_STENCIL Windower

0h 4Fh 3DSTATE_PS_EXTRA Windower

0h 50h 3DSTATE_RASTER Strips & Fans

0h 51h 3DSTATE_SBE_SWIZ Strips & Fans

0h 52h 3DSTATE_WM_HZ_OP Windower

0h 53h 3DSTATE_INT (internally generated state) 3D Pipeline

0h 54h Reserved

0h 56h-FFh Reserved

1h 00h 3DSTATE_DRAWING_RECTANGLE Strips & Fans

1h 02h 3DSTATE_SAMPLER_PALETTE_LOAD0 Sampling Engine

1h 03h Reserved

1h 04h 3DSTATE_CHROMA_KEY Sampling Engine

1h 05h
Reserved

1h 06h 3DSTATE_POLY_STIPPLE_OFFSET Windower

1h 07h 3DSTATE_POLY_STIPPLE_PATTERN Windower

1h 08h 3DSTATE_LINE_STIPPLE Windower

1h 0Ah
3DSTATE_AA_LINE_PARAMS

Windower

1h 0Bh
3DSTATE_GS_SVB_INDEX

Geometry Shader

1h 0Ch
3DSTATE_SAMPLER_PALETTE_LOAD1

Sampling Engine

1h 0Dh
3DSTATE_MULTISAMPLE

Windower

1h 0Eh
3DSTATE_STENCIL_BUFFER

Windower

1h 0Fh
3DSTATE_HIER_DEPTH_BUFFER

Windower

1h 10h
3DSTATE_CLEAR_PARAMS

Windower

1h 11h
3DSTATE_MONOFILTER_SIZE

Sampling Engine

1h 12h
3DSTATE_PUSH_CONSTANT_ALLOC_VS

Vertex Shader

1h 13h
3DSTATE_PUSH_CONSTANT_ALLOC_HS

Hull Shader

1h 14h
3DSTATE_PUSH_CONSTANT_ALLOC_DS

Domain Shader

1h 15h
3DSTATE_PUSH_CONSTANT_ALLOC_GS

Geometry Shader

1h 16h
3DSTATE_PUSH_CONSTANT_ALLOC_PS

Pixel Shader

1h 17h 3DSTATE_SO_DECL_LIST HW Streamout

1h 18h 3DSTATE_SO_BUFFER HW Streamout

Intel Confidential 6/21/2012 47

Opcode
Bits 26:24

Sub Opcode
Bits 23:16 Command Definition Chapter

1h 1Ch 3DSTATE_SAMPLE_PATTERN Windower

1h 1Dh 3DSTATE_URB_CLEAR 3D Pipeline

1h 1Eh-FFh Reserved

2h 00h PIPE_CONTROL 3D Pipeline

2h 01h-FFh Reserved

3h 00h 3DPRIMITIVE Vertex Fetch

3h 01h-FFh Reserved

4h-7h 00h-FFh Reserved

Pipeline Type (28:27) Opcode
Sub

Opcode Command
Definition
Chapter

Common (pipelined)
Bits

26:24 Bits 23:16

0h 0h 03h STATE_PREFETCH Graphics

Processing

Engine

0h 0h 04h-FFh Reserved

Common (non-
pipelined)

Bits
26:24 Bits 23:16

0h 1h 00h Reserved n/a

0h 1h 01h STATE_BASE_ADDRESS Graphics

Processing

Engine

0h 1h 02h STATE_SIP Graphics

Processing

Engine

0h 1h 03h
SWTESS BASE ADDRESS

3D Pipeline

0h 1h 04h GPGPU CSR BASE ADDRESS Graphics

Processing

Engine

0h 1h 04h–FFh Reserved n/a

Reserved
Bits

26:24 Bits 23:16

0h 2h–7h XX Reserved n/a

5.2.4 Video Codec Command Map

5.2.4.1 MFX Common Command Map

MFX state commands support direct state model and indirect state model. Recommended usage of

indirect state model is provided here (as a software usage guideline).

Pipeline Type

(28:27)

Opcode

(26:24)

SubopA

(23:21)

SubopB

(20:16)

Command Chapter Recommended

Indirect State

Pointer Map

Interruptable

?

MFX Common

(State)

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 5/29/2012 48

Pipeline Type

(28:27)

Opcode

(26:24)

SubopA

(23:21)

SubopB

(20:16)

Command Chapter Recommended

Indirect State

Pointer Map

Interruptable

?

2h 0h 0h 0h MFX_PIPE_MODE_SELEC

T

MFX IMAGE n/a

2h 0h 0h 1h MFX_SURFACE_STATE MFX IMAGE n/a

2h 0h 0h 2h MFX_PIPE_BUF_ADDR_S

TATE

MFX IMAGE n/a

2h 0h 0h 3h MFX_IND_OBJ_BASE_AD

DR_STATE

MFX IMAGE n/a

2h 0h 0h 4h MFX_BSP_BUF_BASE_AD

DR_STATE

MFX IMAGE n/a

2h 0h 0h 5h MFX IMAGE n/a

2h 0h 0h 6h MFX_ STATE_POINTER MFX IMAGE n/a

2h 0h 0h 7-8h Reserved n/a n/a n/a

MFX Common

(Object)

2h 0h 1h 9h MFD_ IT_OBJECT MFX n/a Yes

2h 0h 0h 4-1Fh Reserved n/a n/a n/a

AVC Common

(State)

2h 1h 0h 0h MFX_AVC_IMG_STATE MFX IMAGE n/a

2h 1h 0h 1h MFX_AVC_QM_STATE MFX IMAGE n/a

2h 1h 0h 2h MFX_AVC_DIRECTMODE

_STATE

MFX SLICE n/a

2h 1h 0h 3h MFX_AVC_SLICE_STATE MFX SLICE n/a

2h 1h 0h 4h MFX_AVC_REF_IDX_STA

TE

MFX SLICE n/a

2h 1h 0h 5h MFX_AVC_WEIGHTOFFS

ET_STATE

MFX SLICE n/a

2h 1h 0h 6-1Fh Reserved n/a n/a n/a

AVC Dec

2h 1h 1h 0-7h Reserved n/a n/a n/a

2h 1h 1h 8h MFD_AVC_BSD_OBJECT MFX n/a No

2h 1h 1h 9-1Fh Reserved n/a n/a n/a

AVC Enc

2h 1h 2h 0-1h Reserved n/a n/a n/a

2h 1h 2h 2h MFC_AVC_FQM_STATE MFX IMAGE n/a

2h 1h 2h 3-7h Reserved n/a n/a n/a

2h 1h 2h 8h MFC_AVC_PAK_INSERT_

OBJECT

MFX n/a n/a

2h 1h 2h 9h MFC_AVC_PAK_OBJECT MFX n/a Yes

2h 1h 2h A-1Fh Reserved n/a n/a n/a

2h 1h 2h 0-1Fh Reserved n/a n/a n/a

VC1 Common

2h 2h 0h 0h MFX_VC1_PIC_STATE MFX IMAGE n/a

2h 2h 0h 1h MFX_VC1_PRED_PIPE_S MFX IMAGE n/a

Intel Confidential 6/21/2012 49

Pipeline Type

(28:27)

Opcode

(26:24)

SubopA

(23:21)

SubopB

(20:16)

Command Chapter Recommended

Indirect State

Pointer Map

Interruptable

?

TATE

2h 2h 0h 2h MFX_VC1_DIRECTMODE

_STATE

MFX SLICE n/a

2h 2h 0h 2-1Fh Reserved n/a n/a n/a

VC1 Dec

2h 2h 1h 0-7h Reserved n/a n/a n/a

2h 2h 1h 8h MFD_VC1_BSD_OBJECT MFX n/a Yes

2h 2h 1h 9-1Fh Reserved n/a n/a n/a

VC1 Enc

2h 2h 2h 0-1Fh Reserved n/a n/a n/a

MPEG2Comm

on

2h 3h 0h 0h MFX_MPEG2_PIC_STATE MFX IMAGE n/a

2h 3h 0h 1h MFX_MPEG2_QM_STATE MFX IMAGE n/a

2h 3h 0h 2-1Fh Reserved n/a n/a n/a

MPEG2 Dec

2h 3h 1h 1-7h Reserved n/a n/a n/a

2h 3h 1h 8h MFD_MPEG2_BSD_OBJE

CT

MFX n/a Yes

2h 3h 1h 9-1Fh Reserved n/a n/a n/a

MPEG2 Enc

2h 3h 2h 0-1Fh Reserved n/a n/a n/a

The Rest

2h 4-5h, 7h x x Reserved n/a n/a n/a

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 5/29/2012 50

6. Memory Data Formats
This chapter describes the attributes associated with the memory-resident data objects operated on by

the graphics pipeline. This includes object types, pixel formats, memory layouts, and rules/restrictions

placed on the dimensions, physical memory location, pitch, alignment, etc. with respect to the specific

operations performed on the objects.

6.1 Memory Object Overview

Any memory data accessed by the device is considered part of a memory object of some memory object

type.

6.1.1 Memory Object Types

The following table lists the various memory objects types and an indication of their role in the system.

Memory Object
Type Role

Graphics Translation

Table (GTT)

Contains PTEs used to translate “graphics addresses” into physical memory addresses.

Hardware Status

Page

Cached page of sysmem used to provide fast driver synchronization.

Logical Context

Buffer

Memory areas used to store (save/restore) images of hardware rendering contexts. Logical

contexts are referenced via a pointer to the corresponding Logical Context Buffer.

Ring Buffers Buffers used to transfer (DMA) instruction data to the device. Primary means of controlling

rendering operations.

Batch Buffers Buffers of instructions invoked indirectly from Ring Buffers.

State Descriptors Contains state information in a prescribed layout format to be read by hardware. Many different

state descriptor formats are supported.

Vertex Buffers Buffers of 3D vertex data indirectly referenced through “indexed” 3D primitive instructions.

VGA Buffer

(Must be mapped

UC on PCI)

Graphics memory buffer used to drive the display output while in legacy VGA mode.

Display Surface Memory buffer used to display images on display devices.

Overlay Surface Memory buffer used to display overlaid images on display devices.

Overlay Register,

Filter Coefficients

Buffer

Memory area used to provide double-buffer for Overlay register and filter coefficient loading.

Cursor Surface Hardware cursor pattern in memory.

2D Render Source Surface used as primary input to 2D rendering operations.

2D Render R-M-W

Destination

2D rendering output surface that is read in order to be combined in the rendering function.

Destination surfaces that accessed via this Read-Modify-Write mode have somewhat different

restrictions than Write-Only Destination surfaces.

2D Render Write-

Only Destination

2D rendering output surface that is written but not read by the 2D rendering function.

Destination surfaces that accessed via a Write-Only mode have somewhat different restrictions

than Read-Modify-Write Destination surfaces.

2D Monochrome 1 bpp surfaces used as inputs to 2D rendering after being converted to foreground/background

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 6/21/2012 51

Memory Object
Type Role

Source colors.

2D Color Pattern 8x8 pixel array used to supply the “pattern” input to 2D rendering functions.

DIB “Device Independent Bitmap” surface containing “logical” pixel values that are converted (via

LUTs) to physical colors.

3D Color Buffer Surface receiving color output of 3D rendering operations. May also be accessed via R-M-W

(aka blending). Also referred to as a Render Target.

3D Depth Buffer Surface used to hold per-pixel depth and stencil values used in 3D rendering operations.

Accessed via RMW.

3D Texture Map Color surface (or collection of surfaces) which provide texture data in 3D rendering operations.

“Non-3D” Texture
Surface read by Texture Samplers, though not in normal 3D rendering operations (e.g., in video

color conversion functions).

Motion Comp

Surfaces

These are the Motion Comp reference pictures.

Motion Comp

Correction Data

Buffer

This is Motion Comp intra-coded or inter-coded correction data.

6.2 Channel Formats

6.2.1 Unsigned Normalized (UNORM)

An unsigned normalized value with n bits is interpreted as a value between 0.0 and 1.0. The minimum

value (all 0’s) is interpreted as 0.0, the maximum value (all 1’s) is interpreted as 1.0. Values in between

are equally spaced. For example, a 2-bit UNORM value would have the four values 0, 1/3, 2/3, and 1.

If the incoming value is interpreted as an n-bit integer, the interpreted value can be calculated by dividing

the integer by 2n-1.

6.2.2 Gamma Conversion (SRGB)

Gamma conversion is only supported on UNORM formats. If this flag is included in the surface format

name, it indicates that a reverse gamma conversion is to be done after the source surface is read, and a

forward gamma conversion is to be done before the destination surface is written.

6.2.3 Signed Normalized (SNORM)

A signed normalized value with n bits is interpreted as a value between -1.0 and +1.0. If the incoming

value is interpreted as a 2’s-complement n-bit signed integer, the interpreted value can be calculated by

dividing the integer by 2n-1-1. Note that the most negative value of -2n-1 will result in a value slightly smaller

than -1.0. This value is clamped to -1.0, thus there are two representations of -1.0 in SNORM format.

6.2.4 Unsigned Integer (UINT/USCALED)

The UINT and USCALED formats interpret the source as an unsigned integer value with n bits with a

range of 0 to 2n-1.

The UINT formats copy the source value to the destination (zero-extending if required), keeping the value

as an integer.

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 5/29/2012 52

The USCALED formats convert the integer into the corresponding floating point value (e.g., 0x03 --> 3.0f).

For 32-bit sources, the value is rounded to nearest even.

6.2.5 Signed Integer (SINT/SSCALED)

A signed integer value with n bits is interpreted as a 2’s complement integer with a range of -2n-1 to +2n-1-1.

The SINT formats copy the source value to the destination (sign-extending if required), keeping the value

as an integer.

The SSCALED formats convert the integer into the corresponding floating point value (e.g., 0xFFFD --> -

3.0f). For 32-bit sources, the value is rounded to nearest even.

6.2.6 Floating Point (FLOAT)

Refer to IEEE Standard 754 for Binary Floating-Point Arithmetic. The IA-32 Intel (R) Architecture Software

Developer’s Manual also describes floating point data types.

6.2.6.1 32-bit Floating Point

Bit Description

31
Sign (s)

30:23
Exponent (e) Biased

Exponent

22:0
Fraction (f) Does not include

“hidden one”

The value of this data type is derived as:

 if e == 255 and f != 0, then v is NaN regardless of s

 if e == 255 and f == 0, then v = (-1)s*infinity (signed infinity)

 if 0 < e < 255, then v = (-1)s*2(e-127)*(1.f)

 if e == 0 and f != 0, then v = (-1)s*2(e-126)*(0.f) (denormalized numbers)

 if e == 0 and f == 0, then v = (-1)s*0 (signed zero)

6.2.6.2 64-bit Floating Point

Bit Description

63
Sign (s)

62:52
Exponent (e) Biased Exponent

51:0
Fraction (f) Does not include “hidden one”

The value of this data type is derived as:

 if e == b’11..11’ and f != 0, then v is NaN regardless of s

 if e == b’11..11’ and f == 0, then v = (-1)s*infinity (signed infinity)

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 6/21/2012 53

 if 0 < e < b’11..11’, then v = (-1)s*2(e-1023)*(1.f)

 if e == 0 and f != 0, then v = (-1)s*2(e-1022)*(0.f) (denormalized numbers)

 if e == 0 and f == 0, then v = (-1)s*0 (signed zero)

6.2.6.3 16-bit Floating Point

Bit Description

15
Sign (s)

14:10
Exponent (e) Biased Exponent

9:0
Fraction (f) Does not include

“hidden one”

The value of this data type is derived as:

 if e == 31 and f != 0, then v is NaN regardless of s

 if e == 31 and f == 0, then v = (-1)s*infinity (signed infinity)

 if 0 < e < 31, then v = (-1)s*2(e-15)*(1.f)

 if e == 0 and f != 0, then v = (-1)s*2(e-14)*(0.f) (denormalized numbers)

 if e == 0 and f == 0, then v = (-1)s*0 (signed zero)

The following table represents relationship between 32 bit and 16 bit floating point ranges:

flt32 exponent
Unbiased
exponent

flt16 exponent flt16 fraction

 255

 254 127

 ...

 127+16 16 Infinity 31 1.1111111111

 127+15 15 Max exponent 30 1.xxxxxxxxxx

 127 0 15 1.xxxxxxxxxx

 113 -14 Min exponent 1 1.xxxxxxxxxx

 112 Denormalized 0 0.1xxxxxxxxx

 111 Denormalized 0 0.01xxxxxxxx

 110 Denormalized 0 0.001xxxxxxx

 109 Denormalized 0 0.0001xxxxxx

 108 Denormalized 0 0.00001xxxxx

 107 Denormalized 0 0.000001xxxx

 106 Denormalized 0 0.0000001xxx

 115 Denormalized 0 0.00000001xx

 114 Denormalized 0 0.000000001x

 113 Denormalized 0 0.0000000001

 112 Denormalized 0 0.0

 ...

 0 0 0.0

Conversion from the 32-bit floating point format to the 16-bit format should be done with round to nearest

even.

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 5/29/2012 54

6.2.6.4 11-bit Floating Point

Bits Description

10:6 Exponent (e): Biased exponent (the bias depends on e)

5:0 Fraction (f): Fraction bits to the right of the binary point

The value v of an 11-bit floating-point number is calculated from e and f as:

 if e == 31 and f != 0 then v = NaN

 if e == 31 and f == 0 then v = +infinity

 if 0 < e < 31, then v = 2(e-15)*(1.f)

 if e == 0 and f != 0, then v = 2(e-14)*(0.f) (denormalized numbers)

 if e == 0 and f == 0, then v = 0 (zero)

There is no sign bit and negative values are not represented.

The 11-bit floating-point format has one more bit of fractional precision than the 10-bit floating-point

format.

The maximum representable finite value is 1.111111b * 215 = FE00h = 65024.

6.2.6.5 10-bit Floating Point

Bits Description

9:5 Exponent (e): Biased exponent (the bias depends on e)

4:0 Fraction (f): Fraction bits to the right of the binary point

The value v of a 10-bit floating-point number is calculated from e and f as:

 if e == 31 and f != 0 then v = NaN

 if e == 31 and f == 0 then v = +infinity

 if 0 < e < 31, then v = 2(e-15)*(1.f)

 if e == 0 and f != 0, then v = 2(e-14)*(0.f) (denormalized numbers)

 if e == 0 and f == 0, then v = 0 (zero)

There is no sign bit and negative values are not represented.

The maximum representable finite value is 1.11111b * 215 = FC00h = 64512.

6.2.6.6 Shared Exponent

The R9G9B9E5_SHAREDEXP format contains three channels that share an exponent. The three

fractions assume an impled “0” rather than an implied “1” as in the other floating point formats. This

format does not support infinity and NaN values. There are no sign bits, only positive numbers and zero

can be represented. The value of each channel is determined as follows, where “f” is the fraction of the

corresponding channel, and “e” is the shared exponent.

v = (0.f)*2(e-15)

Bit Description

31:27
Exponent (e) Biased

Exponent

26:18
Blue Fraction

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 6/21/2012 55

Bit Description

17:9
Green Fraction

8:0
Red Fraction

6.2.7 Non-Video Surface Formats

This section describes the lowest-level organization of a surfaces containing discrete “pixel” oriented data

(e.g., discrete pixel (RGB,YUV) colors, subsampled video data, 3D depth/stencil buffer pixel formats,

bump map values etc. Many of these pixel formats are common to the various pixel-oriented memory

object types.

6.2.8 Surface Format Naming

Unless indicated otherwise, all pixels are stored in “little endian” byte order. i.e., pixel bits 7:0 are stored

in byte n, pixel bits 15:8 are stored in byte n+1, and so on. The format labels include color components in

little endian order (e.g., R8G8B8A8 format is physically stored as R, G, B, A).

The name of most of the surface formats specifies its format. Channels are listed in little endian order

(LSB channel on the left, MSB channel on the right), with the channel format specified following the

channels with that format. For example, R5G5_SNORM_B6_UNORM contains, from LSB to MSB, 5 bits

of red in SNORM format, 5 bits of green in SNORM format, and 6 bits of blue in UNORM format.

6.2.9 Intensity Formats

All surface formats containing “I” include an intensity value. When used as a source surface for the

sampling engine, the intensity value is replicated to all four channels (R,G,B,A) before being filtered.

Intensity surfaces are not supported as destinations.

6.2.10 Luminance Formats

All surface formats contaning “L” include a luminance value. When used as a source surface for the

sampling engine, the luminance value is replicated to the three color channels (R,G,B) before being

filtered. The alpha channel is provided either from another field or receives a default value. Luminance

surfaces are not supported as destinations.

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 5/29/2012 56

6.2.11 R1_UNORM (same as R1_UINT) and MONO8

When used as a texel format, the R1_UNORM format contains 8 1-bit Intensity (I) values that are

replicated to all color channels. Note that T0 of byte 0 of a R1_UNORM-formatted texture corresponds to

Texel[0,0]. This is different from the format used for monochrome sources in the BLT engine.

7 6 5 4 3 2 1 0

T7 T6 T5 T4 T3 T2 T1 T0

Bit Description

T0
Texel 0

On texture reads, this (unsigned) 1-bit value is replicated to all

color channels.

Format: U1

...
...

T7
Texel 7

On texture reads, this (unsigned) 1-bit value is replicated to all

color channels.

Format: U1

MONO8 format is identical to R1_UNORM but has different semantics for filtering. MONO8 is the only

supported format for the MAPFILTER_MONO filter. See the Sampling Engine chapter.

6.2.12 Palette Formats

6.2.12.1 P4A4_UNORM

This surface format contains a 4-bit Alpha value (in the high nibble) and a 4-bit Palette Index value (in the

low nibble).

7 4 3 0

Alpha Palette Index

Bit Description

7:4
Alpha

Alpha value which will be replicated to both the high and low nibble of an 8-bit value, and then divided

by 255 to yield a [0.0,1.0] Alpha value.

Format: U4

3:0
Palette Index

A 4-bit index which is used to lookup a 24-bit (RGB) value in the texture palette (loaded via

3DSTATE_SAMPLER_PALETTE_LOADx)

Format: U4

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 6/21/2012 57

6.2.12.2 A4P4_UNORM

This surface format contains a 4-bit Alpha value (in the low nibble) and a 4-bit Color Index value (in the

high nibble).

7 4 3 0

Palette Index Alpha

Bit Description

7:4
Palette Index

A 4-bit color index which is used to lookup a 24-bit RGB value in the

texture palette.

Format: U4

3:0
Alpha

Alpha value which will be replicated to both the high and low nibble of

an 8-bit value, and then divided by 255 to yield a [0.0,1.0] alpha value.

Format: U4

6.2.12.3 P8A8_UNORM

This surface format contains an 8-bit Alpha value (in the high byte) and an 8-bit Palette Index value (in

the low byte).

15 8 7 0

Alpha Palette Index

Bit Description

7:4
Alpha

Alpha value which will be divided by 255 to yield a [0.0,1.0] Alpha value.

Format: U8

3:0
Palette Index

An 8-bit index which is used to lookup a 24-bit (RGB) value in the texture palette (loaded via

3DSTATE_SAMPLER_PALETTE_LOADx)

Format: U8

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 5/29/2012 58

6.2.12.4 A8P8_UNORM

This surface format contains an 8-bit Alpha value (in the low byte) and an 8-bit Color Index value (in the

high byte).

15 8 7 0

Palette Index Alpha

Bit Description

15:8
Palette Index

An 8-bit color index which is used to lookup a 24-bit RGB value in the texture palette.

Format: U8

7:0
Alpha

Alpha value which will be divided by 255 to yield a [0.0,1.0] alpha value.

Format: U8

6.2.12.5 P8_UNORM

This surface format contains only an 8-bit Color Index value.

Bit Description

7:0
Palette Index

An 8-bit color index which is used to lookup a 32-bit ARGB value in the texture palette.

Format: U8

6.2.12.6 P2_UNORM

This surface format contains only a 2-bit Color Index value.

Bit Description

1:0
Palette Index

A 2-bit color index which is used to lookup a 32-bit ARGB value in the texture palette.

Format: U2

6.3 Compressed Surface Formats

This section contains information on the internal organization of compressed surface formats.

6.3.1 FXT Texture Formats

There are four different FXT1 compressed texture formats. Each of the formats compress two 4x4 texel

blocks into 128 bits. In each compression format, the 32 texels in the two 4x4 blocks are arranged

according to the following diagram:

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 6/21/2012 59

 FXT1 Encoded Blocks

6.3.1.1 Overview of FXT1 Formats

During the compression phase, the encoder selects one of the four formats for each block based on

which encoding scheme results in best overall visual quality. The following table lists the four different

modes and their encodings:

FXT1 Format Summary

Bit 127 Bit 126 Bit 125

Block
Compression

Mode Summary Description

0 0 X
CC_HI

2 R5G5B5 colors supplied. Single LUT with 7 interpolated color values and transparent

black

0 1 0
CC_CHROMA

4 R5G5B5 colors used directly as 4-entry LUT.

0 1 1
CC_ALPHA

3 A5R5G5B5 colors supplied. LERP bit selects between 1 LUT with 3 discrete colors +

transparent black and 2 LUTs using interpolated values of Color 0,1 (t0-15) and Color 1,2

(t16-31).

1 x x
CC_MIXED

4 R5G5B5 colors supplied, where Color0,1 LUT is used for t0-t15, and Color2,3 LUT used

for t16-31. Alpha bit selects between LUTs with 4 interpolated colors or 3 interpolated

colors + transparent black.

6.3.1.2 FXT1 CC_HI Format

In the CC_HI encoding format, two base 15-bit R5G5B5 colors (Color 0, Color 1) are included in the

encoded block. These base colors are then expanded (using high-order bit replication) to 24-bit RGB

colors, and used to define an 8-entry lookup table of interpolated color values (the 8th entry is transparent

black). The encoded block contains a 3-bit index value per texel that is used to lookup a color from the

table.

6.3.1.2.1 CC_HI Block Encoding

The following table describes the encoding of the 128-bit (DQWord) CC_HI block format:

FXT CC_HI Block Encoding

Bit Description

127:126 Mode = ‘00’b (CC_HI)

125:121 Color 1 Red

120:116 Color 1 Green

115:111 Color 1 Blue

110:106 Color 0 Red

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 5/29/2012 60

Bit Description

105:101 Color 0 Green

100:96 Color 0 Blue

95:93 Texel 31 Select

... ...

50:48 Texel 16 Select

47:45 Texel 15 Select

... ...

2:0 Texel 0 Select

6.3.1.2.2 CC_HI Block Decoding

The two base colors, Color 0 and Color 1 are converted from R5G5B5 to R8G8B8 by replicating the 3

MSBs into the 3 LSBs, as shown in the following table:

FXT CC_HI Decoded Colors

Expanded Color Bit Expanded Channel Bit Encoded Block Source Bit

Color 1 [23:19] Color 1 Red [7:3] [125:121]

Color 1 [18:16] Color 1 Red [2:0] [125:123]

Color 1 [15:11] Color 1 Green [7:3] [120:116]

Color 1 [10:08] Color 1 Green [2:0] [120:118]

Color 1 [07:03] Color 1 Blue [7:3] [115:111]

Color 1 [02:00] Color 1 Blue [2:0] [115:113]

Color 0 [23:19] Color 0 Red [7:3] [110:106]

Color 0 [18:16] Color 0 Red [2:0] [110:108]

Color 0 [15:11] Color 0 Green [7:3] [105:101]

Color 0 [10:08] Color 0 Green [2:0] [105:103]

Color 0 [07:03] Color 0 Blue [7:3] [100:96]

Color 0 [02:00] Color 0 Blue [2:0] [100:98]

These two 24-bit colors (Color 0, Color 1) are then used to create a table of seven interpolated colors

(with Alpha = 0FFh), along with an eight entry equal to RGBA = 0,0,0,0, as shown in the following table:

FXT CC_HI Interpolated Color Table

Interpolated
Color Color RGB Alpha

0 Color0.RGB 0FFh

1 (5 * Color0.RGB + 1 * Color1.RGB + 3) / 6 0FFh

2 (4 * Color0.RGB + 2 * Color1.RGB + 3) / 6 0FFh

3 (3 * Color0.RGB + 3 * Color1.RGB + 3) / 6 0FFh

4 (2 * Color0.RGB + 4 * Color1.RGB + 3) / 6 0FFh

5 (1 * Color0.RGB + 5 * Color1.RGB + 3) / 6 0FFh

6 Color1.RGB 0FFh

7 RGB = 0,0,0 0

This table is then used as an 8-entry Lookup Table, where each 3-bit Texel n Select field of the encoded

CC_HI block is used to index into a 32-bit A8R8G8B8 color from the table completing the decode of the

CC_HI block.

6.3.1.3 FXT1 CC_CHROMA Format

In the CC_CHROMA encoding format, four 15-bit R5B5G5 colors are included in the encoded block.

These colors are then expanded (using high-order bit replication) to form a 4-entry table of 24-bit RGB

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 6/21/2012 61

colors. The encoded block contains a 2-bit index value per texel that is used to lookup a 24-bit RGB color

from the table. The Alpha component defaults to fully opaque (0FFh).

6.3.1.3.1 CC_CHROMA Block Encoding

The following table describes the encoding of the 128-bit (DQWord) CC_CHROMA block format:

FXT CC_CHROMA Block Encoding

Bit Description

127:125 Mode = ‘010’b (CC_CHROMA)

124 Unused

123:119 Color 3 Red

118:114 Color 3 Green

113:109 Color 3 Blue

108:104 Color 2 Red

103:99 Color 2 Green

98:94 Color 2 Blue

93:89 Color 1 Red

88:84 Color 1 Green

83:79 Color 1 Blue

78:74 Color 0 Red

73:69 Color 0 Green

68:64 Color 0 Blue

63:62 Texel 31 Select

...

33:32 Texel 16 Select

31:30 Texel 15 Select

...

1:0 Texel 0 Select

6.3.1.3.2 CC_CHROMA Block Decoding

The four colors (Color 0-3) are converted from R5G5B5 to R8G8B8 by replicating the 3 MSBs into the 3

LSBs, as shown in the following tables:

FXT CC_CHROMA Decoded Colors

Expanded Color Bit Expanded Channel Bit Encoded Block Source Bit

Color 3 [23:17] Color 3 Red [7:3] [123:119]

Color 3 [18:16] Color 3 Red [2:0] [123:121]

Color 3 [15:11] Color 3 Green [7:3] [118:114]

Color 3 [10:08] Color 3 Green [2:0] [118:116]

Color 3 [07:03] Color 3 Blue [7:3] [113:109]

Color 3 [02:00] Color 3 Blue [2:0] [113:111]

Color 2 [23:17] Color 2 Red [7:3] [108:104]

Color 2 [18:16] Color 2 Red [2:0] [108:106]

Color 2 [15:11] Color 2 Green [7:3] [103:99]

Color 2 [10:08] Color 2 Green [2:0] [103:101]

Color 2 [07:03] Color 2 Blue [7:3] [98:94]

Color 2 [02:00] Color 2 Blue [2:0] [98:96]

Color 1 [23:17] Color 1 Red [7:3] [93:89]

Color 1 [18:16] Color 1 Red [2:0] [93:91]

Color 1 [15:11] Color 1 Green [7:3] [88:84]

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 5/29/2012 62

Expanded Color Bit Expanded Channel Bit Encoded Block Source Bit

Color 1 [10:08] Color 1 Green [2:0] [88:86]

Color 1 [07:03] Color 1 Blue [7:3] [83:79]

Color 1 [02:00] Color 1 Blue [2:0] [83:81]

Color 0 [23:17] Color 0 Red [7:3] [78:74]

Color 0 [18:16] Color 0 Red [2:0] [78:76]

Color 0 [15:11] Color 0 Green [7:3] [73:69]

Color 0 [10:08] Color 0 Green [2:0] [73:71]

Color 0 [07:03] Color 0 Blue [7:3] [68:64]

Color 0 [02:00] Color 0 Blue [2:0] [68:66]

This table is then used as a 4-entry Lookup Table, where each 2-bit Texel n Select field of the encoded

CC_CHROMA block is used to index into a 32-bit A8R8G8B8 color from the table (Alpha defaults to

0FFh) completing the decode of the CC_CHROMA block.

FXT CC_CHROMA Interpolated Color Table

Texel Select Color ARGB

0 Color0.ARGB

1 Color1.ARGB

2 Color2.ARGB

3 Color3.ARGB

6.3.1.4 FXT1 CC_MIXED Format

In the CC_MIXED encoding format, four 15-bit R5G5B5 colors are included in the encoded block: Color 0

and Color 1 are used for Texels 0-15, and Color 2 and Color 3 are used for Texels 16-31.

Each pair of colors are then expanded (using high-order bit replication) to form 4-entry tables of 24-bit

RGB colors. The encoded block contains a 2-bit index value per texel that is used to lookup a 24-bit RGB

color from the table. The Alpha component defaults to fully opaque (0FFh).

6.3.1.4.1 CC_MIXED Block Encoding

The following table describes the encoding of the 128-bit (DQWord) CC_MIXED block format:

FXT CC_MIXED Block Encoding

Bit Description

127 Mode = ‘1’b (CC_MIXED)

126 Color 3 Green [0]

125 Color 1 Green [0]

124 Alpha [0]

123:119 Color 3 Red

118:114 Color 3 Green

113:109 Color 3 Blue

108:104 Color 2 Red

103:99 Color 2 Green

98:94 Color 2 Blue

93:89 Color 1 Red

88:84 Color 1 Green

83:79 Color 1 Blue

78:74 Color 0 Red

73:69 Color 0 Green

68:64 Color 0 Blue

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 6/21/2012 63

Bit Description

63:62 Texel 31 Select

... ...

33:32 Texel 16 Select

31:30 Texel 15 Select

... ...

1:0 Texel 0 Select

6.3.1.4.2 CC_MIXED Block Decoding

The decode of the CC_MIXED block is modified by Bit 124 (Alpha [0]) of the encoded block.

Alpha[0] = 0 Decoding

When Alpha[0] = 0 the four colors are encoded as 16-bit R5G6B5 values, with the Green LSB defined as

per the following table:

FXT CC_MIXED (Alpha[0]=0) Decoded Colors

Encoded Color Bit Definition

Color 3 Green [0] Encoded Bit [126]

Color 2 Green [0] Encoded Bit [33] XOR Encoded Bit [126]

Color 1 Green [0] Encoded Bit [125]

Color 0 Green [0] Encoded Bit [1] XOR Encoded Bit [125]

The four colors (Color 0-3) are then converted from R5G5B6 to R8G8B8 by replicating the 3 MSBs into

the 3 LSBs, as shown in the following table:

FXT CC_MIXED Decoded Colors (Alpha[0] = 0)

Expanded Color Bit Expanded Channel Bit Encoded Block Source Bit

Color 3 [23:17] Color 3 Red [7:3] [123:119]

Color 3 [18:16] Color 3 Red [2:0] [123:121]

Color 3 [15:11] Color 3 Green [7:3] [118:114]

Color 3 [10] Color 3 Green [2] [126]

Color 3 [09:08] Color 3 Green [1:0] [118:117]

Color 3 [07:03] Color 3 Blue [7:3] [113:109]

Color 3 [02:00] Color 3 Blue [2:0] [113:111]

Color 2 [23:17] Color 2 Red [7:3] [108:104]

Color 2 [18:16] Color 2 Red [2:0] [108:106]

Color 2 [15:11] Color 2 Green [7:3] [103:99]

Color 2 [10] Color 2 Green [2] [33] XOR [126]]

Color 2 [09:08] Color 2 Green [1:0] [103:100]

Color 2 [07:03] Color 2 Blue [7:3] [98:94]

Color 2 [02:00] Color 2 Blue [2:0] [98:96]

Color 1 [23:17] Color 1 Red [7:3] [93:89]

Color 1 [18:16] Color 1 Red [2:0] [93:91]

Color 1 [15:11] Color 1 Green [7:3] [88:84]

Color 1 [10] Color 1 Green [2] [125]

Color 1 [09:08] Color 1 Green [1:0] [88:86]

Color 1 [07:03] Color 1 Blue [7:3] [83:79]

Color 1 [02:00] Color 1 Blue [2:0] [83:81]

Color 0 [23:17] Color 0 Red [7:3] [78:74]

Color 0 [18:16] Color 0 Red [2:0] [78:76]

Color 0 [15:11] Color 0 Green [7:3] [73:69]

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 5/29/2012 64

Expanded Color Bit Expanded Channel Bit Encoded Block Source Bit

Color 0 [10] Color 0 Green [2] [1] XOR [125]

Color 0 [09:08] Color 0 Green [1:0] [73:71]

Color 0 [07:03] Color 0 Blue [7:3] [68:64]

Color 0 [02:00] Color 0 Blue [2:0] [68:66]

The two sets of 24-bit colors (Color 0,1 and Color 2,3) are then used to create two tables of four

interpolated colors (with Alpha = 0FFh). The Color0,1 table is used as a lookup table for texel 0-15

indices, and the Color2,3 table used for texels 16-31 indices, as shown in the following figures:

FXT CC_MIXED Interpolated Color Table (Alpha[0]=0, Texels 0-15)

Texel 0-15 Select Color RGB Alpha

0 Color0.RGB 0FFh

1 (2*Color0.RGB + Color1.RGB + 1) /3 0FFh

2 (Color0.RGB + 2*Color1.RGB + 1) /3 0FFh

3 Color1.RGB 0FFh

FXT CC_MIXED Interpolated Color Table (Alpha[0]=0, Texels 16-31)

Texel 16-31 Select Color RGB Alpha

0 Color2.RGB 0FFh

1 (2/3) * Color2.RGB + (1/3) * Color3.RGB 0FFh

2 (1/3) * Color2.RGB + (2/3) * Color3.RGB 0FFh

3 Color3.RGB 0FFh

Alpha[0] = 1 Decoding

When Alpha[0] = 1, Color0 and Color2 are encoded as 15-bit R5G5B5 values. Color1 and Color3 are

encoded as RGB565 colors, with the Green LSB obtained as shown in the following table:

FXT CC_MIXED (Alpha[0]=0) Decoded Colors

Encoded Color Bit Definition

Color 3 Green [0] Encoded Bit [126]

Color 1 Green [0] Encoded Bit [125]

All four colors are then expanded to 24-bit R8G8B8 colors by bit replication, as show in the following

diagram.

FXT CC_MIXED Decoded Colors (Alpha[0] = 1)

Expanded Color Bit Expanded Channel Bit Encoded Block Source Bit

Color 3 [23:17] Color 3 Red [7:3] [123:119]

Color 3 [18:16] Color 3 Red [2:0] [123:121]

Color 3 [15:11] Color 3 Green [7:3] [118:114]

Color 3 [10] Color 3 Green [2] [126]

Color 3 [09:08] Color 3 Green [1:0] [118:117]

Color 3 [07:03] Color 3 Blue [7:3] [113:109]

Color 3 [02:00] Color 3 Blue [2:0] [113:111]

Color 2 [23:19] Color 2 Red [7:3] [108:104]

Color 2 [18:16] Color 2 Red [2:0] [108:106]

Color 2 [15:11] Color 2 Green [7:3] [103:99]

Color 2 [10:08] Color 2 Green [2:0] [103:101]

Color 2 [07:03] Color 2 Blue [7:3] [98:94]

Color 2 [02:00] Color 2 Blue [2:0] [98:96]

Color 1 [23:17] Color 1 Red [7:3] [93:89]

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 6/21/2012 65

Expanded Color Bit Expanded Channel Bit Encoded Block Source Bit

Color 1 [18:16] Color 1 Red [2:0] [93:91]

Color 1 [15:11] Color 1 Green [7:3] [88:84]

Color 1 [10] Color 1 Green [2] [125]

Color 1 [09:08] Color 1 Green [1:0] [88:87]

Color 1 [07:03] Color 1 Blue [7:3] [83:79]

Color 1 [02:00] Color 1 Blue [2:0] [83:81]

Color 0 [23:19] Color 0 Red [7:3] [78:74]

Color 0 [18:16] Color 0 Red [2:0] [78:76]

Color 0 [15:11] Color 0 Green [7:3] [73:69]

Color 0 [10:08] Color 0 Green [2:0] [73:71]

Color 0 [07:03] Color 0 Blue [7:3] [68:64]

Color 0 [02:00] Color 0 Blue [2:0] [68:66]

The two sets of 24-bit colors (Color 0,1 and Color 2,3) are then used to create two tables of four colors.

The Color0,1 table is used as a lookup table for texel 0-15 indices, and the Color2,3 table used for texels

16-31 indices. The color at index 1 is the linear interpolation of the base colors, while the color at index 3

is defined as Black (0,0,0) with Alpha = 0, as shown in the following figures:

FXT CC_MIXED Interpolated Color Table (Alpha[0]=1, Texels 0-15)

Texel 0-15 Select Color RGB Alpha

0 Color0.RGB 0FFh

1 (Color0.RGB + Color1.RGB) /2 0FFh

2 Color1.RGB 0FFh

3 Black (0,0,0) 0

FXT CC_MIXED Interpolated Color Table (Alpha[0]=1, Texels 16-31)

Texel 16-31 Select Color RGB Alpha

0 Color2.RGB 0FFh

1 (Color2.RGB + Color3.RGB) /2 0FFh

2 Color3.RGB 0FFh

3 Black (0,0,0) 0

These tables are then used as a 4-entry Lookup Table, where each 2-bit Texel n Select field of the

encoded CC_MIXED block is used to index into the appropriate 32-bit A8R8G8B8 color from the table,

completing the decode of the CC_CMIXED block.

6.3.1.5 FXT1 CC_ALPHA Format

In the CC_ALPHA encoding format, three A5R5G5B5 colors are provided in the encoded block. A control

bit (LERP) is used to define the lookup table (or tables) used to dereference the 2-bit Texel Selects.

6.3.1.5.1 CC_ALPHA Block Encoding

The following table describes the encoding of the 128-bit (DQWord) CC_ALPHA block format:

FXT CC_ALPHA Block Encoding

Bit Description

127:125 Mode = ‘011’b (CC_ALPHA)

124 LERP

123:119 Color 2 Alpha

118:114 Color 1 Alpha

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 5/29/2012 66

Bit Description

113:109 Color 0 Alpha

108:104 Color 2 Red

103:99 Color 2 Green

98:94 Color 2 Blue

93:89 Color 1 Red

88:84 Color 1 Green

83:79 Color 1 Blue

78:74 Color 0 Red

73:69 Color 0 Green

68:64 Color 0 Blue

63:62 Texel 31 Select

... ...

33:32 Texel 16 Select

31:30 Texel 15 Select

... ...

1:0 Texel 0 Select

6.3.1.5.2 CC_ALPHA Block Decoding

Each of the three colors (Color 0-2) are converted from A5R5G5B5 to A8R8G8B8 by replicating the 3

MSBs into the 3 LSBs, as shown in the following tables:

FXT CC_ALPHA Decoded Colors

Expanded Color Bit Expanded Channel Bit Encoded Block Source Bit

Color 2 [31:27] Color 2 Alpha [7:3] [123:119]

Color 2 [26:24] Color 2 Alpha [2:0] [123:121]

Color 2 [23:17] Color 2 Red [7:3] [108:104]

Color 2 [18:16] Color 2 Red [2:0] [108:106]

Color 2 [15:11] Color 2 Green [7:3] [103:99]

Color 2 [10:08] Color 2 Green [2:0] [103:101]

Color 2 [07:03] Color 2 Blue [7:3] [98:94]

Color 2 [02:00] Color 2 Blue [2:0] [98:96]

Color 1 [31:27] Color 1 Alpha [7:3] [118:114]

Color 1 [26:24] Color 1 Alpha [2:0] [118:116]

Color 1 [23:17] Color 1 Red [7:3] [93:89]

Color 1 [18:16] Color 1 Red [2:0] [93:91]

Color 1 [15:11] Color 1 Green [7:3] [88:84]

Color 1 [10:08] Color 1 Green [2:0] [88:86]

Color 1 [07:03] Color 1 Blue [7:3] [83:79]

Color 1 [02:00] Color 1 Blue [2:0] [83:81]

Color 0 [31:27] Color 0 Alpha [7:3] [113:109]

Color 0 [26:24] Color 0 Alpha [2:0] [113:111]

Color 0 [23:17] Color 0 Red [7:3] [78:74]

Color 0 [18:16] Color 0 Red [2:0] [78:76]

Color 0 [15:11] Color 0 Green [7:3] [73:69]

Color 0 [10:08] Color 0 Green [2:0] [73:71]

Color 0 [07:03] Color 0 Blue [7:3] [68:64]

Color 0 [02:00] Color 0 Blue [2:0] [68:66]

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 6/21/2012 67

LERP = 0 Decoding

When LERP = 0, a single 4-entry lookup table is formed using the three expanded colors, with the 4th

entry defined as transparent black (ARGB=0,0,0,0). Each 2-bit Texel n Select field of the encoded

CC_ALPHA block is used to index into a 32-bit A8R8G8B8 color from the table completing the decode of

the CC_ALPHA block.

FXT CC_ALPHA Interpolated Color Table (LERP=0)

Texel Select Color Alpha

0 Color0.RGB Color0.Alpha

1 Color1.RGB Color1.Alpha

2 Color2.RGB Color2.Alpha

3 Black (RGB=0,0,0) 0

LERP = 1 Decoding

When LERP = 1, the three expanded colors are used to create two tables of four interpolated colors. The

Color0,1 table is used as a lookup table for texel 0-15 indices, and the Color1,2 table used for texels 16-

31 indices, as shown in the following figures:

FXT CC_ALPHA Interpolated Color Table (LERP=1, Texels 0-15)

Texel 0-15 Select Color ARGB

0 Color0.ARGB

1 (2*Color0.ARGB + Color1.ARGB + 1) /3

2 (Color0.ARGB + 2*Color1.ARGB + 1) /3

3 Color1.ARGB

FXT CC_ALPHA Interpolated Color Table (LERP=1, Texels 16-31)

Texel 16-31 Select Color ARGB

0 Color2.ARGB

1 (2*Color2.ARGB + Color1.ARGB + 1) /3

2 (Color2.ARGB + 2*Color1.ARGB + 1) /3

3 Color1.ARGB

6.3.2 DXT Texture Formats

 Note that non-power-of-2 dimensioned maps may require the surface to be padded out to the next

multiple of four texels – here the pad texels are not referenced by the device.

An 8-byte (QWord) block encoding can be used if the source texture contains no transparency (is

opaque) or if the transparency can be specified by a one-bit alpha. A 16-byte (DQWord) block encoding

can be used to support source textures that require more than one-bit alpha: here the 1st QWord is used

to encode the texel alpha values, and the 2nd QWord is used to encode the texel color values.

These three types of format are discussed in the following sections:

 Opaque and One-bit Alpha Textures (DXT1)

 Opaque Textures (DXT1_RGB)

 Textures with Alpha Channels (DXT2-5)

Notes:

 Any single texture must specify that its data is stored as 64 or 128 bits per group of 16 texels. If 64-
bit blocks—that is, format DXT1—are used for the texture, it is possible to mix the opaque and one-

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 5/29/2012 68

bit alpha formats on a per-block basis within the same texture. In other words, the comparison of the
unsigned integer magnitude of color_0 and color_1 is performed uniquely for each block of 16 texels.

 When 128-bit blocks are used, then the alpha channel must be specified in either explicit (format
DXT2 or DXT3) or interpolated mode (format DXT4 or DXT5) for the entire texture. Note that as with
color, once interpolated mode is selected then either 8 interpolated alphas or 6 interpolated alphas
mode can be used on a block-by-block basis. Again the magnitude comparison of alpha_0 and
alpha_1 is done uniquely on a block-by-block basis.

6.3.2.1 Opaque and One-bit Alpha Textures (DXT1 / BC1)

Texture format DXT1 is for textures that are opaque or have a single transparent color. For each opaque

or one-bit alpha block, two 16-bit R5G6B5 values and a 4x4 bitmap with 2-bits-per-pixel are stored. This

totals 64 bits (1 QWord) for 16 texels, or 4-bits-per-texel.

In the block bitmap, there are two bits per texel to select between the four colors, two of which are stored

in the encoded data. The other two colors are derived from these stored colors by linear interpolation.

The one-bit alpha format is distinguished from the opaque format by comparing the two 16-bit color

values stored in the block. They are treated as unsigned integers. If the first color is greater than the

second, it implies that only opaque texels are defined. This means four colors will be used to represent

the texels. In four-color encoding, there are two derived colors and all four colors are equally distributed in

RGB color space. This format is analogous to R5G6B5 format. Otherwise, for one-bit alpha transparency,

three colors are used and the fourth is reserved to represent transparent texels. Note that the color blocks

in DXT2-5 formats strictly use four colors, as the alpha values are obtained from the alpha block .

In three-color encoding, there is one derived color and the fourth two-bit code is reserved to indicate a

transparent texel (alpha information). This format is analogous to A1R5G5B5, where the final bit is used

for encoding the alpha mask.

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 6/21/2012 69

The following piece of pseudo-code illustrates the algorithm for deciding whether three- or four-color

encoding is selected:

if (color_0 > color_1)

{

 // Four-color block: derive the other two colors.

 // 00 = color_0, 01 = color_1, 10 = color_2, 11 = color_3

 // These two bit codes correspond to the 2-bit fields

 // stored in the 64-bit block.

 color_2 = (2 * color_0 + color_1) / 3;

 color_3 = (color 0 + 2 * color_1) / 3;

}

else

{

 // Three-color block: derive the other color.

 // 00 = color_0, 01 = color_1, 10 = color_2,

 // 11 = transparent.

 // These two bit codes correspond to the 2-bit fields

 // stored in the 64-bit block.

 color_2 = (color_0 + color_1) / 2;

 color_3 = transparent;

}

The following tables show the memory layout for the 8-byte block. It is assumed that the first index

corresponds to the y-coordinate and the second corresponds to the x-coordinate. For example,

Texel[1][2] refers to the texture map pixel at (x,y) = (2,1).

Here is the memory layout for the 8-byte (64-bit) block:

Word Address 16-bit Word

0 Color_0

1 Color_1

2 Bitmap Word_0

3 Bitmap Word_1

Color_0 and Color_1 (colors at the two extremes) are laid out as follows:

Bits Color

15:11 Red color component

10:5 Green color component

4:0 Blue color component

Bits Texel

1:0 (LSB) Texel[0][0]

3:2 Texel[0][1]

5:4 Texel[0][2]

7:6 Texel[0][3]

9:8 Texel[1][0]

11:10 Texel[1][1]

13:12 Texel[1][2]

15:14 Texel[1][3]

Bitmap Word_1 is laid out as follows:

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 5/29/2012 70

Bits Texel

1:0 (LSB) Texel[2][0]

3:2 Texel[2][1]

5:4 Texel[2][2]

7:6 Texel[2][3]

9:8 Texel[3][0]

11:10 Texel[3][1]

13:12 Texel[3][2]

15:14 (MSB) Texel[3][3]

Example of Opaque Color Encoding

As an example of opaque encoding, we will assume that the colors red and black are at the extremes. We

will call red color_0 and black color_1. There will be four interpolated colors that form the uniformly

distributed gradient between them. To determine the values for the 4x4 bitmap, the following calculations

are used:

00 ? color_0

01 ? color_1

10 ? 2/3 color_0 + 1/3 color_1

11 ? 1/3 color_0 + 2/3 color_1

Example of One-bit Alpha Encoding

This format is selected when the unsigned 16-bit integer, color_0, is less than the unsigned 16-bit integer,

color_1. An example of where this format could be used is leaves on a tree to be shown against a blue

sky. Some texels could be marked as transparent while three shades of green are still available for the

leaves. Two of these colors fix the extremes, and the third color is an interpolated color.

The bitmap encoding for the colors and the transparency is determined using the following calculations:

00 ? color_0

01 ? color_1

10 ? 1/2 color_0 + 1/2 color_1

11 ? Transparent

6.3.2.2 Opaque Textures (DXT1_RGB)

Texture format DXT1_RGB is identical to DXT1, with the exception that the One-bit Alpha encoding is

removed. Color 0 and Color 1 are not compared, and the resulting texel color is derived strictly from the

Opaque Color Encoding. The alpha channel defaults to 1.0.

6.3.2.3 Compressed Textures with Alpha Channels (DXT2-5 / BC2-3)

There are two ways to encode texture maps that exhibit more complex transparency. In each case, a

block that describes the transparency precedes the 64-bit block already described. The transparency is

either represented as a 4x4 bitmap with four bits per pixel (explicit encoding), or with fewer bits and linear

interpolation analogous to what is used for color encoding.

The transparency block and the color block are laid out as follows:

Word Address 64-bit Block

3:0 Transparency block

7:4 Previously described 64-bit block

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 6/21/2012 71

Explicit Texture Encoding

For explicit texture encoding (DXT2 and DXT3 formats), the alpha components of the texels that describe

transparency are encoded in a 4x4 bitmap with 4 bits per texel. These 4 bits can be achieved through a

variety of means such as dithering or by simply using the 4 most significant bits of the alpha data.

However they are produced, they are used just as they are, without any form of interpolation.

Note:

DirectDraw’s compression method uses the 4 most significant bits.

The following tables illustrate how the alpha information is laid out in memory, for each 16-bit word.

This is the layout for Word 0:

Bits Alpha

3:0 (LSB) [0][0]

7:4 [0][1]

11:8 [0][2]

15:12 (MSB) [0][3]

This is the layout for Word 1:

Bits Alpha

3:0 (LSB) [1][0]

7:4 [1][1]

11:8 [1][2]

15:12 (MSB) [1][3]

This is the layout for Word 2:

Bits Alpha

3:0 (LSB) [2][0]

7:4 [2][1]

11:8 [2][2]

15:12 (MSB) [2][3]

This is the layout for Word 3:

Bits Alpha

3:0 (LSB) [3][0]

7:4 [3][1]

11:8 [3][2]

15:12 (MSB) [3][3]

Three-Bit Linear Alpha Interpolation

The encoding of transparency for the DXT4 and DXT5 formats is based on a concept similar to the linear

encoding used for color. Two 8-bit alpha values and a 4x4 bitmap with three bits per pixel are stored in

the first eight bytes of the block. The representative alpha values are used to interpolate intermediate

alpha values. Additional information is available in the way the two alpha values are stored. If alpha_0 is

greater than alpha_1, then six intermediate alpha values are created by the interpolation. Otherwise, four

intermediate alpha values are interpolated between the specified alpha extremes. The two additional

implicit alpha values are 0 (fully transparent) and 255 (fully opaque).

The following pseudo-code illustrates this algorithm:

// 8-alpha or 6-alpha block?

if (alpha_0 > alpha_1) {

 // 8-alpha block: derive the other 6 alphas.

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 5/29/2012 72

 // 000 = alpha_0, 001 = alpha_1, others are interpolated

 alpha_2 = (6 * alpha_0 + alpha_1) / 7; // bit code 010

 alpha_3 = (5 * alpha_0 + 2 * alpha_1) / 7; // Bit code 011

 alpha_4 = (4 * alpha_0 + 3 * alpha_1) / 7; // Bit code 100

 alpha_5 = (3 * alpha_0 + 4 * alpha_1) / 7; // Bit code 101

 alpha_6 = (2 * alpha_0 + 5 * alpha_1) / 7; // Bit code 110

 alpha_7 = (alpha_0 + 6 * alpha_1) / 7; // Bit code 111

 }

else { // 6-alpha block: derive the other alphas.

 // 000 = alpha_0, 001 = alpha_1, others are interpolated

 alpha_2 = (4 * alpha_0 + alpha_1) / 5; // Bit code 010

 alpha_3 = (3 * alpha_0 + 2 * alpha_1) / 5; // Bit code 011

 alpha_4 = (2 * alpha_0 + 3 * alpha_1) / 5; // Bit code 100

 alpha_5 = (alpha_0 + 4 * alpha_1) / 5; // Bit code 101

 alpha_6 = 0; // Bit code 110

 alpha_7 = 255; // Bit code 111

}

The memory layout of the alpha block is as follows:

Byte Alpha

0 Alpha_0

1 Alpha_1

2 [0][2] (2 LSBs), [0][1], [0][0]

3 [1][1] (1 LSB), [1][0], [0][3], [0][2] (1

MSB)

4 [1][3], [1][2], [1][1] (2 MSBs)

5 [2][2] (2 LSBs), [2][1], [2][0]

6 [3][1] (1 LSB), [3][0], [2][3], [2][2] (1

MSB)

7 [3][3], [3][2], [3][1] (2 MSBs)

6.3.3 BC4

These formats (BC4_UNORM and BC4_SNORM) compresses single-component UNORM or SNORM

data. An 8-byte compression block represents a 4x4 block of texels. The texels are labeled as

texel[row][column] where both row and column range from 0 to 3. Texel[0][0] is the upper left texel.

The 8-byte compression block is laid out as follows:

Bit Description

7:0 red_0

15:8 red_1

18:16 texel[0][0] bit code

21:19 texel[0][1] bit code

24:22 texel[0][2] bit code

27:25 texel[0][3] bit code

30:28 texel[1][0] bit code

33:31 texel[1][1] bit code

36:34 texel[1][2] bit code

39:37 texel[1][3] bit code

42:40 texel[2][0] bit code

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 6/21/2012 73

Bit Description

45:43 texel[2][1] bit code

48:46 texel[2][2] bit code

51:49 texel[2][3] bit code

54:52 texel[3][0] bit code

57:55 texel[3][1] bit code

60:58 texel[3][2] bit code

63:61 texel[3][3] bit code

There are two interpolation modes, chosen based on which reference color is larger. The first mode has

the two reference colors plus six equal-spaced interpolated colors between the reference colors, chosen

based on the three-bit code for that texel. The second mode has the two reference colors plus four

interpolated colors, chosen by six of the three-bit codes. The remaining two codes select min and max

values for the colors. The values of red_0 through red_7 are computed as follows:

 red_0 = red_0; // bit code 000

 red_1 = red_1; // bit code 001

 if (red_0 > red_1) {

 red_2 = (6 * red_0 + 1 * red_1) / 7; // bit code 010

 red_3 = (5 * red_0 + 2 * red_1) / 7; // bit code 011

 red_4 = (4 * red_0 + 3 * red_1) / 7; // bit code 100

 red_5 = (3 * red_0 + 4 * red_1) / 7; // bit code 101

 red_6 = (2 * red_0 + 5 * red_1) / 7; // bit code 110

 red_7 = (1 * red_0 + 6 * red_1) / 7; // bit code 111

 }

 else {

 red_2 = (4 * red_0 + 1 * red_1) / 5; // bit code 010

 red_3 = (3 * red_0 + 2 * red_1) / 5; // bit code 011

 red_4 = (2 * red_0 + 3 * red_1) / 5; // bit code 100

 red_5 = (1 * red_0 + 4 * red_1) / 5; // bit code 101

 red_6 = UNORM ? 0.0 : -1.0; // bit code 110 (0 for UNORM, -1 for SNORM)

 red_7 = 1.0; // bit code 111

 }

6.3.4 BC5

These formats (BC5_UNORM and BC5_SNORM) compresses dual-component UNORM or SNORM

data. A 16-byte compression block represents a 4x4 block of texels. The texels are labeled as

texel[row][column] where both row and column range from 0 to 3. Texel[0][0] is the upper left texel.

The 16-byte compression block is laid out as follows:

Bit Description

7:0 red_0

15:8 red_1

18:16 texel[0][0] red bit code

21:19 texel[0][1] red bit code

24:22 texel[0][2] red bit code

27:25 texel[0][3] red bit code

30:28 texel[1][0] red bit code

33:31 texel[1][1] red bit code

36:34 texel[1][2] red bit code

39:37 texel[1][3] red bit code

42:40 texel[2][0] red bit code

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 5/29/2012 74

Bit Description

45:43 texel[2][1] red bit code

48:46 texel[2][2] red bit code

51:49 texel[2][3] red bit code

54:52 texel[3][0] red bit code

57:55 texel[3][1] red bit code

60:58 texel[3][2] red bit code

63:61 texel[3][3] red bit code

71:64 green_0

79:72 green_1

82:80 texel[0][0] green bit code

85:83 texel[0][1] green bit code

88:86 texel[0][2] green bit code

91:89 texel[0][3] green bit code

94:92 texel[1][0] green bit code

97:95 texel[1][1] green bit code

100:98 texel[1][2] green bit code

103:101 texel[1][3] green bit code

106:104 texel[2][0] green bit code

109:107 texel[2][1] green bit code

112:110 texel[2][2] green bit code

115:113 texel[2][3] green bit code

118:116 texel[3][0] green bit code

121:119 texel[3][1] green bit code

124:122 texel[3][2] green bit code

127:125 texel[3][3] green bit code

There are two interpolation modes, chosen based on which reference color is larger. The first mode has

the two reference colors plus six equal-spaced interpolated colors between the reference colors, chosen

based on the three-bit code for that texel. The second mode has the two reference colors plus four

interpolated colors, chosen by six of the three-bit codes. The remaining two codes select min and max

values for the colors. The values of red_0 through red_7 are computed as follows:

 red_0 = red_0; // bit code 000

 red_1 = red_1; // bit code 001

 if (red_0 > red_1) {

 red_2 = (6 * red_0 + 1 * red_1) / 7; // bit code 010

 red_3 = (5 * red_0 + 2 * red_1) / 7; // bit code 011

 red_4 = (4 * red_0 + 3 * red_1) / 7; // bit code 100

 red_5 = (3 * red_0 + 4 * red_1) / 7; // bit code 101

 red_6 = (2 * red_0 + 5 * red_1) / 7; // bit code 110

 red_7 = (1 * red_0 + 6 * red_1) / 7; // bit code 111

 }

 else {

 red_2 = (4 * red_0 + 1 * red_1) / 5; // bit code 010

 red_3 = (3 * red_0 + 2 * red_1) / 5; // bit code 011

 red_4 = (2 * red_0 + 3 * red_1) / 5; // bit code 100

 red_5 = (1 * red_0 + 4 * red_1) / 5; // bit code 101

 red_6 = UNORM ? 0.0 : -1.0; // bit code 110 (0 for UNORM, -1 for SNORM)

 red_7 = 1.0; // bit code 111

 }

The same calculations are done for green, using the corresponding reference colors and bit codes.

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 6/21/2012 75

6.3.5 BC6H

These formats (BC6H_UF16 and BC6H_SF16) compress 3-channel images with high dynamic range (> 8

bits per channel). BC6H supports floating point denorms but there is no support for INF and NaN, other

than with BC6H_SF16 –INF is supported. The alpha channel is not included, thus alpha is returned at its

default value.

The BC6H block is 16 bytes and represents a 4x4 block of texels. The texels are labeled as

texel[row][column] where both row and column range from 0 to 3. Texel[0][0] is the upper left texel. BC6H

has 14 different modes, the mode that the block is in is contained in the least significant bits (either 2 or 5

bits).

The basic scheme consists of interpolating colors along either one or two lines, with per-texel indices

indicating which color along the line is chosen for each texel. If a two-line mode is selected, one of 32

partition sets is indicated which selects which of the two lines each texel is assigned to.

6.3.5.1 Field Definition

There are 14 possible modes for a BC6H block, the format of each is indicated in the 14 tables below.

The mode is selected by the unique mode bits specified in each table. The first 10 modes use two lines

(“TWO”), and the last 4 use one line (“ONE”). The difference between the various two-line and one-line

modes is with the precision of the first endpoint and the number of bits used to store delta values for the

remaining endpoints. Two modes (9 and 10) specify each endpoint as an original value rather than using

the deltas (these are indicated as having no delta values).

The endpoints values and deltas are indicated in the tables using a two-letter name. The first letter is “r”,

“g”, or “b” indicating the color channel. The second letter is “w”, “x”, “y”, or “z” indicating which of the four

endpoints. The first line has endpoints “w” and “x”, with “w” being the endpoint that is fully specified (i.e.

not as a delta). The second line has endpoints “y” and “z”. Modes using ONE mode do not have

endpoints “y” and “z” as they have only one line.

In addition to the mode and endpoint data, TWO blocks contain a 5-bit “partition” which selects one of the

partition sets, and a 46-bit set of indices. ONE blocks contain a 63-bit set of indices. These are described

in more detail below.

Mode 0: (TWO) Red, Green, Blue: 10-bit endpoint, 5-bit deltas

Bit Description

1:0 mode = 00

2 gy[4]

3 by[4]

4 bz[4]

14:5 rw[9:0]

24:15 gw[9:0]

34:25 bw[9:0]

39:35 rx[4:0]

40 gz[4]

44:41 gy[3:0]

49:45 gx[4:0]

50 bz[0]

54:51 gz[3:0]

59:55 bx[4:0]

60 bz[1]

64:61 by[3:0]

69:65 ry[4:0]

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 5/29/2012 76

Bit Description

70 bz[2]

75:71 rz[4:0]

76 bz[3]

81:77 partition

127:82 indices

Mode 1: (TWO) Red, Green, Blue: 7-bit endpoint, 6-bit deltas

Bit Description

1:0 mode = 01

2 gy[5]

3 gz[4]

4 gz[5]

11:5 rw[6:0]

12 bz[0]

13 bz[1]

14 by[4]

21:15 gw[6:0]

22 by[5]

23 bz[2]

24 gy[4]

31:25 bw[6:0]

32 bz[3]

33 bz[5]

34 bz[4]

40:35 rx[5:0]

44:41 gy[3:0]

50:45 gx[5:0]

54:51 gz[3:0]

60:55 bx[5:0]

64:61 by[3:0]

70:65 ry[5:0]

76:71 rz[5:0]

81:77 partition

127:82 indices

Mode 2: (TWO) Red: 11-bit endpoint, 5-bit deltas

Green, Blue: 11-bit endpoint, 4-bit deltas

Bit Description

4:0 mode = 00010

14:5 rw[9:0]

24:15 gw[9:0]

34:25 bw[9:0]

39:35 rx[4:0]

40 rw[10]

44:41 gy[3:0]

48:45 gx[3:0]

49 gw[10]

50 bz[0]

54:51 gz[3:0]

58:55 bx[3:0]

59 bw[10]

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 6/21/2012 77

Bit Description

60 bz[1]

64:61 by[3:0]

69:65 ry[4:0]

70 bz[2]

75:71 rz[4:0]

76 bz[3]

81:77 partition

127:82 indices

Mode 3: (TWO) Red, Blue: 11-bit endpoint, 4-bit deltas

Green: 11-bit endpoint, 5-bit deltas

Bit Description

4:0 mode = 00110

14:5 rw[9:0]

24:15 gw[9:0]

34:25 bw[9:0]

38:35 rx[3:0]

39 rw[10]

40 gz[4]

44:41 gy[3:0]

49:45 gx[4:0]

50 gw[10]

54:51 gz[3:0]

58:55 bx[3:0]

59 bw[10]

60 bz[1]

64:61 by[3:0]

68:65 ry[3:0]

69 bz[0]

70 bz[2]

74:71 rz[3:0]

75 gy[4]

76 bz[3]

81:77 partition

127:82 indices

Mode 4: (TWO) Red, Green: 11-bit endpoint, 4-bit deltas

Blue: 11-bit endpoint, 5-bit deltas

Bit Description

4:0 mode = 01010

14:5 rw[9:0]

24:15 gw[9:0]

34:25 bw[9:0]

38:35 rx[3:0]

39 rw[10]

40 by[4]

44:41 gy[3:0]

48:45 gx[3:0]

49 gw[10]

50 bz[0]

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 5/29/2012 78

Bit Description

54:51 gz[3:0]

59:55 bx[4:0]

60 bw[10]

64:61 by[3:0]

68:65 ry[3:0]

69 bz[1]

70 bz[2]

74:71 rz[3:0]

75 bz[4]

76 bz[3]

81:77 partition

127:82 indices

Mode 5: (TWO) Red, Green, Blue: 9-bit endpoint, 5-bit deltas

Bit Description

4:0 mode = 01110

13:5 rw[8:0]

14 by[4]

23:15 gw[8:0]

24 gy[4]

33:25 bw[8:0]

34 bz[4]

39:35 rx[4:0]

40 gz[4]

44:41 gy[3:0]

49:45 gx[3:0]

50 bz[0]

54:51 gz[3:0]

59:55 bx[4:0]

60 bz[1]

64:61 by[3:0]

69:65 ry[4:0]

70 bz[2]

75:71 rz[4:0]

76 bz[3]

81:77 partition

127:82 indices

Mode 6: (TWO) Red: 8-bit endpoint, 6-bit deltas

Green, Blue: 8-bit endpoint, 5-bit deltas

Bit Description

4:0 mode = 10010

12:5 rw[7:0]

13 gz[4]

14 by[4]

22:15 gw[7:0]

23 bz[2]

24 gy[4]

32:25 bw[7:0]

33 bz[3]

34 bz[4]

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 6/21/2012 79

Bit Description

40:35 rx[5:0]

44:41 gy[3:0]

49:45 gx[4:0]

50 bz[0]

54:51 gz[3:0]

59:55 bx[4:0]

60 gz[1]

64:61 by[3:0]

70:65 ry[5:0]

76:71 rz[5:0]

81:77 partition

127:82 indices

Mode 7: (TWO) Red, Blue: 8-bit endpoint, 5-bit deltas

Green: 8-bit endpoint, 6-bit deltas

Bit Description

4:0 mode = 10110

12:5 rw[7:0]

13 bz[0]

14 by[4]

22:15 gw[7:0]

23 gy[5]

24 gy[4]

32:25 bw[7:0]

33 gz[5]

34 bz[4]

39:35 rx[4:0]

40 gz[4]

44:41 gy[3:0]

50:45 gx[5:0]

54:51 gz[3:0]

59:55 bx[4:0]

60 bz[1]

64:61 by[3:0]

69:65 ry[4:0]

70 bz[2]

75:71 rz[4:0]

76 bz[3]

81:77 partition

127:82 indices

Mode 8: (TWO) Red, Green: 8-bit endpoint, 5-bit deltas

Blue: 8-bit endpoint, 6-bit deltas

Bit Description

4:0 mode = 11010

12:5 rw[7:0]

13 bz[1]

14 by[4]

22:15 gw[7:0]

23 by[5]

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 5/29/2012 80

Bit Description

24 gy[4]

32:25 bw[7:0]

33 bz[5]

34 bz[4]

39:35 rx[4:0]

40 gz[4]

44:41 gy[3:0]

49:45 gx[4:0]

50 bz[0]

54:51 gz[3:0]

60:55 bx[5:0]

64:61 by[3:0]

69:65 ry[4:0]

70 bz[2]

75:71 rz[4:0]

76 bz[3]

81:77 partition

127:82 indices

Mode 9: (TWO) Red, Green, Blue: 6-bit endpoints for all four, no deltas

Bit Description

4:0 mode = 11110

10:5 rw[5:0]

11 gz[4]

12 bz[0]

13 bz[1]

14 by[4]

20:15 gw[5:0]

21 gy[5]

22 by[5]

23 bz[2]

24 gy[4]

30:25 bw[5:0]

31 gz[5]

32 bz[3]

33 bz[5]

34 bz[4]

40:35 rx[5:0]

44:41 gy[3:0]

50:45 gx[5:0]

54:51 gz[3:0]

60:55 bx[5:0]

64:61 by[3:0]

70:65 ry[5:0]

76:71 rz[5:0]

81:77 partition

127:82 indices

Mode 10: (ONE) Red, Green, Blue: 10-bit endpoints for both, no deltas

Bit Description

4:0 mode = 00011

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 6/21/2012 81

Bit Description

14:5 rw[9:0]

24:15 gw[9:0]

34:25 bw[9:0]

44:35 rx[9:0]

54:45 gx[9:0]

64:55 bx[9:0]

127:65 indices

Mode 11: (ONE) Red, Green, Blue: 11-bit endpoints, 9-bit deltas

Bit Description

4:0 mode = 00111

14:5 rw[9:0]

24:15 gw[9:0]

34:25 bw[9:0]

43:35 rx[8:0]

44 rw[10]

53:45 gx[8:0]

54 gw[10]

63:55 bx[8:0]

64 bw[10]

127:65 indices

Mode 12: (ONE) Red, Green, Blue: 12-bit endpoints, 8-bit deltas

Bit Description

4:0 mode = 01011

14:5 rw[9:0]

24:15 gw[9:0]

34:25 bw[9:0]

42:35 rx[7:0]

43 rw[11]

44 rw[10]

52:45 gx[7:0]

53 gw[11]

54 gw[10]

62:55 bx[7:0]

63 bw[11]

64 bw[10]

127:65 indices

Mode 13: (ONE) Red, Green, Blue: 16-bit endpoints, 4-bit deltas

Bit Description

4:0 mode = 01111

14:5 rw[9:0]

24:15 gw[9:0]

34:25 bw[9:0]

38:35 rx[3:0]

39 rw[15]

40 rw[14]

41 rw[13]

42 rw[12]

43 rw[11]

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 5/29/2012 82

Bit Description

44 rw[10]

48:45 gx[3:0]

49 gw[15]

50 gw[14]

51 gw[13]

52 gw[12]

53 gw[11]

54 gw[10]

58:55 bx[3:0]

59 bw[15]

60 bw[14]

61 bw[13]

62 bw[12]

63 bw[11]

64 bw[10]

127:65 indices

Undefined mode values (10011, 10111, 11011, and 11111) return zero in the RGB channels.

The “indices” fields are defined as follows:

TWO mode indices field with fix-up index [1] at texel[3][3]

Bit Description

83:82 texel[0][0] index

86:84 texel[0][1] index

89:87 texel[0][2] index

92:90 texel[0][3] index

95:93 texel[1][0] index

98:96 texel[1][1] index

101:99 texel[1][2] index

104:102 texel[1][3] index

107:105 texel[2][0] index

110:108 texel[2][1] index

113:111 texel[2][2] index

116:114 texel[2][3] index

119:117 texel[3][0] index

122:120 texel[3][1] index

125:123 texel[3][2] index

127:126 texel[3][3] index

TWO mode indices field with fix-up index [1] at texel[0][2]

Bit Description

83:82 texel[0][0] index

86:84 texel[0][1] index

88:87 texel[0][2] index

91:89 texel[0][3] index

94:92 texel[1][0] index

97:95 texel[1][1] index

100:98 texel[1][2] index

103:101 texel[1][3] index

106:104 texel[2][0] index

109:107 texel[2][1] index

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 6/21/2012 83

Bit Description

112:110 texel[2][2] index

115:113 texel[2][3] index

118:116 texel[3][0] index

121:119 texel[3][1] index

124:122 texel[3][2] index

127:125 texel[3][3] index

TWO mode indices field with fix-up index [1] at texel[2][0]

Bit Description

83:82 texel[0][0] index

86:84 texel[0][1] index

89:87 texel[0][2] index

92:90 texel[0][3] index

95:93 texel[1][0] index

98:96 texel[1][1] index

101:99 texel[1][2] index

104:102 texel[1][3] index

106:105 texel[2][0] index

109:107 texel[2][1] index

112:110 texel[2][2] index

115:113 texel[2][3] index

118:116 texel[3][0] index

121:119 texel[3][1] index

124:122 texel[3][2] index

127:125 texel[3][3] index

ONE mode indices field

Bit Description

67:65 texel[0][0] index

71:68 texel[0][1] index

75:72 texel[0][2] index

79:76 texel[0][3] index

83:80 texel[1][0] index

87:84 texel[1][1] index

91:88 texel[1][2] index

95:92 texel[1][3] index

99:96 texel[2][0] index

103:100 texel[2][1] index

107:104 texel[2][2] index

111:108 texel[2][3] index

115:112 texel[3][0] index

119:116 texel[3][1] index

123:120 texel[3][2] index

127:124 texel[3][3] index

6.3.5.2 Endpoint Computation

The endpoints can be defined in many different ways, as shown above. This section describes how the

endpoints are computed from the bits in the compression block. The method used depends on whether

the BC6H format is signed (BC6H_SF16) or unsigned (BC6H_UF16).

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 5/29/2012 84

First, each channel (RGB) of each endpoint is extended to 16 bits. Each is handled identically and

independently, however in some modes different channels have different incoming precision which must

be accounted for. The following rules are employed:

 If the format is BC6H_SF16 or the endpoint is a delta value, the value is sign-extended to 16 bits

 For all other cases, the value is zero-extended to 16 bits

If there are no endpoints that are delta values, endpoint computation is complete. For endpoints that are

delta values, the next step involves computing the absolute endpoint. The “w” endpoint is always absolute

and acts as a base value for the other three endpoints. Each channel is handled identically and

independently.

 x = w + x

 y = w + y

 z = w + z

The above is performed using 16-bit integer arithmetic. Overflows beyond 16 bits are ignored (any

resulting high bits are dropped).

6.3.5.3 Palette Color Computation

The next step involves computing the color palette values that provide the available values for each

texel’s color. The color palette for each line consists of the two endpoint colors plus 6 (TWO mode) or 14

(ONE mode) interpolated colors. Again each channel is processed independently.

First the endpoints are unquantized, with each channel of each endpoint being processed independently.

The number of bits in the original base “w” value represents the precision of the endpoints. The input

endpoint is called “e”, and the resulting endpoints are represented as 17-bit signed integers and called e’

below.

For the BC6H_UF16 format:

 if the precision is already 16 bits, e’ = e

 if e = 0, e’ = 0

 if e is the maximum representible in the precision, e’ = 0xFFFF

 otherwise, e’ = ((e << 16) + 0x8000) >> precision

For the BC6H_SF16 format, the value is treated as sign magnitude. The sign is not changed, e’ and e

refer only to the magnitude portion:

 if the precision is already 16 bits, e’ = e

 if e = 0, e’ = 0

 if e is the maximum representible in the precision, e’ = 0x7FFF

 otherwise, e’ = ((e << 15) + 0x4000) >> (precision – 1)

Next, the palette values are generated using predefined weights, using the tables below:

palette[i] = (w’ * (64 – weight[i]) + x’ * weight[i] + 32) >> 6

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 6/21/2012 85

TWO mode weights:

palette

index

0 1 2 3 4 5 6 7

weight
0 9 18 27 37 46 55 64

ONE mode weights:

pal

ette

ind

ex

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

wei

ght

0 4 9 13 17 21 26 30 34 38 43 47 51 55 60 64

Note that the two end palette indices are equal to the two endpoints given that the weights are 0 and 64.

In the above equation w’ and x’ represent the endpoints e’ computed in the previous step corresponding

to w and x, respectively. For the second line in TWO mode, w and x are replaced with y and z.

The final step in computing the palette colors is to rescale the final results. For BC6H_UF16 format, the

values are multiplied by 31/64. For BC6H_SF16, the values are multiplied by 31/32, treating them as sign

magnitude. These final 16-bit results are ultimately treated as 16-bit floats.

6.3.5.4 Texel Selection

The final step is to select the appropriate palette index for each texel. This index then selects the 16-bit

per channel palette value, which is re-interpreted as a 16-bit floating point result for input into the filter.

This procedure differs depending on whether the mode is TWO or ONE.

6.3.5.4.1 TWO Mode

32 partitions are defined for TWO, which are defined below. Each of the 32 cases shows the 4x4 block of

texels, and is indexed by adding its hexadecimal row number (00-1C) to its column number (0-3). Each

texel in the 4x4 block indicates whether that texel is part of line 0 (endpoints w and x) or line 1 (endpoints

y and z). Each case has one texel each of “[0]” and “[1]”, the index that this is at is termed the “fix-up

index”. These texels have one less bit in the index.

0 1 2 3

00
[0] 0 1 1 [0] 0 0 1 [0] 1 1 1 [0] 0 0 1

0 0 1 1 0 0 0 1 0 1 1 1 0 0 1 1

0 0 1 1 0 0 0 1 0 1 1 1 0 0 1 1

0 0 1 [1] 0 0 0 [1] 0 1 1 [1] 0 1 1 [1]

04
[0] 0 0 0 [0] 0 1 1 [0] 0 0 1 [0] 0 0 0

0 0 0 1 0 1 1 1 0 0 1 1 0 0 0 1

0 0 0 1 0 1 1 1 0 1 1 1 0 0 1 1

0 0 1 [1] 1 1 1 [1] 1 1 1 [1] 0 1 1 [1]

08
[0] 0 0 0 [0] 0 1 1 [0] 0 0 0 [0] 0 0 0

0 0 0 0 0 1 1 1 0 0 0 1 0 0 0 0

0 0 0 1 1 1 1 1 0 1 1 1 0 0 0 1

0 0 1 [1] 1 1 1 [1] 1 1 1 [1] 0 1 1 [1]

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 5/29/2012 86

0C
[0] 0 0 1 [0] 0 0 0 [0] 0 0 0 [0] 0 0 0

0 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0

1 1 1 [1] 1 1 1 [1] 1 1 1 [1] 1 1 1 [1]

10
[0] 0 0 0 [0] 1 [1] 1 [0] 0 0 0 [0] 1 [1] 1

1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1

1 1 1 0 0 0 0 0 [1] 0 0 0 0 0 0 1

1 1 1 [1] 0 0 0 0 1 1 1 0 0 0 0 0

14
[0] 0 [1] 1 [0] 0 0 0 [0] 0 0 0 [0] 1 1 1

0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 [1] 1 0 0 [1] 0 0 0 0 0 1 1

0 0 0 0 1 1 1 0 1 1 0 0 0 0 0 [1]

18
[0] 0 [1] 1 [0] 0 0 0 [0] 1 [1] 0 [0] 0 [1] 1

0 0 0 1 1 0 0 0 0 1 1 0 0 1 1 0

0 0 0 1 [1] 0 0 0 0 1 1 0 0 1 1 0

0 0 0 0 1 1 0 0 0 1 1 0 1 1 0 0

1C
[0] 0 0 1 [0] 0 0 0 [0] 1 [1] 1 [0] 0 [1] 1

0 1 1 1 1 1 1 1 0 0 0 1 1 0 0 1

[1] 1 1 0 [1] 1 1 1 1 0 0 0 1 0 0 1

1 0 0 0 0 0 0 0 1 1 1 0 1 1 0 0

The 46-bit “indices” field consists of a 3-bit palette index for each of the 16 texels, with the exception of

the bracketed texels that have only two bits each. The high bit of these texels is set to zero.

6.3.5.4.2 ONE Mode

In ONE mode, there is only one set of palette colors, but the “indices” field is 63 bits. This field consists of

a 4-bit palette index for each of the 16 texels, with the exception of the texel at [0][0] which has only 3

bits, the missing high bit being set to zero.

6.3.6 BC7

These formats (BC7_UNORM and BC7_UNORM_SRGB) compresses 3-channel and 4-channel fixed

point images.

The BC7 block is 16 bytes and represents a 4x4 block of texels. The texels are labeled as

texel[row][column] where both row and column range from 0 to 3. Texel[0][0] is the upper left texel. BC7

has 8 different modes, the mode that the block is in is contained in the least significant bits (1-8 bits

depending on mode).

The basic scheme consists of interpolating colors and alpha in some modes along either one, two, or

three lines, with per-texel indices indicating which color/alpha along the line is chosen for each texel. If a

two- or three-line mode is selected, one of 64 partition sets is indicated which selects which of the two

lines each texel is assigned to, although some modes are limited to the first 16 partition sets. In the color-

only modes, alpha is always returned at its default value of 1.0.

Some modes contain the following fields:

 P-bits. These represent shared LSB for all components of the endpoint, which increases the
endpoint precision by one bit. In some cases both endpoints of a line share a P-bit.

 Rotation bits. For blocks with separate color and alpha, this 2-bit field allows selection of which of
the four components has its own indexes (scalar) vs. the other three components (vector).

 Index selector. This 1-bit field selects whether the scalar or vector components uses the 3-bit index
vs. the 2-bit index.

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 6/21/2012 87

6.3.6.1 Field Definition

There are 8 possible modes for a BC7 block, the format of each is indicated in the 8 tables below. The

mode is selected by the unique mode bits specified in each table. Each mode has particular

characteristics described at the top of the table.

Mode 0: Color only, 3 lines (THREE), 4-bit endpoints with one P-bit per endpoint, 3-bit indices, 16

partitions

Bit Description

0 mode = 0

4:1 partition

8:5 R0

12:9 R1

16:13 R2

20:17 R3

24:21 R4

28:25 R5

32:29 G0

36:33 G1

40:37 G2

44:41 G3

48:45 G4

52:49 G5

56:53 B0

60:57 B1

64:61 B2

68:65 B3

72:69 B4

76:73 B5

77 P0

78 P1

79 P2

80 P3

81 P4

82 P5

127:83 indices

Mode 1: Color only, 2 lines (TWO), 6-bit endpoints with one shared P-bit per line, 3-bit indices, 64

partitions

Bit Description

1:0 mode = 10

7:2 partition

13:8 R0

19:14 R1

25:20 R2

31:26 R3

37:32 G0

43:38 G1

49:44 G2

55:50 G3

61:56 B0

67:62 B1

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 5/29/2012 88

Bit Description

73:68 B2

79:74 B3

80 P0

81 P1

127:82 indices

Mode 2: Color only, 3 lines (THREE), 5-bit endpoints, 2-bit indices, 64 partitions

Bit Description

2:0 mode = 100

8:3 partition

13:9 R0

18:14 R1

23:19 R2

28:24 R3

33:29 R4

38:34 R5

43:39 G0

48:44 G1

53:49 G2

58:54 G3

63:59 G4

68:64 G5

73:69 B0

78:74 B1

83:79 B2

88:84 B3

93:89 B4

98:94 B5

127:99 indices

Mode 3: Color only, 2 lines (TWO), 7-bit endpoints with one P-bit per endpoint, 2-bit indices, 64 partitions

Bit Description

3:0 mode = 1000

9:4 partition

16:10 R0

23:17 R1

30:24 R2

37:31 R3

44:38 G0

51:45 G1

58:52 G2

65:59 G3

72:66 B0

79:73 B1

86:80 B2

93:87 B3

94 P0

95 P1

96 P2

97 P3

127:98 indices

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 6/21/2012 89

Mode 4: Color and alpha, 1 line (ONE), 5-bit color endpoints, 6-bit alpha endpoints, 16 2-bit indices, 16 3-

bit indices, 2-bit component rotation, 1-bit index selector

Bit Description

4:0 mode = 10000

6:5 rotation

7 index selector

12:8 R0

17:13 R1

22:18 G0

27:23 G1

32:28 B0

37:33 B1

43:38 A0

49:44 A1

80:50 2-bit indices

127:81 3-bit indices

Mode 5: Color and alpha, 1 line (ONE), 7-bit color endpoints, 8-bit alpha endpoints, 2-bit color indices, 2-

bit alpha indices, 2-bit component rotation

Bit Description

5:0 mode = 100000

7:6 rotation

14:8 R0

21:15 R1

28:22 G0

35:29 G1

42:36 B0

49:43 B1

57:50 A0

65:58 A1

96:66 color indices

127:97 alpha indices

Mode 6: Combined color and alpha, 1 line (ONE), 7-bit endpoints with one P-bit per endpoint, 4-bit

indices

Bit Description

6:0 mode = 1000000

13:7 R0

20:14 R1

27:21 G0

34:28 G1

41:35 B0

48:42 B1

55:49 A0

62:56 A1

63 P0

64 P1

127:65 indices

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 5/29/2012 90

Mode 7: Combined color and alpha, 2 lines (TWO), 5-bit endpoints with one P-bit per endpoint, 2-bit

indices, 64 partitions

Bit Description

7:0 mode = 10000000

13:8 partition

18:14 R0

23:19 R1

28:24 R2

33:29 R3

38:34 G0

43:39 G1

48:44 G2

53:49 G3

58:54 B0

63:59 B1

68:64 B2

73:69 B3

78:74 A0

83:79 A1

88:84 A2

93:89 A3

94 P0

95 P1

96 P2

97 P3

127:98 indices

Undefined mode values (bits 7:0 = 00000000) return zero in the RGB channels.

The indices fields are variable in length and due to the different locations of the fix-up indices depending

on partition set there are a very large number of possible configurations. Each mode above indicates how

many bits each index has, and the fix-up indices (one in ONE mode, two in TWO mode, and three in

THREE mode) each have one less bit than indicated. However, the indices are always packed into the

index fields according to the table below, with the specific bit assignments of each texel following the

rules just given.

Bit Description

LSBs texel[0][0] index

 texel[0][1] index

 texel[0][2] index

 texel[0][3] index

 texel[1][0] index

 texel[1][1] index

 texel[1][2] index

 texel[1][3] index

 texel[2][0] index

 texel[2][1] index

 texel[2][2] index

 texel[2][3] index

 texel[3][0] index

 texel[3][1] index

 texel[3][2] index

MSBs texel[3][3] index

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 6/21/2012 91

6.3.6.2 Endpoint Computation

The endpoints can be defined with different precision depending on mode, as shown above. This section

describes how the endpoints are computed from the bits in the compression block. Each component of

each endpoint follows the same steps.

If a P-bit is defined for the endpoint, it is first added as an additional LSB at the bottom of the endpoint

value. The endpoint is then bit-replicated to create an 8-bit fixed point endpoint value with a range from

0x00 to 0xFF.

6.3.6.3 Palette Color Computation

The next step involves computing the color palette values that provide the available values for each

texel’s color. The color palette for each line consists of the two endpoint colors plus 2, 6, or 14

interpolated colors, depending on the number of bits in the indices. Again each channel is processed

independently.

The equation to compute each palette color with index i, given two endpoints is as follows, using the

tables below to determine the weight for each palette index:

palette[i] = (E0 * (64 – weight[i]) + E1 * weight[i] + 32) >> 6

2-bit index weights:

palette index
0 1 2 3

weight
0 21 43 64

3-bit index weights:

palette

index

0 1 2 3 4 5 6 7

weight
0 9 18 27 37 46 55 64

4-bit index weights:

palette

index

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

weight
0 4 9 13 17 21 26 30 34 38 43 47 51 55 60 64

Note that the two end palette indices are equal to the two endpoints given that the weights are 0 and 64.

In the above equation E0 and E1 represent the even-numbered and odd-numbered endpoints computed

in the previous step for the component and line currently being computed.

6.3.6.4 Texel Selection

The final step is to select the appropriate palette index for each texel. This index then selects the 8-bit per

channel palette value, which is interpreted as an 8-bit UNORM value for input into the filter (In

BC7_UNORM_SRGB to UNORM values first go through inverse gamma conversion). This procedure

differs depending on whether the mode is ONE, TWO, or THREE.

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 5/29/2012 92

6.3.6.4.1 ONE Mode

In ONE mode, there is only one set of palette colors, thus there is only a single “partition set” defined, with

all texels selecting line 0 and texel [0][0] being the “fix-up index” with one less bit in the index.

6.3.6.4.2 TWO Mode

64 partitions are defined for TWO, which are defined below. Each of the 64 cases shows the 4x4 block of

texels, and is indexed by adding its hexadecimal row number (00-3C) to its column number (0-3). Each

texel in the 4x4 block indicates whether that texel is part of line 0 (endpoints 0 and 1) or line 1 (endpoints

2 and 3). Each case has one texel each of “[0]” and “[1]”, the index that this is at is termed the “fix-up

index”. These texels have one less bit in the index.

0 1 2 3

00
[0] 0 1 1 [0] 0 0 1 [0] 1 1 1 [0] 0 0 1

0 0 1 1 0 0 0 1 0 1 1 1 0 0 1 1

0 0 1 1 0 0 0 1 0 1 1 1 0 0 1 1

0 0 1 [1] 0 0 0 [1] 0 1 1 [1] 0 1 1 [1]

04
[0] 0 0 0 [0] 0 1 1 [0] 0 0 1 [0] 0 0 0

0 0 0 1 0 1 1 1 0 0 1 1 0 0 0 1

0 0 0 1 0 1 1 1 0 1 1 1 0 0 1 1

0 0 1 [1] 1 1 1 [1] 1 1 1 [1] 0 1 1 [1]

08
[0] 0 0 0 [0] 0 1 1 [0] 0 0 0 [0] 0 0 0

0 0 0 0 0 1 1 1 0 0 0 1 0 0 0 0

0 0 0 1 1 1 1 1 0 1 1 1 0 0 0 1

0 0 1 [1] 1 1 1 [1] 1 1 1 [1] 0 1 1 [1]

0C
[0] 0 0 1 [0] 0 0 0 [0] 0 0 0 [0] 0 0 0

0 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0

1 1 1 [1] 1 1 1 [1] 1 1 1 [1] 1 1 1 [1]

10
[0] 0 0 0 [0] 1 [1] 1 [0] 0 0 0 [0] 1 [1] 1

1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1

1 1 1 0 0 0 0 0 [1] 0 0 0 0 0 0 1

1 1 1 [1] 0 0 0 0 1 1 1 0 0 0 0 0

14
[0] 0 [1] 1 [0] 0 0 0 [0] 0 0 0 [0] 1 1 1

0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 [1] 1 0 0 [1] 0 0 0 0 0 1 1

0 0 0 0 1 1 1 0 1 1 0 0 0 0 0 [1]

18
[0] 0 [1] 1 [0] 0 0 0 [0] 1 [1] 0 [0] 0 [1] 1

0 0 0 1 1 0 0 0 0 1 1 0 0 1 1 0

0 0 0 1 [1] 0 0 0 0 1 1 0 0 1 1 0

0 0 0 0 1 1 0 0 0 1 1 0 1 1 0 0

1C
[0] 0 0 1 [0] 0 0 0 [0] 1 [1] 1 [0] 0 [1] 1

0 1 1 1 1 1 1 1 0 0 0 1 1 0 0 1

[1] 1 1 0 [1] 1 1 1 1 0 0 0 1 0 0 1

1 0 0 0 0 0 0 0 1 1 1 0 1 1 0 0

20
[0] 1 0 1 [0] 0 0 0 [0] 1 0 1 [0] 0 1 1

0 1 0 1 1 1 1 1 1 0 [1] 0 0 0 1 1

0 1 0 1 0 0 0 0 0 1 0 1 [1] 1 0 0

0 1 0 [1] 1 1 1 [1] 1 0 1 0 1 1 0 0

24
[0] 0 [1] 1 [0] 1 0 1 [0] 1 1 0 [0] 1 0 1

1 1 0 0 0 1 0 1 1 0 0 1 1 0 1 0

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 6/21/2012 93

0 1 2 3

0 0 1 1 [1] 0 1 0 0 1 1 0 1 0 1 0

1 1 0 0 1 0 1 0 1 0 0 [1] 0 1 0 [1]

28
[0] 1 [1] 1 [0] 0 0 1 [0] 0 [1] 1 [0] 0 [1] 1

0 0 1 1 0 0 1 1 0 0 1 0 1 0 1 1

1 1 0 0 [1] 1 0 0 0 1 0 0 1 1 0 1

1 1 1 0 1 0 0 0 1 1 0 0 1 1 0 0

2C
[0] 1 [1] 0 [0] 0 1 1 [0] 1 1 0 [0] 0 0 0

1 0 0 1 1 1 0 0 0 1 1 0 0 1 [1] 0

1 0 0 1 1 1 0 0 1 0 0 1 0 1 1 0

0 1 1 0 0 0 1 [1] 1 0 0 [1] 0 0 0 0

30
[0] 1 0 0 [0] 0 [1] 0 [0] 0 0 0 [0] 0 0 0

1 1 [1] 0 0 1 1 1 0 0 [1] 0 0 1 0 0

0 1 0 0 0 0 1 0 0 1 1 1 [1] 1 1 0

0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0

34
[0] 1 1 0 [0] 0 1 1 [0] 1 [1] 0 [0] 0 [1] 1

1 1 0 0 0 1 1 0 0 0 1 1 1 0 0 1

1 0 0 1 1 1 0 0 1 0 0 1 1 1 0 0

0 0 1 [1] 1 0 0 [1] 1 1 0 0 0 1 1 0

38
[0] 1 1 0 [0] 1 1 0 [0] 1 1 1 [0] 0 0 1

1 1 0 0 0 0 1 1 1 1 1 0 1 0 0 0

1 1 0 0 0 0 1 1 1 0 0 0 1 1 1 0

1 0 0 [1] 1 0 0 [1] 0 0 0 [1] 0 1 1 [1]

3C
[0] 0 0 0 [0] 0 [1] 1 [0] 0 [1] 0 [0] 1 0 0

1 1 1 1 0 0 1 1 0 0 1 0 0 1 0 0

0 0 1 1 1 1 1 1 1 1 1 0 0 1 1 1

0 0 1 [1] 0 0 0 0 1 1 1 0 0 1 1 [1]

6.3.6.4.3 THREE Mode

64 partitions are defined for THREE, which are defined below. Each of the 64 cases shows the 4x4 block

of texels, and is indexed by adding its hexadecimal row number (00-3C) to its column number (0-3). Each

texel in the 4x4 block indicates whether that texel is part of line 0 (endpoints 0 and 1), line 1 (endpoints 2

and 3), or line 2 (endpoints 4 and 5). Each case has one texel each of “[0]”, “[1]”, and “[2]”, the index that

this is at is termed the “fix-up index”. These texels have one less bit in the index.

0 1 2 3

00
[0] 0 1 [1] [0] 0 0 [1] [0] 0 0 0 [0] 2 2 [2]

0 0 1 1 0 0 1 1 2 0 0 1 0 0 2 2

0 2 2 1 [2] 2 1 1 [2] 2 1 1 0 0 1 1

2 2 2 [2] 2 2 2 1 2 2 1 [1] 0 1 1 [1]

04
[0] 0 0 0 [0] 0 1 [1] [0] 0 2 [2] [0] 0 1 1

0 0 0 0 0 0 1 1 0 0 2 2 0 0 1 1

[1] 1 2 2 0 0 2 2 1 1 1 1 [2] 2 1 1

1 1 2 [2] 0 0 2 [2] 1 1 1 [1] 2 2 1 [1]

08
[0] 0 0 0 [0] 0 0 0 [0] 0 0 0 [0] 0 1 2

0 0 0 0 1 1 1 1 1 1 [1] 1 0 0 [1] 2

[1] 1 1 1 [1] 1 1 1 2 2 2 2 0 0 1 2

2 2 2 [2] 2 2 2 [2] 2 2 2 [2] 0 0 1 [2]

0C
[0] 1 1 2 [0] 1 2 2 [0] 0 1 [1] [0] 0 1 [1]

0 1 [1] 2 0 [1] 2 2 0 1 1 2 2 0 0 1

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 5/29/2012 94

0 1 2 3

0 1 1 2 0 1 2 2 1 1 2 2 [2] 2 0 0

0 1 1 [2] 0 1 2 [2] 1 2 2 [2] 2 2 2 0

10
[0] 0 0 [1] [0] 1 1 [1] [0] 0 0 0 [0] 0 2 [2]

0 0 1 1 0 0 1 1 1 1 2 2 0 0 2 2

0 1 1 2 [2] 0 0 1 [1] 1 2 2 0 0 2 2

1 1 2 [2] 2 2 0 0 1 1 2 [2] 1 1 1 [1]

14
[0] 1 1 [1] [0] 0 0 [1] [0] 0 0 0 [0] 0 0 0

0 1 1 1 0 0 0 1 0 0 [1] 1 1 1 0 0

0 2 2 2 [2] 2 2 1 0 1 2 2 [2] 2 [1] 0

0 2 2 [2] 2 2 2 1 0 1 2 [2] 2 2 1 0

18
[0] 1 2 [2] [0] 0 1 2 [0] 1 1 0 [0] 0 0 0

0 [1] 2 2 0 0 1 2 1 2 [2] 1 0 1 [1] 0

0 0 1 1 [1] 1 2 2 [1] 2 2 1 1 2 [2] 1

0 0 0 0 2 2 2 [2] 0 1 1 0 1 2 2 1

1C
[0] 0 2 2 [0] 1 1 0 [0] 0 1 1 [0] 0 0 0

1 1 0 2 0 [1] 1 0 0 1 2 2 2 0 0 0

[1] 1 0 2 2 0 0 2 0 1 [2] 2 [2] 2 1 1

0 0 2 [2] 2 2 2 [2] 0 0 1 [1] 2 2 2 [1]

20
[0] 0 0 0 [0] 2 2 [2] [0] 0 1 [1] [0] 1 2 0

0 0 0 2 0 0 2 2 0 0 1 2 0 [1] 2 0

[1] 1 2 2 0 0 1 2 0 0 2 2 0 1 [2] 0

1 2 2 [2] 0 0 1 [1] 0 2 2 [2] 0 1 2 0

24
[0] 0 0 0 [0] 1 2 0 [0] 1 2 0 [0] 0 1 1

1 1 [1] 1 1 2 0 1 2 0 1 2 2 2 0 0

2 2 [2] 2 [2] 0 [1] 2 [1] [2] 0 1 1 1 [2] 2

0 0 0 0 0 1 2 0 0 1 2 0 0 0 1 [1]

28
[0] 0 1 1 [0] 1 0 [1] [0] 0 0 0 [0] 0 2 2

1 1 [2] 2 0 1 0 1 0 0 0 0 1 [1] 2 2

2 2 0 0 2 2 2 2 [2] 1 2 1 0 0 2 2

0 0 1 [1] 2 2 2 [2] 2 1 2 [1] 1 1 2 [2]

2C
[0] 0 2 [2] [0] 2 2 0 [0] 1 0 1 [0] 0 0 0

0 0 1 1 1 2 [2] 1 2 2 [2] 2 2 1 2 1

0 0 2 2 0 2 2 0 2 2 2 2 [2] 1 2 1

0 0 1 [1] 1 2 2 [1] 0 1 0 [1] 2 1 2 [1]

30
[0] 1 0 [1] [0] 2 2 [2] [0] 0 0 2 [0] 0 0 0

0 1 0 1 0 1 1 1 1 [1] 1 2 2 [1] 1 2

0 1 0 1 0 2 2 2 0 0 0 2 2 1 1 2

2 2 2 [2] 0 1 1 [1] 1 1 1 [2] 2 1 1 [2]

34
[0] 2 2 2 [0] 0 0 2 [0] 1 1 0 [0] 0 0 0

0 [1] 1 1 1 1 1 2 0 [1] 1 0 0 0 0 0

0 1 1 1 [1] 1 1 2 0 1 1 0 2 1 [1] 2

0 2 2 [2] 0 0 0 [2] 2 2 2 [2] 2 1 1 [2]

38
[0] 1 1 0 [0] 0 2 2 [0] 0 2 2 [0] 0 0 0

0 [1] 1 0 0 0 1 1 1 1 2 2 0 0 0 0

2 2 2 2 0 0 [1] 1 [1] 1 2 2 0 0 0 0

2 2 2 [2] 0 0 2 [2] 0 0 2 [2] 2 [1] 1 [2]

3C
[0] 0 0 [2] [0] 2 2 2 [0] 1 0 [1] [0] 1 1 [1]

0 0 0 1 1 2 2 2 2 2 2 2 2 0 1 1

0 0 0 2 0 2 2 2 2 2 2 2 [2] 2 0 1

0 0 0 [1] [1] 2 2 [2] 2 2 2 [2] 2 2 2 0

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 6/21/2012 95

6.4 Video Pixel/Texel Formats

This section describes the “video” pixel/texel formats with respect to memory layout. See the Overlay

chapter for a description of how the Y, U, V components are sampled.

6.4.1 Packed Memory Organization

Color components are all 8 bits in size for YUV formats. For YUV 4:2:2 formats each DWord will contain

two pixels and only the byte order affects the memory organization.

The following four YUV 4:2:2 surface formats are supported, listed with alternate names:

 YCRCB_NORMAL (YUYV/YUY2)

 YCRCB_SWAPUVY (VYUY) (R8G8_B8G8_UNORM)

 YCRCB_SWAPUV(YVYU) (G8R8_G8B8_UNORM)

 YCRCB_SWAPY (UYVY)

The channels are mapped as follows:

Cr (V) Red

Y Green

Cb (U) Blue

Memory layout of packed YUV 4:2:2 formats

6.4.2 Planar Memory Organization

Planar formats use what could be thought of as separate buffers for the three color components. Because

there is a separate stride for the Y and U/V data buffers, several memory footprints can be supported.

Note: There is no direct support for use of planar video surfaces as textures. The sampling engine can be

used to operate on each of the 8bpp buffers separately (via a single-channel 8-bit format such as

I8_UNORM). The U and V buffers can be written concurrently by using multiple render targets from the

pixel shader. The Y buffer must be written in a separate pass due to its different size.

The following figure shows two types of memory organization for the YUV 4:2:0 planar video data:

1. The memory organization of the common YV12 data, where all three planes are contiguous
and the strides of U and V components are half of that of the Y component.

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 5/29/2012 96

2. An alternative memory structure that the addresses of the three planes are independent but
satisfy certain alignment restrictions.

YUV 4:2:0 Format Memory Organization

The following figure shows memory organization of the planar YUV 4:1:0 format where the planes are

contiguous.

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 6/21/2012 97

YUV 4:1:0 Format Memory Organization

6.5 Additional Video Formats

Dx YUV
format
name DxRGB format name

Pack
ed /

Plana
r

Surfa

ce
State

s Surface Format #1
 Surface

Format #2
 Surface

Format #3 Support By

DXGI_FOR

MAT_AYUV

DXGI_FORMAT_R8G8B

8A8_UNORM

(V->R8, U->G8, Y->B8,

A->A8)

Pack

ed

1 R8G8B8A8_UNORM NA NA Sampler, PB

DXGI_FOR

MAT_AYUV
DXGI_FORMAT_R8G8

B8A8_UINT

(V->R8, U->G8, Y->B8,

A->A8)

Pack

ed

1 R8G8B8A8_UINT NA NA Sampler,

HDC, PB

DXGI_FOR

MAT_YUY2
DXGI_FORMAT_R8G8

B8A8_UNORM

(Y0->R8, U0->G8, Y1-

>B8, V0->A8)

Pack

ed

1 R8G8B8A8_UNORM NA NA Sampler,

NA NA Pack

ed

1 R16G16B16A16_UINT NA NA Sampler,

HDC

NA NA Pack

ed

1 R16G16B16A16_UINT NA NA Sampler,

HDC

NA NA Pack

ed

1 R16G16B16A16_UINT NA NA Sampler,

HDC

DXGI_FOR

MAT_YUY2
DXGI_FORMAT_R8G8

B8A8_UINT

(Y0->R8, U0->G8, Y1-

>B8, V0->A8)

Pack

ed

1 R8G8B8A8_UINT NA NA Sampler,

HDC

DXGI_FOR

MAT_YUY2

DXGI_FORMAT_R8G8_

B8G8_UNORM

Pack

ed

1
R8G8B8A8_UNORM

In this case the width of

the view will appear to

NA NA Sampler

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 5/29/2012 98

Dx YUV
format
name DxRGB format name

Pack
ed /

Plana
r

Surfa

ce
State

s Surface Format #1
 Surface

Format #2
 Surface

Format #3 Support By

be twice the R8G8B8A8

view, with hardware

reconstruction of RGBA

done automatically on

read (and before

filtering).

NA NA Pack

ed

1 R16G16B16A16_UINT NA NA Sampler,

HDC

NA NA Pack

ed

1 R16G16B16A16_UINT NA NA Sampler,

HDC

NA NA Pack

ed

1 R16G16B16A16_UINT NA NA Sampler,

HDC

NA NA Pack

ed

1 R8G8B8A8_UINT NA NA Sampler,

HDC

DXGI_FOR

MAT_NV12
Y =

DXGI_FORMAT_R8_U

NORM

U/V =

DXGI_FORMAT_R8G8

_UNORM

(U->R8, V->G8)

Plana

r

2 R8_UNORM
R8G8_UN

ORM

chomra

pixel

dimensions

1/2 in both

x and y

from the

Luma view

NA Sampler, PB

NA NA Plana

r

3 R16_UNIT R16_UNIT R16_UNIT Sampler

NA NA Plana

r

3 R16_UNIT R16_UNIT R16_UNIT Sampler

NA NA Plana

r

3 R16_UNIT R16_UNIT R16_UNIT Sampler

NA NA Plana

r

3 R8_UNIT R8_UNIT R8_UNIT Sampler

NA NA Plana

r

2 R16_UNIT
R16G16_U

INT

chomra

pixel

dimensions

halved in

both x and

y from the

Luma view

NA Sampler,

HDC

NA NA Plana

r

2 R16_UNIT
R16G16_U

INT

chomra

pixel

dimensions

halved in

NA Sampler,

HDC

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 6/21/2012 99

Dx YUV
format
name DxRGB format name

Pack
ed /

Plana
r

Surfa

ce
State

s Surface Format #1
 Surface

Format #2
 Surface

Format #3 Support By

both x and

y from the

Luma view

NA NA Plana

r

2 R16_UNIT
R16G16_U

INT

chomra

pixel

dimensions

halved in

both x and

y from the

Luma view

NA Sampler,

HDC

DXGI_FOR

MAT_NV12
Y =

DXGI_FORMAT_R8_UI

NT

U/V =

DXGI_FORMAT_R8G8

_UINT

(U->R8, V->G8)

Plana

r

2 R8_UNIT
R8G8_UIN

T

chomra

pixel

dimensions

halved in

both x and

y from the

Luma view

NA Sampler,

HDC, PB

DXGI_FOR

MAT_NV11
Y =

DXGI_FORMAT_R8_U

NORM

U/V =

DXGI_FORMAT_R8G8

_UNORM

(U->R8, V->G8)

Plana

r

2 R8_UNORM
R8G8_UN

ORM

chomra

pixel

dimensions

1/4 in both

x and y

from the

Luma view

NA Sampler, PB

DXGI_FOR

MAT_NV11
Y =

DXGI_FORMAT_R8_UI

NT

U/V =

DXGI_FORMAT_R8G8

_UINT

(U->R8, V->G8)

Plana

r

2 R8_UNIT
R8G8_UIN

T

chomra

pixel

dimensions

1/4 in both

x and y

from the

Luma view

NA Sampler,

HDC, PB

DXGI_FOR

MAT_P016
Y =

DXGI_FORMAT_R16_

UNORM

U/V =

DXGI_FORMAT_R16G

Plana

r

2 R16_UNORM
R16G16_U

NORM

chomra

pixel

dimensions

NA Sampler,

HDC, PB

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 5/29/2012 100

Dx YUV
format
name DxRGB format name

Pack
ed /

Plana
r

Surfa

ce
State

s Surface Format #1
 Surface

Format #2
 Surface

Format #3 Support By

16_UNORM

(U->R16, V->G16)

1/2 in both

x and y

from the

Luma view

DXGI_FOR

MAT_P016
Y =

DXGI_FORMAT_R16_

UINT

U/V =

DXGI_FORMAT_R16G

16_UINT

(U->R16, V->G16)

Plana

r

2 R16_UNIT
R16G16_U

INT

chomra

pixel

dimensions

1/2 in both

x and y

from the

Luma view

NA Sampler, PB

DXGI_FOR

MAT_P010
Y =

DXGI_FORMAT_R16_

UNORM

U/V =

DXGI_FORMAT_R16G

16_UNORM

(U->R16, V->G16)

Plana

r

2 R16_UNORM
R16G16_U

NORM

chroma

pixel

dimensions

1/2 in both

x and y

from the

Luma view

NA Sampler,

HDC, PB

DXGI_FOR

MAT_P010
Y =

DXGI_FORMAT_R16_

UINT

U/V =

DXGI_FORMAT_R16G

16_UINT

(U->R16, V->G16)

Plana

r

2 R16_UNIT
R16G16_U

INT

chomra

pixel

dimensions

1/2 in both

x and y

from the

Luma view

NA Sampler,

HDC, PB

DXGI_FOR

MAT_Y216
DXGI_FORMAT_R16G

16B16A16_UNORM

(Y0->R16, U->G16, Y1-

>B16, V->A16).

Pack

ed

1 R16G16B16A16_UNOR

M

NA NA Sampler,

DXGI_FOR

MAT_Y216
DXGI_FORMAT_R16G

16B16A16_UINT

(Y0->R16, U->G16, Y1-

>B16, V->A16).

Pack

ed

1 R16G16B16A16_UINT NA NA Sampler,

HDC

DXGI_FOR

MAT_Y210
DXGI_FORMAT_R16G

16B16A16_UNORM

(Y0->R16, U->G16, Y1-

>B16, V->A16).

Pack

ed

1 R16G16B16A16_UNOR

M

NA NA Sampler,

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 6/21/2012 101

Dx YUV
format
name DxRGB format name

Pack
ed /

Plana
r

Surfa

ce
State

s Surface Format #1
 Surface

Format #2
 Surface

Format #3 Support By

DXGI_FOR

MAT_Y210
DXGI_FORMAT_R16G

16B16A16_UINT

(Y0->R16, U->G16, Y1-

>B16, V->A16).

Pack

ed

1 R16G16B16A16_UINT NA NA Sampler,

HDC

DXGI_FOR

MAT_Y416
DXGI_FORMAT_R16G

16B16A16_UNORM

(U->R16, Y->G16, V-

>B16, A->A16)

Pack

ed

1 R16G16B16A16_UNOR

M

NA NA Sampler,

HDC

DXGI_FOR

MAT_Y416
DXGI_FORMAT_R16G

16B16A16_UINT

(U->R16, Y->G16, V-

>B16, A->A16)

Pack

ed

1 R16G16B16A16_UINT NA NA Sampler,

DXGI_FOR

MAT_Y410
DXGI_FORMAT_R16G

16B16A16_UNORM

(U->R16, Y->G16, V-

>B16, A->A16)

Pack

ed

1 R16G16B16A16_UNOR

M

NA NA Sampler,

HDC

DXGI_FOR

MAT_Y410
DXGI_FORMAT_R16G

16B16A16_UINT

(U->R16, Y->G16, V-

>B16, A->A16)

Pack

ed

1 R16G16B16A16_UINT NA NA Sampler,

NA NA Pack

ed

1 R16G16_UINT NA NA Sampler,

HDC

NA NA Pack

ed

1 R16G16_UINT NA NA Sampler,

HDC

NA NA Pack

ed

1 R16G16_UINT NA NA Sampler,

HDC

NA NA Pack

ed

1 R8G8_UINT NA NA Sampler,

HDC

NA NA Plana

r

2 R16_UNIT R16_UNIT NA Sampler,

HDC

NA NA Plana

r

2 R16_UNIT R16_UNIT NA Sampler,

HDC

NA NA Plana

r

2 R16_UNIT R16_UNIT NA Sampler,

HDC

NA NA Plana

r

2 R8_UNIT R8_UNIT NA Sampler,

HDC

NA NA Pack

ed

1 R16_UNIT NA NA Sampler,

HDC

NA NA Pack

ed

1 R16_UNIT NA NA Sampler,

HDC

NA NA Pack

ed

1 R16_UNIT NA NA Sampler,

HDC

NA NA Pack

ed

1 R8_UNIT NA NA Sampler,

HDC

NA NA Pack 1 R16_UNIT NA NA Sampler,

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 5/29/2012 102

Dx YUV
format
name DxRGB format name

Pack
ed /

Plana
r

Surfa

ce
State

s Surface Format #1
 Surface

Format #2
 Surface

Format #3 Support By

ed HDC

NA NA Pack

ed

1 R16_UNIT NA NA Sampler,

HDC

NA NA Pack

ed

1 R16_UNIT NA NA Sampler,

HDC

NA NA Pack

ed

1 R8_UNIT NA NA Sampler,

HDC

NA NA Pack

ed

1 R16_UNIT NA NA Sampler,

HDC

NA NA Pack

ed

1 R16_UNIT NA NA Sampler,

HDC

NA NA Pack

ed

1 R16_UNIT NA NA Sampler,

HDC

NA NA Pack

ed

1 R8_UNIT NA NA Sampler,

HDC

6.6 Raw Format

A new surface format is added that is only supported with the untyped surface read/write and atomic

operation data port messages. This new format is called simply RAW. It means that the surface has no

inherent format. Surfaces of type RAW are addressed with byte-based offsets that must be DWord

aligned (multiple of 4). Data is returned in DWord quantities. The RAW surface format can be applied only

to surface types of BUFFER and STRBUF.

6.7 Surface Memory Organizations

See Memory Interface Functions chapter for a discussion of tiled vs. linear surface formats.

6.8 Graphics Translation Tables

The Graphics Translation Tables GTT (Graphics Translation Table, sometimes known as the global GTT)

and PPGTT (Per-Process Graphics Translation Table) are memory-resident page tables containing an

array of DWord Page Translation Entries (PTEs) used in mapping logical Graphics Memory addresses to

physical memory addresses, and sometimes snooped system memory “PCI” addresses.

The graphics translation tables must reside in (unsnooped) system memory.

The base address (MM offset) of the GTT and the PPGTT are programmed via the PGTBL_CTL and

PGTBL_CTL2 MI registers, respectively. The translation table base addresses must be 4KB aligned. The

GTT size can be either 128KB, 256KB or 512KB (mapping to 128MB, 256MB, and 512MB aperture sizes

respectively) and is physically contiguous. The global GTT should only be programmed via the range

defined by GTTADR. The PPGTT is programmed directly in memory. The per-process GTT (PPGTT) size

is controlled by the PGTBL_CTL2 register. The PPGTT can, in addition to the above sizes, also be 64KB

in size (corresponding to a 64MB aperture). Refer to the GTT Range chapter for a bit definition of the PTE

entries.

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 6/21/2012 103

6.9 Hardware Status Page

The hardware status page is a naturally-aligned 4KB page residing in snooped system memory. This

page exists primarily to allow the device to report status via PCI master writes – thereby allowing the

driver to read/poll WB memory instead of UC reads of device registers or UC memory.

The address of this page is programmed via the HWS_PGA MI register. The definition of that register (in

Memory Interface Registers) includes a description of the layout of the Hardware Status Page.

6.10 Instruction Ring Buffers

Instruction ring buffers are the memory areas used to pass instructions to the device. Refer to the

Programming Interface chapter for a description of how these buffers are used to transport instructions.

The RINGBUF register sets (defined in Memory Interface Registers) are used to specify the ring buffer

memory areas. The ring buffer must start on a 4KB boundary and be allocated in linear memory. The

length of any one ring buffer is limited to 2MB.

Note that “indirect” 3D primitive instructions (those that access vertex buffers) must reside in the same

memory space as the vertex buffers.

6.11 Instruction Batch Buffers

Instruction batch buffers are contiguous streams of instructions referenced via an

MI_BATCH_BUFFER_START and related instructions (see Memory Interface Instructions, Programming

Interface). They are used to transport instructions external to ring buffers.

Note that batch buffers should not be mapped to snooped SM (PCI) addresses. The device will treat

these as MainMemory (MM) address, and therefore not snoop the CPU cache.

The batch buffer must be QWord aligned and a multiple of QWords in length. The ending address is the

address of the last valid QWord in the buffer. The length of any single batch buffer is “virtually unlimited”

(i.e., could theoretically be 4GB in length).

6.12 2D Render Surfaces

These surfaces are used as general source and/or destination operands in 2D BLT operations.

Note that there is no coherency between 2D render surfaces and the texture cache. Software must

explicitly invalidate the texture cache before using a texture that has been modified via the BLT engine.

See the 2D Instruction and 2D Rendering chapters for specifics on how these surfaces are used,

restrictions on their size, placement, etc.

6.13 2D Monochrome Source

These 1 BPP (bit per pixel) surfaces are used as source operands to certain 2D BLT operations, where

the BLT engine expands the 1 BPP source to the required color depth.

The texture cache stores any monochrome sources. There is no mechanism to maintain coherency

between 2D render surfaces and texture-cached monochrome sources. Software must explicitly

invalidate the texture cache before using a memory-based monochrome source that has been modified

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 5/29/2012 104

via the BLT engine. (Here the assumption is that SW enforces memory-based monochrome source

surfaces as read-only surfaces.)

See the 2D Instruction and 2D Rendering chapters for specifics on how these surfaces are used,

restrictions on their size, placement, coherency rules, etc.

6.14 2D Color Pattern

Color pattern surfaces are used as special pattern operands in 2D BLT operations.

The device uses the texture cache to store color patterns. There is no mechanism to maintain coherency

between 2D render surfaces and (texture)-cached color patterns. Software is required to explicitly

invalidate the texture cache before using a memory-based color pattern that has been modified via the

BLT engine. (Here the assumption is that SW enforces memory-based color pattern surfaces as read-only

surfaces.)

See the 2D Instruction and 2D Rendering chapters for specifics on how these surfaces are used,

restrictions on their size, placement, etc.

6.15 3D Color Buffer (Destination) Surfaces

3D Color Buffer surfaces hold per-pixel color values for use in the 3D Pipeline. The 3D Pipeline always

requires a Color Buffer to be defined.

See the Non-Video Pixel/Texel Formats section in this chapter for details on the Color Buffer pixel

formats. See the 3D Instruction and 3D Rendering chapters for Color Buffer usage details.

The Color Buffer is defined as the BUFFERID_COLOR_BACK memory buffer via the

3DSTATE_BUFFER_INFO instruction. That buffer can be mapped to LM, SM (snooped or unsnooped)

and can be linear or tiled. When both the Depth and Color Buffers are tiled, the respective Tile Walk

directions must match.

When a linear Color Buffer and a linear Depth Buffer are used together:

 The buffers may have different pitches, though both pitches must be a multiple of 32 bytes.

 The buffers must be co-aligned with a 32-byte region.

6.16 3D Depth Buffer Surfaces

Depth Buffer surfaces hold per-pixel depth values and per-pixel stencil values for use in the 3D Pipeline.

The 3D Pipeline does not require a Depth Buffer in general, though a Depth Buffer is required to perform

non-trivial Depth Test and Stencil Test operations.

The Depth Buffer is specified via the 3DSTATE_DEPTH_BUFFER command. See the description of that

instruction in Windower for restrictions.

See 7.17, 3D Depth Buffer Surfaces, for a summary of the possible Depth Buffer formats. See the Depth

Buffer Formats section in this chapter for details on the pixel formats. See the Windower and DataPort

chapters for details on the usage of the Depth Buffer.

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 6/21/2012 105

Depth Buffer Formats

DepthBufferFormat /
DepthComponent

BPP (Bits Per
Pixel) Description

D32_FLOAT_S8X24_UINT 64 32-bit floating point Z depth value in first DWord, 8-bit stencil in

lower byte of second DWord

D32_FLOAT 32 32-bit floating point Z depth value

D24_UNORM_S8_UINT 32 24-bit fixed point Z depth value in lower 3 bytes, 8-bit stencil

value in upper byte

D16_UNORM 16 16-bit fixed point Z depth value

6.17 3D Separate Stencil Buffer Surfaces

Separate Stencil Buffer surfaces hold per-pixel stencil values for use in the 3D Pipeline. Note that the 3D

Pipeline does not require a Stencil Buffer to be allocated, though a Stencil Buffer is required to perform

non-trivial Stencil Test operations.

UNRESOLVED CROSS REFERENCE, Depth Buffer Formats summarizes Stencil Buffer formats. Refer

to the Stencil Buffer Formats section in this chapter for details on the pixel formats. Refer to the Windower

chapters for Stencil Buffer usage details.

The Stencil buffer is specified via the 3DSTATE_STENCIL_BUFFER command. See that instruction

description in Windower for restrictions.

Depth Buffer Formats

DepthBufferFormat /
DepthComponent BPP (bits per pixel) Description

S8_UINT/R8_ UNIT 8 8-bit stencil value in a byte

6.18 Surface Layout

In addition to restrictions on maximum height, width, and depth, surfaces are also restricted to a

maximum size in bytes. This maximum is 2 GB for all products and all surface types.

6.18.1 Buffers

A buffer is an array of structures. Each structure contains up to 2048 bytes of elements. Each element is

a single surface format using one of the supported surface formats depending on how the surface is

being accessed. The surface pitch state for the surface specifies the size of each structure in bytes.

The buffer is stored in memory contiguously with each element in the structure packed together, and the

first element in the next structure immediately following the last element of the previous structure. Buffers

are supported only in linear memory.

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 5/29/2012 106

6.18.2 Structured Buffers

A structured buffer is a surface type that is accessed by a 2-dimensional coordinate. It can be thought of

as an array of structures, where each structure is a predefined number of DWords in size. The first

coordinate (U) defines the array index, and the second coordinate (V) is a byte offset into the structure

which must be a multiple of 4 (DWord aligned). A structured buffer must be defined with Surface Format

RAW.

The structured buffer has only one dimension programmed in SURFACE_STATE which indicates the

array size. The byte offset dimension (V) is assumed to be bounded only by the Surface Pitch.

6.18.3 1D Surfaces

One-dimensional surfaces are identical to 2D surfaces with height of one. Arrays of 1D surfaces are also

supported. Please refer to the 2D Surfaces section for details on how these surfaces are stored.

Surface Pitch is ignored for 1D surfaces. Surface QPitch specifies the distance in pixels between array

slices. QPitch should allow at least enough space for any mips that may be present.

A number of parameters are useful to determine where given pixels will be located on the 1D surface.

First, the width for each LOD “L” is computed:

Next, the aligned width parameter for each LOD “L” is computed. The “i” parameter is the horizontal

alignment parameter set by a state field or defined as a constant, depending on the surface. The

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 6/21/2012 107

alignment parameter may change at one point in the mip chain based on Mip Tail Start LOD. The

equation uses the I value that applies to the LOD being computed.

Based on the above parameters and the U and R (pixel address and array index, respectively), and the

bytes per pixel of the surface format (Bpp), the offset “u” in bytes from the base address of the surface is

given by:

u = [(R * QPitch) + LODUL + U] * Bpp

6.18.4 2D Surfaces

Surfaces that comprise texture mip-maps are stored in a fixed “monolithic” format and referenced by a

single base address. The base map and associated mipmaps are located within a single rectangular area

of memory identified by the base address of the upper left corner and a pitch. The base address

references the upper left corner of the base map. The pitch must be specified at least as large as the

widest mip-map. In some cases it must be wider; see the section on Minimum Pitch below.

These surfaces may be overlapped in memory and must adhere to the following memory organization

rules:

 For non-compressed texture formats, each mipmap must start on an even row within the monolithic
rectangular area. For 1-texel-high mipmaps, this may require a row of padding below the previous
mipmap. This restriction does not apply to any compressed texture formats; each subsequent
(lower-res) compressed mipmap is positioned directly below the previous mipmap.

 Vertical alignment restrictions vary with memory tiling type: 1 DWord for linear, 16-byte (DQWord) for
tiled. (Note that tiled mipmaps are not required to start at the left edge of a tile row.)

6.18.4.1 Computing MIP level sizes

Map width and height specify the size of the largest MIP level (LOD 0). Less detailed LOD level (i+1)

sizes are determined by dividing the width and height of the current (i) LOD level by 2 and truncating to

an integer (floor). This is equivalent to shifting the width/height by 1 bit to the right and discarding the bit

shifted off. The map height and width are clamped on the low side at 1.

In equations, the width and height of an LOD “L” can be expressed as:

WL = ((width >> L) > 0? width >> L:1)

HL = ((height >> L) > 0? height >> L:1)

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 5/29/2012 108

If the surface is multisampled and it is a depth or stencil surface or Multisampled Surface

StorageFormat in SURFACE_STATE is MSFMT_DEPTH_STENCIL, WL and HL must be adjusted as

follows before proceeding:

Number of Multisamples WL = HL =

2
ceiling(WL / 2) * 4 HL [no adjustment]

4
ceiling(WL / 2) * 4 ceiling(HL / 2) * 4

8
ceiling(WL / 2) * 8 ceiling(HL / 2) * 4d

16
ceiling(WL / 2) * 8 ceiling(HL / 2) * 8

6.18.4.2 Base Address for LOD Calculation

It is conceptually easier to think of the space that the map uses in Cartesian space (x, y), where x and y

are in units of texels, with the upper left corner of the base map at (0, 0). The final step is to convert from

Cartesian coordinates to linear addresses as documented at the bottom of this section.

It is useful to think of the concept of “stepping” when considering where the next MIP level will be stored

in rectangular memory space. We either step down or step right when moving to the next higher LOD.

 for MIPLAYOUT_RIGHT maps:

o step right when moving from LOD 0 to LOD 1

o step down for all of the other MIPs

 for MIPLAYOUT_BELOW maps:

o step down when moving from LOD 0 to LOD 1

o step right when moving from LOD 1 to LOD 2

o step down for all of the other MIPs

To account for the cache line alignment required, we define i and j as the width and height, respectively,

of an alignment unit. This alignment unit is defined below. We then define lower-case wL and hL as the

padded width and height of LOD “L” as follows:

For separate stencil buffer, the width must be mutiplied by 2 and height divided by 2 as follows:

Equations to compute the upper left corner of each MIP level are then as follows:

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 6/21/2012 109

for MIPLAYOUT_RIGHT maps:

LOD0 = (0,0)

LOD1 = (w0,0)

LOD2 = (w0,h1)

LOD3 = (w0,h1 + h2)

LOD4 = (w0,h1 + h2 + h3)

...

for MIPLAYOUT_BELOW maps:

LOD0 = (0,0)

LOD1 = (0,h0)

LOD2 = (w1,h0)

LOD3 = (w1,h0 + h2)

LOD4 = (w1,h0 + h2 + h3)

...

6.18.4.3 Minimum Pitch for MIPLAYOUT_RIGHT and Other Maps

For MIPLAYOUT_RIGHT maps, the minimum pitch must be calculated before choosing a fence to place

the map within. This is approximately equal to 1.5x the pitch required by the base map, with possible

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 5/29/2012 110

adjustments made for cache line alignment. For MIPLAYOUT_BELOW and MIPLAYOUT_LEGACY

maps, the minimum pitch required is equal to that required by the base (LOD 0) map.

A safe but simple calculation of minimum pitch is equal to 2x the pitch required by the base map for

MIPLAYOUT_RIGHT maps. This ensures that enough pitch is available, and since it is restricted to

MIPLAYOUT_RIGHT maps, not much memory is wasted. It is up to the driver (hardware independent)

whether to use this simple determination of pitch or a more complex one.

6.18.4.4 Alignment Unit Size

This section documents the alignment parameters i and j that are used depending on the surface.

surface defined by surface format
alignment unit width “i” alignment unit height “j”

3DSTATE_DEPTH_BUFFER D16_UNORM 8 4

not

D16_UNORM

4 4

3DSTATE_STENCIL_BUFFER N/A 8 8

SURFACE_STATE BC*, ETC*,

EAC*

4 4

FXT1 8 4

all others
set by Surface Horizontal

Alignment

set by Surface Vertical

Alignment

6.18.4.5 Cartesian to Linear Address Conversion

A set of variables are defined in addition to the i and j defined above.

 b = bytes per texel of the native map format (0.5 for DXT1, FXT1, and 4-bit surface format, 2.0 for
YUV 4:2:2, others aligned to surface format)

 t = texel rows / memory row (4 for DXT1-5 and FXT1, 1 for all other formats)

 p = pitch in bytes (equal to pitch in dwords * 4)

 B = base address in bytes (address of texel 0,0 of the base map)

 x, y = cartestian coordinates from the above calculations in units of texels (assumed that x is always
a multiple of i and y is a multiple of j)

 A = linear address in bytes

This calculation gives the linear address in bytes for a given MIP level (taking into account L1 cache line

alignment requirements).

6.18.4.6 Compressed Mipmap Layout

Mipmaps of textures using compressed (DXTn, FXT) texel formats are also stored in a monolithic format.

The compressed mipmaps are stored in a similar fashion to uncompressed mipmaps, with each block of

source (uncompressed) texels represented by a 1 or 2 QWord compressed block. The compressed

blocks occupy the same logical positions as the texels they represent, where each row of compressed

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 6/21/2012 111

blocks represent a 4-high row of uncompressed texels. The format of the blocks is preserved, i.e., there is

no “intermediate” format as required on some other devices.

The following exceptions apply to the layout of compressed (vs. uncompressed) mipmaps:

 Mipmaps are not required to start on even rows, therefore each successive mip level is located on
the texel row immediately below the last row of the previous mip level. Pad rows are neither required
nor allowed.

 The dimensions of the mip maps are first determined by applying the sizing algorithm presented in
Non-Power-of-Two Mipmaps above. Then, if necessary, they are padded out to compression block
boundaries.

6.18.4.7 Surface Arrays

6.18.4.7.1 For all surface other than separate stencil buffer

Both 1D and 2D surfaces can be specified as an array. The only difference in the surface state is the

presence of a depth value greater than one, indicating multiple array “slices”.

A value QPitch is defined which indicates the worst-case height for one slice in the texture array. This

QPitch is multiplied by the array index to and added to the vertical component of the address to determine

the vertical component of the address for that slice. Within the slice, the map is stored identically to a

MIPLAYOUT_BELOW 2D surface. MIPLAYOUT_BELOW is the only format supported by 1D non-arrays

and both 2D and 1D arrays, the programming of the MIP Map Layout Mode state variable is ignored when

using a TextureArray.

The following equation is used for surface formats other than compressed textures:

QPitch = (h0 + h1 + 11j)

The input variables in this equation are defined in sections above.

The equation for compressed textures (BC* and FXT1 surface formats) follows:

6.18.4.7.2 For all surfaces

A value QPitch is defined which indicates the worst-case height for one slice in the texture array. This

QPitch is multiplied by the array index to and added to the vertical component of the address to determine

the vertical component of the address for that slice. Within the slice, the map is stored identically to a 2D

surface.

The Surface Array Spacing field in SURFACE_STATE has two possible values, which affect the QPitch

formula.

If Surface Array Spacing is set to ARYSPC_FULL (note that the depth buffer and stencil buffer have an

implied value of ARYSPC_FULL):

QPitch = (h0 + 1h + 12j)

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 5/29/2012 112

Note that h0 and h1 have been halved as described earlier.

If Surface Array Spacing is set to ARYSPC_LOD0:

QPitch = h0

6.18.4.8 Multisampled Surfaces

Starting with, multisampled render targets and sampling engine surfaces are supported. There are three

types of multisampled surface layouts designated as follows:

 IMS Interleaved Multisampled Surface

 CMS Compressed Mulitsampled Surface

 UMS Uncompressed Multisampled Surface

These surface layouts are described in the following sections.

6.18.4.8.1 Interleaved Multisampled Surfaces

IMS surfaces are the only type supported on, and are supported on all products for depth and stencil

surfaces. These surfaces contain the samples in an interleaved fashion, with the underlying surface in

memory having a height and width that is larger than the non-multisampled surface as follows:

4x MSAA: 2x width and 2x height of non-multisampled surface

8x MSAA: 4x width and 2x height of non-multisampled surface

6.18.5 Cube Surfaces

The 3D Pipeline supports cubic environment maps, conceptually arranged as a cube surrounding the

origin of a 3D coordinate system aligned to the cube faces. These maps can be used to supply texel

(color/alpha) data of the environment in any direction from the enclosed origin, where the direction is

supplied as a 3D “vector” texture coordinate. These cube maps can also be mipmapped.

Each texture map level is represented as a group of six, square cube face texture surfaces. The faces are

identified by their relationship to the 3D texture coordinate system. The subsections below describe the

cube maps as described at the API as well as the memory layout dictated by the hardware.

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 6/21/2012 113

6.18.5.1 DirectX API Definition

The diagram below describes the cube map faces as they are defined at the DirectX API. It shows the

axes on the faces as they would be seen from the inside (at the origin). The origin of the U,V texel grid is

at the top left corner of each face.

This will be looking directly at face 4, the +z -face. Y is up by default.

DirectX Cube Map Definition

6.18.5.2 Hardware Cube Map Layout

The cube face textures are stored in the same way as 2D array surfaces are stored (see section 2D

Surfaces for details). For cube surfaces, the depth (array instances) is equal to 6. The array index “q”

corresponds to the face according to the following table:

“q” coordinate face

0 +x

1 -x

2 +y

3 -y

4 +z

5 -z

6.18.5.3 Restrictions

 The cube map memory layout is the same whether or not the cube map is mip-mapped, and whether
or not all six faces are “enabled”, though the memory backing disabled faces or non-supplied levels
can be used by software for other purposes.

 The cube map faces all share the same Surface Format

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 5/29/2012 114

6.18.5.4 Cube Arrays

Cube arrays are stored identically to 2D surface arrays. A group of 6 consecutive array elements makes

up a single cube map. A cube array with N array elements is stored identically to a 2D array with 6N array

elements.

6.18.6 3D Surfaces

Multiple texture map surfaces (and their respective mipmap chains) can be arranged into a structure

known as a Texture3D (volume) texture. A volume texture map consists of many planes of 2D texture

maps. See Sampler for a description of how volume textures are used.

Volume Texture Map

Note that the number of planes defined at each successive mip level is halved. Volumetric texture maps

are stored as follows. All of the LOD=0 q-planes are stacked vertically, then below that, the LOD=1 q-

planes are stacked two-wide, then the LOD=2 q-planes are stacked four-wide below that, and so on.

The width, height, and depth of LOD “L” are as follows:

WL = ((width >> L) > 0? width >> L:1)

HL = ((height >> L) > 0? height >> L:1)

This is the same as for a regular texture. For volume textures we add:

DL = ((depth >> L) > 0? depth >> L:1)

Cache-line aligned width and height are as follows, with i and j being a function of the map format as

shown in the table entitled 7.19.4.4, Alignment Unit Size.

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 6/21/2012 115

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 5/29/2012 116

Note that it is not necessary to cache-line align in the “depth” dimension (i.e. lowercase “d”).

The following equations for LODL,q give the base address Cartesian coordinates for the map at LOD L and

depth q.

These values are then used as “base addresses” and the 2D MIP Map equations are used to compute

the location within each LOD/q map.

6.18.6.1 Minimum Pitch

The minimum pitch required to store the 3D map may in some cases be greater than the minimum pitch

required by the LOD=0 map. This is due to cache line alignment requirements that may impact some of

the MIP levels requiring additional spacing in the horizontal direction.

6.19 Surface Padding Requirements

6.19.1 Sampling Engine Surfaces

The sampling engine accesses texels outside of the surface if they are contained in the same cache line

as texels that are within the surface. These texels will not participate in any calculation performed by the

sampling engine and will not affect the result of any sampling engine operation, however if these texels lie

outside of defined pages in the GTT, a GTT error will result when the cache line is accessed. In order to

avoid these GTT errors, “padding” at the bottom and right side of a sampling engine surface is sometimes

necessary.

It is possible that a cache line will straddle a page boundary if the base address or pitch is not aligned. All

pages included in the cache lines that are part of the surface must map to valid GTT entries to avoid

errors. To determine the necessary padding on the bottom and right side of the surface, refer to the table

in Section Alignment Unit Size for the i and j parameters for the surface format in use. The surface must

then be extended to the next multiple of the alignment unit size in each dimension, and all texels

contained in this extended surface must have valid GTT entries.

For example, suppose the surface size is 15 texels by 10 texels and the alignment parameters are i=4

and j=2. In this case, the extended surface would be 16 by 10. Note that these calculations are done in

texels, and must be converted to bytes based on the surface format being used to determine whether

additional pages need to be defined.

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 6/21/2012 117

For buffers, which have no inherent “height,” padding requirements are different. A buffer must be padded

to the next multiple of 256 array elements, with an additional 16 bytes added beyond that to account for

the L1 cache line.

For cube surfaces, an additional two rows of padding are required at the bottom of the surface. This must

be ensured regardless of whether the surface is stored tiled or linear. This is due to the potential rotation

of cache line orientation from memory to cache.

For compressed textures (BC* and FXT1 surface formats), padding at the bottom of the surface is to an

even compressed row, which is equal to a multiple of 8 uncompressed texel rows. Thus, for padding

purposes, these surfaces behave as if j = 8 only for surface padding purposes. The value of 4 for j still

applies for mip level alignment and QPitch calculation.

For YUV, 96 bpt, and 48 bpt surface formats, additional padding is required. These surfaces require an

extra row plus 16 bytes of padding at the bottom in addition to the general padding requirements.

6.19.2 Render Target and Media Surfaces

The data port accesses data (pixels) outside of the surface if they are contained in the same cache

request as pixels that are within the surface. These pixels will not be returned by the requesting message,

however if these pixels lie outside of defined pages in the GTT, a GTT error will result when the cache

request is processed. In order to avoid these GTT errors, “padding” at the bottom of the surface is

sometimes necessary.

If the surface contains an odd number of rows of data, a final row below the surface must be allocated. If

the surface will be accessed in field mode (Vertical Stride = 1), enough additional rows below the surface

must be allocated to make the extended surface height (including the padding) a multiple of 4.

6.20 BSD Logical Context Data (MFX)

6.20.1 Register/State Context

Valid Only When PPGTT

Enabled

DW

Range

DW

Count

State Field Restore

Inhibite

d

PPGTTEnabled

s

PPGTT Disabled Power

Context

Set Before

Submittin

g

Context?

00h 1
Context Control

R S/R X S/R Yes

01h 1
Ring Head Pointer Register

R S/R X S/R Yes

02h 1
Ring Tail Pointer Register

R R X S/R Yes

03h 1
Batch Buffer Current Head

Register

NR S/R X S/R No

04h 1
Batch Buffer State Register

NR S/R X S/R No

05h 1
PPGTT Directory Cache Valid

R R X S/R Yes

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 5/29/2012 118

Valid Only When PPGTT

Enabled

Register

(Software always populates via

host)

06h 1
Reserved

X X X S/R X

07h 1
PD Base Virtual Address

Register

R R X S/R Yes

08h 1
MFX_STATE_POINTER 0

NR S/R X S/R Yes

09h 1
MFX_STATE_POINTER 1

NR S/R X S/R Yes

0Ah 1
MFX_STATE_POINTER 2

NR S/R X S/R Yes

0Bh 1
MFX_STATE_POINTER 3

NR S/R X S/R Yes

0Ch 1
VCS_CNTR— Media

Watchdog Counter Control

NR S/R X S/R No

0Dh 1
VCS_THRSH— Media

Watchdog Counter Threshold

NR S/R X S/R No

0Eh 1
Current Context ID Register

NR S/R X S/R No

0Fh 1
Reserved

X X X S/R X

6.20.2 The Per-Process Hardware Status Page

The following table defines the layout of the Per-process Hardware Status Page:

DWord Offset Description

(3FFh – 020h) These locations can be used for general purpose via

the MI_STORE_DATA_INDEX or

MI_STORE_DATA_IMM instructions.

1F:5
Reserved.

4
Ring Head Pointer Storage: The contents of the

Ring Buffer Head Pointer register (register DWord 1)

are written to this location either as result of an

MI_REPORT_HEAD instruction or as the result of an

“automatic report” (see RINGBUF registers).

3:0
Reserved.

This page is designed to be read by SW in order to glean additional details about a context beyond what

it can get from the context status.

Accesses to this page will automatically be treated as cacheable and snooped. It is therefore illegal to

locate this page in any region where snooping is illegal (such as in stolen memory).

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 6/21/2012 119

6.21 Copy Engine Logical Context Data

6.21.1 Register/State Context

Valid Only When

PPGTT Enabled

DW

Range

DW

Count

State Field Render

Restore

Inhibite

d

PPGTTEnabled PPGTT

Disabled

Power

Context

Set Before

Submittin

g

Context?

00h 1
Reserved

NR X X X X

01h 1
Ring Head

Pointer Register

R S/R X S/R Yes

02h 1
Ring Tail Pointer

Register

R R X S/R Yes

03h 1
Reserved

NR X X X X

04h 1
Reserved

NR X X X X

05h 1
PPGTT Directory

Cache Valid

Register

(Software always

populates via

host)

R R X X Yes

06h 1
BCS_SWCTRL

Register

NR S/R X S/R Yes

07h 1
PD Base Virtual

Address Register

R R X X Yes

08h 1
Reserved

NR X X X X

09h 1
Reserved

NR X X X X

0Ah 1
Reserved

NR X X X X

0Bh 1
Reserved

NR X X X X

0Ch 1
Reserved

NR X X X X

0Dh 1
Reserved

NR X X X X

0Eh 1
Reserved

NR X X X X

0Fh 1
Reserved

NR X X X X

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 5/29/2012 120

6.21.2 The Per-Process Hardware Status Page

The following table defines the layout of the Per-process Hardware Status Page:

DWord Offset Description

(3FFh – 020h) These locations can be used for general purpose via

the MI_STORE_DATA_INDEX or

MI_STORE_DATA_IMM instructions.

1F:5
Reserved.

4
Ring Head Pointer Storage: The contents of the

Ring Buffer Head Pointer register (register DWord 1)

are written to this location either as result of an

MI_REPORT_HEAD instruction or as the result of an

“automatic report” (see RINGBUF registers).

3:0
Reserved.

This page is designed to be read by SW in order to glean additional details about a context beyond what

it can get from the context status.

Accesses to this page will automatically be treated as cacheable and snooped. It is therefore illegal to

locate this page in any region where snooping is illegal (such as in stolen memory).

6.22 Render Logical Context Data

Logical Contexts are memory images used to store copies of the device’s rendering and ring context.

Logical Contexts are aligned to 256-byte boundaries.

Logical contexts are referenced by their memory address. The format and contents of rendering contexts

are considered device-dependent and software must not access the memory contents directly. The

definition of the logical rendering and power context memory formats is included here primarily for internal

documentation purposes.

6.22.1 Overall Context Layout

6.22.1.1 Register/State Context

POWER CONTEXT

MAIN CONTEXT

EXTENDED CONTEXT

Description

of DW

NOOP CS
1

Load_Register_Immediate header 0x1100_105D CS
1

RING_BUFFER_START 0x2038 CS
2

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 6/21/2012 121

POWER CONTEXT

MAIN CONTEXT

EXTENDED CONTEXT

Description

of DW

RING_BUFFER_CONTROL 0x203C CS
2

RVSYNC 0x2040 CS
2

RBSYNC 0x2044 CS
2

RC_PWRCTX_MAXCNT 0x2054 CS
2

CTX_WA_PTR 0x2058 CS
2

NOPID 0x2094 CS
2

HWSTAM 0x2098 CS
2

FF_THREAD_MODE 0x20A0 CS
2

IMR 0x20A8 CS
2

EIR 0x20B0 CS
2

EMR 0x20B4 CS
2

CMD_CCTL_0 0x20C4 CS
2

GAFS_Mode 0x212C CS
2

UHPTR 0x2134 CS
2

BB_PREEMPT_ADDR 0x2148 CS
2

RING_BUFFER_HEAD_PREEMPT_REG 0x214C CS
2

CXT_SIZE 0x21A8 CS
2

CXT_OFFSET 0x21AC CS
2

CXT_PIPESTATEBASE 0x21B0 CS
2

PREEMPT_DLY 0x2214 CS
2

GFX_MODE 0x229C CS
2

MTCH_CID_RST 0x222C CS
2

SYNC_FLIP_STATUS 0x22D0 CS
2

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 5/29/2012 122

POWER CONTEXT

MAIN CONTEXT

EXTENDED CONTEXT

Description

of DW

SYNC_FLIP_STATUS_1 0x22D4 CS
2

NOOP CS
12

NOOP GPM
1

Load_Register_Immediate header 0x1100_10d5 GPM
1

GPM Data(Inc GAM) GPM
214

NOOP GPM
1

Load_Register_Immediate header 0x1100_104b GPM
1

MBCunit GPM
76

NOOP GPM
1

Load_Register_Immediate header 0x1100_1013 GPM
1

GCPunit GPM
20

NOOP GPM
1

Load_Register_Immediate header 0x1100_103f GPM
1

GDTunit GPM
64

NOOP GPM
1

Load_Register_Immediate header 0x1100_1035 GPM
1

GAMunit GPM
52

NOOP GPM
28

NOOP CS
1

Load_Register_Immediate header 0x1100_1017 CS
1

Context Control 0x2244 CS
2

Ring Head Pointer Register 0x2034 CS
2

Ring Tail Pointer Register 0x2030 CS
2

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 6/21/2012 123

POWER CONTEXT

MAIN CONTEXT

EXTENDED CONTEXT

Description

of DW

Batch Buffer Current Head Register 0x2140 CS
2

Batch Buffer State Register 0x2110 CS
2

PPGTT Directory Cache Valid Register 0x2220 CS
2

PP_DIR_BASE 0x2228 CS
2

Read Offset in Piipelined State Page (8 CL aligned) 0x224C CS
2

Committed Vertex Number 0x21C4 CS
2

Committed Instance ID 0x21C8 CS
2

Committed Primitive ID 0x21CC CS
2

CCID Register 0x2180 CS
2

NOOP CS
6

NOOP CS
1

Load_Register_Immediate header 0x1100_105F CS
1

EXCC 0x2028 CS
2

MI_MODE 0x209C CS
2

INSTPM 0x20C0 CS
2

PR_CTR_CTL 0x2178 CS
2

PR_CTR_THRSH 0x217C CS
2

IA_VERTICES_COUNT 0x2310 CS
4

IA_PRIMITIVES_COUNT 0x2318 CS
4

VS_INVOCATION_COUNT 0x2320 CS
4

HS_INVOCATION_COUNT 0x2300 CS
4

DS_INVOCATION_COUNT 0x2308 CS
4

GS_INVOCATION_COUNT 0x2328 CS
4

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 5/29/2012 124

POWER CONTEXT

MAIN CONTEXT

EXTENDED CONTEXT

Description

of DW

GS_PRIMITIVES_COUNT 0x2330 CS
4

CL_INVOCATION_COUNT 0x2338 CS
4

CL_PRIMITIVES_COUNT 0x2340 CS
4

PS_INVOCATION_COUNT 0x2348 CS
4

PS_DEPTH_COUNT 0x2350 CS
4

VFSKPD 0x2470 CS
2

TIMESTAMP Register (LSB) 0x2358 CS
2

GPUGPU_DISPATCHDIMX 0x2500 CS
2

GPUGPU_DISPATCHDIMY 0x2504 CS
2

GPUGPU_DISPATCHDIMZ 0x2508 CS
2

MI_PREDICATE_SRC0 0x2400 CS
2

MI_PREDICATE_SRC0 0x2404 CS
2

MI_PREDICATE_SRC1 0x2408 CS
2

MI_PREDICATE_SRC1 0x240C CS
2

MI_PREDICATE_DATA 0x2410 CS
2

MI_PREDICATE_DATA 0x2414 CS
2

MI_PRED_RESULT 0x2418 CS
2

3DPRIM_END_OFFSET 0x2420 CS
2

3DPRIM_START_VERTEX 0x2430 CS
2

3DPRIM_VERTEX_COUNT 0x2434 CS
2

3DPRIM_INSTANCE_COUNT 0x2438 CS
2

3DPRIM_START_INSTANCE 0x243C CS
2

3DPRIM_BASE_VERTEX 0x2440 CS
2

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 6/21/2012 125

POWER CONTEXT

MAIN CONTEXT

EXTENDED CONTEXT

Description

of DW

GPGPU_THREADS_DISPATCHED 0x2290 CS
4

MI_TOPOLOGY_FILTER CS
1

MI_URB_CLEAR CS
2

MI_SET_APPID CS
1

PIPELINE_SELECT CS
1

STATE_BASE_ADDRESS CS
10

3DSTATE_PUSH_CONSTANT_ALLOC_VS CS
2

3DSTATE_PUSH_CONSTANT_ALLOC_HS CS
2

3DSTATE_PUSH_CONSTANT_ALLOC_DS CS
2

3DSTATE_PUSH_CONSTANT_ALLOC_GS CS
2

3DSTATE_PUSH_CONSTANT_ALLOC_PS CS
2

NOOP CS
5

NOOP SARB
1

Load_Register_Immediate header 0x1100_105B SARB
1

SARB Error Status 0xB004 SARB
2

L3CD Error Status register 1 0xB008 SARB
2

L3CD Error Status register 2 0xB00C SARB
2

L3 SQC registers 1 0xB010 SARB
2

L3 SQC registers 2 0xB014 SARB
2

L3 SQC registers 3 0xB018 SARB
2

L3 Control Register1 0xB01C SARB
2

L3 Control Register2 0xB020 SARB
2

L3 Control Register3 0xB024 SARB
2

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 5/29/2012 126

POWER CONTEXT

MAIN CONTEXT

EXTENDED CONTEXT

Description

of DW

L3 SLM Register 0xB028 SARB
2

Arbiter Control Register 0xB02C SARB
2

L3 bank0 reg0 log error 0xB070 SARB
2

L3 bank0 reg1 log error 0xB074 SARB
2

L3 bank0 reg2 log error 0xB078 SARB
2

L3 bank0 reg3 log error 0xB07C SARB
2

L3 bank0 reg4 log error 0xB080 SARB
2

L3 bank0 reg5 log error 0xB084 SARB
2

L3 bank0 reg6 log error 0xB088 SARB
2

L3 bank0 reg7 log error 0xB08C SARB
2

L3 bank1 reg0 log error 0xB090 SARB
2

L3 bank1 reg1 log error 0xB094 SARB
2

L3 bank1 reg2 log error 0xB098 SARB
2

L3 bank1 reg3 log error 0xB09C SARB
2

L3 bank1 reg4 log error 0xB0A0 SARB
2

L3 bank1 reg5 log error 0xB0A4 SARB
2

L3 bank1 reg6 log error 0xB0A8 SARB
2

L3 bank1 reg7 log error 0xB0AC SARB
2

L3 bank2 reg0 log error 0xB0B0 SARB
2

L3 bank2 reg1 log error 0xB0B4 SARB
2

L3 bank2 reg2 log error 0xB0B8 SARB
2

L3 bank2 reg3 log error 0xB0BC SARB
2

L3 bank2 reg4 log error 0xB0C0 SARB
2

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 6/21/2012 127

POWER CONTEXT

MAIN CONTEXT

EXTENDED CONTEXT

Description

of DW

L3 bank2 reg5 log error 0xB0C4 SARB
2

L3 bank2 reg6 log error 0xB0C8 SARB
2

L3 bank2 reg7 log error 0xB0CC SARB
2

L3 bank3 reg0 log error 0xB0D0 SARB
2

L3 bank3 reg1 log error 0xB0D4 SARB
2

L3 bank3 reg2 log error 0xB0D8 SARB
2

L3 bank3 reg3 log error 0xB0DC SARB
2

L3 bank3 reg4 log error 0xB0E0 SARB
2

L3 bank3 reg5 log error 0xB0E4 SARB
2

L3 bank3 reg6 log error 0xB0E8 SARB
2

L3 bank3 reg7 log error 0xB0EC SARB
2

L3 SQC register 4 0xB034 SARB
2

3DSTATE_VS SVG
6

3DSTATE_BINDING_TABLE_POINTERS_VS SVG
2

3DSTATE_SAMPLER_STATE_POINTERS_VS SVG
2

3DSTATE_CONSTANT_VS SVG
7

3DSTATE_URB_VS SVG
2

3DSTATE_HS SVG
7

3DSTATE_BINDING_TABLE_POINTERS_HS SVG
2

3DSTATE_SAMPLER_STATE_POINTERS_HS SVG
2

3DSTATE_CONSTANT_HS SVG
7

3DSTATE_URB_HS SVG
2

3DSTATE_TE SVG
4

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 5/29/2012 128

POWER CONTEXT

MAIN CONTEXT

EXTENDED CONTEXT

Description

of DW

3DSTATE_DS SVG
6

3DSTATE_BINDING_TABLE_POINTERS_DS SVG
2

3DSTATE_SAMPLER_STATE_POINTERS_DS SVG
2

3DSTATE_CONSTANT_DS SVG
7

3DSTATE_URB_DS SVG
2

3DSTATE_GS SVG
7

3DSTATE_BINDING_TABLE_POINTERS_GS SVG
2

3DSTATE_SAMPLER_STATE_POINTERS_GS SVG
2

3DSTATE_CONSTANT_GS SVG
7

3DSTATE_URB_GS SVG
2

3DSTATE_STREAMOUT SVG
3

3DSTATE_CLIP SVG
4

3DSTATE_VIEWPORT_STATE_POINTERS_CL_SF SVG
2

3DSTATE_SF SVG
7

3DSTATE_SCISSOR_STATE_POINTERS SVG
2

3DSTATE_MULTISAMPLE SVG
4

3DSTATE_DRAWING_RECTANGLE SVG
4

SWTESS_BASE_ADDRESS SVG
2

NOOP SVG
2

3DSTATE_WM SVL
3

3DSTATE_VIEWPORT_STATE_POINTERS_CC SVL
2

3DSTATE_CC_STATE_POINTERS SVL
2

3DSTATE_DEPTHSTENCIL_STATE_POINTERS SVL
2

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 6/21/2012 129

POWER CONTEXT

MAIN CONTEXT

EXTENDED CONTEXT

Description

of DW

3DSTATE_SAMPLE_MASK SVL
2

3DSTATE_SBE SVL
14

3DSTATE_CONSTANT_PS SVL
7

3DSTATE_PS SVL
8

3DSTATE_BINDING_TABLE_POINTERS_PS SVL
2

3DSTATE_SAMPLER_STATE_POINTERS_PS SVL
2

3DSTATE_BLEND_STATE_POINTERS SVL
2

Load_Register_Immediate header 0x1100_100B SVL
1

Cache_Mode_0 0x7000 SVL
2

Cache_Mode_1 0x7004 SVL
2

GT_MODE 0x7008 SVL
2

FBC_RT_BASE_ADDR_REGISTER 0x7020 SVL
2

STATE_SIP SVL
2

3DSTATE_DEPTH_BUFFER SVL
7

3DSTATE_STENCIL_BUFFER SVL
3

3DSTATE_HIER_DEPTH_BUFFER SVL
3

3DSTATE_CLEAR_PARAMS SVL
3

NOOP SVL
3

NOOP TDL0
1

Load_Register_Immediate header 0x1100_1011 TDL0
1

TD_CTL2 0xE404 TDL0
2

TD_VF_VS_EMSK 0xE408 TDL0
2

TD_GS_EMSK 0xE40C TDL0
2

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 5/29/2012 130

POWER CONTEXT

MAIN CONTEXT

EXTENDED CONTEXT

Description

of DW

TD_WIZ_EMSK 0xE410 TDL0
2

TD_TS_EMSK 0xE428 TDL0
2

TD_HS_EMSK 0xE4B0 TDL0
2

TD_DS_EMSK 0xE4B4 TDL0
2

NOOP TDL0
12

NOOP TDL1
1

Load_Register_Immediate header 0x1100_1011 TDL1
1

TD_CTL2 0xF404 TDL1
2

TD_VF_VS_EMSK 0xF408 TDL1
2

TD_GS_EMSK 0xF40C TDL1
2

TD_WIZ_EMSK 0xF410 TDL1
2

TD_TS_EMSK 0xF428 TDL1
2

TD_HS_EMSK 0xF4B0 TDL1
2

TD_DS_EMSK 0xF4B4 TDL1
2

NOOP TDL1
12

NOOP WM
1

Load_Register_Immediate header 0x1100_1003 WM
1

SuperSpan Count 0x5520 WM
2

3DSTATE_POLY_STIPPLE_PATTERN WM
33

3DSTATE_AA_LINE_PARAMS WM
3

3DSTATE_POLY_STIPPLE_OFFSET WM
2

3DSTATE_LINE_STIPPLE WM
3

NOOP WM
1

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 6/21/2012 131

POWER CONTEXT

MAIN CONTEXT

EXTENDED CONTEXT

Description

of DW

NOOP SC0
1

Load_Register_Immediate header 0x1100_1003 SC0
1

NOOP SC0
10

NOOP SC1
1

Load_Register_Immediate header 0x1100_1003 SC1
1

NOOP SC1
10

3DSTATE_MONOFILTER_SIZE SC0/1
2

3DSTATE_CHROMA_KEY SC0/1
16

NOOP SC0/1
6

MEDIA_VFE_STATE VFE
8

MEDIA_CURBE_LOAD VFE
4

MEDIA_INTERFACE_DESCRIPTOR_LOAD VFE
4

MEDIA_OBJECT_PRT/GPGPU_WALKER VFE
16

MEDIA_STATE_FLUSH VFE
2

NOOP VFE
6

3DSTATE_SAMPLER_PALETTE_LOAD0 DM0/1
257

3DSTATE_SAMPLER_PALETTE_LOAD1 DM0/1
257

NOOP DM0/1
14

NOOP SOL
1

Load_Register_Immediate header 0x1100_1027 SOL
1

SO_NUM_PRIMS_WRITTEN0 0x5200 SOL
4

SO_NUM_PRIMS_WRITTEN1 0x5208 SOL
4

SO_NUM_PRIMS_WRITTEN2 0x5210 SOL
4

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 5/29/2012 132

POWER CONTEXT

MAIN CONTEXT

EXTENDED CONTEXT

Description

of DW

SO_NUM_PRIMS_WRITTEN3 0x5218 SOL
4

SO_PRIM_STORAGE_NEEDED0 0x5240 SOL
4

SO_PRIM_STORAGE_NEEDED1 0x5248 SOL
4

SO_PRIM_STORAGE_NEEDED2 0x5250 SOL
4

SO_PRIM_STORAGE_NEEDED3 0x5258 SOL
4

SO_WRITE_OFFSET0 0x5280 SOL
2

SO_WRITE_OFFSET1 0x5284 SOL
2

SO_WRITE_OFFSET2 0x5288 SOL
2

SO_WRITE_OFFSET3 0x528C SOL
2

3DSTATE_SO_BUFFER SOL
16

NOOP SOL
3

3DSTATE_SO_DECL_LIST SOL
259

3DSTATE_INDEX_BUFFER VF
3

3DSTATE_VERTEX_BUFFERS VF
133

3DSTATE_VERTEX_ELEMENTS VF
69

3DSTATE_VF_STATISTICS VF
1

NOOP VF
2

6.22.2 Pipelined State Page

This page is used a scratch area for the pipeline to store pipelined state that is not referenced indirectly.

Under no circumstances should SW read from or write to this page.

6.22.3 Ring Buffer

This page is used a scratch area for the pipeline to store ring buffer commands that need to be reissued.

Under no circumstances should SW read from or write to this page.

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 6/21/2012 133

6.22.4 The Per-Process Hardware Status Page

The following table defines the layout of the Per-process Hardware Status Page:

DWord
Offset Description

(3FFh –

020h)

These locations can be used for general purpose via the MI_STORE_DATA_INDEX or

MI_STORE_DATA_IMM instructions.

1F:1C Reserved.

1B Context Save Finished Timestamp

1A
Context Restore Complete Timestamp

19
Pre-empt Request Received Timestamp

18
Last Switch Timestamp

17:12 Reserved.

F:5
Reserved.

4
Ring Head Pointer Storage: The contents of the Ring Buffer Head Pointer register (register DWord 1)

are written to this location either as result of an MI_REPORT_HEAD instruction or as the result of an

“automatic report” (see RINGBUF registers).

3:0
Reserved.

Doc Ref #: IHD-OS-V1 Pt 1 – 05 12 5/29/2012 134

Revision History

Revision Number Description Revision Date

1.0 First 2012 OpenSource edition May 2012

§§

