
 IHD-OS-072810-R1V4PT2

Intel® HD Graphics OpenSource PRM

Volume 4 Part 2: Subsystem and Cores – Message Gateway,
URB, Video Motion, and ISA

For the all new 2010 Intel Core Processor Family
Programmer’s Reference Manual (PRM)

July 2010

Revision 1.1

2 IHD-OS-072810-R1V4PT2

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR
IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.
EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO
LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE
OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel
products are not intended for use in medical, life saving, or life sustaining applications.
Intel may make changes to specifications and product descriptions at any time, without notice.
Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel
reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future
changes to them.
The Sandy Bridge chipset family, Havendale/Auburndale chipset family, Intel® 965 Express Chipset Family, Intel® G35 Express
Chipset, and Intel® 965GMx Chipset Mobile Family Graphics Controller may contain design defects or errors known as errata which
may cause the product to deviate from published specifications. Current characterized errata are available on request.
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.
I2C is a two-wire communications bus/protocol developed by Philips. SMBus is a subset of the I2C bus/protocol and was developed by
Intel. Implementations of the I2C bus/protocol may require licenses from various entities, including Philips Electronics N.V. and North
American Philips Corporation.
Intel and the Intel are trademarks of Intel Corporation in the U.S. and other countries.
*Other names and brands may be claimed as the property of others.
Copyright © 2010, Intel Corporation. All rights reserved.

IHD-OS-072810-R1V4PT2 3

Contents
1. Message Gateway..8

1.1 Messages ...8
1.1.1 Message Descriptor..8
1.1.2 OpenGateway Message ...10
1.1.3 CloseGateway Message...11
1.1.4 ForwardMsg Message ..13
1.1.5 BarrierMsg Message ..18
1.1.6 UpdateGatewayState Message..19
1.1.7 MMIOReadWrite Message ...20

2. Unified Return Buffer (URB) ...22
2.1 URB Size ..22
2.2 URB Access ...22
2.3 State ...23
2.4 Messages ...23

2.4.1 Execution Mask ..23
2.4.2 Message Descriptor..23
2.4.3 URB_WRITE...27
2.4.4 FF_SYNC Messages ([DevILK])...32

3. Execution Unit ISA...35
3.1 Introduction...35

3.1.1 Objective and Scope ..35
3.1.2 Terms and Acronyms ...35
3.1.3 Formats and Conventions ..38

4. EU Data Types..40
4.1 Fundamental Data Types ...40
4.2 Numerical Data Types..41

4.2.1 Unsigned Integers ..43
4.2.2 Signed Integers ..43
4.2.3 Single Precision Floating-Point Numbers...43
4.2.4 Packed Signed Half-Byte Integer Vector..43
4.2.5 Packed 8-bit Restricted Float Vector..44

4.3 Floating Point Modes..47
4.3.1 IEEE Floating Point Mode ..47
4.3.2 Alternative Floating Point Mode..54

4.4 Type Conversion ..55
4.4.1 Float to Integer..55
4.4.2 Integer to Integer with Same or Higher Precision...55
4.4.3 Integer to Integer with Lower Precision ..56
4.4.4 Integer to Float..56

5. Execution Environment...57
5.1 Overview...57
5.2 Primary Usage Models ...58

5.2.1 AOS and SOA Data Structures ..58
5.2.2 SIMD4 Mode of Operation..59
5.2.3 SIMD4x2 Mode of Operation ..60
5.2.4 SIMD16 Mode of Operation..62
5.2.5 SIMD8 Mode of Operation..63

5.3 Registers and Register Regions...64

4 IHD-OS-072810-R1V4PT2

5.3.1 Register Files..64
5.3.2 GRF Registers ..64
5.3.3 MRF Registers..65
5.3.4 ARF Registers ..66
5.3.5 Region Parameters...83
5.3.6 Region Addressing Modes ...89
5.3.7 Access Modes ..93
5.3.8 Execution Data Type ..94
5.3.9 Register Region Restrictions ..94
5.3.10 Destination Operand Description..97

5.4 SIMD Execution Control ...97
5.4.1 Predication..97
5.4.2 No Predication ..98
5.4.3 Predication with Horizontal Combination..99
5.4.4 Predication with Vertical Combination..100

5.5 Instruction Compaction...100
5.5.1 Motivation and Expected Usage...100
5.5.2 Hardware Behavior...101
5.5.3 Rules and Restrictions..102

5.6 End of Thread...103
5.7 Creating Conditional Flags ...103
5.8 Destination Hazard ...105
5.9 Non-present Operands...106
5.10 Instruction Prefetch...106

6. Exceptions..107
6.1 Introduction...107
6.2 Exception-Related Architectural Registers...107
6.3 System Routine ..108

6.3.1 General Flow of the System Routine..108
6.3.2 Invoking the System Routine..109
6.3.3 Returning to the Application Thread...110
6.3.4 System-IP (SIP) ..110
6.3.5 System Routine Register Space...110
6.3.6 System-Scratch Memory Space...111
6.3.7 Conditional Instructions Within System Routines...111
6.3.8 Messages in System Routines ...112
6.3.9 Use of ‘NoDDClr’ ..112

6.4 Exception Descriptions...113
6.4.1 ‘Illegal’ opcode..113
6.4.2 Undefined opcode ..113
6.4.3 Software Exception...113
6.4.4 Breakpoint...113
6.4.5 External Halt ...113

6.5 Events Which Do Not Generate Exceptions ..114
6.6 System Handler Example...115

7. Instruction Set Summary ..120
7.1 Instruction Set Characteristics..120

7.1.1 SIMD Instructions and SIMD Width..120
7.1.2 Instruction Operands and Register Regions ..120
7.1.3 Instruction Execution ..121

7.2 Instruction Machine Formats ..121
7.2.1 Common Instruction Fields...123
7.2.2 Instruction Operation Doubleword (DW0) ..131

IHD-OS-072810-R1V4PT2 5

7.2.3 Instruction Destination Doubleword (DW1) ..135
7.2.4 Instruction Source-0 Doubleword (DW2)..141
7.2.5 Instruction Source-1 Doubleword (DW3)..146

7.3 Opcode Encoding ...149
7.3.1 Move and Logic Instructions...149
7.3.2 Flow Control Instructions ..151
7.3.3 Miscellaneous Instructions ...152
7.3.4 Parallel Arithmetic Instructions ...153
7.3.5 Vector Arithmetic Instructions...154
7.3.6 Special Instructions ..155

7.4 Native Instruction BNF..156
7.4.1 Instruction Groups ..156
7.4.2 Destination Register ...157
7.4.3 Source Register ..158
7.4.4 Address Registers ..159
7.4.5 Register Files and Register Numbers ..159
7.4.6 Relative Location and Stack Control ..160
7.4.7 Regions...160
7.4.8 Types ..161
7.4.9 Write Mask..161
7.4.10 Swizzle Control ...162
7.4.11 Immediate Values...162
7.4.12 Predication and Modifiers ...162
7.4.13 Instruction Options..163

7.5 Deprecated Features..164
7.5.1 Defeatured Instructions ..164
7.5.2 Others ...164

8. Instruction Set Reference ...165
8.1 Conventions..165

8.1.1 Pseudo Code Format ...165
8.1.2 General Macros and Definitions ...165

8.2 Evaluate Write Enable..166
8.3 Instruction Description..167

8.3.1 add – Addition...167
8.3.2 and – Logical And...169
8.3.3 asr – Arithmetic Shift Right ...170
8.3.4 avg – Average...172
8.3.5 break – Break [DevGT+]...174
8.3.6 case – Case [DevGT+] ...176
8.3.7 cmp – Compare ..178
8.3.8 cmpn – Compare NaN..180
8.3.9 cont – Continue [DevGT+]..182
8.3.10 do – Do ...184
8.3.11 p2 – Dot Product 2..185
8.3.12 dp3 – Dot Product 3..186
8.3.13 dp4 – Dot Product 4..187
8.3.14 dph –Dot Product Homogeneous ...189
8.3.15 else – Else [DevGT+]..190
8.3.16 endif – End-If ..192
8.3.17 frc – Fraction...196
8.3.18 halt – Halt [DevGT+] ...200
8.3.19 if – If [DevGT+] ...201
8.3.20 line – Line ...204
8.3.21 lzd – Leading Zero Detection..205

6 IHD-OS-072810-R1V4PT2

8.3.22 lrp – Linear Interpolation...207
8.3.23 mac – Multiply Accumulate...208
8.3.24 mach – Multiply Accumulate High ..209
8.3.25 mad – Multiply Add ...211
8.3.26 movi – Move Indexed ...212
8.3.27 mul – Multiply..214
8.3.28 nop – No Operation ..216
8.3.29 not – Logic Not..217
8.3.30 or – Logic Or ...218
8.3.31 pln – Plane..220
8.3.32 rndd – Round Down..222
8.3.33 rndu – Round Up ..224
8.3.34 rnde – Round to Even...225
8.3.35 rndz – Round to Zero..227
8.3.36 sad2 – Sum of Absolute Difference 2...228
8.3.37 sada2 – Sum of Absolute Difference Accumulate 2 ...230
8.3.38 sel – Select ...231
8.3.39 send – Send Message..233
8.3.40 sendc – Conditional Send Message...235
8.3.41 shl – Shift Left ...236
8.3.42 shr – Shift Right ..237
8.3.43 wait – Wait Notification ...238
8.3.44 while – While [DevGT+]..241
8.3.45 xor – Logic Xor..243

9. EU Programming Guide ..245
9.1 Assembler Pragmas ...245

9.1.1 Declarations..245
9.1.2 Defaults and Defines ..246
9.1.3 Example Pragma Usages...247
9.1.4 Assembly Programming Guideline ...249

9.2 Usage Examples ..250
9.2.1 Vector Immediate ...250
9.2.2 Destination Mask for DP4 and Destination Dependency Control...251
9.2.3 Null Register as the Destination ...252
9.2.4 Use of LINE Instruction...252
9.2.5 Mask for SEND Instruction ...254
9.2.6 Flow Control Instructions ..258
9.2.7 Execution Masking ...259

IHD-OS-072810-R1V4PT2 7

Revision History

Document Number Revision
Number

Description Revision Date

IHD-OS-022810-R1V4PT2 1.0 First Release. February 2010

IHD-OS-072810-R1V4PT2 1.1 Update July 2010

8 IHD-OS-072810-R1V4PT2

1. Message Gateway
The Message Gateway shared function provides a mechanism for active thread-to-thread communication. Such thread-
to-thread communication is based on direct register access. One thread, a requester thread, is capable of writing into
the GRF register space of another thread, a recipient thread. Such direct register access between two threads in a
multi-processor environment some time is referred to as remote register access. Remote register access may include
read or write. GEN4 architecture supports remote register write, but not remote register read (natively). Message
Gateway facilitates such remote register write via message passing. The requester thread sends a message to Message
Gateway requesting a write to the recipient thread’s GRF register space. Message Gateway sends a writeback message
to the recipient thread to complete the register write on behave of the requester. The requester thread and the recipient
thread may be on the same EU or on different EUs.

[ILK] Please see Thread Spawn Message Section of Media Chapter for child thread termination using Message
Gateway messages with EOT bit set.

1.1 Messages

Message Gateway supports such thread-to-thread communication with the following three messages:
• OpenGateway: opens a gateway for a requester thread. Once a thread successfully opens its gateway, it can

be a recipient thread to receive remote register write.
• CloseGateway: closes the gateway for a requester thread. Once a thread successfully closes its gateway,

Message Gateway will block any future remote register writes to this thread.
• ForwardMsg: forwards a formatted message (remote register write) from a requester thread to a recipient

thread.

1.1.1 Message Descriptor

The following message descriptor applies to all messages supported by Message Gateway.

Bit Description

16:15 Notify. Send Notification Signal.
[Pre-DevSNB]: When the low bit of this field is set, the recipient thread’s notification counter is
incremented. The high bit is not part of the shared function specific message descriptor.
00: No notify
01: Increment recipient thread’s N0 notification counter
10: Increment recepient thread’s N2 notification counter
11: Reserved

This field is only valid for a ForwardMsg message. It is ignored for other messages.

IHD-OS-072810-R1V4PT2 9

Bit Description

14 AckReq. Acknowledgment Required. When this bit is set, an acknowledgment return message
is required. Message Gateway will send a writeback message containing the error code to the
requester thread using the post destination register address. When this bit is not set, no
writeback message is sent to the requesting thread by Message Gateway, even if an error
occurs.
This field is valid for OpenGateway, CloseGateway, and ForwardMsg messages.
When this bit is set, post destination register must be valid and the response length must be 1.
When this bit is not set, post destination register must be null and the response length must be
0.
This bit cannot be set when EOT is set; otherwise, hardware behavior is undefined.

0 = No Acknowledgement is required.
1 = Acknowledgement is required.

13:3 Reserved: MBZ

2:0 SubFuncID. Identify the supported sub-functions by Message Gateway. Encodings are:
000 = OpenGateway. Open the gateway for the requester thread.
001 = CloseGateway. Close the gateway for the requester thread.
010 = ForwardMsg. Forward the formatted message to the recipient thread with the given

offset from the recipient’s register base.
011 = GetTimeStamp [DevGT+]. Read absolute and relative timestamps.
100 = BarrierMsg. Open the gateway for the requester thread.
101 = UpdateGatewayState. Close the gateway for the requester thread.
Others are reserved

[Pre-DevSNB] 011 and 1xx = Reserved

10 IHD-OS-072810-R1V4PT2

1.1.2 OpenGateway Message

The OpenGateway message opens a communication channel between the requesting thread and other threads. It
specifies a key for other threads to access its gateway, as well as the GRF register range allowed to be written. The
message consists of a single 256-bit message payload.

If the AckReq bit is set, a single 256-bit payload writeback message is sent back to the requesting thread after
completion of the OpenGateway function. Only the least significant DWord in the post destination register is
overwritten.

If the EOT is set for this message, Message Gateway will ignore this message; instead, it will close the gateway for the
requesting thread regardless of the previous state of the gateway.

It is software’s policy to determine how to generate the key.

1.1.2.1 Message Payload

DWord Bit Description

M0.7 31:0 Reserved

M0.6 31:0 Reserved

M0.5 31:29 Reserved: MBZ

 28:21 RegBase: The register base address to be stored in the Message Gateway. It is used to
compute the destination GRF register address from the offset field in ForwardMsg.
RegBase contains 256-bit GRF aligned register address.

Note 1: This field aligns with bits [28:21] of the Offset field of the message payload for
ForwardMsg.

Note 2: the most significant bit of this field must be zero.

Format = U8

Range = [0,127]

 20:11 Reserved: MBZ

 10:8 Gateway Size: The range limit for messages through the Message Gateway. The maximal
allowed Gateway Size is 32 GRF registers.

000: 1 GRF Register
001: 2 GRF Registers
010: 4 GRF Registers
011: 8 GRF Registers
100: 16 GRF Registers
101: 32 GRF Registers
110: 64 GRF Registers ([DevCTG-B+] only)
111: 128 GRF Registers ([DevCTG-B+] only)

IHD-OS-072810-R1V4PT2 11

DWord Bit Description

 7:0 Dispatch ID: This ID is assigned by the fixed function unit and is a unique identifier for the
thread. It is used to free up resources used by the thread upon thread completion.

This field is ignored by Message Gateway

This field is only required for a thread that is created by a fixed function (therefore, not a
child thread) and EOT bit is set for the message.

M0.4 31:16 Reserved: MBZ

 15:0 Reserved: MBZ

M0.3:0 Ignored

1.1.2.2 Writeback Message

The writeback message is only sent if the AckReq bit in the message descriptor is set.

DWord Bit Description

W0.7:1 Reserved (not overwritten)

W0.0 31:20 Reserved

 19:16 Shared Function ID: Contains the message gateway’s shared function ID.

 15:3 Reserved

 2:0 Error Code

000: Successful. No Error (Normal)

001: Gateway Size Exceeded. Attempt to open a gateway with a Gateway Size that is
larger than 32 GRF registers ([Pre-DevCTG-B] only)

101: Opcode Error. Attempt to send a message which is not either open/close/forward

other codes: Reserved

1.1.3 CloseGateway Message

The CloseGateway message closes a communication channel for the requesting thread that was previously opened with
OpenGateway. Each thread is allowed to have only one open gateway at a time, thus no additional information in the
message payload is required to close the gateway. The message consists of a single 256-bit message payload.

If the AckReq bit is set, a single 256-bit payload writeback message is sent back to the requesting thread after
completion of the CloseGateway function. Only the least significant DWord in the post destination register is
overwritten.

12 IHD-OS-072810-R1V4PT2

1.1.3.1 Message Payload

DWord Bit Description

M0.7:6 Ignored

M0.5 31:8 Ignored

 7:0 Dispatch ID: This ID is assigned by the fixed function unit and is a unique identifier for the
thread. It is used to free up resources used by the thread upon thread completion.

This field is ignored by Message Gateway

This field is only required for a thread that is created by a fixed function (therefore, not a
child thread) and EOT bit is set for the message.

M0.4:0 Ignored

1.1.3.2 Writeback Message to Requester Thread

The writeback message is only sent if the AckReq bit in the message descriptor is set.

DWord Bit Description

W0.7:1 Reserved (not overwritten)

W0.0 31:20 Reserved

 19:16 Shared Function ID: Contains the message gateway’s shared function ID.

 15:3 Reserved

 2:0 Error Code

000: Successful. No Error (Normal)

101: Opcode Error. Attempt to send a message which is not either open/close/forward

other codes: Reserved

IHD-OS-072810-R1V4PT2 13

1.1.4 ForwardMsg Message

The ForwardMsg message gives the ability for a requester thread to write a data segment in the form of a byte, a
dword, 2 dwords, or 4 dwords to a GRF register in a recipient thread. The message consists of a single 256-bit message
payload, which contains the specially formatted data segment.

The ForwardMsg message utilizes a communication channel previously opened by the recipient thread. The recipient
thread has communicated its EUID, TID, and key to the requester thread previously via some other mechanism.
Generally, this is done through the thread spawn message from parent to child thread, allowing each child (requester)
to then communicate with its parent through a gateway opened by the parent (recipient). The child could then use
ForwardMsg message to communicate its own EUID, TID, and key back to the parent to enable bi-directional
communication after opening its own gateway.

If the AckReq bit is set, a single 256-bit payload writeback message is sent back to the requester thread after
completion of the ForwardMsg function. Only the least significant DWord in the post destination register is
overwritten.

If the Notify bit in the message descriptor is set, a ‘notification’ is sent to the recipient thread in order to increment the
recipient thread’s notification counter. This allows multiple messages to be sent to the recipient without waking up the
recipient thread. The last message, having this bit set, will then wake up the recipient thread.

1.1.4.1 Message Payload

DWord Bit Description

M0.7 31:0 Reserved

M0.6 31:0 Reserved

M0.5 31:29 Reserved: MBZ

 28:16 Offset: It provides the destination register position in the recipient thread GRF register
space as the offset from the RegBase stored in the recipient thread’s gateway entry. The
offset is in unit of byte, such that bits [28:21] is the 256-bit aligned register offset and bits
[4:0] is the sub-register offset. The sub-register offset must be aligned to the Length field in
bits [10:8]. The subfields of Offset are further illustrated as the following.

Offset[28:21]: Register offset from the gateway base (Range [0, 127]: bit 12 MBZ)

Offset[20:18]: DW offset

Offset[17:16]: Byte offset (must be 00 for all DW length cases)

 15:11 Reserved: MBZ

 10:8 Length: The length of the data segment.

000: 1 byte

001: 1 word

010: 1 dword

011: 2 dwords

100: 4 dwords

101-111: Reserved

14 IHD-OS-072810-R1V4PT2

DWord Bit Description

 7:0 Dispatch ID: This ID is assigned by the fixed function unit and is a unique identifier for the
thread. It is used to free up resources used by the thread upon thread completion.

This field is ignored by Message Gateway

This field is only required for a thread that is created by a fixed function (therefore, not a
child thread) and EOT bit is set for the message.

M0.4 31:28 Ignored

 27:24 EUID: The Execution Unit ID as part of the Recipient field is used to identify the recipient
thread to whom the message is forwarded.

 23:19 Ignored

 18:16 TID: The Thread ID as part of the Recipient field is used to identify the recipient thread to
whom the message is forwarded.

 15:0 Key

The key to match with the one stored in the recipient thread’s entry in Message Gateway.

[DevSNB+] Ignored

M0.3 31:0 Data Segment DWord 3: valid only for the 4-DWord data segment length

M0.2 31:0 Data Segment DWord 2: valid only for the 4-DWord data segment length

M0.1 31:0 Data Segment Dword 1: valid only for the 2- and 4-DWord data segment lengths

M0.0 31:24 Data Segment Byte 0: the same byte must
be copied to all four positions within this
DWord. Valid only for the 1-Byte data
segment length.

 23:16 Data Segment Byte 0

 15:8 Data Segment Byte 0

 7:0 Data Segment Byte 0

Data Segment Dword 0: valid only for the
1-, 2- and 4-Dword data segment lengths

IHD-OS-072810-R1V4PT2 15

1.1.4.2 Writeback Message to Requester Thread

The writeback message is only sent if the AckReq bit in the message descriptor is set.

DWord Bit Description

W0.7:1 Reserved (not overwritten)

W0.0 31:20 Reserved

 19:16 Shared Function ID: Contains the message gateway’s shared function ID.

 15:3 Reserved

 2:0 Error Code

000: Successful. No Error (Normal)

001: Reserved

010: Gateway Closed. Attempt to send a message through a closed gateway

011: Key Mismatched. [Pre-DevSNB] Attempt to send a message with a mismatching key

100: Limit Exceeded. [Pre-DevSNB] Attempt to send a message with offset beyond the
gateway limit

101: Opcode Error. Attempt to send a message which is not either open/close/forward

110: Invalid Message Size. Attempt to forward a message with length greater than 4 DW

111: Reserved

1.1.4.3 Writeback Message to Recipient Thread

This message contains the byte or dwords data segment indicated in the message written to the GRF register offset
indicated. Only the byte/dword(s) will be enabled, all other data in the GRF register is untouched.

16 IHD-OS-072810-R1V4PT2

1.1.4.4 Message Payload

DWord Bit Description

M0.7 31:0 Reserved

M0.6 31:0 Reserved

M0.5 31 Return to High GRF:

0: the return 128-bit data goes to the first half of the destination GRF register

1: the return 128-bit data goes to the second half of the destination GRF register

 30:8 Reserved : MBZ

 7:0 Dispatch ID: This ID is assigned by the fixed function unit and is a unique identifier for the
thread. It is used to free up resources used by the thread upon thread completion.

This field is ignored by Message Gateway

This field is only required for a thread that is created by a fixed function (therefore, not a
child thread) and EOT bit is set for the message.

M0.4 31:0 Ignored

M0.3 31:0 Ignored

M0.2 31:0 Ignored

M0.1 31:0 Ignored

M0.0 31:0 Ignored

IHD-OS-072810-R1V4PT2 17

1.1.4.5 Writeback Message to Requester Thread

As the writeback message is only sent if the AckReq bit in the message descriptor is set, AckReq bit must be set for
this message.

Only half of the destination GRF register is updated (via write-enables). The other half of the register is not changed.
This is determined by the Return to High GRF control field.

Writeback Message if Return to High GRF is set to 0:
DWord Bit Description

W0.7:4 Reserved (not overwritten)

W0.3 31:0 RelativeTimeLapHigh: This field returns the MSBs of time lap for the relative clock since
the previous reset. This field represents 1.024 uSec increment of the time stamp. Hardware
handles the wraparound (over 64 bit boundary) of the timestamp.

Format: U12

W0.2 31:20 RelativeTimeLapLow: This field returns the LSBs of time lap for the relative clock since
the previous reset. This field represents 1/4 nSec increment of the time stamp. Hardware
handles the wraparound (over 64 bit boundary) of the timestamp.

Format: U12

 19:0 Reserved : MBZ

W0.1 31:0 AbsoluteTimeLapHigh: This field returns the MSBs of time lap for the absolute clock since
the previous reset. This field represents 1.024 uSec increment of the time stamp. Hardware
handles the wraparound (over 64 bit boundary) of the timestamp.

Format: U12

W0.0 31:20 AbsoluteTimeLapLow: This field returns the LSBs of time lap for the absolute clock since
the previous reset. This field represents 1/4 nSec increment of the time stamp. Hardware
handles the wraparound (over 64 bit boundary) of the timestamp.

Format: U12

 19:0 Reserved : MBZ

Writeback Message if Return to High GRF is set to 1:
DWord Bit Description

W0.7 31:0 RelativeTimeLapHigh

W0.6 31:20 RelativeTimeLapLow

 19:0 Reserved : MBZ

W0.5 31:0 AbsoluteTimeLapHigh

W0.4 31:20 AbsoluteTimeLapLow

 19:0 Reserved : MBZ

W0.3:0 Reserved : MBZ

18 IHD-OS-072810-R1V4PT2

1.1.5 BarrierMsg Message

The BarrierMsg message gives the ability for multiple threads to synchronize their progress. This is useful when there
Writeare data shared between threads. The message consists of a single 256-bit message payload.

Upon receiving one such message, Message Gateway increments the Barrier counter and mark the Barrier requester
thread. There is no immediate response from the Message Gateway. When the counter value equates Barrier Thread
Count, Message Gateway will send response back to all the Barrier requesters.

1.1.5.1 Message Payload

DWord Bit Description

M0.5 31:0 Ignored

M0.4 31:0 Ignored

M0.3 31:0 Ignored

M0.2 31:28 Ignored

 27:24 BarrierID. This field indicates which one from the 16 Barrier States is updated.

Format: U4

Note: this field location matches with that of R0 header.

 23:0 Ignored

M0.1 31:0 Ignored

M0.0 31:4 Ignored

1.1.5.2 Writeback Message to Requester Thread

The writeback message is only sent if the AckReq bit in the message descriptor is set.

DWord Bit Description

W0.7:1 Reserved (not overwritten)

W0.0 31:20 Reserved

 19:16 Shared Function ID: Contains the message gateway’s shared function ID.

 15:3 Reserved

 2:0 Error Code

000: Successful. No Error (Normal)

001: Error.

Other encodings are reserved

IHD-OS-072810-R1V4PT2 19

1.1.5.3 Broadcast Writeback Message

When the count for a Barrier (identified by BarrierID) reaches Barrier.Count, Message Gateway broadcasts the
following messages to all threads using the BarrierID.

This message contains one single byte written to the GRF register at the RegBase location. Only the byte will be
enabled, all other data in the GRF register is untouched.

Note: due to the broadcasting nature of the writeback to multiple threads, a fixed ‘relative to RegBase’ location (with
the offset hard coded to zero) is used here, instead of storing offset per request thread.

DWord Bit Description

W0.7:1 Reserved (not overwritten)

W0.0 31:8 Reserved (not overwritten)

 7:0 Barrier.Byte

Format: U8

1.1.6 UpdateGatewayState Message

The UpdateGatewayState message gives the ability for a thread to change the internal state of the Message Gateway.

As Message Gateway may take multiple cycles to send writeback messages with Barrier Byte to multiple requesters,
the update of Barrier Byte may be delayed by Message Gateway so that the Barrier Byte delivered to all requesters has
the same value. In other words, hardware will block processing new messages when it is in the middle of performing a
multi-clock task to avoid risk conditions.

1.1.6.1 Message Payload

DWord Bit Description

M0.5 31:0 Ignored

M0.4 31:0 Ignored

M0.3 31:0 Ignored

M0.2 31:28 Ignored

 27:24 BarrierID. This field indicates which one from the 16 Barrier States is updated.

Format: U4

Note: this field location matches with that in R0 header.

 23:0 Ignored

M0.1 31:0 Ignored

M0.0 31:20 Ignored

 7:0 Barrier.Byte

This byte will replace the internal state of Barrier Byte of the Message Gateway. Barrier
Byte is initialized initially by MEDIA_VFE_STATE command.

Format: U8

20 IHD-OS-072810-R1V4PT2

1.1.6.2 Writeback Message to Requester Thread

The writeback message is only sent if the AckReq bit in the message descriptor is set.

DWord Bit Description

W0.7:1 Reserved (not overwritten)

W0.0 31:20 Reserved

 19:16 Shared Function ID: Contains the message gateway’s shared function ID.

 15:3 Reserved

 2:0 Error Code

000: Successful. No Error (Normal)

other codes: Reserved

1.1.7 MMIOReadWrite Message

1.1.7.1 Message Payload

DWord Bit Description

M0.5 31:0 Ignored

M0.4 31:0 Ignored

M0.3 31:1 Ignored

 0 MMIO R/W:

 0 – MMIO Read – a response will be sent to the EU with read data

 1 – MMIO Write – no response is sent to EU (unless acknowledge requested in
sideband)

M0.2 31:28 Ignored

 22:2 MMIO Address:

 The MMIO DWord address to be accessed.

 1:0 Ignored

M0.1 31:0 Ignored

M0.0 31:4 Ignored

IHD-OS-072810-R1V4PT2 21

1.1.7.2 Writeback Message to Requester Thread (MMIO Read Only)

DWord Bit Description

R0.7 31:0 Ignored

R0.6 31:0 Ignored

R0.5 31:0 Ignored

R0.4 31:0 Ignored

R0.3 31:0 Ignored

R0.2 31:0 Ignored

R0.1 31:0 Ignored

R0.0 31:0 MMIO Read Data

22 IHD-OS-072810-R1V4PT2

2. Unified Return Buffer (URB)
The Unified Return Buffer (URB) is a general-purpose buffer used for sending data between different threads, and, in
some cases, between threads and fixed-function units (or vice-versa). A thread accesses the URB by sending
messages.

2.1 URB Size

[Pre-DevCTG-B]: The URB provides 16KB of storage, arranged as 512 256-bit rows. A row corresponds in size to
an EU GRF register. Read/write access to the URB is generally supported on a row-granular basis.

[DevCTG-B]: The URB provides 24KB of storage, arranged as 768 256-bit rows. A row corresponds in size to an
EU GRF register. Read/write access to the URB is generally supported on a row-granular basis.

[DevILK]: The URB provides 64kB of storage, arranged as 2048 256-bit rows. A row corresponds in size to an EU
GRF register. Read/write access to the URB is generally supported on a row-granular basis.

A URB entry is a logical entity within the URB, referenced by an entry handle and comprised of some number of
consecutive rows.

2.2 URB Access

The URB can be written by the following agents:

• Command Stream (CS) can write constant data into Constant URB Entries (CURBEs) as a result of
processing CONSTANT_BUFFER commands.

• The Video Front End (VFE) fixed-function unit of the Media pipeline can write thread payload data in to its
URB entries.

• The Vertex Fetch (VF) fixed-function unit of the 3D pipeline can write vertex data into its URB entries

• GEN4 threads can write data into URB entries via URB_WRITE messages sent to the URB shared function.

The URB can be read by the following agents:

• The Thread Dispatcher (TD) is the main source of URB reads. As a part of spawning a thread, pipeline fixed-
functions provide the TD with a number of URB handles, read offsets, and lengths. The TD reads the
specified data from the URB and provide that data in the thread payload pre-loaded into GRF registers.

• The Geometry Shader (GS) and Clipper (CLIP) fixed-function units of the 3D pipeline can read selected parts
of URB entries to extract vertex data required by the pipeline.

• The Windower (WM) FF unit reads back depth coefficients from URB entries written by the Strip/Fan unit.

Note that neither the CPU nor EU threads can read the URB directly.

IHD-OS-072810-R1V4PT2 23

2.3 State

The URB function is stateless, with all information required to perform a function being passed in the write message.

See URB Allocation (Graphics Processing Engine) for a discussion of how the URB is divided amongst the various
fixed functions.

2.4 Messages

There is only one type of message supported by the URB shared function: URB_WRITE. It is primarily used by a
thread to write data in to an entry in the URB, as referenced by the passed handle. FF units of the 3D pipeline snoop
these messages, and a side effect of the message may be some information being passed to the FF unit which spawned
the thread.

This section documents the global aspects of the URB write messages. The actual data contained in the message
differs for each fixed function – refer to 3D Pipeline and the fixed-function chapters or details on 3D URB data
formats, Media for media-specific URB data formats, and Graphics Processing Engine for details on Constant URB
Entries (CURBEs).

[DevILK+]: The FF_SYNC message is added. See below.

Programming Notes:

• The End of Thread bit in the message descriptor may be set on URB messages only in threads dispatched by
the geometry shader (GS), clipper, and strips and fans (SF) units.

2.4.1 Execution Mask

The Execution Mask specified in the ‘send’ instruction determines which DWords within each message register are
written to the URB.

2.4.2 Message Descriptor
Bit Description

19 [DevILK+]: Header Present
This bit must be set to one for all URB messages.
([Pre-DevILK]: this bit is not part of the shared function specific message descriptor)

18:16 Ignored ([Pre-DevILK]: these bits are not part of the shared function specific message descriptor)

24 IHD-OS-072810-R1V4PT2

Bit Description

15 Complete

If clear, this signals that the URB entry(s) referenced by the handle(s) are not yet completely specified.
This setting is used to perform partial writes to URB entries, as would be required when writing an entry
larger than the maximum single message payload can accommodate. Only the final write would be
marked “complete”. Partial writes may be unordered.

If set, this signals that there will be no further writes (past this one) to the specific URB entry(s) by the
thread. A snooping FF unit uses this to identify when the corresponding URB entry(s) are completely
specified, at which point the FF unit can initiate further operations the entry(s) (either a readback,
passing the handle(s) down the pipeline, or immediate deallocation if the entry is “unused”).

This bit is strictly control information passed to snooping FF units. The URB shared function itself does
not use this bit for any purpose.

Programming Notes:

• The following message descriptor fields are only valid when Complete is set: Used

• The following message header fields are only valid when Complete is set: Handle 0
PrimType, Handle 0 PrimStart, Handle 0 PrimEnd.

14 Used

If set, this signals that the URB entry(s) referenced by the handle(s) are valid outputs of the thread. In
all likelihood this means that that entry(s) contains complete & valid data to be subject to further
processing by the pipeline.

If clear, this signals that the URB entry(s) referenced by the handle(s) are not valid outputs of the thread.
Use of this setting will result in the handle(s) being immediately dereferenced by the owning FF unit.
This setting is to be used by GS or CLIP threads to dereference handles it obtained (either in the initial
thread payload or subsequent allocation writebacks) but subsequently determined were not required
(e.g., the object was completely clipped out).

Programming Notes:

• Only GS and CLIP threads are permitted to utilize Used==0. All other threads are required (by
design) to generate valid outputs in all cases.

• This bit is strictly control information passed to snooping FF units. The URB shared function
itself does not use this bit for any purpose.

• This bit is only valid when Complete is set, i.e., it is ignored on partial writes.

13 Allocate

If set, this requests that an additional destination URB entry be allocated to the thread by the spawning
FF unit. The FF unit will return the handle to this URB entry via a message writeback operation in
response to this message (see writeback format below). Therefore, threads must specify a writeback
register in ‘send’ instructions issuing messages with this bit set.

If clear, an additional allocation is not requested.

Programming Notes:

• This bit is strictly control information passed to snooping FF units. The URB shared function
itself does not use this bit for any purpose.

• This bit is valid on all URB_WRITE messages, e.g., it could be used to allocate a new handle
on a partial write (Complete not set).

• Only one Allocate request (per thread) can be outstanding. Upon requesting an allocation, the
thread must wait for the handle to be returned (written back) before another allocation can be
requested.

12 Fast Composite Restriction Check Pass

IHD-OS-072810-R1V4PT2 25

Bit Description

[DevCTG+]:

If set on the end of thread message, this field indicates that the setup kernel portion of the fast
composite restriction check has passed. This field is ignored for threads dispatched by units other than
Strips and Fans. This field is also ignored unless at least one contiguous dispatch mode is enabled and
at least one normal dispatch mode is enabled in WM_STATE.

[DevBW] and [DevCL]:

Ignored

11:10 Swizzle Control. This field is used to specify which “swizzle” operation is to be performed on the write
data. It indirectly specifies whether one or two handles are valid.

00: URB_NOSWIZZLE

 The message data is to be written directly to a single URB entry (Handle 0).

01: URB_INTERLEAVED

 The message contains data to be written to two URB entries. The message data provided is
interleaved such that the upper DWords (7:4) of each 256-bit unit contain data to be written to
Handle 1, and the lower DWords (3:0) contain data to be written to Handle 0. The URB shared
function will de-interleave this data and write the two separate data streams to the two entries
using the single Offset value (see Offset below for more details).

10: URB_TRANSPOSE

 This message contains data that is to be “transposed” before being written to the URB. The
transpose applied is tailored to the passing of data between the SF and WM stages – it is not a
generic transpose. (See description below). Therefore, the assumption is that this mode will
only be used by Setup threads, where the setup-result data is swizzled before being written to
the URB in order to provide a more optimal format for use in a subsequent PS thread. (See
Strip/Fan, Windower chapters).

 [DevCTG+]: If Transposed URB Read Enable (WM_STATE) is set, the Setup thread must
use URB_NOSWIZZLE to write the coefficient data (it will be transposed whenever the URB is
read). URB_TRANSPOSE must only be used when Transposed URB Read Enable is clear.

 See Programming Restrictions in the URB_TRANSPOSE subsection below.

11: Reserved

9:4 Offset. This field specifies a destination offset (in 256-bit units) from the start of the URB entry(s), as
referenced by URB Return Handle n, at which the data (if any) will be written.

When URB_INTERLEAVED is used, this field provides a 256-bit granular offset applied to both URB
entry destinations.

When URB_TRANSPOSE is used, this field provides a 256-bit granular offset applied to the URB entry
destination. The least significant bit of Offset must be zero.

3:0 URB Opcode

0: URB_WRITE

1: FF_SYNC [DevILK+]

all other codes are Reserved

26 IHD-OS-072810-R1V4PT2

The following table lists the valid and invalid combinations of the Complete, Used, Allocate and EOT bits:

Complete Used Allocate EOT Valid? Usage

0 d/c 0 0 Valid. Normal partial-write or
non-write of URB.

0 d/c 0 1 Valid only if any and all
preceding URB entries have
been marked as “complete” and
there is no outstanding Allocate
request.

Thread terminate w/ non-
write of URB

0 d/c 1 0 Valid only if any and all
preceding URB entries have
been marked as “complete” and
there is no outstanding Allocate
request.

Non-write of URB with
request for an additional
handle.

0/1 d/c 1 1 Invalid. Thread must never
terminate with an outstanding
writeback request.

n/a

1 0 0/1 0 Valid Dereference of URB entry
without/with new
allocation request.

1 0 0 1 Valid Dereference of URB entry
and thread termination.

1 1 0/1 0 Valid Completion of URB entry
output without/with new
allocation request.

1 1 0 1 Valid Completion of URB entry
output and thread
termination.

IHD-OS-072810-R1V4PT2 27

2.4.3 URB_WRITE

2.4.3.1 URB_WRITE Message Header

DWord Bit Description

M0.7 31:0 Reserved

M0.6 31:0 Reserved

M0.5 31:8 Ignored

 7:0 FFTID. The Fixed Function Thread ID is assigned by the fixed function unit and is a unique
identifier for the thread. It is used to free up resources used by the thread upon thread
completion.

M0.4 31:0 Ignored

M0.3 31:0 Ignored

M0.2 31:27 Ignored

 26:16 [DevILK+]: SONumPrimsWritten Increment Value. This field contains the value by
which the SO_NUM_PRIMS_WRITTEN statistics register will be incremented.

[Pre-DevILK]: Ignored (SO_NUM_PRIMS_WRITTEN is incremented via SVBWrite
messages to the DataPort).

 15:8 Ignored

 7 [DevCTG-B]: Increment CL_INVOCATIONS: If set, causes the CL_INVOCATIONS
register to get incremented by 1 (if enabled).

[Otherwise]: Ignored

 6:2 Handle 0 PrimType. This field associates a primitive type with the vertex written at Handle
0.

NOTE: This field is only defined when the GS or Clipper FF unit is the target FF unit.
Otherwise it is Reserved:MBZ.

 1 Handle 0 PrimStart. This field is used to indicate that the vertex written at Handle 0 is the
first vertex of a primitive.

NOTE: This field is only defined when the GS or Clipper FF unit is the target FF unit.
Otherwise it is Reserved:MBZ.

 0 Handle 0 PrimEnd. This field is used to indicate that the vertex written at Handle 0 is the
last vertex of a primitive.

NOTE: This field is only defined when the GS or Clipper FF unit is the target FF unit.
Otherwise it is Reserved:MBZ.

M0.1 31:16 Handle ID 1. This ID is assigned by the fixed function unit and links the work in channel 1
to a specific entry within the fixed function unit. This field is ignored unless Swizzle
Control indicates Interleave mode.

 15:0 URB Return Handle 1. This is the URB handle where channel 1’s results are to be placed.
This field is ignored unless Swizzle Control indicates interleave mode.

M0.0 31:16 Handle ID 0. This ID is assigned by the fixed function unit and links the work in channel 0
to a specific entry within the fixed function unit.

 15:0 URB Return Handle 0. This is the URB handle where channel 0’s results are to be placed.

28 IHD-OS-072810-R1V4PT2

2.4.3.2 URB_WRITE Message Payload

For the URB message, the message payload will be written to the URB entries indicated by the URB return handles in
the message header.

While GS and CLIP threads will write one vertex at a time to the URB, the VS will write two interleaved vertices. The
description of the URB write messages will refer to the per-vertex DWords described in the Vertex URB Entry
Formats section of the 3D Overview chapter.

Payload Usage

URB_NOSWIZZLE The message payload contains data to be written to a single URB entry (e.g.,
one Vertex URB entry). The Swizzle Control field of the message descriptor
must be set to ‘NoSwizzle’.

URB_INTERLEAVED The message payload contains data to be written to two separate URB
entries. The payload data is provided in a high/low interleaved fashion. The
Swizzle Control field of the message descriptor must be set to ‘Interleave’.

URB_TRANSPOSE The message payload contains data that is to be transposed before being
written to the URB. See the Strip & Fan (SF) Unit chapter for details on the
source and destination data layouts and intended usage model.

IHD-OS-072810-R1V4PT2 29

2.4.3.2.1 URB_NOSWIZZLE

URB_NOSWIZZLE is used to simply write data into consecutive URB locations (no data swizzling or transposition
applied).

Programming Notes:

• The URB function will ignore the Channel Enables associated with this message and write all channels into
the URB.

• [DevCTG+]: When Transposed URB Read Enable (WM_STATE) is set, the Setup thread must use
URB_NOSWIZZLE to write the coefficient data into the URB (it will be transposed whenever the URB is
read).

When URB_NOSWIZZLE is used to write vertex data, the following table shows an example layout of a
URB_NOSWIZZLE payload containing one (non-interleaved) vertex containing n pairs of 4-DWord vertex elements
(where for the example, n is >2).

DWord Bit Description

M1.7 31:0 Vertex Data [7]

M1.6 31:0 Vertex Data [6]

M1.5 31:0 Vertex Data [5]

M1.4 31:0 Vertex Data [4]

M1.3 31:0 Vertex Data [3]

M1.2 31:0 Vertex Data [2]

M1.1 31:0 Vertex Data [1]

M1.0 31:0 Vertex Data [0]

M2.7 31:0 Vertex Data [15]

M2.6 31:0 Vertex Data [14]

M2.5 31:0 Vertex Data [13]

M2.4 31:0 Vertex Data [12]

M2.3 31:0 Vertex Data [11]

M2.2 31:0 Vertex Data [10]

M2.1 31:0 Vertex Data [9]

M2.0 31:0 Vertex Data [8]

Mn.7 31:0 Vertex Data [8(n-2)+7]

Mn.6 31:0 Vertex Data [8(n-2)+6]

Mn.5 31:0 Vertex Data [8(n-2)+5]

Mn.4 31:0 Vertex Data [8(n-2)+4]

Mn.3 31:0 Vertex Data [8(n-2)+3]

Mn.2 31:0 Vertex Data [8(n-2)+2]

Mn.1 31:0 Vertex Data [8(n-2)+1]

Mn.0 31:0 Vertex Data [8(n-2)+0]

30 IHD-OS-072810-R1V4PT2

2.4.3.2.2 URB_INTERLEAVED

The following table shows an example layout of a URB_INTERLEAVED payload containing two interleaved vertices,
each containing n 4-DWord vertex elements (n>1).

Programming Restrictions:

• At least 256 bits per vertex (512 bits total, M1 & M2) must be written. Writing only 128 bits per vertex (256
bits total, M1 only) results in UNDEFINED operation.

• The URB function will use (not ignore) the Channel Enables associated with this message.

DWord Bit Description

M1.7 31:0 Vertex 1 Data [3]

M1.6 31:0 Vertex 1 Data [2]

M1.5 31:0 Vertex 1 Data [1]

M1.4 31:0 Vertex 1 Data [0]

M1.3 31:0 Vertex 0 Data [3]

M1.2 31:0 Vertex 0 Data [2]

M1.1 31:0 Vertex 0 Data [1]

M1.0 31:0 Vertex 0 Data [0]

M2.7 31:0 Vertex 1 Data [7]

M2.6 31:0 Vertex 1 Data [6]

M2.5 31:0 Vertex 1 Data [5]

M2.4 31:0 Vertex 1 Data [4]

M2.3 31:0 Vertex 0 Data [7]

M2.2 31:0 Vertex 0 Data [6]

M2.1 31:0 Vertex 0 Data [5]

M2.0 31:0 Vertex 0 Data [4]

Mn.7 31:0 Vertex 1 Data [4(n-2)+3]

Mn.6 31:0 Vertex 1 Data [4(n-2)+2]

Mn.5 31:0 Vertex 1 Data [4(n-2)+1]

Mn.4 31:0 Vertex 1 Data [4(n-2)+0]

Mn.3 31:0 Vertex 0 Data [4(n-2)+3]

Mn.2 31:0 Vertex 0 Data [4(n-2)+2]

Mn.1 31:0 Vertex 0 Data [4(n-2)+1]

Mn.0 31:0 Vertex 0 Data [4(n-2)+0]

IHD-OS-072810-R1V4PT2 31

2.4.3.2.3 URB_TRANSPOSE

The following table shows an example layout of a URB_TRANSPOSE payload and how the data is transposed and
stored in the destination URB entry. Note that Source Row 0, Source Row 1, and implied row of all-zero, and Source
Row 3 is transposed and stored in successive 4-DW locations in the destination. This is then repeated for the next 3
rows of the source payload. For the intended usage model in the Setup thread, Source Row 0 would contain “Cx”
coefficients for the first 8 attributes, Source Row 1 would contain “Cy” coefficients for the first 8 attributes, and
Source Row 2 would contain “C0” coefficients for the first 8 attributes, then repeating for the next 8 attributes.
Insertion of the implied all-zero row is required to align the Cx,Cy and C0 attributes into half-rows within the URB.
This permits the used of the “LINE” instruction to initiate attribute interpolation in the subsequent PS thread.

Programming Notes:

• The message payload must contain a multiple of 3 Source Rows of data (excluding the message header).

• The URB function will ignore the Channel Enables associated with this message and write all channels into
the URB.

• [DevCTG+]: When Transposed URB Read Enable (WM_STATE) is set, the Setup thread must use
URB_NOSWIZZLE to write the coefficient data into the URB (it will be transposed whenever the URB is
read). URB_TRANSPOSE should only be used when Transposed URB Read Enable is clear.

Table 2-1. URB_TRANSPOSE Payload

DWord Bit Description

M1.0-7 31:0 Source Row 0 (e.g., Cx coeffs for the 1st set of 8 attributes)

M2.0-7 31:0 Source Row 1 (e.g., Cy coeffs for the 1st set of 8 attributes)

M3.0-7 31:0 Source Row 2 (e.g., C0 coeffs for the 1st set of 8 attributes)

M4.0-7 31:0 Source Row 3 (e.g., Cx coeffs for the 2nd set of 8 attributes)

M5.0-7 31:0 Source Row 4 (e.g., Cy coeffs for the 2nd set of 8 attributes)

M6.0-7 31:0 Source Row 5 (e.g., C0 coeffs for the 2nd set of 8 attributes)

... 31:0 ...

32 IHD-OS-072810-R1V4PT2

Table 2-2.URB_TRANSPOSE URB Destination Layout

 URB DW

URB
Row

7 6 5 4 3 2 1 0

n+0 M3.1 0 M2.1 M1.1 M3.0 0 M2.0 M1.0

n+1 M3.3 0 M2.3 M1.3 M3.2 0 M2.2 M1.2

n+2 M3.5 0 M2.5 M1.5 M3.4 0 M2.4 M1.4

n+3 M3.7 0 M2.7 M1.7 M3.6 0 M2.6 M1.6

n+4 M6.1 0 M5.1 M4.1 M6.0 0 M5.0 M4.0

n+5 M6.3 0 M5.3 M4.3 M6.2 0 M5.2 M4.2

n+6 M6.5 0 M5.5 M4.5 M6.4 0 M5.4 M4.4

n+7 M6.7 0 M5.7 M4.7 M6.6 0 M5.6 M4.6

2.4.3.3 Writeback Message for URB Entry Allocate

A writeback only occurs if the Allocate bit is set in the message descriptor. A single register is returned containing the
URB Return Handle and Handle ID for the allocated handle in the low DWord is returned. All high DWords contain
zero.

DWord Bit Description

W0.7:1 Reserved : MBZ

W0.0 31:16 Handle ID. This ID is assigned by the fixed function unit and links the thread to a specific
entry within the fixed function unit.

 15:0 URB Return Handle. This is the URB handle where the thread’s results are to be placed.

2.4.4 FF_SYNC Messages ([DevILK])

The FF_SYNC message is used to pass critical information between GS/Clip threads and the GS/Clip FF units, as well
as providing Gs/Clip thread synchronization (ordering). GS threads report various counts resulting from running the
GS and/or SO functions, prior to performing any output (to SOB buffers or to URB handles). Clip threads report only
of handles required. A message response (writeback) length of 1 GRF will be indicated on the ‘send’ instruction if
the thread requires response data and/or synchronization. Refer to the GS/Clip stage chapter for details.

IHD-OS-072810-R1V4PT2 33

2.4.4.1 FF_SYNC Message Header

Dword Bit Description

M0.7 31:0 Reserved

M0.6 31:0 Reserved

M0.5 31:8 Ignored

 7:0 FFTID. This ID is assigned by the fixed function unit and is a unique identifier for the
thread. It is used to free up resources used by the thread upon thread completion.

M0.4 31:0 Ignored

M0.3 31:0 Ignored

M0.2 31:7 Ignored

M0.1 31:16 Ignored

 15:0 (GS-only) NumGSPrimsGenerated. The number of objects (e.g., triangles) generated by
the GS function performed by the thread. If the GS function is not enabled, this field MBZ.

Format: U16

Range: [0,1024]

M0.0 31:16 (GS-only) NumSOVertsToWrite. The number of (expanded-to-list) vertices generated by
the SO function performed by the thread. This represents the number of vertices the
thread will attempt to write to the SOB(s) in memory, once it obtains the SVBI(s) in the
FF_SYNC writeback. Note that overflow may occur either (a) prior to the SVBI(s) are
returned in the writeback or (b) in the process of this thread outputting to the SOBs. In
either case, the thread needs to check for overflow once it receives the writeback, based on
the returned SVBI(s) and the number of vertices it must attempt to output.

If the SO function is not enabled, this field MBZ.

Format: U16

Range: [0,3066] (1024-vertex tristrip = 1022 triangles = 3066 trilist vertices)

 15:0 (GS-only) NumSOPrimsNeeded. The number of objects (e.g., triangles within a trillist)
generated by the SO function performed by the thread (exclusive of any SOB overflow). If
the SO function is not enabled, this field MBZ.

Format: U16

Range: [0,1024]

34 IHD-OS-072810-R1V4PT2

2.4.4.2 FF_SYNC Writeback Message

(Both GS & Clip): DWord W0.0 of the writeback data contains initial handle information. If Handle Valid is clear,
the FF unit did not have a handle available to be allocated as the initial handle – the thread will need to use the
URB_WRITE message to obtain the initial handle. Otherwise the Handle ID and URB Return Handle fields are
valid and can be used to write the first VUE.

(GS-only) The writeback data contains the SVBI values to be used as starting write indices by the GS thread. It is the
responsibility of the GS thread to perform SOB overflow processing. If the GS thread is not performing StreamOutput
and was simply using the writeback to provide GS vertex output synchronization, the return data is to be ignored.

(Clip-only) Dwords W0.1-7 of the writeback data are ignored.

DWord Bit Description

W0.7:
W0.5

31:0 Reserved

W0.4 31:0 (GS-only) Streamed Vertex Buffer Index 3

This field represents the value of SVBI[3] that is to be used as the starting index for the GS
thread. If the thread is not performing StreamOutput, this field is ignored.

Format = U32

Range = [0,227-1]

W0.3 31:0 (GS-only) Streamed Vertex Buffer Index 2

W0.2 31:0 (GS-only) Streamed Vertex Buffer Index 1

W0.1 31:0 (GS-only) Streamed Vertex Buffer Index 0

W0.0 31 Handle Valid:

If set, the FF unit has provided an initial handle. The other fields in this DWord are valid.

If clear, the FF unit did not have an initial handle to provide. The other fields in this DWord
are ignored.

 30:24 Reserved

 23:16 Handle ID. This ID is assigned by the FF unit and links the thread to a specific entry within
the FF unit.

Format: Reserved for Implementation Use

 15:12 Reserved

 11:0 URB Return Handle. This is the initial destination URB handle passed to the thread. If the
thread does output URB entries, this identifies the first destination URB entry.

 [DevILK] Format: U9 512 bit URB Handle Address

IHD-OS-072810-R1V4PT2 35

3. Execution Unit ISA

3.1 Introduction

3.1.1 Objective and Scope

The core of GEN architecture consists of an array of multi-threaded processors, also referred to as Execution Units
(EU). This Instruction Set Architecture (ISA) document specifies the instructions executable on the EUs of the GEN
architecture. It defines the data types in the GEN architecture. It includes the binary format (machine code) and ASCII
format (native syntax) of each instruction. It also provides example usages of instructions and modes of instructions,
and certain data formats. The programming guideline in appendix provides information to help developers to
understand the usage of GEN ISA. However, it is not intended to be a comprehensive tutorial.

3.1.2 Terms and Acronyms

AIP Application IP. This is part of the control registers for exception handling for a thread. Upon
an exception, hardware moves the current IP into this register and then jumps to SIP.

ARF Architecture Register File. It is a collection of architecturally visible registers for a thread
such as address registers, accumulator, flags, notification registers, IP, null, etc. ARF should
not be mistaken as just the address registers.

B Byte. As a numerical data type of 8 bits, B represents a signed byte integer. It is used to
specify the type of an operand in an instruction.

BNF Backus Naur Form, a formal notation to describe the syntax of a given language. The meta
symbols of BNF include “::=”, “|”, and “< >”, where “::=” means “is defined as”; “|” means
“or”; and angle brackets “<” and “>” are used to surround category names.

CR Control Register. These read-write registers are used for thread mode control and exception
handling for a thread.

D Double word (DWord). As a fundamental data type, D or DW represents 4 bytes. It may be
used to specify the type of an operand in an instruction.

EOT End Of Thread. This is a message sideband signal on the Output message bus signifying that
the message requester thread is terminated. A thread must have at least one SEND
instruction with the EOT bit in the message descriptor field set in order to properly
terminate.

EU Execution Unit. An EU is a multi-threaded processor within the GEN multi-processor
system. Each EU is a fully-capable processor containing instruction fetch and decode,
register files, source operand swizzle and SIMD ALU, etc. An EU is also referred to as a
GEN Core.

36 IHD-OS-072810-R1V4PT2

EUID Execution Unit Identifier. The 4-bit field within a thread state register (SR0) that identifies
the row and column location of the EU where a thread is located. A thread can be uniquely
identified by the EUID and TID.

ExecSize Execution Size.

Execution Size Execution Size indicates the number of data elements processed by a GEN SIMD
instruction. It is one GEN instruction field and can be changed at a per instruction level.

FLT_MAX The magnitude of the maximum represent-able single-precision floating number according
to IEEE-754 standard. FLT_MAX has an exponent of 0xFE and a mantissa of all one’s.

fmax Same as FLT_MAX.

GEN Core Alternative name for an EU in the GEN multi-processor system.

GRF General Register File. This is the most commonly used read-write register space organized
as an array of 256-bit registers for a thread.

ISA Instruction Set Architecture. The GEN ISA describes the instructions supported by a GEN
EU. A sequence of GEN instructions forms a thread executed on an EU.

JIT Just-In-Time compiler

LSB Least Significant Bit

Message Messages are data packages transmitted from a thread to another thread, to another shared
function or to another fixed function. Message passing is the primary communication
mechanism of the GEN architecture.

MRF Message Register File. This is the write-only register space, organized as an array of 256-bit
registers, for a thread to communicate with shared functions or other threads.

MSB Most Significant Bit

DQ Double Quad word (DQword). As a fundamental data type, DQ represents 16 bytes.

POR Plan Of Record

QW Quad Word (QWord). As a fundamental data type, QW represents 8 bytes.

QQ Quad Quad word (QQword). As a fundamental data type, QQ represents 32 bytes.

Sub-Register Subfield of a SIMD register. A SIMD register is an aligned fixed size register for a register
file or a register type. For example, a GRF register, r2, is a 256-bit wide, 256-bit aligned
register. A sub-register, r2.3:d, is the fourth dword of GRF register r2.

SIMD Single Instruction Multiple Data. The term SIMD can be used to describe the kind of
parallel processing architecture that exploits data parallelism at the instruction level. It can
also be used to describe the instructions in such an architecture.

SIP System IP. There is one global System IP register for all the threads. From a thread’s point
of view, this is a virtual read-only register. Upon an exception, hardware performs certain
book-keeping functions and then jumps to SIP.

SR State Register. The read-only registers containing the state information of the current thread,
including the EUID/TID, Dispatcher Mask, and System IP.

IHD-OS-072810-R1V4PT2 37

Thread A thread is an instance of a kernel program executed on an EU. The life cycle for a thread
starts from the executing the first instruction after being dispatched from Thread Dispatcher
to an EU to the execution of the last instruction – a send instruction with EOT that signals
the thread termination. Threads in the GEN system may be independent from each other or
communicate with each other through the Message Gateway share function.

TID Thread Identifier. The 2-bit field within a thread state register (SR0) that identifies which
out of the four possible thread slots on the EU is executing that thread. A thread can be
uniquely identified by the EUID and TID.

TS Thread Spawner. TS is the second and the last fixed function stage of the media pipeline.

V Immediate integer vector. As a numerical data type of 32 bits, an immediate integer vector
of type V contains 8 signed integer elements with 4 bits each. The 4-bit integer element is in
2’s compliment form. It may be used to specify the type of an immediate operand in an
instruction.

VF Immediate floating point vector. As a numerical data type of 32 bits, an immediate floating
point vector of type VF contains 4 floating point elements with 8-bit each. The 8-bit floating
point element contains a sign field, a 3-bit exponent field and a 4-bit mantissa field. It may
be used to specify the type of an immediate operand in an instruction.

W Word. As a numerical data type of 16 bits, W represents a signed word integer. It is used to
specify the type of an operand in an instruction.

URB Unified Return Buffer. The on-chip memory managed/shared by GEN Fixed Functions.
Threads use the URB to return data that will be consumed either by a Fixed Function or
other threads.

UB Unsigned Byte integer. A numerical data type of 8 bits. It may be used to specify the type
of an operand in an instruction.

UD Unsigned Double Word integer. A numerical data type of 32 bits. It may be used to specify
the type of an operand in an instruction.

UW Unsigned Word integer. A numerical data type of 16 bits. It may be used to specify the type
of an operand in an instruction.

VFE Video Front End. VFE is the first fixed function stage of the media pipeline.

38 IHD-OS-072810-R1V4PT2

3.1.3 Formats and Conventions

In order to conveniently (and without ambiguity) describe the register files with 256-bit wide registers that may contain
various data types with different data element widths, it is important to use a consistent table format to represent the
registers. Throughout this document, we will adopt the following table formats and conventions. When a register or a
number is presented by a row, increasing order is always from right to left and then top down pictorially. In other
words, for a bit field, the LSB to MSB is from right to left; for a byte sequence, the least significant byte to the most
significant byte is also from right to left. This is consistent with the ‘Little Endian’ convention used by IA-32
machines. The following tables depict the layout formats for different data units.

7 6 5 4 3 2 1 0 Bits

 A Byte

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Bits

Byte 1 Byte 0 A Word

31 24 23 16 15 8 7 0 Bits

Byte 4 Byte 2 Byte 1 Byte 0 A DWord

31 30 29 .. 3 2 1 0 32
Bytes

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 16 Words

7 6 5 4 3 2 1 0 8
DWords

 7 6 5 4 3 2 1 0 16 DWords

15 14 13 12 11 10 9 8

IHD-OS-072810-R1V4PT2 39

With this convention, we note that the execution channels are logically viewed as from right to left too, which is a little
bit unconventional. However, as shown in the GEN Execution Environment Chapter, it matches with the bit order of
the flag registers. This also impacts the view of a GRF register region, now the region origin is located at the upper-
right corner and a region row is viewed from right to left.

40 IHD-OS-072810-R1V4PT2

4. EU Data Types

4.1 Fundamental Data Types

The fundamental data types in the GEN architecture are halfbyte, byte, word, doubleword (DW), quadword (QW),
double quadword (DQ) and quad quadword (QQ). They are defined based on the number of bits of the data type,
ranging from 4 bits to 256 bits. As shown in Figure 4-1, a halfbyte contains 4 bits, a byte contains 8 bits, a word
contains two bytes, and a doubleword (dword) contains two words, and so on. Halfbyte is a special data type such that
it cannot be accessed directly as standalone data element. It is only allowed as a subfield of the numerical data type of
“packed signed halfbyte integer vector” described in the next section.

Figure 4-1. Fundamental data types

7 0

Low byte

7 0

High byte

15 8

Low wordHigh word

0151631

Byte

Word

Doubleword
(DW)

3 0

Halfbyte*

Quadword
(QW)

0127
Double Quadword
(DQ)

0255
Quad Quadword
(QQ)

063

With the exception of halfbyte, the access of a data element to/from a GEN register or to/from memory must be aligned
on the natural boundaries of the data type. The natural boundary for a word has an even-numbered address in unit of
byte. The natural boundary for a doubleword has an address divisible by 4 bytes. Similarly, the natural boundary for a
quadword, double quadword and quad quadword has an address divisible by 8, 16, and 32 bytes, respectively.
Quadword, double quadword and quad quadword do not have corresponding numerical data type. Instead, they are
used to describe a group (a vector) of numerical data elements of smaller size align to larger natural boundaries.

IHD-OS-072810-R1V4PT2 41

4.2 Numerical Data Types

The numerical data types defined in the GEN architecture include signed and unsigned integers and floating-point
numbers (floats) of various numbers of bits. These numerical data types are pictorially illustrated in Figure 4-2 and
Figure 4-3. Error! Reference source not found. details the notation, size and numerical range of each data type. The
largest numerical data type has 32 bits.

Figure 4-2. Integer numerical data types

3 02

sign

Signed Halfbyte Integer*

7 0

Unsigned Byte Integer

7 06

sign

Signed Byte Integer

015

Unsigned Word Integer

15 014

sign

Signed Word Integer

031

Unsigned DWord Integer

31 030

sign

Signed DWord Integer

31 027

Packed Signed Halfbyte Integer Vector

3428

42 IHD-OS-072810-R1V4PT2

Figure 4-3. Floating point numerical data types

31 030

sign

32-bit Single Precision Float

2322

fractionexponent

31

Packed8-bit Restricted Float

15 823 1624 7 6

s

0

exp

4 3

fraction

7 6

s

Restricted 8-bit Float

0

exp

4 3

fraction

. Formats and ranges of numerical data types

Notation Numerical Data Types Fundamental Data
Type

Range

UB Unsigned Byte Integer Byte [0, 255]

B Signed Byte Integer Byte [-128, 127]

UW Unsigned Word Integer Word [0, 65535]

W Signed Word Integer Word [-32768, 32767]

UD Unsigned Doubleword Integer Doubleword [0, 232 – 1]

D Signed Doubleword Integer Doubleword [–231, 231 – 1]

F Single Precision Float Doubleword [–(2–2-23)127…–2-149, 0.0, 2-149… (2–2-
23)127]

n/a Signed Halfbyte Integer Halfbyte [–8, 7]

V Packed Signed Halfbyte Integer
Vector

Doubleword [–8, 7]

n/a Restricted 8-bit Float Byte [–31…–0.125, 0, 0.125… 31]

VF Packed Restricted Float Vector Doubleword [–31…–0.125, 0, 0.125… 31]

IHD-OS-072810-R1V4PT2 43

4.2.1 Unsigned Integers

Unsigned integers are unsigned binary numbers contained in a byte, a word or a doubleword. The range for an
unsigned byte integer is from 0 to 255. The range for an unsigned word integer is from 0 to 65535. The range for an
unsigned doubleword integer is from 0 to 232 – 1.

The short hand notation for an unsigned byte integer, an unsigned word integer, and an unsigned doubleword integer is
UB, UW, UD, respectively.

4.2.2 Signed Integers

Signed integers are signed binary number in 2’s compliment form contained in a halfbyte, a byte, a word or a
doubleword. A signed halfbyte integer has a numerical range from –8 to 7 with the sign bit at bit 3. A signed byte
integer has a range from –128 to 127 with the sign at bit 7. A signed word integer is has a range from -32768 to 32767
with the sign at bit 15. A signed doubleword integer has a range from –231 to 231 – 1 with the sign at bit 31.

The short hand notation for a signed byte integer, a signed word integer, and a signed doubleword integer is B, W, D,
respectively.

4.2.3 Single Precision Floating-Point Numbers

The single precision floating point numbers is contained in a doubleword. Floating point format is as defined in IEEE
Standard 754 for Binary Floating-Point Arithmetic. Maximal representable number is (2–2-23)127 and the minimal
number is – (2–2-23)127. The smallest fractional negative number –2-149 and the smallest fractional positive number is 2-

149. Value 0.0 has no fractional parts.

The short hand format notation for a single precision floating-point number is F.

4.2.4 Packed Signed Half-Byte Integer Vector

A packed signed halfbyte integer vector consists of 8 signed halfbyte integers contained in a doubleword. Each signed
halfbyte integer element has a range from -8 to 7 with the sign on bit 3. This numerical data type is only used by an
immediate source operand of doubleword in a GEN instruction. It cannot be used for the destination operand or a non-
immediate source operand. GEN hardware converts the 32-bit vector into 8-element signed word vector by sign
extension. This is illustrated in Figure 4-4.

The short hand format notation for a packed signed half-byte vector is V.

44 IHD-OS-072810-R1V4PT2

Figure 4-4. Converting a packed half-byte vector to a 128-bit signed integer vector

B6885-01

128-bit Expanded V Data

abcsssssssssssss

sign
15 14 0

abcs

023

Packed Signed Halfbyte
Interger Vector

Expanded Halfbyte Integer

Signed Halfbyte Integer *

sign

04 328 2731

112 111127 32 31 16 15 0

4.2.5 Packed 8-bit Restricted Float Vector

A packed restricted float vector consists of 4 8-bit restricted floats contained in a doubleword. Each restricted float has
the sign at bit 7, a 3-bit coded exponent in bits 4 to 6, a 4-bit fraction in bits 0 to 3, and an implied integer 1. The
exponent is in excess-3 format – having a bias of 3. Restricted float provides zero, positive/negative normalized
numbers with a small range (3-bit exponent) and small precision (4-bit fraction). This numerical data type is only used
by an immediate source operand of doubleword in a GEN instruction. It cannot be used for the destination operand, or
a non-immediate source operand.

Figure 4-5 shows how to convert an 8-bit restricted float into a single precision float. Converting a 3-bit exponent with
a bias of 3 to an 8-bit exponent with a bias of 127 is by adding 4, or equivalently copying bit 2 to bit 7 and putting the
inverted bit 2 to bits 6:2. A special logic is also needed to take care of positive/negative zeros.

IHD-OS-072810-R1V4PT2 45

Figure 4-5. Conversion from a Restricted 8-bit Float to a Single-Precision Float

B6886-01

Expanded
single

precision
float

0000000000000000

Restricted 8-bit float

000abcdefggggggs

abcdefgs

sign exponent fraction
31 30 23 22 0

sign 6 04 5

Table 4-1 shows all possible numbers of the restricted 8-bit float. Only normalized float numbers can be represented,
including positive and negative zero, and positive and negative finite numbers. Normalized infinites, NaN and
denormalized float numbers cannot be represented by this type. It should be noted that this 8-bit floating point format
does not follow IEEE-754 convention in describing numbers with small magnitudes. Specifically, when the exponent
field is zero and the fraction field is not zero, an implied one is still present instead of taking a denormalized form
(without an implied one). This results in a simple implementation but with a smaller dynamic range – the magnitude of
the smallest non-zero number is 0.125.

46 IHD-OS-072810-R1V4PT2

Table 4-1. Example of restricted 8-bit float numbers

Restricted 8-bit Float Extended 8-bit
Exponent

Class

Hex # Sign [7] Exponent
[6:4]

Fraction [3:0]

Floating number in
decimal

70-0x7F 1 00 … 1111 00 0011 … 31

60-0x6F 0 00 … 1111 00 0010 … 15.5

50-0x5F 1 00 … 1111 00 0001 … 7.75

40-0x4F 0 00 … 1111 00 0000 … 3.875

30-0x3F 1 00 … 1111 11 1111 … 1.9375

20-0x2F 0 00 … 1111 11 1110 5 … 0.96875

10-0x1F 1 00 … 1111 11 1101 25 … 0.484375

01-0x0F 0 01 … 1111 11 1100 25 … 0.2421875

sitive
Normalize
d Float

00 0 00 00 0000 +zero)

F0-0xFF 1 00 … 1111 00 0011 6 … -31

E0-0xEF 0 00 … 1111 00 0010 … -15.5

D0-0xDF 1 00 … 1111 00 0001 … -7.75

C0-0xCF 0 00 … 1111 00 0000 … -3.875

B0-0xBF 1 00 … 1111 11 1111 … -1.9375

A0-0xAF 0 00 … 1111 11 1110 5 … -0.96875

90-0x9F 1 00 … 1111 11 1101 25 … -0.484375

81-0x8F 0 01 … 1111 11 1100 125 … -0.2421875

gative
Normalize
d Float

80 0 00 00 0000 (-zero)

Figure 4-6 shows the conversion of a packed exponent-only float to a 4-element vector of single precision floats.

The short hand format notation for a packed signed half-byte vector is VF.

IHD-OS-072810-R1V4PT2 47

Figure 4-6. Converting a Packed Restricted Float Vector to a 128-bit Float Vector

B6889-01

Packed Restricted Float Vector

127 94 93 64 63 32 31

31 24 23 8 7 0

0

128-bit ExpandedVF Data

4.3 Floating Point Modes

GEN architecture supports two floating point operation modes, namely IEEE floating point mode (IEEE mode) and
alternative floating point mode (ALT mode). Both modes follow mostly the requirements in IEEE-754 but with
different deviations. The deviations will be described in details in later sections. The primary difference between these
modes is on the handling of Infs, NaNs and denorms. The IEEE floating point mode may be used to support newer
versions of 3D graphics API Shaders and the alternative floating point mode may be used to support early Shader
versions.

These two modes are supported by all units that perform floating point computations, including GEN execution units,
GEN shared functions like Extended Math, the Sampler and the Render Cache color calculator, and fixed functions like
VF, Clipper, SF and WIZ. Host software sets floating point mode through the fixed function state descriptors for 3D
pipeline and the interface descriptor for media pipeline. Therefore different modes may be associated with different
threads running concurrently. Floating point mode control for EU and shared functions are based on the floating point
mode field (bit 0) of cr0 register.

4.3.1 IEEE Floating Point Mode

4.3.1.1 Partial Listing of Honored IEEE-754 Rules

Here is a summary of expected 32-bit floating point behaviors in GEN architecture. Refer to IEEE-754 for topics not
mentioned.

• INF – INF = NaN
• 0 * (+/–)INF = NaN
• 1 / (+INF) = +0 and 1 / (–INF) = –0

o (+/–)INF / (+/–)INF = NaN as A/B = A * (1/B)
• INV (+0) = RSQ (+0) = +INF, INV (–0) = RSQ (–0) = –INF, and SQRT (–0) = –0
• RSQ (–finite) = SQRT (–finite) = NaN
• LOG (+0) = LOG (–0) = –INF, LOG (–finite) = LOG (–INF) = NaN
• NaN (any OP) any-value = NaN with one exception for min/max mentioned below. Resulting NaN may have

different bit pattern than the source NaN.

48 IHD-OS-072810-R1V4PT2

• Normal comparison with conditional modifier of EQ, SNB, GE, LT, LE, when either or both operands is
NaN, returns FALSE. Normal comparison of NE, when either or both operands is NaN, returns TRUE.

o Note: Normal comparison is either a cmp instruction or an instruction with conditional modifier
• Special comparison cmpn with conditional modifier of EQ, SNB, GE, LT, LE, when the second source

operand is NaN, returns TRUE, regardless of the first source operand, and when the second source operand is
not NaN, but first one is, returns FALSE. Cmpn of NE, when the second source operand is NaN, returns
FALSE, regardless of the first source operand, and when the second source operand is not NaN, but first one
is, returns TRUE.

o This is used to support the proposed IEEE-754R rule on min or max operations. For which, if only
one operand is NaN, min and max operations return the other operand as the result.

• Both normal and special comparisons of any non-NaN value against +/– INF return exact result according to
the conditional modifier. This is because that infinities are exact representation in the sense that +INF = +INF
and –INF = –INF.

o NaN is unordered in the sense that NaN != NaN.
• IEEE-754 requires floating point operations to produce a result that is the nearest representable value to an

infinitely precise result, known as "round to nearest even" (RTNE). 32-bit floating point operations must
produce a result that is within 0.5 Unit-Last-Place (0.5 ULP) of the infinitely precise result. This applies to
addition, subtraction, and multiplication.

• All arithmetic floating point instructions does Round To Nearest Even at the end of the computation, except
the round instructions.

4.3.1.2 Complete Listing of Deviations or Additional Requirements vs. IEEE-754

For a result that cannot be represented precisely by the floating point format, GEN execution unit uses rounding toward
zero (which is a bit-field truncation of the magnitude portion of a floating point data in sign-magnitude form)to nearest
even to produce a result to the closest representable value. an infinitely precise result. This ends up with a result that is
within 10.5 Unit-Last-Place (1(0.5 ULP) of the infinitely precise result.

• NaN input to an operation obviously always produces NaN on output, however the exact bit pattern of the
NaN input to an operation obviously always produces NaN on output, however the exact bit pattern of the
NaN is not required to stay the same (unless the operation is a raw “mov” instruction which does not alter data
at all.)

• x*1.0f must always result in x (except denorm flushed and possible bit pattern change for NaN).
• x +/- 0.0f must always result in x (except denorm flushed and possible bit pattern change for NaN). But -0 + 0

= +0.
• Fused operations (such as mac, dp4, dp3, etc.) may produce intermediate results out of 32-bit float range, but

whose final results would be within 32-bit float range if intermediate results were kept at greater precision. In
this case, implementations are permitted to produce either the correct result, or else +/-INF. Thus,
compatibility between a fused operation, such as “mac”, with the unfused equivalent, “mul” followed by
“add” in this case, is not guaranteed.

o As the accumulator registers have more precision than 32-bit float, any instruction with accumulator
as a source/destination operand may produce a different result than that using GRF/MRF registers.

• API Shader divide operations are implemented as x*(1.0f/y). With the two-step method, x*(1.0f/y), the
multiply and the divide each independently operate at the 32-bit floating point precision level (accuracy to 1
ULP).

• See the Type Conversion section below for rules on converting to/from float representations.

IHD-OS-072810-R1V4PT2 49

4.3.1.3 Comparison of Floating Point Numbers

The following tables (Table 4-2 through Table 4-7) detail the rules for floating point comparison. In the tables, “+/-
Fin” stands for a positive or negative finite precision floating point number. Result is either a true (T) or false (FALSE
or F). Each row corresponds to a fixed <src0> and each column corresponds to a fixed <src1>. When comparing two
positive finite numbers (or two negative finite numbers), the result can be T or F depending on the values. Therefore,
the corresponding fields in the following tables are marked as T/F.

Table 4-2. Results of “Greater-Than” Comparison – CMP.G

src0 src1 -inf -Fin -denorm -0 +0 +denorm +Fin +inf NaN

-inf FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
-Fin T T/F FALSE FALSE FALSE FALSE FALSE FALSE FALSE
-denorm T T FALSE FALSE FALSE FALSE FALSE FALSE FALSE
-0 T T FALSE FALSE FALSE FALSE FALSE FALSE FALSE
+0 T T FALSE FALSE FALSE FALSE FALSE FALSE FALSE
+denorm T T FALSE FALSE FALSE FALSE FALSE FALSE FALSE
+Fin T T T T T T T/F FALSE FALSE
+inf T T T T T T T FALSE FALSE
NaN FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

Table 4-3. Results of “Less-Than” Comparison – CMP.L

src0 src1 -inf -Fin -denorm -0 +0 +denorm +Fin +inf NaN

-inf FALSE T T T T T T T FALSE
-Fin FALSE T/F T T T T T T FALSE
-denorm FALSE FALSE FALSE FALSE FALSE FALSE T T FALSE
-0 FALSE FALSE FALSE FALSE FALSE FALSE T T FALSE
+0 FALSE FALSE FALSE FALSE FALSE FALSE T T FALSE
+denorm FALSE FALSE FALSE FALSE FALSE FALSE T T FALSE
+Fin FALSE FALSE FALSE FALSE FALSE FALSE T/F T FALSE
+inf FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
NaN FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

50 IHD-OS-072810-R1V4PT2

Table 4-4. Results of “Equal-To” Comparison – CMP.E

src0 src1 -inf -Fin -denorm -0 +0 +denorm +Fin +inf NaN

-inf T FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
-Fin FALSE T/F FALSE FALSE FALSE FALSE FALSE FALSE FALSE
-denorm FALSE FALSE T T T T FALSE FALSE FALSE
-0 FALSE FALSE T T T T FALSE FALSE FALSE
+0 FALSE FALSE T T T T FALSE FALSE FALSE
+denorm FALSE FALSE T T T T FALSE FALSE FALSE
+Fin FALSE FALSE FALSE FALSE FALSE FALSE T/F FALSE FALSE
+inf FALSE FALSE FALSE FALSE FALSE FALSE FALSE T FALSE
NaN FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

Table 4-5. Results of “Not-Equal-To” Comparison – CMP.NE

src0 src1 -inf -Fin -denorm -0 +0 +denorm +Fin +inf NaN

-inf FALSE T T T T T T T T
-Fin T T/F T T T T T T T
-denorm T T FALSE FALSE FALSE FALSE T T T
-0 T T FALSE FALSE FALSE FALSE T T T
+0 T T FALSE FALSE FALSE FALSE T T T
+denorm T T FALSE FALSE FALSE FALSE T T T
+Fin T T T T T T T/F T T
+inf T T T T T T T FALSE T
NaN T T T T T T T T T

Table 4-6. Results of “Less-Than Or Equal-To” Comparison – CMP.LE

src0 src1 -inf -Fin -denorm -0 +0 +denorm +Fin +inf NaN

-inf T T T T T T T T FALSE
-Fin FALSE T/F T T T T T T FALSE
-denorm FALSE FALSE T T T T T T FALSE
-0 FALSE FALSE T T T T T T FALSE
+0 FALSE FALSE T T T T T T FALSE
+denorm FALSE FALSE T T T T T T FALSE
+Fin FALSE FALSE FALSE FALSE FALSE FALSE T/F T FALSE
+inf FALSE FALSE FALSE FALSE FALSE FALSE FALSE T FALSE
NaN FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

IHD-OS-072810-R1V4PT2 51

Table 4-7. Results of “Greater-Than or Equal-To” Comparison – CMP.GE

src0 src1 -inf -Fin -denorm -0 +0 +denorm +Fin +inf NaN

-inf T FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
-Fin T T/F FALSE FALSE FALSE FALSE FALSE FALSE FALSE
-denorm T T T T T T FALSE FALSE FALSE
-0 T T T T T T FALSE FALSE FALSE
+0 T T T T T T FALSE FALSE FALSE
+denorm T T T T T T FALSE FALSE FALSE
+Fin T T T T T T T/F FALSE FALSE
+inf T T T T T T T T FALSE
NaN FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

4.3.1.4 Min/Max of Floating Point Numbers

A special comparison called Compare-NaN is introduced in GEN architecture to handle the difference of above
mentioned floating point comparison and the rules on supporting MIN/MAX. To compute the MIN or MAX of two
floating point numbers, if one of the numbers is NaN and the other one is not, MIN or MAX of the two numbers
returns the one that is not NaN. When two numbers are NaN, MIN or MAX of the two numbers returns a NaN, which
may not have the same binary form as any of the two numbers.

Mix and Max is achieved using conditional selects, i.e., SEL with ‘condition modifiers’ as :
Evaluations GEN6 Instructions

MIN(src0, src1) = (src0 < src1) ? src0 : src1 sel.l.f0.0 dst src0 src1

MAX(src0, src1) = (src0 >= src1) ? src0 : src1 sel.ge.f0.0 dst src0 src1

Note even f0.0 is specified in the instruction, the flag register is not touched by this instruction.

The following tables (Table 4-8 through Table 4-13) detail the rules for this special compare-NaN operation for
floating point numbers. Notice that excepting “Not-Equal-To” comparison-NaN, last columns in all other tables have
‘T’.

52 IHD-OS-072810-R1V4PT2

Table 4-8. Results of “Greater-Than” Comparison-NaN – CMPN.G

src0 src1 -inf -Fin -denorm -0 +0 +denorm +Fin +inf NaN

-inf FALSE T T T T T T T T

-Fin FALSE T/F T T T T T T T

-denorm FALSE FALSE FALSE FALSE FALSE FALSE T T T

-0 FALSE FALSE FALSE FALSE FALSE FALSE T T T

+0 FALSE FALSE FALSE FALSE FALSE FALSE T T T

+denorm FALSE FALSE FALSE FALSE FALSE FALSE T T T

+Fin FALSE FALSE FALSE FALSE FALSE FALSE T/F T T

+inf FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE T

NaN FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

Table 4-9. Results of “Less-Than” Comparison-NaN – CMPN.L

src0 src1 -inf -Fin -denorm -0 +0 +denorm +Fin +inf NaN

-inf T FALSE FALSE FALSE FALSE FALSE FALSE FALSE T

-Fin T T/F FALSE FALSE FALSE FALSE FALSE FALSE T

-denorm T T T T T T FALSE FALSE T

-0 T T T T T T FALSE FALSE T

+0 T T T T T T FALSE FALSE T

+denorm T T T T T T FALSE FALSE T

+Fin T T T T T T T/F FALSE T

+inf T T T T T T T T T

NaN FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

Table 4-10. Results of “Equal-To” Comparison-NaN – CMPN.E

src0 src1 -inf -Fin -denorm -0 +0 +denorm +Fin +inf NaN

-inf T FALSE FALSE FALSE FALSE FALSE FALSE FALSE T

-Fin FALSE T/F FALSE FALSE FALSE FALSE FALSE FALSE T

-denorm FALSE FALSE T T T T FALSE FALSE T

-0 FALSE FALSE T T T T FALSE FALSE T

+0 FALSE FALSE T T T T FALSE FALSE T

+denorm FALSE FALSE T T T T FALSE FALSE T

+Fin FALSE FALSE FALSE FALSE FALSE FALSE T/F FALSE T

+inf FALSE FALSE FALSE FALSE FALSE FALSE FALSE T T

NaN FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE T

IHD-OS-072810-R1V4PT2 53

Table 4-11. Results of “Not-Equal-To” Comparison-NaN – CMPN.NE

src0 src1 -inf -Fin -denorm -0 +0 +denorm +Fin +inf NaN

-inf FALSE T T T T T T T FALSE

-Fin T T/F T T T T T T FALSE

-denorm T T FALSE FALSE FALSE FALSE T T FALSE

-0 T T FALSE FALSE FALSE FALSE T T FALSE

+0 T T FALSE FALSE FALSE FALSE T T FALSE

+denorm T T FALSE FALSE FALSE FALSE T T FALSE

+Fin T T T T T T T/F T FALSE

+inf T T T T T T T FALSE FALSE

NaN T T T T T T T T FALSE

Table 4-12. Results of “Less-Than Or Equal-To” Comparison-NaN – CMPN.LE

src0 src1 -inf -Fin -denorm -0 +0 +denorm +Fin +inf NaN

-inf T T T T T T T T T

-Fin FALSE T/F T T T T T T T

-denorm FALSE FALSE T T T T T T T

-0 FALSE FALSE T T T T T T T

+0 FALSE FALSE T T T T T T T

+denorm FALSE FALSE T T T T T T T

+Fin FALSE FALSE FALSE FALSE FALSE FALSE T/F T T

+inf FALSE FALSE FALSE FALSE FALSE FALSE FALSE T T

NaN FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE T

Table 4-13. Results of “Greater-Than or Equal-To” Comparison-NaN – CMPN.GE

src0 src1 -inf -Fin -denorm -0 +0 +denorm +Fin +inf NaN

-inf T FALSE FALSE FALSE FALSE FALSE FALSE FALSE T

-Fin T T/F FALSE FALSE FALSE FALSE FALSE FALSE T

-denorm T T T T T T FALSE FALSE T

-0 T T T T T T FALSE FALSE T

+0 T T T T T T FALSE FALSE T

+denorm T T T T T T FALSE FALSE T

+Fin T T T T T T T/F FALSE T

+inf T T T T T T T T T

NaN FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE T

54 IHD-OS-072810-R1V4PT2

4.3.2 Alternative Floating Point Mode

The key characteristics of the alternative floating point mode is that NaN, Inf and denorm are not expected for an
application to pass into the graphics pipeline, and the graphics hardware must not generate NaN, Inf or denorm as
computation result. For example, a result that is larger than the maximum representable floating point number is
expected to be flushed to the largest representable floating point number, i.e., +FLT_MAX. The FLT_MAX has an
exponent of 0xFE and a mantissa of all one’s, which is the same for IEEE floating point mode.

Here is the complete list of the differences of legacy graphics mode from the relaxed IEEE-754 floating point mode.

• Any +/- INF result must be flushed to +/- FLT_MAX, instead of being output as +/- INF.

• Extended mathematics functions of log(), rsq() and sqrt() take the absolute value of the sources before
computation to avoid generating INF and NaN results.

Table 4-14 shows the support of these differences in various hardware units.

Table 4-14. Supported Legacy Float Mode and Impacted Units

IEEE-754 Deviations VF Clipper SF WIZ EU EM Sampler RC

Any +/- INF result flushed to
+/- FLT_MAX

Y Y Y Y Y Y Y Y

Log, rsq, sqrt take abs() of sources N/A N/A N/A N/A N/A Y N/A N/A

Table 5-15 shows some of the desired or recommended alternative floating point mode behaviors that do not have
hardware design impact. The reasons it is not necessary to utilize special hardware support for these items are also
provided. “Handling of NaNs, Infs and denorms is undefined. Applications should not pass in such values into
the graphics pipeline.”

Table 4-15. Dismissed legacy behaviors
Suggested IEEE-754 Deviations Reason for Dismiss

Mov forces (+/-)INF to (+/-)FLT_MAX (+/-)INF is never present as input

(+/-)INF – (+/-)INF = +/- FLT_MAX instead of NaN (+/-)INF is never present as input

Denorm must be flushed to zero in all cases (including
trivial mov and point sampling)

Denorm is never present as input

Anything*0=0 (including NaN*0=0 and INF*0=0) NaN and INF are never present as input

Except propagated NaN, NaN is never generated NaN is never present as input and GEN never generates
NaN based on rules in the previous table

An input NaN gets propagated excepting (a)-(d) NaN is never present as input

(a) Rcp (and rsq) of 0 yields FLT_MAX N/A, as it is already covered by the general rule “Any +/-
INF result flushed to +/- FLT_MAX”

(b) Sampler honors 0/0 = 0 as if (1/0)*0 There is no divide in Sampler

I Rcp (and rsq) of INF yields +/- 0 (+/-)INF is never present as input

(d) Sampler honors INF/INF = 0 as if (1/INF)=0 followed
by Anything*0 = 0

There is no divide in Sampler

IHD-OS-072810-R1V4PT2 55

4.4 Type Conversion

4.4.1 Float to Integer

Converting from float to integer is based on rounding toward zero. If the floating point value is +0, -0, +Denorm, -
Denorm, +NaN –r -NaN, the resulting integer value is always 0. If the floating point value is positive infinity (or
negative infinity), the conversion result takes the largest (or the smallest) represent-able integer value. If the floating
point value is larger (or smaller) than the largest (or the smallest) represent-able integer value, the conversion result
takes the largest (or the smallest) represent-able integer value. The following table shows these special cases. The last
two rows are just examples. They can be any number outside the represent-able range of the output integer type (UD,
D, UW, W, UB and B).

Input Format Output Format

F UD D UW W UB B

+/- Zero 00000000 00000000 00000000 00000000 00000000 00000000
+/- Denorm 00000000 00000000 00000000 00000000 00000000 00000000

NAN 00000000 00000000 00000000 00000000 00000000 00000000
-NAN 00000000 00000000 00000000 00000000 00000000 00000000
INF FFFFFFFF 7FFFFFFF 0000FFFF 00007FFF 000000FF 0000007F
-INF 00000000 80000000 00000000 00008000 00000000 00000080

+232 (*) FFFFFFFF 7FFFFFFF 0000FFFF 00007FFF 000000FF 0000007F
-232-1 (*) 00000000 80000000 00000000 00008000 00000000 00000080

4.4.2 Integer to Integer with Same or Higher Precision

Converting an unsigned integer to a signed or an unsigned integer with higher precision is based on zero extension.

Converting an unsigned integer to a signed integer with the same precision is based on modular wrap-around. Without
saturation, a larger than represent-able number becomes a negative number. With saturation, a larger than represent-
able number is saturated to the largest positive represent-able number.

Converting a signed integer to a signed integer with higher precision is based on sign extension.

Converting a signed integer to an unsigned integer with higher precision is based on zero extension. Without
saturation, a negative number becomes a large positive number with the sign bit wrapped-up. With saturation, a
negative number is saturated to zero.

56 IHD-OS-072810-R1V4PT2

4.4.3 Integer to Integer with Lower Precision

Converting a signed or an unsigned integer to a signed or an unsigned integer with lower precision is based on bit
truncation. Without saturation, only the lower bits are kept in the output regardless of the sign-ness of input and output.
With saturation, a number that is outside the represent-able range is saturated to the closest represent-able value.

4.4.4 Integer to Float

Converting a signed or an unsigned integer to a single precision float number is to round to the closest representable
float number. For any integer number with magnitude less than or equal to 24 bits, resulting float number is a precise
representation of the input. However, if it is more than 24 bits, LSBs are truncated. This truncation is performed in
sign-magnitude domain, thus, is equivalent to floating point rounding toward zero operation.

IHD-OS-072810-R1V4PT2 57

5. Execution Environment

5.1 Overview

GEN instruction set is a general-purpose data-parallel instruction set optimized for graphics and media computations.
Supports for 3D graphics API (application program interface) Shader instructions are mostly native, meaning that GEN
provides efficient execution for Shader programs. Depending on the Shader program operation modes (for example, a
Vertex Shader may be executed on a base of a vertex-pair, while a Pixel Shader may be executed on a base of a 16-
pixel group), translation from 3D graphics API Shader instruction streams into GEN native instructions may be
required. In addition, there are many specific capabilities to accelerate media applications. The following list provides
a summary of the GEN instruction set.

• GEN ISA support SIMD (single instruction multiple data) instructions. The number of data elements per
instruction depends on the data type.

• GEN ISA supports SIMD parallel arithmetic, vector arithmetic, logical, and SIMD control/branch
instructions.

• GEN ISA supports instruction level variable-width SIMD execution.
• GEN ISA supports conditional SIMD execution via destination mask, predication, and execution mask.
• GEN ISA supports instruction compaction.
• A GEN instruction may be executed in multiple cycles over a SIMD execution pipeline.
• Most GEN instructions have three operands. Some instructions have additional implied source and destination

operands. Some instructions have explicit dual destinations.
• GEN ISA supports region-based register addressing.
• GEN ISA supports direct and indirect (indexed) register addressing.
• GEN instructions may have a scalar and vector immediate source operand.
• Higher precision accumulator registers are architecturally visible.
• Self-modifying code is not allowed (instruction streams, including instruction caches, are read-only).

58 IHD-OS-072810-R1V4PT2

5.2 Primary Usage Models

In describing the usage models of GEN instruction set, it is inevitable to forward reference terminology, syntax and
instructions detailed later in this specification. For clarity reasons, not all forward references will be provided in this
section as well as subsequent sections. For example, reference to binary instruction fields such as Align1, Align16,
Compr, SecHalf, etc, can be found in the Instruction Summary chapter. And assembly instruction syntax can be found
in the Instruction Summary chapter and Instruction Reference chapter.

5.2.1 AOS and SOA Data Structures

With the Align1 and Align16 access modes, GEN instruction set provides effective SIMD computation regardless
whether data are arranged in array of structure (AOS) form or in structure of array (SOA) form. The AOS and SOA
data structures are illustrated by the examples in Figure 5-1. The example shows two different ways of storing four
vectors in four SIMD registers. For simplicity, data vector and SIMD register both have four data elements. The four
data elements in a vector are denoted by X, Y, Z and W just as for a vertex in 3D geometry. The AOS structure stores
one vector in a register and the next vector in another register. The SOA structure stores one data element of each
vector in a register and the next element of each vector in the next register and so on. It is obvious in this case the two
structures can be related by a matrix transpose operation.

Figure 5-1. AOS and SOA data structures

B6890-01

AOS — Array of Structure

W

Vector 1

Z Y X

W Z Y X

Vector 0

W

Vector 3

Z Y X

W Z Y X

Vector 2

SOA — Structure of Array

X

Register 1

X X X

Y Y Y Y

Register 0

Z

Register 3

Z Z Z

W W W W

Register 2

V
e
cto

r 1

V
e
cto

r 0

V
e
cto

r 3

V
e
cto

r 2

Transpose

GEN 3D and media applications take advantage of such broad architecture support and use both AOS and SOA data
arrangements.

• Vertices in 3D Geometry (Vertex Shader and Geometry Shader) are arranged in AOS structure and run on
SIMD4x2 and SIMD4 modes, respectively, as detailed below.

• Pixels in 3D Rasterization (Pixel Shader) are arranged in SOA structure and run on SIMD8 and SIMD16
modes as detailed below.

• Pixels in media are primarily arranged in SOA structure, and occasionally in AOS structure with possible
mixed mode of operations that use region-based addressing extensively.

IHD-OS-072810-R1V4PT2 59

These are preferred methods; alternative arrangements may also be possible. Shared function resources provide data
transpose capability to support both modes of operations: The sampler has a transpose for sample reads, the data port
has a transpose for render cache writes, and the URB unit has a transpose for URB writes.

The following 3D graphics API Shader instruction will be used in the following sections to illustrate various modes of
operations:

add <dst>.xyz <src0>.yxzw <src1>.zwxy

This example is an SIMD instruction that takes two source operands <src0> and <src1>, performs addition operation
(add), and store the additions to the destination operand <dst>. Each operand contains four floating point data
elements. The data type is determined by the instruction opcode. This instruction also uses source swizzle modifier
(.yxzw for <src0> and .zwxy for <src1> and destination mask modifier (.xyz). Please refer to programming
specifications of 3D graphics API Shader instructions for more details.

A physical GRF register has 256 bits, which may be used to store 8 floating point data elements. For 3D graphics
usage, the mode of operation is (loosely) termed after the data structure as SIMDmxn, where “m” is a numerical term
describing the size of vector and “n” is the number of concurrent program flows executed in SIMD.

• Execution with AOS data structures
o SIMD4 (short for SIMD4x1) stands for the mode of operation where a SIMD instruction operates

on 4-element vectors stored packed in the registers. There is only one program flow.
o SIMD4x2 standards for the SIMD operation based on a pair of 4-element vectors stored in a register.

There are effectively two programs running side by side with one vector per program.
• Execution with SOA data structures – also referred to as “channel serial” execution

o SIMD8 (short for SIMD1x8) standards for the SIMD operation based on the SOA data structure
where one register contains one data element (the same one) of 8 vectors. Effectively, there are 8
concurrent program flows.

o SIMD16 (short for SIMD1x16) is a special term indicating the use of instruction compression
whereas each compressed SIMD instruction operates on a pair of registers that contains one data
element (the same one) of 16 vectors. SIMD16 has 16 concurrent program flows.

5.2.2 SIMD4 Mode of Operation

With a register mapping of <src0> to doublewords 0-3 of r2, <src1> to doublewords 4-7 of r2 and <dst> to
doublewords 0-3 of r3, the example 3D graphics API Shader instruction can be translated into the following GEN
instruction:

add (4) r3<4>.xyz:f r2<4>.yzwx:f r2.4<4>.zwxy:f {NoMask}

Without diving too much into the syntax definition of a GEN instruction, it is clear that a GEN instruction also takes
two source operands and one destination operands. The second term, (4), is the execution size that determines the
number of data elements processed by the SIMD instruction. It is similar to the term SIMD Width used in the literature.
Each operand is described by the register region parameters such as ‘<4>’ and data type (e.g. “:f”). These will be
detailed in Section 5.3. The instruction option field, {NoMask}, ensure that the execution occurs for the execution
channels shown in the instruction, instead of, possibly, being masked out by the conditional masks of the thread (See
Instruction Summary chapter for definition of MaskCtrl instruction field).

The operation of this GEN instruction is illustrated in Figure 5-2. In this example, both source operands share the same
physical GRF register r2. The two are distinguished by the subregister number. The source swizzles control the routing
of source data elements to the parallel adders corresponding to the destination data elements. The shaded areas in the
destination register r3 are not modified. In particular, doublewords 4-7 are unchanged as the execution size is 4;
doubleword 3 is unchanged due to the destination mask setting.

60 IHD-OS-072810-R1V4PT2

In this mode of operation, there is only one program flow – any branch decision will be based on a scalar condition and
apply to the whole vector of four elements. Option {NoMask} ensures that the instruction is not subject to the masks.
In fact, most of the instructions in a thread should have {NoMask} set.

Even though the execution only performs four parallel add operations, the GEN instruction still executes in 2 cycles
(with no useful computation in the second cycle).

Figure 5-2. A SIMD4 Example

B6891-01

r2W Z Y X W Z Y X

255 0

r3W Z Y X

5.2.3 SIMD4x2 Mode of Operation

In this mode, two corresponding vectors from the two program flows fill a GEN physical register. With a register
mapping of <src0> to r2, <src1> to r3 and <dst> to r4, the example 3D graphics API Shader instruction can be
translated into the following GEN instruction:

add (8) r4<4>.xyz:f r2<4>.yxzw:f r3<4>.zwxy:f

This instruction is subject to the execution mask, which initiated from the dispatch mask. If both program flows are
available (e.g. Vertex Shader executed with two active vertices), the dispatch mask is set to 0x00FF. The operation of
this GEN instruction is illustrated in Figure 5-3 (a). The source swizzles control the routing of source data elements to
the parallel adders corresponding to the destination data elements. The shaded areas in the destination register r3
(doublewords 3 and 7) are unchanged due to the destination mask setting. If only one program flow is available (e.g.
the same SIMD4x2 Vertex Shader with only one active vertex), the dispatch mask is set to 0x000F. The operation of
the same instruction is shown in Figure 5-3 (b).

IHD-OS-072810-R1V4PT2 61

Figure 5-3. SIMD4x2 Examples with Different Emasks

B6892-01

r3W Z Y X W Z Y X
255 0

r4W Z Y X W Z Y X

r2W Z Y X W Z Y X

(a) SIMD4x2 with Emask=0x00FF

r3W Z Y X W Z Y X
255 0

r4W Z Y X W Z Y X

r2W Z Y X W Z Y X

(b) SIMD4x2 with Emask=0x000F

The two source operands only need to be 16-byte aligned, not have to be GRF register aligned. For example, the first
source operand could be a 4-element vector (e.g. a constant) stored in doublewords 0-3 in r2, which is shared by the
two program flows. The example 3D graphics API Shader instruction can then be translated into the following GEN
instruction:

add (8) r4<4>.xyz:f r2<0>.yzwx:f r3<4>.zwxy:f

The only difference here is that the vertical stride of the first source is 0. The operation of this GEN instruction is
illustrated in Figure 5-4.

Figure 5-4. A SIMD4x2 Example with a Constant Vector Shared by Two Program Flows

B6893-01

r3W Z Y X W Z Y X

255 0

r4W Z Y X W Z Y X

r2W Z Y X W Z Y X

62 IHD-OS-072810-R1V4PT2

5.2.4 SIMD16 Mode of Operation

With 16 concurrent program flows, one element of a vector would take two GRF registers. In this mode, two
corresponding vectors from the two program flows fill a GEN physical register.

With the following register mappings,

 <src0>: r2-r9 (with 16 X data elements in r2-r3, Y in r4-5, Z in r6-7 and W in r8-9),
<src1>: r10-r17,
<dst>: r18-r25,

the example 3D graphics API Shader instruction can be translated into the following three GEN instructions:

add (16) r18<1>:f r4<8;8,1>:f r14<8;8,1>:f // dst.x = src0.y + src1.z
add (16) r20<1>:f r6<8;8,1>:f r16<8;8,1>:f // dst.y = src0.z + src1.w
add (16) r22<1>:f r8<8;8,1>:f r10<8;8,1>:f // dst.z = src0.w + src1.x

The three GEN instructions correspond to the three enabled destination masks As there is no output for the W elements
of <dst>, no instruction is needed for that element. The first instruction inputs the Y elements of <src0> and the Z
elements of <src1> and outputs the X elements of <dst>. The operation of this instruction is shown in Figure 5-5.

With the number of program flows more than one, the above instructions also subject to execution mask. The 16-bit
dispatch mask is partitioned into four groups with four bits each. For Pixel Shader generated by the Windower, each 4-
bit group corresponds to a 2x2 pixel subspan. If a subspan is not valid for a Pixel Shader instance, the corresponding 4-
bit group in the dispatch mask is not set. Therefore, the same instructions can be used independent of the number of
available subspans without creating bogus data in the subspans that are not valid.

Figure 5-5. A SIMD16 Example

B6894-01

r14

r18

r4

Add (16) r18<1>:ƒ r4<8;8,1>:ƒ r14<8;8,1>:ƒ {Compr} // dst.x=src0.y+src1.z

r15Z Z Z Z Z Z Z Z
255 0

r19X X X X X X X X

r5Y Y Y Y Y Y Y Y

Z Z Z Z Z Z Z Z
255 0

X X X X X X X X

Y Y Y Y Y Y Y Y

IHD-OS-072810-R1V4PT2 63

Similar to SIMD4x2 mode, a constant may also be shared for the 16 program flows. For example, the first source
operand could be a 4-element vector (e.g. a constant) stored in doublewords 0-3 in r2 (AOS format). The example 3D
graphics API Shader instruction can then be translated into the following GEN instruction:

add (16) r18<1>:f r2.1<0;1,0>:f r14<8;8,1>:f {Compr} // dst.x = src0.y + src1.z
add (16) r20<1>:f r2.2<0;1,0>:f r16<8;8,1>:f {Compr} // dst.y = src0.z + src1.w
add (16) r22<1>:f r2.3<0;1,0>:f r10<8;8,1>:f {Compr} // dst.z = src0.w + src1.x

The register region of the first source operand represents a replicated scalar. The operation of the first GEN instruction
is illustrated in Figure 5-6.

Figure 5-6. Another SIMD16 Example with an AOS Shared Constant

B6895-01

r14

r18

r2

Add (16) r18<1>:ƒ r2.1<0;1,0>:ƒ r14<8;8,1>:ƒ {Compr} // dst.x=src0.y+src1.z

r15Z Z Z Z Z Z Z Z
255 0

r19X X X X X X X X

r3W Z Y X

Z Z Z Z Z Z Z Z
255 0

X X X X X X X X

W Z Y X

5.2.5 SIMD8 Mode of Operation

Each compressed instruction has two correspond uncompressed instructions. Taking the example instruction shown in
Figure 5-6, it is equivalent to the following two instructions.

add (8) r18<1>:f r4<8;8,1>:f r14<8;8,1>:f // dst.x[7:0] = src0.y + src1.z

add (8) r19<1>:f r5<8;8,1>:f r15<8;8,1>:f {SecHalf} // dst.x[15:8] = src0.y + src1.z

Therefore, SIMD8 can be viewed as a special case for SIMD16.

There are other reasons that SIMD8 instructions may be used. Within a program with 16 concurrent program flows,
some time SIMD8 instruction must be used due to architecture restrictions. For example, the address register a0 only
have 8 elements, if an indirect GRF addressing is used, SIMD16 instructions are not allowed.

64 IHD-OS-072810-R1V4PT2

5.3 Registers and Register Regions

5.3.1 Register Files

GEN registers are grouped into different name spaces called register files. There are three different register files
defined: General Register File, Message Register File, and Architecture Register File. In addition, immediate operands
also have a unique encoding of the register file field, even though they come inline in the instruction word and do not
have dedicated physical storages.

• General Register File (GRF): GRF contains general-purpose read-write registers.

• Message Register File (MRF): MRF contains special purpose registers used for message passing only. MRF
registers are write-only.

• Architecture Register File (ARF): ARF contains all other architectural registers, including the address
registers (a#), accumulators (acc#), flags (f#), masks (mask#), mask stack (ms#), mask stack depth (msd#),
notification count (n#), instruction pointer (ip), etc. Null register (null) is also encoded as an ARF register.

• Immediate: Certain instructions take immediate terms as the source operands. These immediate terms have a
distinct register file encoding.

Each thread executed in an EU has its own thread context, i.e. dedicated register space, which is not shared between
threads executing on a common EU or on a different EU. In the rest of the Chapters, register access are in respect to a
given thread.

5.3.2 GRF Registers
Number of Registers: Various
Default Value: None
Normal Access: RW
Elements: Various
Element Size: Various
Element Type: Various
Access Granularity: Byte
Write Mask Granularity: Byte
Index-ability: Yes

Registers in the General Register File are the most commonly used read-write registers. During the execution of a
thread, GRF registers are used to store the temporary data, and serve as the destination to receive data from shared
function units (and some times from a fixed function unit). They are also used to store the input (initialization) data
when a thread is created. By allowing fixed function hardware to initialize some portion of GRF registers during
thread dispatch time, GEN architecture can achieve better parallelism. A thread’s execution efficiency can also be
improved as some data are already in the register to be executed upon. Besides these registers containing thread’s
payload, the rest of GRF registers of a thread are not initialized.

Table 5-1. Summary of GRF Registers

Register File Register Name Description

General Register File (GRF) r# General purpose read write registers

IHD-OS-072810-R1V4PT2 65

Each execution unit has a fixed size physical GRF register RAM. The GRF register RAM is shared by all threads on
the EU. GRF space for a thread is allocated at thread dispatch time, allowing the amount of GRF space to adapt to the
need of a given thread.

Mapping of a thread’s GRF registers to the physical GRF RAM is through a translation table. Therefore, a thread’s
access to GRF is always through the 0-based logical view. For example, the GRF registers are r0 through r127.

GRF registers can be accessed using region-based addressing at byte granularity (both read and write). A source
operand must be contained within two adjacent physical registers. A destination operand must be contained within one
physical register. GRF registers support direct addressing and register-indirect addressing. Register-indirect addressing
uses the address registers (ARF registers a#) and an immediate address offset value.

When accessing (read and/or write) outside the GRF register range allocated for a given thread either through direct or
indirect addressing, the result is unpredictable.

Table 5-2. GRF Registers Available in Device Hardware

Device Physical Register
Size

Allocation
Granularity

Number per
Thread

Number per EU

[DevSNB] 256 bits Fixed allocation of
128 register

128 registers 640 registers

5.3.3 MRF Registers
Number of Registers: Fixed
Default Value: None
Normal Access: WO
Elements: Various
Element Size: Various
Element Type: Various
Access Granularity: Byte
Write Mask Granularity: Byte
Index-ability: Yes

Registers in the Message Register File are used to store the header and payload for out-going messages from a thread to
a shared function such as the Sampler. There are fixed number of MRF registers for each thread.

MRF registers are write-only, and therefore, can only be the destination operand of an instruction.

MRF registers support write-enable at byte granularity. When an MRF register is used as the current destination
operand of the send instruction, only 256-bit register aligned access is supported.

When accessing (write) outside the MRF register range for a given thread, the result is unpredictable.

66 IHD-OS-072810-R1V4PT2

Table 5-3. Summary of MRF Registers

Register File Register Name Description

Message Register File (MRF) m# Special purpose output write-only registers

Table 5-4. MRF Registers Available in Device Hardware

Device Physical Register Size Number per Thread Indirect Addressing?

[DevSNB] 256 bits 24 registers Yes

Note for Programmers:. Normal thread should access MRF starting at m1.

5.3.4 ARF Registers
5.3.4.1 Overview

Besides GRF and MRF registers that are directly indicated by unique register file coding, all other registers belong to
the general Architecture Register File (ARF). Encoding of architecture register types are based on the MSBs of the
register number field, RegNum, in the instruction word. RegNum field has 8 bits. The 4 MSBs, RegNum[7:4],
represent the architecture register type. This is summarized in Table 5-5.

Table 5-5. Summary of Architecture Registers [DevSNB+]

Register Type
(RegNum [7:4])

Register Name Register
Count

Description

0000 null 1 Null register

0001 a0.# 1 Address register

0010 acc# 2 Accumulator register

0011 f0.# 1 Flag register

0100-0110 reserved

0111 sr0.# 1 State register

1000 cr0.# 1 Control register

1001 n# 2 Notification count register

1010 ip 1 Instruction pointer register

1011 tdr 1 Thread dependency register

1100 performance 1 Performace register

1101-1111 reserved

The remaining register number field RegNum[3:0] is used to identify the register number of a given architecture
register type. Therefore, maximum number of registers for a given architecture register type is limited to 16. The
subregister number field, SubRegNum, in instruction word has 5 bits. It is used for addressing subregister region for an
architecture register supporting register subdivision. SubRegNum field is in unit of byte. Therefore, maximum number
of bytes of an architecture register is limited to 32. Depending on alignment restriction of a register type, only certain
encodings of SubRegNum field is applicable for an architecture register. The detailed definitions are provided in the
following sections.

IHD-OS-072810-R1V4PT2 67

5.3.4.2 Access Granularity

ARF registers may be accessed with subregister granularity according to the descriptions below and following the same
rule of region-based addressing for GRF and MRF. The machine code for register number and subregister number of
ARF follows the same rule as for other register files with byte granularity. For an ARF as a source operand, the region-
based address controls the source swizzle mux. The destination subregister number and destination horizontal stride
can be used to control to generate the destination write mask at byte level.

A special restriction on region-based addressing for ARF is that the register region cannot cross register boundary. This
rule in fact only applies to the accumulator as it is the only ARF register containing multiple registers (two).

Subregister fields of an ARF register may not all populated (indicated by the subregister indicated as reserved). Write
to an unpopulated subregister will be dropped, there is no side effect. Read from an unpopulated subregister, if not
specified, will return unpredictable data.

Some of ARF registers are read-only. Write to a read-only ARF register is dropped and there is no side effect.

5.3.4.3 Null Register
ARF Register Type Encoding (RegNum[7:4]): 0000b
Number of Registers: 1
Default Value: N/A
Normal Access: N/A
Elements: N/A
Element Size: N/A
Element Type: N/A
Access Granularity: N/A
Write Mask Granularity: N/A
SecHalf Control: N/A
Index-ability: No

The null register is a special encoding for an operand that does not have physical map. It is primarily used in the
instruction to indicate the non-existence of an operand. Write to the null register has no side effect. Read from the null
register returns undefined result.

The null register can be used in the place when a source operand is absent. For example, for a single source operand
instruction such as MOV, NOT, the second source operand <src1> must be a null register.

When the null register is used as the destination operand of an instruction, it indicates the computed results are not
stored in any physical registers. However, implied writes to the accumulator register, if applicable, may still occur for
the instruction. When the conditional modifier is present, update to the selected flag register also happens. In this case,
the register region fields of the ‘null’ operand are valid.

Another example use is to use the null register as the posted destination of a send instruction for data write to indicate
that there is no write completion acknowledgement required. In this case, however, the register region fields are still
valid. The null register can also be the first source operand for a send instruction indicating the absent of the implied
move. See send instruction for details.

68 IHD-OS-072810-R1V4PT2

5.3.4.4 Address Register
ARF Register Type Encoding (RegNum[7:4]): 0001b
Number of Registers: 1
Default Value: None
Normal Access: RW
Elements: 8
Element Size: 16 bits
Element Type: UW or UD
Access Granularity: Word
Write Mask Granularity: Word
SecHalf Control: N/A
Index-ability: No

There are eight address subregisters forming an 8-element vector. Each address subregister contains 16 bits. Address
subregisters can be used as regular source and destination operands, as the indexing addresses for register-indirect-
addressed access of GRF registers, and also as the source of the message descriptor for the send instruction.

Table 5-6. Register and Subregister Numbers for Address Register

RegNum[3:0] SubRegNum[4:0]

0000 = a0

All other encodings are
reserved.

When register a0 or subregisters in a0 is used as the address register for register-
indirect addressing, the address subregisters must be accessed as unsigned word
integers. Therefore, the subregister number field must also be word-aligned.

00000 = a0.0:uw

00010 = a0.1:uw

00100 = a0.2:uw

00110 = a0.3:uw

01000 = a0.4:uw

01010 = a0.5:uw

01100 = a0.6:uw

01110 = a0.7:uw

All other encodings are reserved.

However, when register a0 or subregisters in a0 is an explicit source and/or
destination register, other data types are allowed as long as the register region falls in
the 128-bit range.

IHD-OS-072810-R1V4PT2 69

Table 5-7. Address Register Fields

Dword Bits Subfield Description

3 31:16 Address subregister a0.7:uw. This field, with only the lower 12 bits populated, can be used
as an unsigned integer for register-indirect register addressing.

Format: U12

 15:0 Address subregister a0.6:uw. This field, with only the lower 12 bits populated, can be used
as an unsigned integer for register-indirect register addressing.

Format: U12

2 31:16 Address subregister a0.5:uw. This field, with only the lower 12 bits populated, can be used
as an unsigned integer for register-indirect register addressing.

Format: U12

 15:0 Address subregister a0.4:uw. This field, with only the lower 12 bits populated, can be used
as an unsigned integer for register-indirect register addressing.

Format: U12

1 31:16 Address subregister a0.3:uw. This field, with only the lower 12 bits populated, can be used
as an unsigned integer for register-indirect register addressing.

Format: U12

 15:0 Address subregister a0.2:uw. This field, with only the lower 12 bits populated, can be used
as an unsigned integer for register-indirect register addressing.

Format: U12

0 31:16 Address subregister a0.1:uw. This field can be used for register-indirect register addressing
or serve as message descriptor for send instruction. When used for register-indirect register
addressing, it is a 12-bit unsigned integer. For send instruction, it provides the higher 16 bits
of <desc>.

Format: U12 or U16.

 15:0 Address subregister a0.0:uw. This field can be used for register-indirect register addressing
or serve as message descriptor for send instruction. When used for register-indirect register
addressing, it is a 12-bit unsigned integer. For send instruction, it provides the lower 16 bits
of <desc>.

Format: U12 or U16.

When used as a source or destination operand, the address subregisters can be accessed individually or as a group. In
the following example, the first instruction moves all 8 address subregisters to the first half of GRF register r1, the
second instruction replicates a0.4:uw as an unsigned word to the second half of r1, the third instruction moves the first
4 words in r1 into the first 4 address subregisters, and the fourth instruction replicates r1.4 as a unsigned word to the
last 4 address subregisters.

mov (8) r1.0<1>:uw a0.0<8;8,1>:uw // r1.n = a0.n for n = 0 to 7 in words

mov (8) r1.8<1>:uw a0.4<0;1,0>:uw // r1.m = a0.4 for m = 8 to 15 in words

mov (4) a0.0<1>:uw r1.0<4;4,1>:uw // a0.n = r1.n for n = 0 to 3 in words

mov (4) a0.4<1>:uw r1.4<0;1,0>:uw // a0.m = r1.4 for m = 4 to 7 in words

70 IHD-OS-072810-R1V4PT2

When used as the register-indirect addressing for GRF registers, the address subregisters can be accessed also
individually or in group. When accessed in group, the address subregisters must be group-aligned. For example, when
two address subregisters are used for register indirect addressing, they must be aligned to even address subregisters. In
the following example, the first instruction is legal. However, the second one is not. As ExecSize = 8 and the width of
<src0> is 4, two address subregisters will be used as row indices, each pointing to 4 data elements spaced by
HorzStride = 1 dword. For the first instruction, the two address subregisters are a0.2:uw and a0.3:uw. The two align to
a dword group in the address register. However, the two address subregisters for the second instruction are a0.3:uw and
a0.4:uw. They are not dword aligned in the address register and therefore violate the above mentioned alignment rule.

mov (8) r1.0<1>:d r[a0.2]<4,1>:d // a0.2 and a0.3 is used for src1

mov (8) r1.0<1>:d r[a0.3]<4,1>:d // ILLEGAL use of register indirect

Implementation restriction: GEN ISA supports per channel indexing for a source operand. As there are only 8 sub-
fields in the address register (to save hardware cost), the execution size of an instruction using per-channel indexing is
limited to 8. Software may reload the address register and use compression control SecHalf to complete a 16-channel
computation.

Implementation restriction: When used as the source operand <desc> for the send instruction, only the first dword
subregister of a0 register is allowed (i.e. a0.0:ud, which can be viewed as the combination of a0.0:uw and a0.1:uw). In
addition, it must be of UD type and in the following form <desc> = a0.0<0;1,0>:ud.

Implementation restriction: Elements a0.0 and a0.1 have 16 bits each, but the rest of elements (a0.2:uw through
a0.7:uw) only have 12 bits populated each. 12-bit precision supports full indirect-addressing capability for the largest
GRF register range. Software must observe the asymmetry of the implementation. When a0.0:uw and a0.1:uw are the
source or destination, full 16-bit precision is preserved. However, when a0.2:uw to a0.7:uw are the destination, the
higher 4 bits for each element will be dropped; when they are the source, hardware inserts zero to the higher 4 bits for
each element.

Performance Note: There is only one scoreboard for the whole address register. When a write to some subregisters is
in flight, hardware will stall any instruction writing to other subregisters. Software may use the destination
dependency control {NoDDChk, NoDDClr} to improve performance in this case. Similarly, when a write to some
subregisters is in flight, hardware will stall any instruction sourcing other subregisters until the write retires.

IHD-OS-072810-R1V4PT2 71

5.3.4.5 Accumulator Registers
ARF Register Type Encoding (RegNum[7:4]): 0010b
Number of Registers: 2
Default Value: None
Normal Access: RW
Elements: 8 or 16
Element Size: Various
Element Type: Various
Access Granularity: Word
Write Mask Granularity: N/A
SecHalf Control: Yes
Index-ability: No

There are two accumulator registers, acc0 and acc1. They can be accessed either as explicit source and/or destination
registers or as implied source and/or destination registers. To a programmer, each accumulator register may contain
either 8 doublewords or 16 words of data elements. However, as shown in

Table 5-9, each data element may have higher precision with additional guard bits than that indicated by the numerical
data type.

Table 5-8. Register and Subregister Numbers for Accumulate Register

RegNum[3:0] SubRegNum[4:0]

0000 = acc0

0001 = acc1

All other encodings are reserved.

Reserved: MBZ

The accumulator subfields are individually addressable at word granularity.
When an accumulator register is an explicit destination, it follows the rules
for a destination register. If an accumulator is an explicit source operand, its
register region must match with that of the destination register.

The precision for Accumulator for floating point is the exact same as a
regular GRF register.

The accumulators will be updated implicitly only if the AccWrCtrl is on for the current instruction. The accumulator
Disable in control register cr0.0 allows software to over-write AccWrCtrl control for implicit accumulator update. .
The write enable in word granularity for the instruction will be used to update the Accumulator, the data in the disabled
channels will not be updated.

When an accumulator register is used as an implicit source or destination operand, it is acc0 by default. For a SIMD16
DW/float instruction, both acc0 and acc1 are used. If SecHalf is set, the implicit accumulator is then acc1.

It is illegal to specify different accumulator registers for source and destination operands in an instruction (e.g. “add (8)
acc1:f acc0:f”). Result of such instruction is unpredictable.

For a SIMD16 DW/float instruction, if an accumulator register is used as an explicit source or destination operand, it
must be acc0.

When an accumulator register is used as an explicit source operand, it must be the first source operand <src0>.

72 IHD-OS-072810-R1V4PT2

Whether the accumulator register is updated for a given instruction depends on several conditions: it can be an explicit
destination operand, it can be an implicit destination if the AccWrCtrl is set in the instruction. Swizzling is not allowed
when accumulator is used as implicit source or explicit source of an instruction

Implementation Precision Restriction: As there are only 64 bits per channel in dword mode (D and UD), it is
sufficient to store multiplication result of two dword operands as long as the post source modified sources are still
within 32 bits. If any one source is type UD and is negated, the negated result becomes 33 bits. The dword
multiplication results will be 65 bits, bigger than the storage capacity of accumulators. Consequently, the results are
unpredictable.

Implementation Precision Restriction: As there are only 33 bits per channel in word mode (W and UW), it is sufficient
to store multiplication result of two word operands with and without source modifier as the result is up to 33 bits.
Integer is stored in accumulator in 2’s compliment form with bit 32 as the sign bit. As there is no guard bit left, the
accumulator can only be sourced once before running into risk of overflowing. When overflow occurs, only modular
addition can generate correct result. But in this case, conditional flags may be incorrect. When saturation is used, the
output is unpredictable. This is also true for other operations that may result in more than 33 bits of data. For
example, adding UDW (FFFFFFFF) with DW (00000001) results in (1FFFFFFFE). The sign bit is now at bit 34 and
is lost when stored in the accumulator. When it is read out later from the accumulator, it becomes a negative number
as bit 32 now becomes the sign bit.

Table 5-9. Accumulator Channel Precision

Data
Type

Chann

el

Bits /
Chann

el

Description

F 8 32 When accumulator is used for float, it has the exact same precision as any
GRF register

D (UD) 8 64 When the internal execution data type is doubleword integer, each
accumulator register contains 8 channels of (extended) doubleword integer
values. The data are always stored in accumulator in 2’s compliment form with
64 bits total regardless of the source data type. This is sufficient to construct
the 64-bit D or UD multiplication results using an instruction macro sequence
consisting mul, mach and shr (or mov). [Open: may mention negating a UD
may result in unpredictable numbers.]

W (UW) 16 33 When the internal execution data type is doubleword integer, each
accumulator register contains 16 channels of (extended) word integer values.
The data are always stored in accumulator in 2’s compliment form with 33 bits
total. This supports single instruction multiplication of two word source in W
and/or UW format.

B (UB) N/A N/A Not supported data type.

IHD-OS-072810-R1V4PT2 73

5.3.4.6 Control Register
ARF Register Type Encoding (RegNum[7:4]): 1000b
Number of Registers: 1
Default Value: Provided by the Dispatcher
Normal Access: RW
Elements: 4
Element Size: 32 bits
Element Type: UD
Access Granularity: Dword
Write Mask Granularity: Dword
SecHalf Control: No
Index-ability: No

The Control register is a read-write register. It contains four 32-bit subregisters that can be accessed individually.

Subregister cr0.0:ud contains normal operation control fields such as the floating point mode and the accumulator
disable. It also contains the master exception status/control field that allows software to switch back to the application
thread from the system routine.

Subregister cr0.1:ud contains the mask and status/control fields for all exceptions. The exception fields are arranged in
significance-decreasing order from MSB to LSB. This allows the system routine to use lzd instruction to find the high
priority exceptions and handles them first. As each exception is mapped to a single bit, other exception priority order
may be implemented by software. System routine may choose to handle one exception at a time, by handle the
exception detected by a lzd instruction and return to application thread. Or it may choose to handle all the concurrent
exceptions, by looping through the exception fields until all outstanding exceptions are handled before returning back
to the application thread.

Exception enable bits (bits 15:0 in cr0.1:ud) control whether an exception will cause hardware to jump to system
routine or not. Exception status and control bits (bits 31:16 in cr0.1:ud) indicate which exceptions have occurred and
are used for system routine to clear the exception. Even if a given exception is disabled, the corresponding exception
status and control bit still reflects the status whether an exception event has occurred or not.

cr0.2:ud contains the Application IP (AIP) indicating the current thread IP when an exception occurs.

cr0.3:ud is reserved. Writing to this subregister is dropped; result of reading from this subregister is unpredictable.

Fields in Control registers also refer to a virtual register called System IP (SIP). SIP is the virtual register holding the
global System IP, which is the initial instruction pointer for the system routine. There is only one SIP for the whole
system. It is virtual only from a thread’s point of view, as it is not visible (i.e. not readable and not writeable) to the
thread software executed on a GEN EU. It can only be accessed indirectly by the hardware to response to exception
events. Upon an exception, hardware performs some book keepings (e.g. saving the current IP into AIP) and then
jumps to SIP. Upon finishing exception handling, the system routine may return back to the application by clearing the
Master Exception Status and Control field in cr0, which will cause the hardware to load AIP to IP register. See
STATE_SIP command for how to set SIP.

74 IHD-OS-072810-R1V4PT2

Table 5-10. Register and Subregister Numbers for Control Register

RegNum[3:0] SubRegNum[4:0]

0000 = cr0

All other encodings are reserved.

00000 = cr0.0:ud. It contains general thread control fields

00100 = cr0.1:ud. It contains exception status and control

01000 = cr0.2:ud. It contains AIP.10100 (reserved)

All other encodings are reserved.

Table 5-11. Control Register Fields

DWord Bits Subfield Description

31 Master Exception State and Control. This field is the master state and control for all
exceptions. Reading a 0 indicates that the thread is in normal operation state and a 1
means the thread is in exception handle state. Upon an exception event, hardware sets this
field to 1 and switch to SIP.

Writing a 1 to this field has no effect. Writing a 0 to this field also has no effect if the
previous value is 0. In both cases, the field keeps the previous value.

If the previous value of this field is 1, software writing a 0 causes the thread to return to AIP.
This transition is automatic – software does not have to move AIP to IP. The value of this
field then stays as 0.

This field is initialized to 0.

0 = Indicate that the thread is in normal state

1 = Indicate that the thread is in exception state

30:16 Reserved: MBZ

15 Breakpoint Suppress. This field specifies whether breakpoint exception is suppressed or
not. This field is normally set by software and cleared by hardware. If Master Exception
Status and Control field is 1, this field is ignored by hardware.

If Master Exception Status and Control field is 0 (i.e. not in system routine) and Breakpoint
is enabled: If this field is set, breakpoint is temporally ignored (suppressed); Upon a
breakpoint condition, the instruction is executed and this bit is automatically reset by
hardware.

This field is provided to prevent infinite loop of jumping to the system routine on a breakpoint
condition. The system routine must set this bit (and also clear the corresponding status and
control field) before returning to the application thread.

This field has no effect when Breakpoint Enable bits is cleared.

This field is initialized to 0.

0 = Breakpoint exception is not suppressed

1 = Breakpoint exception is suppressed

14:9 Reserved : MBZ

0

(cr0.0:ud)

7 Reserved : MBZ

IHD-OS-072810-R1V4PT2 75

DWord Bits Subfield Description

3 Vector Mask Enable (VME). This field indicates DMask or Vmask should be used by EU
for execution.

This field is set by the Thread Dispatch..

0 : Use Dispath Mask (DMASK)

1 : Use Vector Mask (VMASK)

2 Single Program Flow (SPF). Specifies whether the thread has a single program flow
(SIMDnxm with m = 1) or multiple program flows (SIMDnxm with m > 1). This field affects
the operation of all branch instructions.

In Single Program Flow mode, all execution channels branch and/or loop identically.

This field is initialized by the Thread Dispatch.

0: Multiple Program Flows

1: Single Program Flow

Programming Restriction: The fork instruction MUST be used to toggle SPF in the middle
of a program to bring the PcIPs to the ExIP. Program is not allowed to write directly into this
bit.

Power Optimization: If an entire shader doesn’t do SIMD branching, driver can set the SPF
to 1 to save power in HW.

1 Accumulator Disable. This field controls the update of the accumulator by the instruction
field AccWrCtrl. If this field is cleared, the accumulator is updated for all instructions with
AccWrCtrl enabled. If set, the accumulator is disabled for all update operations, maintaining
its value prior to being disabled. Setting this field has no effect if the accumulator is the
explicit destination operand for an instruction.

This field is initialized to 0.

0 = Enable accumulator update

1 = Disable accumulator update

Usage Notes:

This control bit is primarily designed for the System Routine. That routine is not expected to
use the accumulator, though it may need to use instructions which include implicit update of
the accumulator. In order to use those instructions within the System Routine, but still
preserving the accumulator contents upon return to the application kernel, the System
Routine would either (a) save and restore the accumulator, or (b) prevent the accumulator
from being unintentionally modified. This control bit has been added for the latter method.

Software has the option to limit the setting of this control bit strictly within the System
Routine. If, by convention, this bit is clear within application kernels, the System Routine
can simply set the bit upon entry and clear it prior to returning control to the application
kernel. This usage model would not necessarily require cr0.0 to be saved/restored in the
System Routine. However, if by convention application kernels are permitted to set this bit,
then the System Routine would be required to preserve the content of this bit.

0 Floating Point Mode (FPMode). This field specifies whether the current floating point
operation mode is in IEEE standard mode or the alternative mode. It is used to control the
floating operation of the Execution Unit. It is also forwarded on the message sideband for all
out-going messages, for example, to control the floating point mode of the Extended Math
unit or the Sampler unit. Software may modify this field to dynamically switch between the
two floating point modes.

This field is initialized by the Thread Dispatch.

0 = IEEE floating point mode

1 = Alternative floating point mode

76 IHD-OS-072810-R1V4PT2

DWord Bits Subfield Description

30 External Halt Exception Status and Control. This field indicates the External Halt
exception. It is set by EU hardware upon receiving the broadcast External Halt signal.
System routine should reset this field before returning to application routine in order to avoid
infinite loop.

This bit may be set or cleared by software.

This field is initialized to 0.

29 Software Exception Control. This is the control field of software exception. Setting this
field to 1 in application routine will cause an exception. Clearing this field in application
routine has no effect. Upon entering system routine, the hardware maintains this field as
one to signify software exception. System routine should reset this field before returning to
application routine.

This field may be set or cleared by software.

This field is initialized to 0.

28 Illegal Opcode Exception Status. This field, when set, indicates illegal opcode exception.
The exception handle routine normally does not return back to the application thread upon
an illegal opcode exception. Leaving this bit set, has no effect on hardware – if system
software adversely returns to application routine leaving this field set, it doesn’t cause any
exception. This field should not be set by software or left set by system routine to avoid
confusion.

This field is initialized to 0.

27:24 Reserved: MBZ

23

 Preemption Exception Status. This field, when set, indicates a preemption exception,
which can be active even if the preemption exception is disabled, allowing polling of this bit
at specific points in the kernel rather than allowing an exception to occur at any instruction.

This field is initialized to 0.

22:16 Reserved: MBZ

15 Breakpoint Enable. Specifies whether breakpoint exception is enabled or not.

This field is initialized by the Thread Dispatcher.

Format = ENABLED

0 = Disabled

1 = Enabled

13 Software Exception Enable. This field enables or disables the software exception.
Enabling or disabling this field may allow host software to turn on/off certain features (such
as profiling) without changing the kernel program.

This field is initialized by the Thread Dispatcher.

Format = ENABLED

12 Illegal Opcode Exception Enable. This field specifies whether illegal opcode exception is
enabled or not. Illegal opcode exception includes illegal opcode and undefined opcode,
caused by bad program or run time data corruption.

This field is initialized by the Thread Dispatcher.

Software should normally set it in the interface descriptor. Even though the mechanism is
provided to disable illegal opcode exception, it should be used with extreme caution.

Format = ENABLED

11 Reserved: MBZ

IHD-OS-072810-R1V4PT2 77

DWord Bits Subfield Description

10 Preemption Exception Enable. Specifies whether preemption exception is enabled or not.

This field is initialized to zero on thread dispatch.

Format = ENABLED

0 = Disabled

1 = Enabled

9:0 Reserved: MBZ

31:3 Application IP (AIP). This is the register storing the instruction pointer before an exception
is handled. Upon an exception, hardware automatically saves the current IP into the AIP
register, and then sets the Master Exception State and Control field to 1, which forces a
switch to the System IP (SIP). AIP register may contain either the pointer to the instruction
that causes the exception or the one after (such as mask stack overflow/underflow
exceptions). This is shown in the following table, where IP is the instruction which generated
the exception.

Exception Type AIP Value

Breakpoint IP

External Halt n/a (1)

Software Exception IP + 1

Illegal Opcode IP

(1) External Halt exception is asynchronous and not associated with an instruction.

When the system routine changes the Master Exception State and Control field from 1 to 0.
Hardware restores IP from this register. This field is writable allowing returning IP to be
altered after an exception handle.

2

(cr0.2:ud)

2:0 Reserved : MBZ

Implementation Restriction on Register Access: When the control register is used as an explicit source and/or
destination, hardware doesn’t ensure execution pipeline coherency. Software must set the thread control field to
‘switch’ for an instruction that uses control register as an explicit operand. This is important as the control register is
an implicit source for most instructions. For example, fields like FPMode and Accumulator Disable control the
arithmetic and/or logic instructions. Therefore, if the instruction updating the control register doesn’t set ‘switch’,
subsequent instructions may have indeterministic results.

78 IHD-OS-072810-R1V4PT2

5.3.4.7 Notification Registers
ARF Register Type Encoding (RegNum[7:4]): 1001b
Number of Registers: 3
Default Value: No
Normal Access: RO
Elements: 3
Element Size: 32 bits
Element Type: UD
Access Granularity: Dword
Write Mask Granularity: Dword
SecHalf Control: No
Index-ability: No

There are three notification registers (n0.0:ud, n0.1:ud, and n0.2:ud) used by the wait instruction. These registers are
read-only and can be accessed in 32-bit granularity.

It should be noted that in the extreme case, it is possible to have more notifications to a thread than the maximal
allowable of concurrent threads in the system. Therefore, the range of the thread-to-thread notification count in n0, is
larger than the maximum number of threads computed by EUID * TID.

When directly accessed, this register is read-only. If the value is none zero, the only way to alter the value is to use the
wait instruction to decrement the value until zero is reach. A wait instruction on a zero notification subregister will
cause the thread to stall, waiting for a notification signal from outside targeting to the same subregister. See wait
instruction for details.

Implementation Restrictions: The notification registers are initialized to 0 after hardware/software reset. However, it
is not reset at thread dispatch time.

Table 5-12. Register and Subregister Numbers for Notification Register

RegNum[3:0] SubRegNum[4:0]

0000 = n0

All other encodings are reserved.

00000 = n0.0:ud

00100 = n0.1:ud

01000 = n0.2:ud

All other encodings are reserved.

IHD-OS-072810-R1V4PT2 79

Table 5-13. Fields of Notification Register n0

DWord Bits Subfield Description

31:16 Reserved: MBZ 0

 15:0 Thread to Thread Notification Count. This register is used by the WAIT instruction for
thread-to-thread synchronization. The value read from this register specifies the
outstanding notifications received from other threads. It can be changed indirectly by using
the WAIT instruction. See WAIT instruction for details.

Format: U16

Table 5-14. Fields of Notification Register n1

DWord Bits Subfield Description

0

31:1 Reserved : MBZ

Table 5-15. Fields of Notification Register n2

DWord Bits Subfield Description

31:16 Reserved: MBZ 0

 15:0 Thread to Thread Notification Count. This register is used by the WAIT instruction for
thread-to-thread synchronization. The value read from this register specifies the
outstanding notifications received from other threads. It can be changed indirectly by using
the WAIT instruction. See WAIT instruction for details.

Format: U16

Table 5-16. Format of the Notification Register

B6898-01

n0.00's

63 01516

n0.0n0.2

95 0

0'sn0.1

n0.1

0's n0.2

31323364798095

63 313264

80 IHD-OS-072810-R1V4PT2

5.3.4.8 IP Register
ARF Register Type Encoding (RegNum[7:4]): 1010b
Number of Registers: 1
Default Value: Provided by the Dispatcher
Normal Access: RW
Elements: 1
Element Size: 32 bits
Element Type: UD
Access Granularity: Dword
Write Mask Granularity: Dword
SecHalf Control: No
Index-ability: No

The ip register can be accessed as a 32-bit quantity. It is a read-write register, containing the current instruction pointer,
which is relative to the Generate State Base Address. Reading this register returns the instruction pointer of the
current instruction. The 3 LSBs are always read as zero. Writing this register forces the program flow to jump to the
new address. When it is written, the 3 LSBs are dropped by hardware.

Table 5-17. Register and Subregister Numbers for IP Register

RegNum[3:0] SubRegNum[4:0]

0000 = ip

All other encodings are reserved.

00000 = ip:ud

All other encodings are reserved.

Table 5-18. IP Register Fields

DWord Bits Subfield Description

31:3 Ip. Specifies the current instruction pointer. This pointer is relative to the General State
Base Address.

0

2:0 Reserved : MBZ

IHD-OS-072810-R1V4PT2 81

5.3.4.9 TDR Register
ARF Register Type Encoding (RegNum[7:4]): 1010b
Number of Registers: 8
Default Value: No
Normal Access: RO/CW
Elements: 8
Element Size: 16 bits
Element Type: UW
Access Granularity: Word
Write Mask Granularity: Word
SecHalf Control: No
Index-ability: No

There are 8 thread dependency registers (tdr0.0:uw, tdr0.1:uw, tdr0.2:uw, tdr0.3:uw, tdr0.4:uw, tdr0.5:uw, tdr0.6:uw,
and tdr0.7:uw) used by HW for the sendc instruction. These registers are read-only and can be accessed in 16-bit
granularity.

When accessed explicitly, each thread dependency register has FFTID in the lower 8 bits, bits8 to bits14 are forced to
zero by HW. Bit[15] is the valid bit, which indicate whether the current thread has a dependency on the dependency
thread stored in this thread dependency register..

The thread dependency registers are read only, the valids can only be set with a thread dispatch, and it will reset by the
broadcasting end of thread messages after a thread retired. The FFTID’s can only be changed with a therad dispatch.
Any write into any of the TDR register will clear the valid bit for the particular TDR if the write enable is true, the
FFTID portion is strictly read only.

Table 5-19. Register and Subregister Numbers for TDR Register

RegNum[3:0] SubRegNum[4:0]

1011 = tdr0

All other encodings are reserved.

00000 = tdr0.0:uw

00001 = tdr0.1:uw

00010 = tdr0.2:uw

00011 = tdr0.3:uw

00100 = tdr0.4:uw

00101 = tdr0.5:uw

00110 = tdr0.6:uw

00111 = tdr0.7:uw

All other encodings are reserved.

82 IHD-OS-072810-R1V4PT2

Table 5-20. Fields of TDR Registers

DWord Bits Subfield Description

31 Valid7. This field indicates if the thread specified by FFTID7 is still in-flight.

30:24 Reserved: MBZ

23:16 FFTID7. This field is the FFTID of the third thread which the current thread is depended on.
It can be changed by the end of thead broadcasting messages.

Format: U8

15 Valid6. This field indicates if the thread specified by FFTID6 is still in-flight.

14:8 Reserved: MBZ

3

7:0 FFTID6. This field is the FFTID of the third thread which the current thread is depended on.
It can be changed by the end of thead broadcasting messages.

Format: U8

31 Valid5. This field indicates if the thread specified by FFTID5 is still in-flight.

30:24 Reserved: MBZ

23:16 FFTID5. This field is the FFTID of the third thread which the current thread is depended on.
It can be changed by the end of thead broadcasting messages.

Format: U8

15 Valid4. This field indicates if the thread specified by FFTID4 is still in-flight.

14:8 Reserved: MBZ

2

7:0 FFTID4. This field is the FFTID of the third thread which the current thread is depended on.
It can be changed by the end of thead broadcasting messages.

Format: U8

31 Valid3. This field indicates if the thread specified by FFTID3 is still in-flight.

30:24 Reserved: MBZ

23:16 FFTID3. This field is the FFTID of the third thread which the current thread is depended on.
It can be changed by the end of thead broadcasting messages.

Format: U8

15 Valid2. This field indicates if the thread specified by FFTID2 is still in-flight.

14:8 Reserved: MBZ

1

7:0 FFTID2. This field is the FFTID of the third thread which the current thread is depended on.
It can be changed by the end of thead broadcasting messages.

Format: U8

31 Valid1. This field indicates if the thread specified by FFTID1 is still in-flight. 0

30:24 Reserved: MBZ

IHD-OS-072810-R1V4PT2 83

DWord Bits Subfield Description

23:16 FFTID1. This field is the FFTID of the third thread which the current thread is depended on.
It can be changed by the end of thead broadcasting messages.

Format: U8

15 Valid0. This field indicates if the thread specified by FFTID0 is still in-flight.

14:8 Reserved: MBZ

7:0 FFTID0. This field is the FFTID of the third thread which the current thread is depended on.
It can be changed by the end of thead broadcasting messages.

Format: U8

Table 5-21. Format of the Thread Dependency Register

TDR2 TDR1 TDR0
01632 153147

TDR3
4863

TDID0v0
0715

TDID1v1
16232431

TDID2v2
32394047

TDID3v3
48555663

TDR6 TDR5 TDR4
648096 7995111

TDR7
112127

TDID4v4TDID5v5TDID6v6TDID7v7

814304662

6471798087889596103104111112119120127 727894110126

5.3.5 Region Parameters

Unlike conventional SIMD architectures where an N-bit wide SIMD instruction can only operate on N-bit aligned
SIMD data registers, a region-based register addressing scheme is employed in GEN architecture. The region-based
register addressing capability significantly improves the SIMD computation efficiency by providing per-instruction-
based multiple data gathering from register file. This avoids instruction overhead to perform data pack, unpack, and
shuffling, which has been observed on other SIMD architectures. One benefit of such capability is allowing various
kinds of 3D Graphics API Shader compute models to run efficiently on GEN. Another benefit is allowing high
throughput of media applications, which tend to operate on byte or word data elements.

This can be illustrated by the example shown in Figure 5-7 and Figure 5-8. As shown in Figure 5-7, a sequence of
SIMD instruction is executed on a conventional load/store based superscalar machine with SIMD instruction extension.
The data parallelism can be achieved by first level of loop unrolling. As shown, there is a second level of loop for the
task. Before a given SIMD compute instruction, Process (i), can proceed, there might be a load, a data rearrange and a
data unpack (and conversion) instruction to load and prepare the input data. After the compute instruction is complete,
it might also require pack, re-arrange and store instructions, to format and save the same to memory. At the loop, other
scalar computations such as loop count and address generation may be needed. For the same program, when the data

84 IHD-OS-072810-R1V4PT2

can fit in the large GEN GRF register file, the outer loop may be unrolled for GEN. Here one or a few block loads
(using send instruction) may be sufficient to move the working set into GRF. Then the data shuffle can be combined
with the processing operation with region-based addressing capability. Per operand float type and mixed data type
operation may also allow GEN to combine data conditioning operations with computing operations. These techniques
in GEN architecture help to achieve high compute efficiency and throughput for graphics and media applications.

Figure 5-7. Conventional SIMD Instruction Sequence

B6899-01

Load (i)

Rearrange (i)

Unpack (i)

Process (i)

Pack (i)

Rearrange (i)

Store (i)

Loop and
Addr Gen
i = 1...N

IHD-OS-072810-R1V4PT2 85

Figure 5-8. GEN SIMD Instruction Sequence for the Same Program

B6900-01

Block Load (1...N)

Process (1)
with pack/unpack

...

Process (N)
with pack/unpack

Block Store (1...N)

In a GEN instruction, each operand defines a region in the register file. A region may contain multiple data elements.
Each data element is assigned to an execution channel in the EU. The total number of data elements of a region is
called the size of the region, or the size of the operand. The number of execution channels is called the execution size
(ExecSize), which is specified in the instruction word. ExecSize determines the size of region for source and
destination operands in an instruction.

• For an instruction with two source operands, the sizes of the two source operands must be the same.

• The size of a destination operand generally matches the execution size, therefore equals to the number of
source operand(s) in the same instruction.

o Exception of this rule is present for the integer reduction instructions (such as sad2 and sada2) where
the destination area is smaller than the source area.

Regions are generalized 2-dimensional (2D) arrays in row-major order. The first dimension is named the horizontal
dimension (data elements within a row) and the second dimension is termed the vertical dimension (data elements in a
column). Here, horizontal/vertical and row/column are just symbolic notations. When the GRF or MRF registers are
viewed as a row-major 2D array of memory, such a notation normally matches well with the geometric locations of the
data elements of an operand. However, as the register region is fully described by the parameters discussed below, the
data elements of a register region may not form a regular rectangular shape. For example, Vertical Stride parameter is
allowed to be smaller than Horizontal Stride, making the rows of a register region interleave with each other. It should
also note that the meanings of horizontal/vertical here is different than that used for the flag control in Section Error!
Reference source not found..

Specifically, a region-based description of a source operand can take the following format

RegFile RegNum.SubRegNum<VertStride;Width,HorzStride>:type

86 IHD-OS-072810-R1V4PT2

Parameters are as the follows.

• Register Region Origin (RegFile, RegNum and SubRegNum): This set of parameters, including the register
file, RegFile, the register number, RegNum, and the subregister number, SubRegNum, describes the register
region origin, which is the location of the first data element of the operand. RegNum is in unit of 256-bit and
SubRegNum is in unit of the data element size.

• Width (Width): Width specifies the number of data elements along the horizontal dimension, or the number of
data elements of a row.

• Horizontal Stride (HorzStride): HorzStride specifies the step size between two adjacent data elements within a
row. It is in unit of data element size, which is determined by the data element Type.

• Vertical Stride (VertStride): VertStride specifies the step size between two adjacent data elements along the
vertical dimension (or the step size between two rows). It is again in unit of data element size, which is
determined by the data element Type.

• Data Element Type (Type): Type specifies numerical data type (float, word, byte, etc.) of the data elements.
All data elements within a region must have the same type.

In GEN, both GRF and MRF register files consist of a sequence of 256-bit physical registers. When viewing the
register file (GRF for example) as a sequence of 256-bit aligned physical registers, RegNum field provides the physical
register number, thus for the name. SubRegNum provides the sub-field addressing within a physical register. However,
when viewing the register file as a byte addressable memory array, (RegNum and SubRegNum) is just a byte address
within the register file with SubRegNum providing the lower 5 bits and RegNum providing the higher bits.

The execution size is specified for each instruction by the parameter ExecSize. The size of the vertical dimension is
ExecSize/Width, based on the rule that the size of regions must equal to the execution size.

Figure 5-9 depicts the register region description. The example shows a register region of r4.1<16;8,2>:w, where the
shaded fields denote the data elements in the region and the numbers in these fields are the execution channel
assignments. The register region assumes that an ExecSize of 16 is set for the instruction. Each data element is a word
(as noted by the type field “:w”). The origin of the region is at the second word of r4, denoted by r4.1. Each row of the
region has 8 data elements (words) that are 2 data elements (words) apart. The distance between two rows is 16 words.
Note that the region shown is for illustration purpose only. It does not represent a typical usage model nor a
performance optimized mode.

IHD-OS-072810-R1V4PT2 87

Figure 5-9. An example of a register region (r4.1<16;8,2>:w) with 16 elements

B6901-01

7 6 5 4
15 14 13 12

r0
r1
r2
r3
r4
r5
r6
r7
r8

0131
256 bits

VertStride=16
11

1
9 8

03 2
10

HorzStride=2

Origin: r4.1
RegNum=r4
SubRegNum=1

Width=8

Type=Word

bytes

RefFile RegNum.SubRegNum<VertStride;Width,HorzStride>:type=r4.1<16;8,2>:w

Figure 5-10 shows another example where the rows are interleaved. The region, having word data elements, starts at
location r5.0:w. HorzStride, the distance within a row, is 2 words. So the second element (channel number 1) is at
location 5.2:w. And there are 8 elements per row. VertStride, the distance between two rows, is only 1 word, which is
less than HorzStride. Therefore, the first element of the second row (channel number 8) is at r5.1:w, just next to
channel number 0. It is clear from the picture that the two rows are interleaved.

By varying the region parameters, reader may construct other configurations. The next section provides more details on
the region-based register addressing. However, there are restrictions imposed by hardware implementation, which can
be found in the later sections of this chapter.

Figure 5-10. A 16-element register region with interleaved rows (r5.0<1;8,2>:w)

B6902-01

15 7 14 6

r0
r1
r2
r3
r4
r5
r6
r7
r8

0131
256 bits

5 4

bytes

RefFile RegNum.SubRegNum<VertStride;Width,HorzStride>:type=r5.0<1;8,2>:w

13 12 11 9 810 23 1 0

88 IHD-OS-072810-R1V4PT2

Without considering the source channel swizzle and destination register region description, the above row-major-order
region description provides the data assignment to each execution channel. The following pseudo code computes the
addresses of data elements assigned to execution channels for a special case when the destination register is aligned to
256-bit register boundary.

// Input: Type: ub | b | uw | w | ud | d | f | v

// RegNum: In unit of 256-bit register

// SubRegNum: In unit of data element size

// ExecSize, Width, VertStride, HorzStride: In unit of data elements

// Output: Address[0:ExecSize-1] for execution channels

int ElementSize = (Type==“b”||Type==“ub”) ? 1 : (Type==“w”|Type==“uw”) ? 2 : 4;

int Height = ExecSize / Width;

int Channel = 0;

int RowBase = RegNum<<5 + SubRegNum * ElementSize;

for (int y=0; y<Height; y++) {

 int Offset = RowBase;

 for (int x=0; x<Width; x++) {

 Address [Channel++] = Offset;

 Offset += HorzStride*ElementSize;

 }

 RowBase += VertStride * ElementSize;

}

As HorzStride and VertStride are specified independently (note that VertStride might be smaller than or equal to
HorzStride), the region may take various shapes from a replicated scalar, a replicated vector, a vector of replicated
scalars, a sliding window, to a non-overlapped 2D array.

A region-based description of a destination operand can take the following simplified format

RegFile RegNum.SubRegNum<HorzStride>:type

The destination operand is only allowed to have a 1 dimensional region. The Register Region Origin and Type are the
same as for a source operand. The total number of elements is given by ExecSize. However, only HorzStride is required
to describe the 1D region, not VertStride and Width.

IHD-OS-072810-R1V4PT2 89

As a source register region may across multiple physical GRF register, an instruction with such source operands may
take more than two execution cycles to gather source data elements for execution. The destination register region is
restricted to be within a physical GRF register. In other words, destination scatter writes over multiple physical
registers are not supported.

5.3.6 Region Addressing Modes

There are two different register addressing modes: Direct register addressing and register-indirect register addressing.
Depending on the register region description, the register-indirect register addressing mode can be further divided into
three usages: 1x1 index region where only the origin of register region is provided by the address register, Vx1 index
region where the offset of each row of the register region is provided by an address register, VxH index region where
the offset of each data element is provided by an address register.

5.3.6.1 Direct Register Addressing

In this mode, all register region parameters are specified for an operand using fields in the instruction word.

Figure 5-11 and Figure 5-12 are two examples of direct register addressing.

For the example in Figure 5-11, all operands are 2D rectangular regions having the same size of 16 data elements. The
two source operands, Src0 and Src1, have 16 bytes. The destination operand, Dst, has 16 words. There are 8 elements
in a row for Src0 and Src1. The vertical stride of 16 bytes for Src0 and Src1 indicates that the first element and the 9’th
element are 16 bytes apart in the register file. Note that Src0 falls into the 256-bit physical GRF register starting at r1.0,
but Src1 crosses the 256-bit physical GRF register boundary between r2 and r3. The numbers in the shaded regions are
the values of the data elements. Observing the upper right corners of the source/destination regions (first data element),
we have C = 3+9.

Figure 5-11. A region description example in direct register addressing

2

B6903-01

1 4 2 1 3 4 1 3
4 8 2 2 7 3 9 6

5 2 8
2 5 8 3 1 2 6 7

r0

r1

r2

r3

r4

r5

r6

r7

r8

0115
256 bits

4 7 91

bytes

Add (16)r6.0<1>:w r1.7<16;8,1>:b r2.1<16;8,1>:b

Src1

5 6 7 2 5 B 9 C
6 D A 5 8 5 F D

Dst

Src0

90 IHD-OS-072810-R1V4PT2

For the example in Figure 5-12, the sizes of areas of Src0 and Src1 are the same, but Src0 contains a vector of
replicated scalars. With HorzStride = 0 and Width = 8, the first row of 8 elements in Src0 is a replication of the byte at
r1.14. Comparing ExecSize of 16 to Width of 8 indicates that there is a second row of 8 elements in Src0. With
VertStride = 16, the second row in Src0 is a replication of the byte at r1.20 (20 = 14+16). Effectively, the 16 data
elements of Src0 are {1,1,1,1,1,1,1,1, 4,4,4,4,4,4,4,4}.

Figure 5-12. A region description example in direct register addressing with <src0> as a vector of
replicated scalars

2

B6904-01

1
4

5 2 8
2 5 8 3 1 2 6 7

r0

r1

r2

r3

r4

r5

r6

r7

r8

015
256 bits

4 7 91

bytes

Add (16)r6.0<1>:w r1.14<16;8,0>:b r2.17<16;8,1>:b

Src1

Dst

Src0

6 9

5.3.6.2 Register-indirect Register Addressing with a 1x1 Index Region

In the register-indirect register addressing mode with 1x1 index region, the region origin is provided by the content of
the address register, the rest of region parameters are provided by the fields in the instruction word.

Figure 5-13 depicts an example for this addressing mode. For example, the present of full region description <16;8,1>
for Src0 indicates that only the origin of the region is provided by the address register a0.0.

IHD-OS-072810-R1V4PT2 91

Figure 5-13. An example illustrating register-indirect register addressing mode with a 1x1 index
region

B6905-01

r0

r1

r2

r3

r4

r5

r6

r7

r8

015

256 bits

Add (16)r[a0.1]<1>:w r[a0.0]<16;8,1>:b r4.8<16;4,1>:b

Src1

7.0 2.2 a0128 bits

Dst

Src0

5.3.6.3 Register-indirect Register Addressing with a Vx1 Index Region

In the register-indirect register addressing mode with Vx1 index region, horizontal dimension is described by the fields
in the instruction word and the vertical dimension is described by an address register region. Specifically, the origin of
each row of the data region is provided by the contents of an address register region. The rows are described by the
width and the horizontal stride. The first address register is provided, the following contiguous address registers are for
the following rows. The total number of address registers used is inferred by parameters ExecSize and Width.

An example is provided in Figure 5-14. The assembly syntax notion of a register region without vertical stride, <4,1>,
corresponding to the special encoding of vertical stride of 0xF in the instruction word, indicates the VxH or Vx1 mode
of indirect register addressing. In this case, the origin for each row of Src0 is provided by the address register. As
ExecSize/Width = 2, there are two address registers a0.0 and a0.1, each pointing to a row of 4 data elements.

92 IHD-OS-072810-R1V4PT2

Figure 5-14. An example illustrating register-indirect-register addressing mode with a Vx1 index
region (Src0)

 B6906-01

Src0 Src0 Src0

Src0 Src0 Src0 Src0

r0

r1

r2

r3

015

Add (8)r8.0<1>:f r[a0.0]<4,1>:w r6.0<4;4,1>:f

2,8 4,0 a0128 bits

Src0

Dst

Src1

r4

r5

r6

r7

r8

5.3.6.4 Register-indirect Register Addressing with a VxH Index Region

In the register-indirect register addressing mode with VxH index region, the position of each data element is provided
by the contexts in an address register region. This mode has the identical syntax as the Vx1 index region mode, and in
fact, can be viewed as a special case of the Vx1 mode. When Width of the region is 1, the number of address registers
used equals ExecSize.

An example is provided in Figure 5-15. The absent of vertical stride in the region description <1,0> with width = 1
indicates that the origin for each row of 1 data element of Src0 is provided by the address register. As ExecSize/Width
= 8, there are 8 address registers from a0.0 to a0.7, each pointing to a single data elements.

IHD-OS-072810-R1V4PT2 93

Figure 5-15. An example illustrating register-indirect register addressing mode with a VxH index
region (Src0).

B6907-01

Src0

015

Add (8)r9.0<1>:f r[a0.0]<1,0>:f r8.0<4;4,1>:f

2,12 6,12 1,8 5,8 4,4 1,4 5,0 3,0 a0128 bits

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

Src0

Src0

Src0

Src0

Src0

Src0

Src0

256 bits

Dst

Src1

5.3.7 Access Modes

There are two basic GEN register access modes controlled by a single bit instruction subfield called Access Mode.
• 16-byte Aligned Access Mode (align16): In this mode, the origins of all operands (sources and destination),

whether it is by direct addressing or register-indirect addressing, are 16-byte aligned. For example a row in the
region description starts at 16-bype aligned and the width the row must be 4 and the 4 data elements within a
row must span 16-bytes. In this access mode (and with other restrictions put forward later), full-channel
swizzle for both source operands and per-channel mask for destination operand are supported on a 4-
component basis. In other words, the control and setting of full source swizzle and destination mask are
repeated for every 4 components up to total of ExecSize channels.

o The align16 access mode can be used for AOS operations. See examples provided in the Primary
Usage Model section for SIMD4x2 and SIMD4x1 modes of operation to support 3D API Vertex
Shader and Geometric Shader execution.

• 1-byte Aligned Access Mode (align1): In this mode, the origins of all operands may be aligned to their data
type and could be 1-byte if the operand is of byte type. In this access mode, full region register descriptions
are supported, however, source swizzle or destination mask are not supported.

o The align1 access mode can be used for SOA operations. See examples provided in the Primary
Usage Model section for SIMD8 and SIMD16 modes of operation to support 3D API Pixel Shader.
Many media applications also operate well in align1 access mode.

94 IHD-OS-072810-R1V4PT2

5.3.8 Execution Data Type

GEN architecture supports instructions with mixed data types. The internal hardware computation is performed using
the execution data type. When an instruction has only one source operand or has two source operands of the same data
type, the execution data type is the same as that of the source. When an instruction has two source operands of different
types, an execution data type is determined and one of the source operands will be converted to the execution type
before the computation is performed. The execution type is independent of the destination data type. When the
destination data type is different from the execution data type, a type conversion is performed on the intermediate
compute results before the results are written into the destination register. Such a destination type conversion doesn't
apply to accumulator registers, implicitly or explicitly. Therefore, accumulator type cannot differ from the execution
data type.

Determination of the execution data type for two sources of different data types obeys the following rules

• Instuction with mixed float and integer type sources is not allowed.

• Else if any source is a dword, the execution data type is signed dword integer (D)

• Else execution data type is signed word integer (W)

Note that when the execution data type is an integer, it is always a signed integer. This doesn't affect the functional
correctness of the instruction as extra precisions are carried within the hardware, including the accumulator. See
Instruction Reference Chapter for detailed description for each instruction.

The following Instruction can have integer souce(s) and float destination, all the other instructions can only be all float
or all integer for source(s) and destination.

• MOV, ADD, MUL, MAC, MAD, LINE

The MOV instruction is the only instruction can convert an float to integer.

5.3.9 Register Region Restrictions

The following register region rules apply to the GEN implementation. Rules and restrictions for compressed
instructions can be found in the Instruction Compression section.
1. ExecSize must be equal to or less than the maximum execution size supported for the operand type. As shown in

Table 5-22, the maximum execution size is determined by the largest operand type of the sources and destination
of the instruction.

2. The mapping of data elements within the region of a source operand is in row-major order and is determined by
the region description of the source operand, plus ExecSize and destination region description.

3. ExecSize must be equal to or greater than Width.
4. If ExecSize = Width and HorzStride ≠ 0, VertStride must be set to Width * HorzStride.
5. If ExecSize = Width but HorzStride = 0, there is no restriction on VertStride.
6. If Width = 1, HorzStride must be 0 regardless of the values of ExecSize and VertStride.
7. If ExecSize = Width = 1, both VertStride and HorzStride must be set to zero.
8. If VertStride = HorzStride = 0, Width must be 1 regardless of the value of ExecSize.
9. Destination region cannot cross the 256-bit register boundary.

9.1. Exception to this rule is for a SIMD16 DW/Float instruction where the destination region covers exactly two
adjacent 256-bit physical registers.

10. Destination region alignment rule.

IHD-OS-072810-R1V4PT2 95

10.1. With the exception on ‘raw move’ described in rule #10.3 and the exception on byte destination in rule #10.5,
all destination data elements must be aligned to the size for the execution data type of the instruction. For
example, if one of the source operands is in dword mode (a float, a signed or unsigned dword integer), the
execution data type will be either float or signed dword integer. Therefore, the destination data elements must
be dword aligned. This rule has the following two implications:

10.1.1. The destination sub-register must be aligned to the size of the execution data type.
10.1.2. If ExecSize is greater than 1, dst.HorzStride*sizeof(dst.Type) must be equal to or greater than the size

of the execution data type.
10.2. If ExecSize is 1, dst.HorzStride must not be 0. Note that this is relaxed from rule 10.1.2. Also note that this

rule for destination horizontal stride is different from that for source as stated in rule #7.
10.3. When destination type is byte (UB or B), only a ‘raw move’ using mov instruction supports packed byte

destination register region: dst.HorzStride = 1 and dst.type = (UB or B). This packed byte destination region
is not allowed for any other instructions, including a ‘raw move’ using sel instruction. This is because sel
instruction is based on word or dword wide execution channels.

10.4. When an instruction has a source region that spans two physical registers and destination register contained
in one register, one of the followings must be true:

10.4.1. Destination region is entirely contained in the lower oword of a physical register,
10.4.2. Destination region is entirely contained in the upper oword of a physical register, or
10.4.3. Destination elements are evenly split between the two owords of a physical register.

10.5. When an instruction has a source region that spans two physical registers, the destination spans two physical
registers, and the destionation elements are evenly split between the two physical registers.Then each
destination register must be entirely derived from one source register.

10.6. Relaxed alignment rule for byte destination. When destination type is byte (UB or B), destination data
elements can be either aligned to the lowest byte or the second lowest byte of the execution channel. For
example, if one of the source operands is in word mode (a signed or unsigned word integer), the execution
data type will be signed word integer. In this case, the destination data bytes can be either all in the even byte
locations or all in the odd byte locations. This rule has the following two implications:

10.6.1. The destination sub-register must be either aligned to the size of the execution data type or one byte
higher off the execution data type.

10.6.2. If ExecSize is greater than 1, dst.HorzStride*sizeof(dst.Type) must be equal to or greater than the size
of the execution data type. This is the same as that in #10.1.2.

11. In Align1 access mode, a source region must be within two adjacent 256-bit physical registers.
12. Rules on register-indirect register access:

12.1. An indexed source1 can only have a 1x1 indexed register region – only single index mode is allowed for a
source 1.

12.2. An indexed destination can only have a 1x1 indexed register region – only single index mode is allowed for a
destination operand.

12.3. Data elements referenced by a single index within a source region cannot cross 256-bit physical register
boundary. This applies to register region with a single index or with multiple indices.

12.3.1. A register region with multiple indices may access multiple physical registers as long as data
elements associated with each index follow the above-mentioned rule. For example instruction “mov
(16) r0.0:uw r[a0.0]<2,2>:uw” is allowed. This is a source gathering instruction whereas the source
operand may potentially tough 8 different physical GRF registers.

96 IHD-OS-072810-R1V4PT2

Table 5-22. Execution size in device hardware

Device Native GEN Instructions

Max Operand Size DWORD WORD BYTE

[DevSNB] 16 32 32

Table 5-23. Indirect source addressing support available in device hardware

Device Indirect Source 0 Indirect Source 1

[DevSNB] Yes Yes

5.3.9.1 Examples

Some examples are provided here to illustrate the cases when the register region restrictions are violated. It is provided
as informative material to help understanding these restrictions.

Example 1: The following instructions are illegal as they violate rule #10.1, as the destination is not aligned to the
execution data type.

mov (1) r0.1<1>:b r2.0:w // dst.SubReg must be even

mov (2) r0.0<1>:b r2.0:w // dst.HorzStride must be >= 2

mov (2) r0.0<2>:b r2.0:d // dst.HorzStride must be >= 4

mov (2) r0.0<2>:b r2.0:f // dst.HorzStride must be >= 4

mov (1) r0.2<1>:b r2.0:d // dst.SubReg must be dword aligned

Example 2: This instruction is illegal as it violates rule #10.1.2, as when ExecSize = 1, dst.HorzStride cannot be zero.

mov(1) r0.0<0>:b r0.0:d

Example 3: This instruction is illegal as it violates rule #Error! Reference source not found., as the source contains
one row of 2 elements that spans physical register r2 and r3.

mov (2) r1.0:d r2.7<2;2;1>:d

IHD-OS-072810-R1V4PT2 97

5.3.9.2 Different Raw Moves

Definition of Raw Move: Raw move is an operation that moves data elements from source to destination without
altering the bit fields of the data elements. It must use one of the move instructions such as mov, sel, movi. Arithmetic
instruction that results in unaltered bit fields of the data elements are not treated as raw move. A raw move may subject
to the execution channel enables by using prediction or being present in multi-channel branch code segment. Type
conversion by definition cannot be used in a raw move. Therefore, source and destination operands must be of the
identical data type. For example, if both source and destination are float, for an arithmetic instruction, denorm will be
flushed to zero. However, for a raw move, denorm will be preserved.

Definition of Byte Raw Move: As the minimal execution channel type is word, when the destination stride is greater
than one byte, each data element of the source can be mapped to one execution channel. This is referred to as Byte Raw
Move. Byte Raw Move allows the destination to be byte aligned, in other words, allowing the destination to not align
to execution channels. Byte Raw move subjects to execution channel enables.

Definition of Packed-Byte Raw Move: As the minimal execution channel type is word, when the destination stride is
equal to one byte, two data elements of the source are mapped to one execution channel. This is referred to as Packed-
Byte Raw Move. Packed-Byte Raw Move allows the destination to be byte aligned, in other words, allowing the
destination to not align to execution channels. However, as the data elements are not mapped to execution channels,
undefined results may occur if Packed-Byte Raw Move is mixed with execution channel enables. So for Packed-Byte
Raw Move, WECtrl should be used when there are un-enabled channels within the execution size of the instruction.

5.3.10 Destination Operand Description

5.3.10.1 Destination Region Parameters

Based on the above restrictions, a subset of register region parameters are sufficient to describe the destination
operand:

• Destination Register Origin

o Destination Register Number and Destination Subregister Number for direct register addressing
mode

o A Scalar Destination Register Index for register-indirect-register addressing mode
• Destination Register ‘Region’ – Note that destination register region does not have full region description

parameters
o Destination Horizontal Stride

5.4 SIMD Execution Control

5.4.1 Predication

Predication is the conditional SIMD channel selection for execution on a per instruction basis. It is an efficient way of
dynamic SIMD channel enabling without paying branch instruction overhead. When predication is enabled for an
instruction, a Predicate Mask (PMask), which contains 16-bit channel enables, is generated internally in EU. Note that
PMask is not a software visible register. It is provided here to explain how SIMD execution control works. PMask
generation is based on the Predication Control (PredCtrl) field, Predication Inversion (PredInv) field and the flag
source register in the instruction word. See Instruction Summary chapter for definition of these fields.

98 IHD-OS-072810-R1V4PT2

Figure 5-16 shows the block diagram of the hardware logic to generate PMask. PMask is generated based on
combinatory logic operation of the bits in the flag register. Instruction field PredCtrl controls the horizontal evaluation
unit and vertical evaluation unit. MUX A in the figure selects whether horizontally-evaluated results or vertically-
evaluated results are sent to the Predication Invertion unit. The PredInv field controls the Prediction Inversion unit.
Either one 16-bit flag subregister or the whole flag register may be selected to generate the PMask depending on the
predication control modes. MUX B indicates that predication can be enabled and disabled. Predication can be grouped
into the following three categories. Predication functionality also depends on the Access Mode of the instruction.

• No predication: Of course, predication can be disabled. This is the most commonly used case.

• Predication with horizontal combination: the predicate mask is generated based on combinatory logic
operation of bits within a selected flag subregister.

• Predication with vertical combination: the predicate mask is generated based on combinatory logic operation
of bits across flag multiple subregisters.

Figure 5-16. Generation of predication mask

B6908-01

Flag Register

ch15

0 1 0 . . . 1 1 0

ch0f0.0

ch15

1 0 0 . . . 0 1 1

ch0f0.0

Vertical
Evaluation

Unit

16

Horizontal Evaluation Unit

11

16

1111

16

A

Predication
Inversion

16

16

16

B

16

16

0xFF

PredHVSel

Pred Enable

PMask

5.4.2 No Predication

When PredCtrl field of a given instruction is set to 0 (“no predication”), it indicates that no predication is applied to
this instruction. Effectively, the resulting PMask is all 1’s. This is shown by the 2:1 multiplexer B controlled by the
Pred Enable signal in Figure 5-16. Where predication is not enabled for an instruction, multiplex B is selected to output
0xFF to PMask.

IHD-OS-072810-R1V4PT2 99

5.4.3 Predication with Horizontal Combination

Predication with horizontal combination inputs the 16 bits of a single flag subregister (f0.0:uw or f0.1:uw) and passes
them through combinatory logic of the Horizontal Evaluation unit to create PMask.

The simplest combination is ‘no combination’ – the same 16 bits from selected flag subregister are output to MUX A.
In this case, a bit in the selected flag subregister controls the conditional execution of the corresponding execution
channel. Let the selected flag subregister be denoted as f0.#, the following pseudo code describes the predicate mask
generation for predication with sequential flag channel mapping.

 If (PredCtrl == “Sequential flag channel mapping”) {
 For (ch=0; ch<16; ch++)
 PMask[ch] = (PredInv == TRUE) ? ~f0.#[ch] : f0.#[ch];
 }

More complex horizontal evaluation is based on channel grouping. A group of adjacent channels (bits from flag
subregister) are evaluated together and a single bit is replicated to the group. The size of groups is in power of 2. The
supported combination depends on the Access Mode of an instruction.

In Align16 access mode, horizontal combination is based on 4-channel groups.

• Channel replication: PredCtrl of ‘.x’, ‘.y’, ‘.z’ and ‘.w’ select a single channel from each 4-channel group and
replicate it as the output for the group. For example, PredCtrl = ‘.x’ means that channel 0 in each group is
replicated.

• OR combination: PredCtrl of ‘.any4h’ means that if any of the channel in a group is enabled, outputs for the 4
channels in the group are all enabled.

• AND combination: PredCtrl of ‘.all4h’ means that only when all of the channels in a group are enabled, the
output for the group is enabled.

These combinations in Align16 mode can be described by the following pseudo-code.

 If (Access Mode == Align16) {
 For (ch = 0; ch < 16; ch += 4)
 Switch (PredCtrl) {
 Case ‘.x’: bTmp = f0.#[ch]; break;
 Case ‘.y’: bTmp = f0.#[ch+1]; break;
 Case ‘.z’: bTmp = f0.#[ch+2]; break;
 Case ‘.w’: bTmp = f0.#[ch+3]; break;
 Case ‘.any4h’: bTmp = f0.#[ch] | f0.#[ch+1] | f0.#[ch+2] | f0.#[ch+3]; break;
 Case ‘.all4h’: bTmp = f0.#[ch] & f0.#[ch+1] & f0.#[ch+2] & f0.#[ch+3]; break;

}
bTmp = (PredInv == TRUE) ? ~bTmp : bTmp;
PMask[ch] = PMask[ch+1] = PMask[ch+2] = PMask[ch+3] = bTmp;

}
 }

100 IHD-OS-072810-R1V4PT2

In Align1 access mode, horizontal combination is based on AND combination ‘.any#h’ and OR combination ‘.all#h’
on channel groups with various sizes, where # is the number of channels in a group ranging from 2 to 16. This is
described by the following pseudo-code.

 If (Access Mode == Align1) {
 Switch (PredCtrl) {
 Case ‘.any2h’: groupSize = 2; <op> = ‘|’; break;
 Case ‘.all2h’: groupSize = 2; <op> = ‘&’; break;
 Case ‘.any4h’: groupSize = 4; <op> = ‘|’; break;
 Case ‘.all4h’: groupSize = 4; <op> = ‘&’; break;
 Case ‘.any8h’: groupSize = 8; <op> = ‘|’; break;
 Case ‘.all8h’: groupSize = 8; <op> = ‘&’; break;
 Case ‘.any16h’: groupSize = 16; <op> = ‘|’; break;
 Case ‘.all16h’: groupSize = 16; <op> = ‘&’; break;
 }
 For (ch = 0; ch < 16; ch += groupSize) {
 For (inc = 0, bTmp = FALSE; inc < groupSize; inc ++)

bTmp = bTmp <op> f0.#[ch+inc];
For (inc = 0; inc < groupSize; inc ++)

 PMask[ch+inc] = bTmp;
}

 }

5.4.4 Predication with Vertical Combination

Predication with vertical combination uses both flag subregister as inputs. The AND or OR combination is across the
subregisters on a channel by channel basis. This is shown by the following pseudo-code.

 If (Access Mode == Align1) {
 For (ch = 0; ch < 16; ch ++) {
 If (PredCtrl == ‘any2v’)
 PMask[ch] = f0.0[ch] | f0.1[ch]
 Else If (PredCtrl == ‘any2h’)
 PMask[ch] = f0.0[ch] & f0.1[ch]
 }
 }

5.5 Instruction Compaction

5.5.1 Motivation and Expected Usage

Instruction Compaction is used to reduce the memory footprint of the shaders. It relys on predefined tables to compact
instructions if they has patterns matching the entries inside the compaction table.

Because of the limited size of the compaction table in HW, not all instructions will be compacted by Jitter, HW
receives both compacted and noncompacted instructions during execution.

Jitter compacts the instruction using the same compaction table inside HW, Jitter need to calculate any branch/jump
offset after instruction compaction is done.

IHD-OS-072810-R1V4PT2 101

5.5.2 Hardware Behavior

Upon receiving an instruction with the bit[29] CompactCtrl bit set, HW uses the 5 indexes inside the compacted
instructions to lookup the compaction table, then uses the table output to reconstruct the full size instruction.

If any source of the compacted instruction is immediate, only 13bits of the immediate value is encoded in the
compacted instruction, HW sign extends bit[12] all the way for the entire immediate DWord.

Table 5-24. GEN Compacted Instruction Format

DW #
Instr Bits

Alloc High Bit Low Bit
Instr Bits

Used Description Bits in 128bits Format
Description (Imm.

Src0 or Src1)
Bits in 128bits Format

(Imm. Src0 or Src1)
8 63 56 8 Src1 RegNum [108:101] Imm[23:16] Imm[7:0] [119:112] [103:96]
8 55 48 8 Src0 RegNum [76:69] Src0 RegNum [76:69]
8 47 40 8 Dst RegNum [60:53] Dst RegNum [60:53]
5 39 35 5 Src1Index[4:0] [120:109] Src1Index[4:0] [127:120] [111:104]
3 34 32 3
2 31 30 2
1 29 29 1 CmptCtrl [29] CmptCtrl [29]
1 28 28 1 FlagSubRegNum [89] FlagSubRegNum [89]
4 27 24 4 CondModifier [27:24] CondModifier [27:24]
1 23 23 1 AccWrCtrl [28] AccWrCtrl [28]
5 22 18 5 SubRegIndex[4:0] [100:96] [68:64] [52:48] SubRegIndex[4:0] [100:96] [68:64] [52:48]
5 17 13 5 DataTypeIndex[4:0] [63:61] [46:32] DataTypeIndex[4:0] [63:61] [46:32]
5 12 8 5 ControlIndex[4:0] [31] [23:8] ControlIndex[4:0] [31] [23:8]
1 7 7 1 DebugCtrl [30] DebugCtrl [30]
7 6 0 7 Opcode [6:0] Opcode [6:0]

[88:77] [88:77]Src0Index[4:0]
1

0

Src0Index[4:0]

Definitions of Fields in the Compact Instruction

Bits Description

63:56 Bits [108:101] Source1 register number

forms bits [108:101], the source 1 register number field.

If immediate source is used, this field forms [103:96] of the 128-bit instruction word.

55:48 Bits [76:69] Source0 register number

This field, after unpacking, forms bits [76:69], the source 0 register number field, of the 128-
bit instruction word.

47:40 Bits [60:53] Destination register number

This field, after unpacking, forms bits [60:53], the destination register number field, of the
128-bit instruction word.

39:35 Src1Index

The 5-bit index for source 1. The 12-bit table-look-up result forms bits [120:109], the source
1 register region fields, of the 128-bit instruction word

if immediate source is used, this field forms [108:104] of the 128-bit instruction word. Bit[39]
is replicated to [127:109] of the 128-bit instruction word.

34:30 Src0Index

The 5-bit index for source 0. The 12-bit table-look-up result forms bits [88:77], the source 0
register region fields, of the 128-bit instruction word.

102 IHD-OS-072810-R1V4PT2

Bits Description

29 CompactCtrl – Compaction Control

This field indicates whether the instruction is in the 64-bit compaction form. When this bit is
set (bit 29 of DW0), the instruction length is only 64-bit..

The bit location is fixed in both 128-bit and 64-bit instruction forms.

0 = 128-bit form (normal)

1 = 64-bit compaction form

27:24 Bits [27:24] – CondModifier

This field, after unpacking, is bits [27:24] of the 128-bit instruction word.

The bit location is fixed in both 128-bit and 64-bit instruction forms.

23 AccWrCtrl – Implicit Accumulator Write Enable

This field, after unpacking, is bit[28] of the 128-bit instruction word.

22:18 SubRegIndex

The 5-bit index for sub-register fields. The 15-bit table-look-up result forms bits [100:96],
[68,64] and [52,48] of the 128-bit instruction word.

17:13 DataTypeIndex

The 5-bit index for data type fields. The 18-bit table-look-up result forms bits [63:61] and [46,
32] of the 128-bit instruction word.

6:0 Bits [6:0] – Opcode

This field, after unpacking, is bits [6:0] of the 128-bit instruction word.

The bit location is fixed in both 128-bit and 64-bit instruction forms.

5.5.3 Rules and Restrictions

In order to reduce the hardware complexity, the following rules and restrictions apply to the compressed instruction:
• Any branch/jump offset need to be based on the physical instruction size, after compaction.
• Any branch/jump instruction with immediate offset larger than 13bits should not be compacted.

IHD-OS-072810-R1V4PT2 103

5.6 End of Thread

There is no special instruction opcode (such as an END instruction) to cause the thread to terminate execution. Instead,
the end of thread is signified by a send instruction with the end-of-thread (EOT) sideband bit set. Upon executing a
send instruction with EOT set, the EU stops on the thread. Upon observing an EOT signal on the output message bus,
the Thread Dispatcher makes the thread’s resource available. If a thread uses pre-allocated resource managed by a
fixed function, such as URB handles and scratch memory, some fixed function protocol also requires the thread to
terminate with the message header phase to carry the information in order for the fixed function to release the pre-
allocated resource.

EU hardware guarantees that if a terminated thread has in-flight read messages or loads at the time of ‘end’ that their
writebacks will not interfere with either other threads in the system or new threads loaded in the system in the future.

More details can be found in the send instruction description in Instruction Reference chapter.

5.7 Creating Conditional Flags

FPU will output 2 sets of conditional signals, 1 set will be generated from before the adder outputs clamping/re-
normalizing/format conversion logic, we call this the pre conditional signals. 1 set will be generated from the final
results after clamping and re-normalizing/format conversion logic, and we will call this the post conditional signals.
The post conditional signals are used for fusing the compare instruction. The flags generated from the post conditional
signals should be equivalent to the flags generated by a separate CMP instruction after the current arithmetic
instruction.

The pre conditional signals will be used to generated flags for CMP/CMPN instructions only, this logically does the
compare of the 2 input sources. The post conditional signals will be used to generated flags for all the other arithmetic
instructions, this logically does the compare of the result with zero.

CMPN with both sources are NaN is a don’t care case since this doesn’t impact the MIN/MAX operations.

The pre conditional signals include the following:

• pre_sign bit: this bit reflects the sign of the computed result directly from the adders, without going through
any kind clamping, normalizing, or format conversion logic.

• pre_zero bit: this bit reflects whether the value of the adder results are zero, again this should be obtained
before any kind clamping, normalizing, or format conversion logic.

The post conditional signals include the following:

• post_sign bit: this bit reflects the sign of the final result after all the clamping, normalizing, or format
conversion logic.

• post_zero bit: this bit reflects whether the value of the adder results are zero after all the clamping,
normalizing, or format conversion logic.

• OF bit: this bit reflects whether an overflow occured in any of the compution of the current instruction,
including clamping, re-normalizing, and format conversion.

• NC bit: The NaN computed bit indicates whether the computed result is not a number. It carries valid
information for instructions operating on floating point values. For an operation on integer operands, this bit is
always set to 0.

104 IHD-OS-072810-R1V4PT2

• NS0 bit: The NaN bit indicates whether source 0 of an execution channel is not a number. It carries valid
information for instructions operating on floating point values. For an operation on integer operands, this bit is
always set to 0.

• NS1 bit: The NaN bit indicates whether source 1 of an execution channel is not a number. It carries valid
information for instructions operating on floating point values. For an operation on integer operands, this bit is
always set to 0. For an operation with one source operand, this bit is also set to 0. This bit is only used for the
comparison instruction CMPN, which is specifically provided to emulate MIN/MAX operations. For any
other instructions, this bit is undefined.

Flag Generation for CMP instructions (The supported Conditional Modifiers are .e, .ne, .g, .ge, .l, and .le.)
Conditional

Modifier
Meaning Resulting Flag Value (for an execution channel)

 ‘.e’ Equal-to (pre_zero & !(NS0 | NS1)). This conditional modifier tests whether the 2 sources
are equal.

If either source is NaN (i.e. NC is true), the flag is force to false.
 ‘.ne’ Not-

Equal-to
!(pre_zero & !(NS0 | NS1)). This conditional modifier test whether the 2 sources are
equal. It takes exactly the reverse polarity as modifier ‘.e’.

‘.g’ Greater-
than

(!pre_sign & !pre_zero & !(NS0 | NS1)). This conditional modifier tests whether
source0 is greater than source1.

If either source is a NaN (i.e. NC is true), the flag is forced to false.
‘.ge’ Greater-

than-or-
equal-to

((!pre_sign | pre_zero) & !(NS0 | NS1)). This conditional modifier tests whether
source0 is greater than or equal to source1.

If either source is a NaN (i.e. NC is true), the flag is forced to false.
‘.l’ Less-than (pre_sign & !pre_zero & !(NS0 | NS1)). This conditional modifier tests whether

source0 is less than source1.

If either source is a NaN (i.e. NC is true), the flag is forced to false.
‘.le’ Less-

than-or-
equal-to

((pre_sign | pre_zero) & !(NS0 | NS1)). This conditional modifier tests whether
source0 is less than or equal to source1.

If either source is a NaN (i.e. NC is true), the flag is forced to false.

Flag Generation for CMPN instructions (The supported Conditional Modifiers are ge, and .l)
Conditional

Modifier
Meaning Resulting Flag Value (for an execution channel)

‘.ge’ Greater-
than-or-
equal-to

(!pre_sign | pre_zero | (NS1 & (Opcode==CMPN | OPcode==SELwCMod))) &
!(NS0 & (Opcode==CMPN)). This conditional modifier tests whether source0 is
greater than or equal to source1.

If source-1 is a NaN (i.e. NS is true), the flag is forced to true.
‘.l’ Less-than ((pre_sign & !pre_zero) | (NS1 & (Opcode==CMPN | Opcode==SELwCMod))) &

!(NS0 & (Opcode==CMPN)). This conditional modifier tests whether source0 is less
than source1.

If source-1 is a NaN (i.e. NS is true), the flag is forced to true.

IHD-OS-072810-R1V4PT2 105

Flag Generation for All Arithmetic Instructions other than CMP/CMPN instructions (The supported Conditional
Modifiers are .e, .ne, .g, .ge, .l, .le, .r, .o, and .u.)

Conditional
Modifier

Meaning Resulting Flag Value (for an execution channel)

 ‘.e’ Equal-to (post_zero & !NC). This conditional modifier tests whether the 2 sources are equal.

If either source is NaN (i.e. NC is true), the flag is force to false.
 ‘.ne’ Not-Equal-

to
!(post_zero & !NC). This conditional modifier test whether the 2 sources are equal.
It takes exactly the reverse polarity as modifier ‘.e’.

‘.g’ Greater-
than

(!post_sign & !post_zero & !NC). This conditional modifier tests whether source0
is greater than source1.

If either source is a NaN (i.e. NC is true), the flag is forced to false.
‘.ge’ Greater-

than-or-
equal-to

((!post_sign | post_zero) & !NC). This conditional modifier tests whether source0
is greater than or equal to source1.

If either source is a NaN (i.e. NC is true), the flag is forced to false.
‘.l’ Less-than (post_sign & !post_zero & !NC). This conditional modifier tests whether source0 is

less than source1.

If either source is a NaN (i.e. NC is true), the flag is forced to false.
‘.le’ Less-than-

or-equal-to
((post_sign | post_zero) & !NC). This conditional modifier tests whether source0 is
less than or equal to source1.

If either source is a NaN (i.e. NC is true), the flag is forced to false.
‘.o’ Overflow (OF). This conditional modifier tests whether the computed result causes overflow –

the computed result is outside the range of the destination data type.

All other internal conditional signals are ignored.
‘.u’ Unordered (NC). This conditional modifier tests whether the computed result is a NaN

(unordered).

All other internal conditional signals are ignored.

5.8 Destination Hazard

GEN architecture has built-in hardware to avoid destination hazard.

Destination Hazard stands for the risk condition when multiple operations are trying to write to the same destination
and the result of the destination may be ambiguous. This may or may not happen on GEN for two instructions with the
same destination, or with destinations that have overlapped register region, depending on the ordering of the arrival of
destination results. Let’s consider two instructions in a thread with potential destination hazard. There may be other
instruction between them as long as there is no instruction sourcing the same destination. Using register scoreboards,
GEN hardware automatically takes care of the destination hazard by not issuing the second instruction until the
destination scoreboard is cleared. However, for certain cases, in fact for most cases, such destination hazard indicated
by the register scoreboard is false, causing unnecessary delay of instruction issuing. This may result in lower
performance. The destination dependency control field in the instruction word {NoDDClr, NoDDhk} allows software
to selectively override such hardware destination dependency mechanism. Such performance optimization hooks must
be used with extreme caution. When it is not 100% certainty that it is a false destination hazard, programmer should
reply on hardware to result the dependency.

106 IHD-OS-072810-R1V4PT2

As the destination dependency control field does not apply to send instruction, there is only one condition that a
programmer may use the {NoDDClr, NoDDChk} capability.

• If none of the two instructions is send, there CANNOT be any destination hazard. This is because instructions
within a thread are dispatched in order (single-issued) and the execution pipeline is in-order and has a fixed
latency.

5.9 Non-present Operands

Some instructions do not have two source operands and one destination operand. If an operand is not present for an
instruction the operand field in the binary instruction must be filed with null. Otherwise, results are unpredictable.

Specifically, for instructions with a single source, it only uses the first source operand <src0>. In this case, the second
source operand <src1> must be set to null and also with the same type as the first source operand <src0>. It is a special
case when <src0> is an immediate, as an immediate <src0> uses DW3 of the instruction word, which is normally used
by <src1>. In this case, <src1> must be programmed with register file ARF and the same data type as <src0>.

5.10 Instruction Prefetch

Due to prefetch of the instruction stream, the EUs may attempt to access up to 8 instructions (128 bytes) beyond the
end of the kernel program – possibly into the next memory page. Although these instructions will not be executed,
software must account for the prefetch in order to avoid invalid page access faults. One possible (though inefficient)
solution would be to pad the end of all kernel programs with 8 NOOP instructions. A more efficient approach would
be to ensure that the page after all kernel programs is at least valid (even if mapped to a dummy page). Note that the
General State Access Upper Bound field of the STATE_BASE_ADDRESS command can be used to prevent
memory accesses past the end of the General State heap (where kernel programs must reside).

IHD-OS-072810-R1V4PT2 107

6. Exceptions

6.1 Introduction

The GEN Architecture defines a basic exception handling mechanism for several exception cases. This mechanism
supports both normal operations such as extensions of the mask-stack depth, was well as illegal conditions.

The following exception-types are supported:

Type Trigger / Source Sync/Async Recognition

MaskStack Overflow /
Underflow

Hardware Synchronous (w/ special case for
‘do’; see Error! Reference source
not found.)

Software Exception Thread code Synchronous

Breakpoint A bit in the instruction word

Synchronous

Illegal Opcode Hardware Synchronous

Halt MMIO register write Asynchronous

Threads may choose which exceptions to recognize and which to ignore. This mask information is specified on a per-
kernel basis in fixed function state generated by the driver, and delivered to an EU as part of a new-thread dispatch.
Upon arrival at the EU, the exception-mask information is used to initialize the exception enable fields of that thread’s
CR0.1 register, which controls exception recognition. This register is instantiated on a per-thread basis, allowing
independent control of exception-type recognition across hardware threads. The exception enables in the CR0.1
register are r/w, and thus can be enabled/disabled via software at anytime during thread execution.

The exception handling mechanism relies on the “system routine”, a single subroutine which provides common
exception handling for all threads on all EUs in the system. This system routine is defined per-context and is identified
via a 32b System-IP (SIP) register in context state. At the time of each context switch, the appropriate SIP for that
context is loaded into each EU, allowing each context to have custom implementation of exception handling routines if
so desired.

6.2 Exception-Related Architectural Registers

Exception-related registers are defined in architectural register CR0.0 through CR0.2. These registers are instantiated
on a per-thread basis providing each hardware thread with unique control over exception recognition and handling. The
registers provide the capability to mask exception types, determine the type of raised exception, provide storage the
return address, and control exiting from the system routine back to the application thread.

108 IHD-OS-072810-R1V4PT2

Many of the bits in these registers are manipulated by both hardware and software. In all cases, the read/write
operations by hardware and software occur at exclusive times in a thread’s lifetime, thus there is no need for an atomic
R-M-W operation when accessing these registers.

6.3 System Routine

6.3.1 General Flow of the System Routine

The following diagram illustrates the basic flow of exception handling and structure of the system routine.

Application Thread

:
:
Inst n
Inst n+1
Inst n+2
Inst n+3
Inst n+4
:
:

Exception
raised

System Routine

Entry:
Disable accumulators
Calculate scratch space offset for this thread
Save the MRF to scratch memory
Save the GRF (all, or a portion) to scratch memory
Save the ARF (as required) to scratch memory or GRF
While an exception exists {

index = highest priority pending exception number
jump Service[index]

back:
clear exception

}
Restore ARF contents
Restore GRF contents
Restore MRF contents
Enable accumulators
Exit system routine

Handler_6: // breakpoint
:
jmp back

Handler_5:
:
jmp back

:
:

Handler_0: // external halt
:
jmp back

IHD-OS-072810-R1V4PT2 109

6.3.2 Invoking the System Routine

The system routine is invoked in response to a raised exception. Once an exception is raised, no further instructions
from the application thread will be issued until the system routine has executed and returned control back to the
application thread.

After a exception is recognized by hardware, the EU saves the thread’s IP into its AIP register (CR0.2), an then moves
the system routine offset, SIP, into the thread’s IP register. At this point the next instruction to issue for that thread will
be the first instruction of the system routine.

The system routine maintains the same execution priority, GRF and MRF register space, and thread state as that of the
application thread from which it was invoked. Due to the assuming the same priority, there may be significant absolute
time between exception being raised and the actual invocation of the system routine, as other higher priority threads
within the EU continue to execute. From a thread’s perspective, once an exception is recognized, the next instruction to
issue is from the system routine.

At the time of system routine invocation, there may still be outstanding registers in-flight from the application thread.
Depending on the instruction sequence in the system routine, an in-flight register may be referenced by the system
routine and cause a register-in-flight dependency. These dependencies are honored by the system routine and may
cause the system routine to be suspended until such time that the register retires.

Exception processing is non-nested within an system routine. If a future exception is detected while executing the
system routine, the exception is latched into CR0.1, but does not cause a nested re-invocation of the system routine.
The exception recognition hardware recognizes only one outstanding exception of each type; i.e. once a specific
exception type is detected and latched in CR0.1, and until the exception is cleared, any further exception of that type
will be lost.

Accumulators are not natively preserved across the system routine. To make sure the accumulators are in the identical
state once control is returned to the application thread, the system routine must either set the Accumulator Disable bit
of CR0.0 prior to using any instruction which modifies an accumulator, or manually save/restore the accumulators (to
GRF registers or system thread scratch memory) around the system routine. Saving/restoring accumulators, including
their extended precision bits, can be accomplished by a short series of mov’s and shifts of the accumulator register.
Also note the state of the Accumulator Disable bit itself must be preserved unless, by convention, the driver software
limits its manipulation to only the system routine.

Further, upon system routine entry, the execution-related masks (Continue, Loop, If, and Active masks, contained in
the Mask Register) will remain set as they were in the application thread. Thus only a subset of channels may be active
for execution. To enable execution on all channels, the system routine may choose to use the instruction option
‘NoMask’, or may choose to set the mask registers to the desired value so long as it saves/restores the original masks
upon system routine entry/exit.

Similarly there is no hardware mechanism to preserve flags, mask-stacks, or other architectural registers across the
system routine. The system routine must ensure that these values are preserved (see Section 6.3.7 for related
discussion).

110 IHD-OS-072810-R1V4PT2

6.3.3 Returning to the Application Thread

Prior to returning control to the application thread, the system routine should clear the proper Exception Status and
Control bit in CR1. Failure to do so will force the thread’s execution to re-enter the system routine prior to any further
instructions being executed from that application thread. (Note that single-stepping functionality is the one exception
where the exception’s Status and Control bit is not reset prior to exit.)

The system routine may choose to loop under a single invocation of the system routine until all pending exceptions are
serviced, or may choose to service exceptions one at a time (a simpler solution, but less efficient).

The system routine is exited, and control returned to the application thread, via a write to the Master Exception State
and Control bit of CR0.0. Upon clearing this bit, the value of the AIP architectural register (CR0.2) is restored to the
thread’s IP register and, with no further exceptions pending, execution resumes that address. The system routine must
follow any write to Master Exception State and Control bit with at least one simd-16 ‘nop’ instruction to allow control
to transition. Throughout the system routine, the AIP register maintains its value at the time the exception was raised
unless directly modified by the system routine. (See the AIP register definition for specifics on the IP value saved to
AIP).

6.3.4 System-IP (SIP)

The System IP (SIP) is a 16B-aligned 32b offset of the first instruction of the system routine, relative to the General
State Base Address. It is set via the STATE_IP command to the command streamer. The upper 28b of the 32b address
is automatically delivered to all GEN EUs.

When the system routine is invoked, the application thread’s current IP is first saved into the AIP field of the thread’s
architectural register CR0.2. The SIP address is then loaded into the thread’s IP register and execution continues within
the system routine. Thus each invocation of the system routine has a common entry point at the first instruction of the
system routine. Upon system routine completion, the value held in AIP is returned to IP and execution continues on the
application thread at the place where the exception was recognized.

6.3.5 System Routine Register Space

The system routine uses the same GRF and MRF space at the thread which invoked it. As such all of the calling
thread’s registers and their contents are visible to the system routine. Further, the system routine must only use r0..r15
of the GRF, as a minimal thread may have requested and been allocated this few. If the system routine requires more
registers than this, the driver should establish a higher minimum allocation to all threads. It should also be noted that
the system routine may encounter any residual register dependencies of the calling thread until such time that they clear
by the return of in-flight writebacks.

Only one 32b GRF location, R0.4, is reserved for system routine usage. This is sufficient to allow the system routine to
calculate the appropriate offset of its private scratch memory in the larger system-scratch memory space (as dictated by
binding table entry 254). The offset is left as a driver convention, but likely based on a combination of Thread and EU
IDs (see example system handler in section 6.3.6). Other than the reserved R0.4 register field, there is no explicit GRF
register space dedicated to the system routine, and any GRF needs must be accomplished via: (a) convention between
the system routine an application thread, or (b) the system routine temporarily spilling the thread’s GRF register
contents to scratch memory, and restoration prior to system routine exit.

No persistent storage is natively allocated to the system routine, although a driver implementation may choose to carve
out a piece of system scratch memory though it own convention.

IHD-OS-072810-R1V4PT2 111

Any parameter passing to the system routine (for use by s/w exceptions) is performed via the GRF based on a system-
thread/application-thread convention.

6.3.6 System-Scratch Memory Space

There is a single unified system-scratch memory space per context shared by all EUs. It is anticipated that block is
further partitioned into a unique scratch sub-space per-thread via convention implemented in the system routine, with a
each hardware thread having a uniform block size at a calculated offset from the base address. The block address for a
thread is based on an offset derived from the thread’s execution unit ID and thread ID made available through the TID
and EUID field of architectural register SR0.0.

 Per_Thread_Block_Size = System_Scratch_Block_Size / (EU_Count * Thread_Per_EU);

 Offset = (SR0.0.EID * Threads_Per_EU + SR0.0.TID) * Per_Thread_Block_Size;

 where in GEN...
 Threads_Per_EU = 4
 EU_Count = 8
 System_Scratch_Block_Size is a driver choice

Access to the system-scratch memory is performed through the Data Port via linear single-register or block-based
read/write messages. The driver may choose to use any binding table index for system-scratch surface description. As a
practical matter, the same index is expected to be used across all binding tables, as the index is typically hard coded in
dataport messages used within the system routine coupled with the fact that a single system instance routine is used for
all threads. Read/write messages to the Data Port contain the address of the binding table (provided in R0 of all
threads) and an offset, from which the Data Port calculates the final target address.

It is expected that the system-memory block is allocated by the driver at context-create time and remains persistent at a
constant memory address throughout the context’s lifetime.

6.3.7 Conditional Instructions Within System Routines

It is expected that most, if not all, control flow with in the system routine is scalar in nature. If so, the system routine
should set SPF (Single Program Flow, CR0.0) to enable scalar branching. In this mode, conditional/loop instructions
do not update the mask-stacks and therefore do not have restrictions on their use nor require the save/restore of
hardware mask-stack registers.

If SIMD branching is desired within the system routine, special considerations must be taken. Upon entry to the system
routine, the depth of the mask-stacks is unknown at that point, and may be near-full. If so, a subsequent conditional
instruction and its associated mask ‘push’ may cause a stack overflow. This would generate an exception-within-the-
system-routine, an unsupported occurrence. To prevent this, if the system routine uses SIMD conditional instructions,
it must save the mask-stacks prior to the first SIMD conditional instruction, and restore them after the last SIMD
conditional instruction. As a general solution, it may be easiest simply to implement the save/restore as part of the
entry/exit code sequence, using an available GRF register-pair as storage location. Once saved, the stacks should be
reset to their empty condition, namely depth = 0 and top-of-stack = 0xFFFFFFFF.

112 IHD-OS-072810-R1V4PT2

6.3.8 Messages in System Routines

The system routine uses the same MRF space as the thread on whose behalf the system routine was invoked. To allow
the thread to resume with the same state as prior to the system routine invocation, the thread’s MRF contents must be
preserved across a system routine invocation. If the system routine requires MRF space for messages, it must manually
save and restore the MRF locations which it uses.

Note that the MRF can only be used as an instruction’s destination register, not a source. Therefore there is no option
to save the MRF to the GRF. Thus the system routine should save the MRF contents to its dedicated scratch space. By
convention it is recommended that MRF register m0 be reserved for system-thread use. This allows the system routine
enough space to construct an initial Data Port write message starting at m0 without corrupting any MRF registers,
facilitating a complete save/restore of the MRF by the system-thread.

6.3.9 Use of ‘NoDDClr’

The GEN instruction word defines an instruction option ‘NoDDClr’ which overrides the native register dependency
clearing mechanism of the typical instruction. When specified, ‘NoDDClr’ does not clear, at register writeback time,
the dependency placed on the destination register of the instruction. Use of this mechanism may provided increased
performance when the kernel can guarantee no dependency issues between instructions, but may cause issues with
exception handling in some circumstances as discussed here.

Typically ‘NoDDClr’ is used in an instruction series to enable a sequence of writes to sub-fields of a GRF register
without paying a dependency penalty on each instruction. In this case, ‘NoDDClr’ and ‘NoDDChk’ are used across an
instruction sequence to allow the first instruction to set the destination dependency, interior instructions to write to the
GRF register w/o dependency checks, and the last instruction clear the dependency. (This sequence is referred to as a
‘NoDDClr’ code block going forward). By only allowing the last instruction to clear the dependency, program
execution is prevented from going beyond a certain point until all writes of that sequence are known to retire.

The problem arises should an exception be raised within a ‘NoDDClr’ code block. In this case, there exists the
potential for the system routine to hang while attempting to save/restore the code blocks destination register, as the
outstanding dependency on that register will not clear until the final instruction of the block is executed – sometime
after the system thread returns. Should the system routine attempt to use that register, the system routine will hang
waiting on a dependency to clear from an instruction which has not yet been issued.

This is a known condition and will in some cases not allow the full GRF contents to be externally visible in
system routine scratch space during a break or halt exception. To minimize the number of cases of such,
guidelines are provided below for consideration. (Note that these are general guidelines, some of which can be
alleviated through careful coding and register usage conventions and restrictions.)

• ’NoDDClr’ code blocks should only be used where absolutely necessary.

• Instructions which may generate exceptions should not be placed within ‘NoDDClr’ blocks. This includes most
conditional branch instructions (if, do, while, ...) as well as breakpoints explicitly in the instruction stream.

• If possible, use ‘NoDDClr’ on registers high in the thread’s register allocation (e.g. r120), thus even if a system
routine hang occurs, as much of the GRF is visible as possible. (Note this would also require the system routine
to update the progress of the GRF dump, perhaps with each GRF block written, or to initialize the system
routine’s scratch space to a known value, to be able to distinguish valid/locations from unwritten locations).

IHD-OS-072810-R1V4PT2 113

Also a driver implementation may consider a “disable-NoDDclr” option in which jitted code does not use the
‘NoDDClr’ capability. In this case, there is no change to the code that is jitted other than removal of the ‘NoDDClr’
instruction option. The code executes as normal, but with a higher number of thread switches in what would have been
a NoDDClr code block.

6.4 Exception Descriptions

6.4.1 ‘Illegal’ opcode

The GEN ISA defines a single ‘illegal’ opcode. The byte value of the ‘illegal’ opcode is selected to be 0x00 due to it
being a likely byte-value encountered by a wayward instruction pointer value. The ‘illegal’ instruction raises an
exception prior to issue and operates as a ‘nop’ when issued down the execution pipeline. (Specifically, the opcode acts
a ‘nop’, although other non-opcode instruction attributes still apply).

6.4.2 Undefined opcode

All undefined opcodes in the 8b opcode space are detected by hardware. If an undefined opcode is detected, the opcode
is overridden by hardware, forcing it to the defined ‘illegal’ opcode. The offending instruction, should it eventually be
issued down the execution unit’s pipeline, generates an ‘illegal opcode’ exception as described in section 6.4.1. Note
that the memory location of the offending opcode remains modified and may be queried if desired to determine its
original value.

6.4.3 Software Exception
A mechanism is provided to allow an application thread to invoke an exception and is triggered through of the
Software Exception Set and Clear bit of CR0.1. Sub-function determination and parameter passing into and out-of the
exception handler is left to convention between the system-thread and application-thread. The thread’s AIP instruction
pointer is incremented prior to system-routine entry, therefore causing execution to resume at the subsequent
application-thread instruction when the system routine is exited.

6.4.4 Breakpoint

A single-stepping capability may be implemented by leaving the “Breakpoint Exception Status and Control” set, and
clearing the Breakpoint Suppress field prior to system routine exit. This combination causes the instruction associated
with the breakpoint to be reissued, this time with the breakpoint suppressed, and then re-entry to the system routine
prior to the subsequent instruction due to the lingering breakpoint exception that remained un-cleared.

6.4.5 External Halt

A ‘halt’ exception may occur upon direction manipulation of a MMIO bit by driver software. The halt exception is sent
to all EUs simultaneously (although no guarantee is made as to recognition in identical clocks). An EU recognizes this
condition internally by generating an External Halt exception. A likely implementation of a handling routine would
dump the thread’s state to programmer-visible memory (such as the system routine’s scratch space) for inspection
purposes. Although generally recognized within a few clocks, there is no specification as to the latency between
triggering the Halt condition and it being recognized by an EU.

114 IHD-OS-072810-R1V4PT2

6.5 Events Which Do Not Generate Exceptions

The following conditions are either not recognized or do not generate an exception.

Illegal Instruction Format

This includes malformed instructions in which the opcode is legal, but the source or destination operands, or
instruction attributes are not compliant with the instruction specification. There is no direct hardware support to detect
these cases and the outcome of issuing a malformed instruction is undefined. Note that GEN does not support self-
modifying code, therefore the driver has an opportunity to detect such cases before the thread is placed in service.

Malformed Message

A messages contents, destination registers, lengths, and descriptors are not interpreted in anyway by the execution
units. Errors in specifying any of these fields do not raise exceptions in the execution unit but may be detected and
reported by the shared functions.

GRF Register Out-of-Bounds

Unique GRF storage is allocated to each thread which, at a minimum, satisfies that the register requirements specified
in the thread’s declaration. References to GRF register numbers beyond that called for in the thread’s declaration do
not generate exceptions. Depending on implementation, out-of-bounds register numbers may be remapped to r0..r15,
although this functionality should not be relied upon by the thread. The hardware guarantees the isolation of each
threads register space, thus there is no possibility of direct register manipulation from an out-of-bounds register access.

MRF Register Out-of-Bounds

A fixed amount of MRF register space is allocated for each thread, namely m0 through m23. References to MRF
registers beyond m23 do not generate exceptions. Depending on implementation details, out-of-bounds register
numbers may alias to in-bounds register numbers, although this functionality should not be relied upon by the thread.

Hung Thread

There is no hardware mechanism in the execution units to detect a hung thread, and should it occur, the thread remains
hung indefinitely. It is the expectation that one or more hung threads will eventually cause the driver to recognize a
context timeout and take appropriate recovery action.

Instruction Fetch Out of Bounds

The GEN EUs implement a full 32b instruction address range (with the 4 lsb’s don’t care), making it possible for a
thread to attempt to jump to any 16B aligned offset in the 32b address space. The EU itself does not provide any type
of address checking on its instruction request stream sent to the memory/cache hierarchy, although various memory
address related error conditions are reported through the Memory Interface Registers (specifically “Page Table Error
Register”).

FPU Math Errors

The EU’s floating point units have defined behavior for traditional floating point errors and do not generate exceptions.
Therefore there is no support for signaling FPU math errors as exceptions.

IHD-OS-072810-R1V4PT2 115

Destination Register Overflow

Depending on source operand contents, destination register size, and operation being performed, overflows may occur
in the EU’s pipeline. These are not flagged as exceptions and software must explicitly check the overflow bit in the
thread’s architectural register if overflow is a concern.

6.6 System Handler Example
The following code sequence illustrates some concepts of the system routine. It is intended to be just a shell, without
getting into the specifics of each exception handler. The example frees enough MRF and GRF space to get the routine
started, then jumps to the handler for the specific exception. Many other implementations are also valid, including
single exception servicing (as opposed to looping) per invocation, and saving only the GRF or MRF space required by
the exception being serviced.

#define ACC_DISABLE_MASK 0xFFFFFFFD
 #define MASTER_EXCP_MASK 0x7FFFFFFF
 #define SYSROUTINE_SCRATCH_BLKSIZE 16384 //for
example

 // --- SharedFunc IDs ---
 #define DPR 0x04000000
 #define DPW 0x05000000

 // --- message lengths ---
 #define ML5 0x00500000
 #define ML9 0x00900000

 // --- response lengths ---
 #define RL0 0x00000000
 #define RL4 0x00040000
 #define RL8 0x00080000

 // --- dataport block sizes ---
 #define BS1_LOW 0x0000
 #define BS1_HIGH 0x0100
 #define BS2 0x0200
 #define BS4 0x0300

 // --- Scratch Layout ---
 #define SCR_OFFSET_MRF 0
 #define SCR_OFFSET_GRF 512 // + 16 reg
 #define SCR_OFFSET_ARF 512 + 4096 // + 16 + 128
reg

116 IHD-OS-072810-R1V4PT2

 // --- Write Dataport constants ---
 // target=dcache, type= oword_block_wr,
binding_tbl_offset=0
 #define DPW 0x000

 // --- Read Dataport constants ---
 // target=dcache, type= oword_block_rd,
binding_tbl_offset=0
 #define DPR 0x000

Sys_Entry:

 // --- calc scratch offset for this thread into r0.4 ---
 shr (1) r0.4 sr0.0:uw 6 {NoMask}
 add (1) r0.4 r0.4 sr0.0:ub {NoMask}
 mul (1) r0.4 r0.4 SYSROUTINE_SCRATCH_BLKSIZE
 {NoMask}

 // --- setup m0 w/ block offset
 mov (8) m0 r0 {NoMask}

 // --- save mrf 7...0; (may choose to save the whole mrf)
 add (1) m0.2 r0.4 SCR_OFFSET_MRF {NoMask}
 send (8) null m0 null DPW|ML9|RL0 {NoMask}

 // --- save mrf 8...15; (optional; req’ed if sys-routine
stays w/in mrf7-0)
 mov (8) m7 r0 {NoMask}
 add (1) m7.2 r0.4 (SCR_OFFSET_MRF + 256) {NoMask}
 send (8) null m7 null DPW|ML9|RL0 {NoMask}

 // --- save r0..r1 to system scratch ---
 // --- (Note: done as a single register to guarantee
external
 // --- visibility — see “Use of ‘NoDDClr’” in Excpetions
Bspec chapter
 mov (16) m1 r0 {NoMask}
 send (8) m0 null null DPW|ML2|RL0 {NoMask}

 // --- save r2..r3 to free some room
 mov (16) m3 r2 {NoMask}
 add (1) m0.2 r0.4 SCR_OFFSET_GRF + 64
 {NoMask}
 send (8) m0 null null DPW|ML4|RL0 {NoMask}

IHD-OS-072810-R1V4PT2 117

 // --- save r4..r7 to free some room (optional, depending
on needs)
 mov (16) m8 r4 {NoMask}
 mov (16) m10 r6 {NoMask}
 add (1) m7.2 r0.4 (SCR_OFFSET_GRF + 128) {NoMask}
 send (8) m7 null null DPW|ML5|RL0 {NoMask}

 // --- save r8..r11 to free some room (optional,
depending on needs)
 mov (16) m1 r8 {NoMask}
 mov (16) m3 r10 {NoMask}
 add (1) m0.2 r0.4 (SCR_OFFSET_GRF + 256) {NoMask}
 send (8) m0 null null DPW|ML5|RL0 {NoMask}

 // --- save r12..r15 to free some room (optional,
depending on needs)
 mov (16) m8 r12 {NoMask}
 mov (16) m10 r14 {NoMask}
 add (1) m7.2 r0.4 (SCR_OFFSET_GRF + 384) {NoMask}
 send (8) m7 null null DPW|ML5|RL0 {NoMask}

 // --- save ARF registers (optional, depending on use) --
-
 // flags, maskstacks, others...

 // --- save f0.0 ---
 mov (1) r1.0:uw f0.0 {NoMask}

Next: // --- exceptions pending? If not, exit ---
 cmp.e (1) f0.0 cr0.4:uw 0:uw {NoMask}
 (f0.0) mov (1) IP EXIT {NoMask}

 // --- find highest priority exception ---
 lzd (1) r1.1:uw cr0.4:uw {NoMask}

 // --- jumptable to service routine ---
 jmpi (1) r1.1:uw {NoMask}
 mov (1) IP CRService_0 {NoMask}
 mov (1) IP CRService_1 {NoMask}
 mov (1) IP CRService_2 {NoMask}
 // :
 // :
 // :
 mov (1) IP CRService_15 {NoMask}

118 IHD-OS-072810-R1V4PT2

 mov (1) IP Next
Service_0:
 // clear exception from CR0.1
 // perform service routine
 // jump to exit (or if looping on exceptions, go to next
loop)

 // :
 // :

Service_15:
 // clear exception from CR0.1
 // perform service routine
 // jump to exit (or if looping on exceptions, go to next
loop)

Exit:
 // --- restore f0.0 ---

 // --- restore ARF registers (as required) ---
 // flags, maskstacks, others...

 // --- restore r12..r15 ---
 // --- restore r8..r11 ---
 // --- restore r4..r7 ---
 // --- restore r0..r3 ---

 // --- restore m8..m15 ---
 // --- restore m0..m7 ---

 // --- clear Master Exception State bit in CR0.0
 and (1) cr0.0 cr0.0 MASTER_EXCP_MASK
 nop (16)

IHD-OS-072810-R1V4PT2 119

Below is a code sequence to programmatically clear the GRF scoreboard in the case of a timeout
waiting on a register that may never return:

 // At this point, all we know is we have a hung thread.
To get around
 // any hung dependency, we can walk the GRF using
NoDDChk, using execution mask
 // of f0 = 0 so we don’t touch the register contents.

Clear_Dep:
 mov f0 0x00
 (f0) mov r0 0x00 {NoDDChk}
 (f0) mov r1 0x00 {NoDDChk}
 (f0) mov r2 0x00 {NoDDChk}
 ...
 ...
 (f0) mov r127 0x00 {NoDDChk}

 // GRF scoreboard now cleared.

120 IHD-OS-072810-R1V4PT2

7. Instruction Set Summary

7.1 Instruction Set Characteristics

7.1.1 SIMD Instructions and SIMD Width
GEN instructions are SIMD (single instruction multiple data) instructions. The number of data elements per
instruction, or the execution size, depends on the data type. For example, the execution size for GEN instructions
operating on 256-bit wide vectors can be up to 8 for 32-bit data types, and be up to 16 for 16-bit data. The maximum
execution size for GEN instructions for 8-bit data types is also limited to 16.

An instruction compression mode is supported for 32-bit instructions (including mixed 32-bit and 16-bit data
computation). A compressed GEN instruction works on twice as many SIMD data as that for a non-compressed GEN
instruction. Non-compressed instructions are also referred to as ‘native’ instructions. A compressed instruction is
converted into two native instructions by the instruction dispatcher in the EU.

GEN instructions are executed on a narrower SIMD execution pipeline. Therefore, GEN native instructions take
multiple execution cycles to complete. See Error! Reference source not found. for parameters for difference device
hardware.

7.1.2 Instruction Operands and Register Regions

Majority of GEN instructions may have up to three operands, two sources and one destination. Each operand is able to
address a register region. Source operands support negate and absolute modifier and channel swizzle, and the
destination operand supports channel mask.

Dual destination instructions are also supported (four-operand instructions in a general sense): One case is for the
implied destination – flag register, where the conditional modifiers and the predicate modifiers may apply. Another
case is the message header creation (implied move or implied assembling of the header) in the send instruction.

Each execution channel contains an accumulator that is wider than the input data to support back-to-back accumulation
operations with increased precision. The added precision (see accumulator register description in Execution
Environment chapter) determines the maximum number of accumulations before possible overflow. The accumulator
can be pre-loaded through the use of mov. It can also be pre-loaded by arithmetic instructions such as add, mul, since
the result of these instructions can go to the accumulator. The accumulator registers are per thread and therefore safe
for thread switching.

Register access can be direct or register-indirect. Register-indirect register access uses address registers plus an
immediate offset term to compute the register addresses, and only applies to the first source operand (src0) and/or the
destination operand.

There is one address register that contains 8 sub-registers. Each sub-register contains a 16-bit unsigned value. The
leading two sub-registers form a special doubleword that can be used as the descriptor for the send instruction.

IHD-OS-072810-R1V4PT2 121

Source operand can also be immediate value (also referred to as inline constants). For instructions with two source
operands, only the second operand <src1> is allowed to be immediate. For instructions with only one source operand,
the source operand <src0> is used and it can be an immediate.

An immediate source operand can be a scalar value of specified type up to 32-bit wide, which is replicated to create a
vector with length of Execution Size. An immediate operand can also be a special 32-bit vector with 8 elements each of
4-bit signed integer value, or a 32-bit vector with 4 elements each of 8-bit restricted float value.

7.1.3 Instruction Execution
It is implied that all instructions operate across all channels of data unless otherwise specified either via destination
mask, predication, execution mask (caused by SIMD branch and loop instructions), or execution size.

Instruction execution size can be specified per instruction, from scalar (ExecSize = 1) up to the maximal execution size
supported for the data type, with the restriction that execution size can only be in power of 2.

7.2 Instruction Machine Formats

This section shows the machine formats of the GEN instruction set. The instructions in GEN architecture have fixed
length of 128 bits. Out of the 128 bits, there are 120 bits in use, and the remaining bits are reserved for future
extensions. One instruction consists of instruction fields that control various stages of execution of the instruction.
These fields are roughly groups into the 4 doublewords as the following.

• Instruction Operation Doubleword (DW0) contains the opcode and other general instruction control fields.

• Instruction Destination Doubleword (DW1) contains the destination operand (<dst>) and the register file and
type of source operands.

• Instruction Source-0 Doubleword (DW2) contains the first source operand (<src0>) and flag register number

• Instruction Source-1 Doubleword (DW3) contains the second source operand (<src1>) and is used to hold the
32-bit immediate source (imm32 as <src0> or <src1>).

The following table depicts the details of the organization of fields in the 128-bit instruction word based on the
Addressing Mode and Access Mode of an instruction. Definitions for individual instruction fields are provided in the
following sections.

The send instruction is shown in the talbe as it has some unique instruction fields. For example, the message descriptor
(plus EOT) occupies the whole DW3, and the immediate destination register overlaps with the Conditional Modifier
field. The rest of fields in DW0-3 follows the definition on the left, depending on Addressing Mode and Access Mode
of the send instruction.

The math and conditional branch instruction are also shown in the table as they have some unique instruction fields.

Not shown is for immediate operands. When an immediate source is present in an instruction, it always occupies the
whole DW3 with a 32-bit value.

Support for indirect addressing for <src1>, as shown by the gray areas in Table 4-2 is device dependent. See Table
5-23 (Indirect source addressing support available in device hardware) in ISA Execution Environment for details.

122 IHD-OS-072810-R1V4PT2

GEN5P75 Instruction Format [DevILK]

AccessMode =
Align16 AccessMode = Align1

AccessMode =
Align16

AccessMode =
Align1

MsgDesc
Imm

MsgDesc
Reg

1 127 127 1
2 126 125 2
4 124 121 4
4 120 117 4
1 116 116 1
2 115 114 2
2 113 112 2 Src1.HorzStride Src1.HorzStride
1 111 111 1
2 110 109 2
3 108 106 3
5 105 101 5
1 100 100 1 Src1.SubRegNum [4]
4 99 96 4 Src1.ChanSel[3:0] Src1.ChanSel[3:0]
5 95 91 5
1 90 90 1
1 89 89 1
4 88 85 4
1 84 84 1
2 83 82 2
2 81 80 2 Src0.HorzStride Src0.HorzStride
1 79 79 1
2 78 77 2
3 76 74 3
5 73 69 5
1 68 68 1 Src0.SubRegNum [4]
4 67 64 4 Src0.ChanSel[3:0] Src0.ChanSel[3:0]
1 63 63 1
2 62 61 2 Dst.HorzStride Dst.HorzStride
3 60 58 3
5 57 53 5
1 52 52 1 Dst.SubRegNum [4]
4 51 48 4 Dst.ChanEn[3:0] Dst.ChanEn[3:0]
1 47 47 1
3 46 44 3
2 43 42 2
3 41 39 3
2 38 37 2
3 36 34 3
2 33 32 2
1 31 31 1
1 30 30 1
1 29 29 1
1 28 28 1
4 27 24 4 FC[3:0] MBZ MBZ
3 23 21 3
1 20 20 1
4 19 16 4
2 15 14 2
2 13 12 2
2 11 10 2
1 9 9 1
1 8 8 1
1 7 7 0
7 6 0 7 Same Same Same Same

Imm Src

SameSame Same

Branch
(2offsets)

Branch
(1offset)

JIP[15:0]

UIP[15:0]

JIP[15:0]

Src0.AddrSubRegNum

Src0.AddrImm [9:4]
Src0.AddrImm [9:0] Same

Same

Dst.AddrSubRegNum

Dst.AddrImm [9:4]
Dst.AddrImm [9:0]

Same

DepCtrl
WECtrl

AccessMode

Dst.DstType
Dst.RegFile

Same

Same

SameSame

Same

Same

Imm[28:0] Reg32

Same

Same

Imm[31:0]

Same

Same

Instr
Bits
Used

AddrMode = Direct AddrMode = Indirect

Same

FlagRegNum

Same

Src0.RegNum [7:0]

SEND

Src1.AddrSubRegNum

Src1.AddrMode

DW
#

Instr
Bits
Alloc

High
Bit

Low
Bit

3

EOT

Src1.VertStride

Src1.Width Src1.Width
Src1.ChanSel[7:4] Src1.ChanSel[7:4]

Src1.SrcMod

Src1.RegNum [7:0]

Src1.SubRegNum [4:0]
Src1.AddrImm [9:4]

Src1.AddrImm [9:0]

2

Src0.Width

Src0.AddrMode

Src0.SubRegNum [4:0]

FlagSubRegNum
Src0.VertStride

Src0.Width
Src0.ChanSel[7:4] Src0.ChanSel[7:4]

Src0.SrcMod

ThreadCtrl
QtrCtrl

ExecSize

PredCtrl

Dst.SubRegNum [4:0]

0

Saturate
1

DebugCtrl
CmptCtrl

AccWrCtrl
CondModifier

PredInv

Same
NibCtrl

Dst.RegNum [7:0]

Opcode

Dst.AddrMode

Src1.SrcType
Src1.RegFile
Src0.SrcType

(reserved for Opcode)

Src0.RegFile

MATH

Same

Same

Same

SFID[3:0]

Same

Same

Same

Same

The 3-src instructions have the following restrictions compare to the 1-src/2-src instructions.

• The only supported instructions are: LRP, MAD, BFE, BFI2

• Only GRF register allowed for sources, and only GRF/MRF register allowed for destination

• Subregister number can only go down to DWord granularity.

• Must be Align16, uses Align16 style swizzling, with extra replication control. No other regioning support.

IHD-OS-072810-R1V4PT2 123

7.2.1 Common Instruction Fields

7.2.1.1 1-src and 2-src Instructions

As shown in Table 7-1, the meanings (encoding) of certain bit fields in the 128-bit instruction word varies depending
on the values of other bit fields.

Table 7-1 provides the definition of common fields in the instruction word. The ‘Width’ column specifies the width of
the field in bits. These common fields will be referred to later in describing the fields of different doublewords of the
instruction. The definition for fields that have unique representation can be found in its corresponding doubleword of
the instruction.

Table 7-1. Definitions of Common Instruction Fields

Field Description Width

CondModifier Conditional Modifier. This field sets the flag register based on the internal
conditional signals output from the execution pipe such as sign, zero, overflow and
NaNs, etc. If this field is set to 0000, no flag registers are updated. Flag registers are
not updated for instructions with embedded compares.

This field may also be referred to as the flag destination control field.

This field applies to all instructions except send, sendc, and math.

0000 = Do not modify the flag register (normal)
0001 = Zero or Equal (‘.z’ or ‘.e’)
0010 = Not Zero or Not Equal (‘.nz’ or ‘.ne’)
0011 = Greater-than (‘.g’)
0100 = Greater-than-or-equal (‘.ge’)
0101 = Less-than (‘.l’)
0110 = Less-than-or-equal (‘.le’)
0111 = Reserved
1000 = Overflow (‘.o’)
1001 = Unordered with Computed NaN (‘.u’)
1010 -1111 = Reserved

4

AddrMode Addressing Mode. This field determines the addressing method of the operand.
When it is cleared, the register address of the operand is directly provided by bits in
the instruction word. It is called a direct register addressing mode. When it is set, the
register address of the operand is computed based on the address register value and
an address immediate field in the instruction word. This is referred to as a register-
indirect register addressing mode.

This field applies to the destination operand and the first source operand, <src0>.
Support for <src1> is device dependent. See Table XX (Indirect source addressing
support available in device hardware) in ISA Execution Environment for details.

0 = “Direct”. Direct register addressing

1 = “Register-Indirect” (or in short “Indirect”). Register-indirect register addressing

1

124 IHD-OS-072810-R1V4PT2

Field Description Width

RegNum Register Number. This field provides the register number for the operand. For GRF
or MRF register operand, it provides the portion of register address aligning to 256-
bit. For an ARF register operand, this field is encoded such that MSBs identify the
architecture register type and LSBs provide its register number.

This field together with the corresponding SubRegNum field provides the byte aligned
address for the origin of the register region. Specifically, this field provides bits [12:5]
of the byte address, while SubRegNum field provides bits [4:0].

This field applies to the destination operand and the source operands. It is ignored (or
not present in the instruction word) for an immediate source operand.

This field is present if the operand is in direct addressing mode; it is not present if the
operand is register-indirect addressed.

Format = U8, if RegFile = GRF.

0x00 to 0x7F = Register number in the range of [0, 127]

0x80 to 0xFF = Reserved

Format = U8, if RegFile = MRF.

0x00 to 0x0F = Register number in the range of [0, 15]

0x10 to 0xFF = Reserved

Format = 8-bit encoding, if RegFile = ARF.

This field is used to encode the architecture register as well as providing the
register number. See GEN Execution Environment chapter for details.

8

SubRegNum Sub-Register Number. This field provides the sub-register number for the operand.
For GRF or MRF register operand, it provides the byte address within a 256-bit
register. For an ARF register operand, this field also provides the sub-register number
according to special encoding for the given architecture register.

This field together with the corresponding RegNum field provides the byte aligned
address for the origin of the register region. Specifically, this field provides bits [4:0] of
the byte address, while RegNum field provides bits [12:5].

This field applies to the destination operand and the source operands. It is ignored (or
not present in the instruction word) for an immediate source operand.

This field is present if the operand is in direct addressing mode; it is not present if the
operand is register-indirect addressed.

Format = U5, if RegFile = GRF or MRF

0x00 to 0x1F = Sub-Register number in the range of [0, 31]

Format = 5-bit encoding, if RegFile = ARF.

This field is used to encode the architecture register as well as providing the
register number. See GEN Execution Environment chapter for details.

5

IHD-OS-072810-R1V4PT2 125

Field Description Width

AddrSubRegNum Address Sub-Register Number. This field provides the sub-register number for the
address register. The address register contains 8 sub-registers. The size of each sub-
register is one word. The address register contains the register address of the
operand, when the operand is in register-indirect addressing mode.

This field applies to the destination operand and the source operands. It is ignored (or
not present in the instruction word) for an immediate source operand.

This field is present if the operand is in register-indirect addressing mode; it is not
present if the operand is directly addressed.

Format = U3

0x00 to 0x07 = Address Sub-Register number in the range of [0, 7]

3

AddrImm Address Immediate. This field provides the immediate value in unit of byte to be
added to the address register in order to compute the register address (byte-aligned
region origin) for the operand. It is a 10-bit signed integer in 2’s compliment form.

This field is present if the operand is in register-indirect addressing mode; it is not
present if the operand is directly addressed.

Note: that the address immediate field may not be able to cover the whole GRF
register range for a thread, as the maximum GRF register space for a thread is 4KB.

Format = S9

Valid range: [-512, 511]

10

SrcMod Source Modifier. This field specifies the numerical modification to a source operand.
The value of each data element of a source operand can optionally have its absolute
value taken and/or its sign inverted prior to delivery to the execution pipe. The
absolute value is prior to negate such that a guaranteed negative value can be
produced.

This field only applies to source operand. It does not apply to destination.

This field is not present for an immediate source operand.

00 = No modification (normal)

01 = “(abs)”. Absolute

10 = “–”. Negate

11 = “–(abs)”. Negate of the absolute (forced negative value)

2

126 IHD-OS-072810-R1V4PT2

Field Description Width

VertStride Vertical Stride. The field provides the vertical stride of the register region in unit of
data elements for an operand.

Encoding of this field provides values in power of 2, ranging from 0 to 32 elements.
Larger values are not supported due to the restriction that a source operand must
reside within two adjacent 256-bit registers (64 bytes total).

Special encoding 1111b (0xF) is only valid when the operand is in register-indirect
addressing mode (AddrMode = 1). If this field is set to 0xF, one or more sub-registers
of the address registers may be used to compute the addresses. Each address sub-
register provides the origin for a row of data element. The number of address sub-
registers used is determined by the division of ExecSize of the instruction by the
Width fields of the operand.

This field only applies to source operand. It does not apply to destination.

This field is not present for an immediate source operand.

For Align16 access mode, only encodings of 0000 and 0011 are allowed. Other
codes are reserved.

Note 1: Vertical Stride larger than 32 is not allowed due to the restriction that a source
operand must reside within two adjacent 256-bit registers (64 bytes total).

Note 2: In Align16 access mode, as encoding 0xF is reserved, only single-index
indirect addressing is supported.

Note 3: If indirect address is supported for <src1>, encoding 0xF is reserved for
<src1> – only single-index indirect addressing is supported.

0000 = 0 Elements
0001 = 1 Element
0010 = 2 Elements
0011 = 4 Elements
0100 = 8 Elements
0101 = 16 Elements (applies to byte or word operand only)
0110 = 32 Elements (applies to byte operand only)
0111-1110 = Reserved
1111 = VxH or Vx1 mode (only valid for register-indirect addressing in Align1
mode)

4

Width Width. This field specifies the number of elements in the horizontal dimension of the
region for a source operand. This field cannot exceed the ExecSize field of the
instruction.

This field only applies to source operand. It does not apply to destination.

This field is not present for an immediate source operand.
000 = 1 Elements
001 = 2 Elements
010 = 4 Elements
011 = 8 Elements
100 = 16 Elements
101-111 = Reserved

3

IHD-OS-072810-R1V4PT2 127

Field Description Width

HorzStride Horizontal Stride. This field provides the distance in unit of data elements between
two adjacent data elements within a row (horizontal) in the register region for the
operand.

This field applies to both destination and source operands.

This field is not present for an immediate source operand.

00 = 0 Elements

01 = 1 Element

10 = 2 Elements

11 = 4 Elements

2

Imm32 32-bit Immediate. The 32-bit immediate data field for the operand. It may contain
any legal bit pattern for its associated type. Only one 32-bit immediate value may be
present in an instruction, therefore binary operations only support <src1> as an
immediate value.

The low order bits are directly used when fewer than 32-bits are needed to describe
the desired type; the 32-bits are not coerced into the designated type.

For UW and W data types, programmer is required to replicate the lower word to the
upper word of this field.

This field only applies to the last source operand.

Signed and unsigned byte integer data types are not supported for an immediate
operand.

Valid ranges according to data type:

Immediate Data Type Valid Range (inclusive)

F [0…±1.0*2-128…127]

UW [0, 65535]

W [-32768, 32767]

UD [0, 232-1]

D [-231, 231-1]

VF [0, ±0.125…±31]

V [-8, 7]

32

ChanEn Channel Enable. Four channel enables are defined for controlling which channels
will be written into the destination region. These channel mask bits are applied in a
modulo-four manner to all ExecSize channels. There is 1-bit Channel Enable for each
channel within the group of 4. If the bit is cleared, the write for the corresponding
channel is disabled. If the bit is set, the write is enabled. Mnemonic for the bit being
set for the group of 4 is “x”, “y”, “z”, and “w”, respectively, where “x” corresponds to
Channel 0 in the group and “w” corresponds to channel 3 in the group.

This field only applies to destination operand.

This field is only present in Align16 mode.

0 = Write Disabled

1 = Write Enabled (normal)

4

128 IHD-OS-072810-R1V4PT2

Field Description Width

ChanSel Channel Select. This field controls the channel swizzle for a source operand. The
normally sequential channel assignment can be altered by explicitly identifying
neighboring data elements for each channel. Out of the 8-bit field, 2 bits are assigned
for each channel within the group of 4. ChanSel[1:0], [3.2], [5.4] and [7,6] are for
channel 0 (“x”), 1 (“y”), 2 (“z”), and 3 (“w”) in the group, respectively.

For example with an execution size of 8, r0.0<4>.zywz:f would assign the channels
as follows: Chan0 = Data2, Chan1 = Data1, Chan2 = Data3, Chan3 = Data2; Chan4 =
Data6, Chan5 = Data5, Chan6 = Data7, Chan7 = Data6.

This field only applies to source operand.

This field is only present in Align16 mode. It is not present for an immediate source
operand.

The 2-bit Channel Selection field for each channel within the group of 4 is defined as
the following.

00 = “x”. Channel 0 is selected for the corresponding execution channel

01 = “y”. Channel 1 is selected for the corresponding execution channel

10 = “z”. Channel 2 is selected for the corresponding execution channel

11 = “w”. Channel 3 is selected for the corresponding execution channel

8

MsgDscpt31 Message Description. This field, containing 31-bit immediate values, provides the
description of the message to be sent.

This field only applies to the send instruction. It is not present for other instructions.

The meaning of the field depends on the type of message as well as the message
shared function target.

Format: U31

31

EOT End of Thread. This field controls the termination of the thread. For a send
instruction, if this field is set, EU will terminate the thread and also set the EOT bit in
the message sideband.

This field only applies to the send instruction. It is not present for other instructions.

0 = The thread is not terminated

1 = EOT

1

IHD-OS-072810-R1V4PT2 129

7.2.1.2 3-src Instructions

The table in this section describes the encoding for the common fields for the 3-src instructions format.

Table 7-2. Definitions of Common Instruction Fields

Field Description Width

CondModifier Conditional Modifier. This field sets the flag register based on the internal
conditional signals output from the execution pipe such as sign, zero, overflow and
NaNs, etc. If this field is set to 0000, no flag registers are updated. Flag registers are
not updated for instructions with embedded compares.

This field may also be referred to as the flag destination control field.

This field applies to all instructions except send, sendc, and math.

0000 = Do not modify the flag register (normal)
0001 = Zero or Equal (‘.z’ or ‘.e’)
0010 = Not Zero or Not Equal (‘.nz’ or ‘.ne’)
0011 = Greater-than (‘.g’)
0100 = Greater-than-or-equal (‘.ge’)
0101 = Less-than (‘.l’)
0110 = Less-than-or-equal (‘.le’)
0111 = Reserved
1000 = Overflow (‘.o’)
1001 = Unordered with Computed NaN (‘.u’)
1010 -1111 = Reserved

4

RegNum Register Number. This field provides the register number for the operand. For GRF
or MRF register operand, it provides the portion of register address aligning to 256-
bit. For an ARF register operand, this field is encoded such that MSBs identify the
architecture register type and LSBs provide its register number.

This field together with the corresponding SubRegNum field provides the byte aligned
address for the origin of the register region. Specifically, this field provides bits [12:5]
of the byte address, while SubRegNum field provides bits [4:0].

This field applies to the destination operand and the source operands. It is ignored (or
not present in the instruction word) for an immediate source operand.

This field is present if the operand is in direct addressing mode; it is not present if the
operand is register-indirect addressed.

Format = U8, if RegFile = GRF.

0x00 to 0x7F = Register number in the range of [0, 127]

0x80 to 0xFF = Reserved

Format = U8, if RegFile = MRF.

0x00 to 0x0F = Register number in the range of [0, 15]

0x10 to 0xFF = Reserved

8

SubRegNum Sub-Register Number. This field provides the sub-register number for the operand, it
provides the dword address within a 256-bit register

This field together with the corresponding RegNum field provides the dword aligned
address for the origin of the register region. Specifically, this field provides bits [4:2] of
the dword address, while RegNum field provides bits [12:5].

This field applies to the destination operand and the source operands.

3

130 IHD-OS-072810-R1V4PT2

Field Description Width

SrcMod Source Modifier. This field specifies the numerical modification to a source operand.
The value of each data element of a source operand can optionally have its absolute
value taken and/or its sign inverted prior to delivery to the execution pipe. The
absolute value is prior to negate such that a guaranteed negative value can be
produced.

This field only applies to source operand. It does not apply to destination.

This field is not present for an immediate source operand.

00 = No modification (normal)

01 = “(abs)”. Absolute

10 = “–”. Negate

11 = “–(abs)”. Negate of the absolute (forced negative value)

2

ChanSel Channel Select. This field controls the channel swizzle for a source operand. The
normally sequential channel assignment can be altered by explicitly identifying
neighboring data elements for each channel. Out of the 8-bit field, 2 bits are assigned
for each channel within the group of 4. ChanSel[1:0], [3.2], [5.4] and [7,6] are for
channel 0 (“x”), 1 (“y”), 2 (“z”), and 3 (“w”) in the group, respectively.

For example with an execution size of 8, r0.0<4>.zywz:f would assign the channels
as follows: Chan0 = Data2, Chan1 = Data1, Chan2 = Data3, Chan3 = Data2; Chan4 =
Data6, Chan5 = Data5, Chan6 = Data7, Chan7 = Data6.

This field only applies to source operand.

This field is only present in Align16 mode. It is not present for an immediate source
operand.

The 2-bit Channel Selection field for each channel within the group of 4 is defined as
the following.

00 = “x”. Channel 0 is selected for the corresponding execution channel

01 = “y”. Channel 1 is selected for the corresponding execution channel

10 = “z”. Channel 2 is selected for the corresponding execution channel

11 = “w”. Channel 3 is selected for the corresponding execution channel

8

RepCtrl Replicate Control. This field controls the replication of the starting channel to all
channels in the execution size.

This field applies to all three source operands.

0 = No replication

1 = Replicate across all channels

1

IHD-OS-072810-R1V4PT2 131

7.2.2 Instruction Operation Doubleword (DW0)

Most fields in Instruction Operation Doubleword (DW0) apply to all instructions. Bit field [27:24] is one exception. It
is CondModifier for most instructions but is CurrDest.RegNum field for the send instruction.

The descriptions in the table below are shared between the 1-src/2-src instructions and 3-src instructions.

Table 7-3. Definitions of Fields in Operation Doubleword (DW0)

Bits Description

31 Saturate. This field controls the destination saturation.

When it is set, output data to the destination register are saturated. The saturation operation depends on
the destination data type. Saturation is the operation that converts any data that is outside the saturation
target range for the data type to the closest representable value with the target range. If destination type is
float, saturation target range is [0, 1]. For example, any positive number greater than 1 (including +INF) is
saturated to 1 and any negative number (including –INF) is saturated to 0. A NaN is saturated to 0, For
integer data types, the maximum range for the given numerical data type is the saturation target range.

When it is not set, output data to the destination register are not saturated. For example, a wrapped result
(modular) is output to the destination for an overflowed integer data.

More details can be found in the Data Types chapter.

0 = No destination modification (normal)

1 = “sat”. Saturate the output

Destination Type Saturation Target Range (inclusive)

Float (F) [0.0, 1.0]

Byte (UB) [0, 255]

Signed Byte (B) [-128, 127]

Word (UW) [0, 65535]

Signed Word (W) [-32768, 32767]

Double Word (UD) [0, 232-1]

Signed Double (D) [-231, 231-1]
29 Reserved: MBZ

28 AccWrCtrl. This field allows per instruction accumulator write control.

0 = don’t write result into accumulator

1 = “AccWrCtrl”. write result into accumulator, and destination

132 IHD-OS-072810-R1V4PT2

Bits Description

27:24 CondModifier or CurrDst.RegNum[3:0]

Definition of this bit field depends on whether the instruction is a send/math or not.
Opcode != ‘send’ Opcode = ‘send’

CondModifier:
This field sets the
flag register based on
the internal
conditional signals
output from the
execution pipe.

CurrDst.RegNum[3:0]

This field sets the MRF register number for the current
destination operand in the send instruction. No flag registers
are updated for the send instruction. The 4-bit field provides
full access of the 16 MRF registers.
(See Instruction Reference chapter for
CurrDst.)

23:21 ExecSize – Execution Size. This field determines the number of channels operating in parallel for this

instruction. The size cannot exceed the maximum number of channels allowed for the given data type.

000 = 1 Channels (scalar operation)

001 = 2 Channels
010 = 4 Channels
011 = 8 Channels
100 = 16 Channels
101= 32 Channels
110-111 = Reserved

20 PredInv – Predicate Inverse. This field, together with PredCtrl, enables and controls the generation of the
predication mask for the instruction. When it is set, the predication uses the inverse of the predication bits
generated according to setting of Predicate Control. In other words, effect of PredInv happens after
PredCtrl.

This field is ignored by hardware if Predicate Control is set to 0000 – there is no predication.

0 = “+”. Positive polarity of predication.

1 = “–”. Negative polarity of predication.

IHD-OS-072810-R1V4PT2 133

Bits Description

19:16 PredCtrl – Predicate Control. This field, together with PredInv, enables and controls the generation of the
predication mask for the instruction. It allows per-channel conditional execution of the instruction based on
the content of the selected flag register. Encoding depends on the access mode.

In Align16 access mode, there are eight encodings (including no predication). All encodings are based on
group-of-4 predicate bits, including channel sequential, replication swizzles and horizontal any|all
operations. The same configuration is repeated for each group-of-4 execution channels.

In Align1 access mode, there are twelve encodings (including no predication). The encodings applies to all
execution channels with explicit channel grouping from single channel up to group of 16 channels.

Predicate Control in Align16 access mode

0000 = No predication (normal)
0001 = Predication with sequential flag channel mapping
0010 = Predication with replication swizzle ‘.x’
0011 = Predication with replication swizzle ‘.y’
0100 = Predication with replication swizzle ‘.z’
0101 = Predication with replication swizzle ‘.w’
0110 = Predication with ‘.any4h’
0111 = Predication with ‘.all4h’
1000 -1111 = Reserved

Predicate Control in Align1 access mode

0000 = No predication (normal)
0001 = Predication with sequential flag channel mapping
0010 = Predication with .anyv (any from f0.0-f0.1 on the same channel)
0011 = Predication with .allv (all of f0.0-f0.1 on the same channel)
0100 = Predication with .any2h (any in group of 2 channels)
0101 = Predication with .all2h (all in group of 2 channels)
0110 = Predication with .any4h (any in group of 4 channels)
0111 = Predication with .all4h (all in group of 4 channels)
1000 = Predication with .any8h (any in group of 8 channels)
1001 = Predication with .all8h (all in group of 8 channels)
1010 = Predication with .any16h (any in group of 16 channels)
1011 = Predication with .all16h (all in group of 16 channels)

134 IHD-OS-072810-R1V4PT2

Bits Description

15:14 ThreadCtrl – Thread Control. This field provides explicit control for thread switching.

If this field is set to 00, it is up to the GEN execution units to manage thread switching. This is the normal
operations mode. In this mode, for example, if the current instruction cannot proceed due to operand
dependencies, EU switches to next available thread to fill the compute pipe. In another example, if the
current instruction is ready to go, however, there is another thread with higher priority also has instruction
ready, EU switches to that thread.

If this field is set to Switch, a forced thread switch occurs after the current instruction is executed and
before the next instruction. In addition, a long delay (longer than the execution pipe latency) for the current
thread is introduced for the thread. Particularly, the instruction queue of the current thread is flushed after
the current instruction is dispatched for execution.

If this field is set to Atomic, the next instruction will get highest priority in the thread arbitration for the
exeuction pipelines.

Switch is designed primarily as a safety feature in case there are race conditions for certain instructions.

00 = Normal Thread Control

10 = “Switch”

01 = “Atomic”

11 = Reserved

11:10 DepCtrl – Destination Dependency Control. This field selectively disables destination dependency check
and clear for this instruction.

When it is set to 00, normal destination dependency control is performed for the instruction – hardware
checks for destination hazards to ensure data integrity. Specifically, destination register dependency check
is conducted before the instruction is made ready for execution. After the instruction is executed, the
destination register scoreboard will be cleared when the destination operands retire.

When bit 10 is set (NoDDClr), the destination register scoreboard will NOT be cleared when the
destination operands retire. When bit 11 is set (NoDDChk), hardware does not check for destination
register dependency before the instruction is made ready for execution. NoDDClr and NoDDChk are not
mutual exclusive.

When this field is not all-zero, hardware does not protect against destination hazards for the instruction.
This is typically used to assemble data in a fine grained fashion (e.g. matrix-vector compute with dot-
product instructions), where the data integrity is guaranteed by software based on the intended usage of
instruction sequences.

00 = Destination dependency checked and cleared (normal)

01 = “NoDDClr”. Destination dependency checked but not cleared

10 = “NoDDChk”. Destination dependency not checked but cleared

11 = “NoDDClr, NoDDChk”. Destination dependency not checked and not cleared

9 WECtrl – Write Enable Control. This field determines if the the per channel write enables are used to
generate the final write enable. This field should be normally “0”.

0 = use normal write enables (normal)

1 = write all channels, except channels killed with predication control

IHD-OS-072810-R1V4PT2 135

Bits Description

8 AccessMode – Access Mode. This field determines the operand access for the instruction. It applies to all
source and destination operands.

When it is cleared (Align1), the instruction uses byte-aligned addressing for source and destination
operands. Source swizzle control and destination mask control are not supported.

When it is set (Align16), the instruction uses 16-byte-aligned addressing for all source and destination
operands. Source swizzle control and destination mask control are supported in this mode.

0 = “Align1”

1 = “Align16”

7 Reserved: MBZ (for future opcode extension)

6:0 Opcode – Instruction Operation Code. This field contains the instruction operation code. Each opcode
is given a unique mnemonic. For example, opcode 0x01 is for a move operation. Mnemonic for this opcode
is mov.

See Section 7.3 for details of opcode encoding.

7.2.3 Instruction Destination Doubleword (DW1)

7.2.3.1 1-src and 2-src Instructions

Destination Doubleword (DW1) contains the register file and numeric type of all operands, as well as the register
region parameters of the destination operand. Table 7-4 shows the field definition of the Instruction Destination
Doubleword. Furthermore, the Destination Register Region is described in Table 7-5 through Table 7-8.

Table 7-4. Instruction Destination Doubleword

Bits Description

31:16 Destination Register Region. This word contains the parameters describing the register region of the
destination operand. Subfield definition depends on the AccessMode.

Detailed descriptions can be found in Table 7-5 through Table 7-8.

Programming Notes:

Allthough Dst.HorzStride is a don’t care for Align16, HW needs this to be programmed as “01”.

15 Reserved: MBZ

136 IHD-OS-072810-R1V4PT2

Bits Description

14:12 Src1.SrcType – Source-1 Data Type. This field specifies the numerical data type of the source operand
<src1>. The bits of a source operand are interpreted as the identified numerical data type, rather than
coerced into a type implied by the operator. Depending on RegFile field of the source operand, there are
two different encoding for this field. If a source is a register operand, this field follows the Source Register
Type Encoding. If a source is an immediate operand, this field follows the Source Immediate Type
Encoding.

Source Register Type Encoding is identical to that for Destination Type.

Source Immediate Type Encoding differs in two areas. First, it does not support byte and unsigned
numerical data types. Secondly, it has two 32-bit vector types – halfbyte integer vector (V) type and
exponent-only float vector (VF) type.

Implementation Note 1: Both source operands, <src0> and <src1>, support immediate types, but only one
immediate is allowed for a given instruction and it must be the last operand.

Implementation Note 2: Halfbyte integer vector (v) type can only be used in instructions in packed-word
execution mode. Therefore, in a two-source instruction where <src1> is of type :v, <src0> must be of type
:b, :ub, :w, or :uw.

Source Register Type Encoding

000 = “UD”. Unsigned Doubleword integer

001 = “D”. Signed Doubleword integer

010 = “UW”. Unsigned Word integer

011 = “W”. Signed Word integer

100 = “UB”. Unsigned Byte integer

101 = “B”. Signed Byte integer

110 = Reserved [DevGT]

110 = “DF”. Double precision Float (64-bit) [DevIVB+]

Source Immediate Type Encoding:

000 = “UD”

001 = “D”

010 = “UW”

011 = “W”

100 = Reserved

101 = “VF”. 32-bit restricted Vector Float

110 = “V”. 32-bit halfbyte integer Vector

111 = “F”

11:10 Src1.RegFile – Source-1 Register File. This field identifies the register file of source operand <src1>.

00 = “ARF”. Architecture Register File (a#, acc#, f#, n#, null, ip, etc.)

01 = “GRF”. General Register File (r#)

10 = “MRF”. Message Register File (m#)

11 = “IMM”. Immediate

9:7 Src0.SrcType – Source-0 Data Type. This field is the SrcType for <src0> operand. It has the same
definitions as Src1.SrcType.

IHD-OS-072810-R1V4PT2 137

Bits Description

6:5 Src0.RegFile – Source-0 Register File. This field is the RegFile for <src0> operand. It has the same
definitions as Src1.RegFile.

4:2 Dst.DstType – Destination Data Type. This field specifies the numerical data type of the destination
operand <dst>. The bits of the destination operand are interpreted as the identified numerical data type,
rather than coerced into a type implied by the operator. For a send instruction, this field applies to the
CurrDst – the current destination operand.

Encoding:

000 = “UD”. Unsigned Doubleword integer

001 = “D”. Signed Doubleword integer

010 = “UW”. Unsigned Word integer

011 = “W”. Signed Word integer

100 = “UB”. Unsigned Byte integer

101 = “B”. Signed Byte integer

110 = Reserved

111 = “F”. Single precision Float (32-bit)

1:0 Dst.RegFile – Destination Register File. This field identifies the register file of the destination operand
<dst>. Note that it is obvious that immediate cannot be a destination operand.

For a send instruction, this field applies to the PostDst – the post destination operand.

Encoding:

00 = “ARF”. Architecture Register File (a#, acc#, f#, n#, null, ip, etc.)

01 = “GRF”. General Register File (r#)

10 = “MRF”. Message Register File (m#)

11 = reserved

138 IHD-OS-072810-R1V4PT2

The following tables describe the Destination Register Region based on the access mode and addressing mode.

Table 7-5. Destination Register Region in Direct + Align16 mode

Bits Description

15 Dst.AddrMode – Destination Address Mode. This field is the AddrMode for the destination operand.
(See section 7.2.1 for definition of AddrMode.)

For a send instruction, this field applies to PostDst – the post destination operand. Addressing mode for
CurrDst (current destination operand) is fixed as Direct. (See Instruction Reference chapter for CurrDst and
PostDst.)

14:13 Reserved: MBZ

12:5 Dst.RegNum – Destination Register Number. This field is the RegNum field for the destination operand.
(See section 7.2.1 for definitions of RegNum.)

For a send instruction, this field applies to PostDst.

4 Dst.SubRegNum[4]. This is the 16-byte aligned sub-register address. (See section 7.2.1 for definitions of
SubRegNum)

For a send instruction, this field applies to CurrDst.

3:0 Dst.ChanEn – Destination Channel Enable. The channel enable field for the destination operand. (See
section 7.2.1 for definitions of ChanEn)

For a send instruction, this field applies to the CurrDst.

Table 7-6. Destination Register Region in Direct+Align1 mode

Bits Description

15 Dst.AddrMode – Destination Address Mode. This field is the AddrMode for the destination operand.

For a send instruction, it applies to PostDst. Addressing mode for CurrDst is fixed as Direct.

14:13 Dst.HorzStride – Destination Horizontal Stride. This field is the HorzStride for the destination operand.

For a send instruction, this field applies to CurrDst. PostDst only uses the register number.

12:5 Dst.RegNum – Destination Register Number. This field is the RegNum field for the destination operand.

For a send instruction, this field applies to PostDst.

4:0 Dst.SubRegNum – Destination Sub-Register Number. This field is the SubRegNum for the destination
operand. (See section 7.2.1 for definition of SubRegNum)

For a send instruction, this field applies to CurrDst.

IHD-OS-072810-R1V4PT2 139

Table 7-7. Destination Register Region in Indirect+Align16 mode

Bits Description

15 Dst.AddrMode – Destination Address Mode. This field is the AddrMode for the destination operand.

For a send instruction, this field applies to PostDst. Addressing mode for CurrDst is fixed as Direct.

14:13 Reserved: MBZ

12:10 Dst.AddrSubRegNum – Destination Address Sub-Register Number. This field is the AddrSubRegNum
for the destination operand. (See section 7.2.1 for definition of AddrSubRegNum.)

For a send instruction, this field applies to PostDst.

9:4 Dst.AddrImm[9:4]

This is the half-register aligned AddrImm field for the destination operand. (See section 7.2.1 for definition
of AddrImm)

For a send instruction, this field applies to PostDst.

3:0 Dst.ChanEn – Destination Channel Enable. The channel enable field for the destination operand.

For a send instruction, this field applies to the CurrDst.

Table 7-8. Destination Register Region in Indirect+Align1 mode

Bits Description

15 Dst.AddrMode – Destination Address Mode. This field is the AddrMode for the destination operand.

For a send instruction, this field applies to PostDst. Addressing mode for CurrDst is fixed as Direct.

14:13 Dst.HorzStride – Destination Horizontal Stride

This field is the HorzStride for the destination operand.

For a send instruction, this field applies to CurrDst. PostDst only uses the register number.

12:10 Dst.AddrSubRegNum – Destination Address Sub-Register Number. This field is the AddrSubRegNum
for the destination operand.

For a send instruction, this field applies to PostDst.

9:0 Dst.AddrImm – Destination Address Immediate. This field is the byte-aligned AddrImm for the
destination operand.

For a send instruction, this field applies to PostDst.

140 IHD-OS-072810-R1V4PT2

7.2.3.2 3-src Instructions

This section describes the field in DW1 of the 3-src instruction format.

Table 7-9. Instruction DW1

Bits Description

31:24 Destination Register Number. This field contains the destination register number.

23:21 Destination Subregister Number. This field contains the destination subregister number.

20:17 Destination Channel Enable. Four channel enables are defined for controlling which channels will be
written into the destination region. These channel mask bits are applied in a modulo-four manner to all
ExecSize channels. There is 1-bit Channel Enable for each channel within the group of 4. If the bit is
cleared, the write for the corresponding channel is disabled. If the bit is set, the write is enabled. Mnemonic
for the bit being set for the group of 4 is “x”, “y”, “z”, and “w”, respectively, where “x” corresponds to
Channel 0 in the group and “w” corresponds to channel 3 in the group.

0 = Write Disabled

1 = Write Enabled (normal)

12:10 Reserved: MBZ

9:8 Source2 Modifier. This field contains the modifier for source2.

Refer to Table. 5-5 for the encoding.

7:6 Source1 Modifier. This field contains the modifier for source1.

Refer to Table. 5-5 for the encoding.

5:4 Source0 Modifier. This field contains the modifier for source0.

Refer to Table. 5-5 for the encoding.

3 Reserved: MBZ

1 Flag Subregister Number. This field contains the flag subregister number for instructions with non-zero
Conditional Modifier.

IHD-OS-072810-R1V4PT2 141

7.2.4 Instruction Source-0 Doubleword (DW2)

7.2.4.1 1-src and 2-src Instructions

Instruction Source-0 Doubleword (DW2) contains the first source operand and also flag register number.

• Table 7-10 shows the field definition for Direct Addressing with Align16.

• Table 7-11 shows the field definition for Direct Addressing with Align1.

Table 7-12 shows the field definition for Indirect Addressing with Align16.

Table 7-13 shows the field definition for Indirect Addressing with Align1.

Table 7-10. Instruction Source-0 Doubleword in Direct+Align16 mode

Bits Description

31:26 Reserved: MBZ

25 FlagSubRegNum – Flag Sub-Register Number. This field specifies the sub-register number for a flag
register operand. There are two sub-registers in the flag register. Each sub-register contains 16 flag bits.

The selected flag sub-register is the source for predication if predication is enabled for the instruction. It is
the destination to store conditional flag bits if conditional modifier is enabled for the instruction. The same
flag sub-register can be both the predication source and conditional destination, if both predication and
conditional modifier are enabled.

24:21 Src0.VertStride – Source-0 Vertical Stride. This field is the VertStride for <src0> operand. (See section
7.2.1 for definition of VertStride)

It is ignored if <src0> is an immediate operand.

20 Reserved: MBZ

19:16 Src0.ChanSel[7:4]

This is bits [7:4] of the ChanSel field for <src0> operand. (See section 7.2.1 for definition of ChanSel).It is
ignored if <src0> is an immediate operand.

15 Src0.AddrMode – Source-0 Address Mode. This field is the AddrMode for <src0> operand. (See section
7.2.1 for definition of AddrMode)

It is ignored if <src0> is an immediate operand.

14:13 Src0.SrcMod – Source-0 Source Modifier. This field is the SrcMod for source operand <src0>. (See
section 7.2.1 for definition of SrcMod)It is ignored if <src0> is an immediate operand.

12:5 Src0.RegNum – Source-0 Register Number

This is the RegNum field for source operand <src0>. (See section 7.2.1 for definition of RegNum.)

It is ignored if <src0> is an immediate operand.

4 Src0.SubRegNum[4]

This is the 16-byte aligned sub-register address for source operand <src0>. (See section 7.2.1 for
definition of SubRegNum)

It is ignored if <src0> is an immediate operand.

142 IHD-OS-072810-R1V4PT2

Bits Description

3:0 Src0.ChanEn – Source-0 Channel Enable

This is the ChanEn field for source operand <src0>. (See section 7.2.1 for definitions of ChanEn)

It is ignored if <src0> is an immediate operand.

Table 7-11. Instruction Source-0 Doubleword in Direct+Align1 mode

Bits Description

31:26 Reserved: MBZ

25 FlagSubRegNum – Flag Sub-Register Number. This field specifies the sub-register number for a flag
register operand.

24:21 Src0.VertStride – Source-0 Vertical Stride

This is the VertStride field for <src0> operand. (See section 7.2.1 for definition of VertStride)

It is ignored if <src0> is an immediate operand.

20:18 Src0.Width. This is the Width field for source operand <src0>. (See section 7.2.1 for definition of Width)

It is ignored if <src0> is an immediate operand.

17:16 Src0.HorzStride. This is the HorzStride field for source operand <src0>. (See section 7.2.1 for definition of
HorzStride)

It is ignored if <src0> is an immediate operand.

15 Src0.AddrMode – Source-0 Address Mode. This is the AddrMode for source operand <src0>. (See
section 7.2.1 for definition of AddrMode)

It is ignored if <src0> is an immediate operand.

14:13 Src0.SrcMod – Source-0 Source Modifier. This is the SrcMod field for source operand <src0>. (See
section 7.2.1 for definition of SrcMod)

It is ignored if <src0> is an immediate operand.

12:5 Src0.RegNum – Source-0 Register Number. This is the RegNum field for source operand <src0>. (See
section 7.2.1 for definition of RegNum.)

It is ignored if <src0> is an immediate operand.

4:0 Src0.SubRegNum – Source-0 Sub-Register Number. This is the SubRegNum field for source operand
<src0>. (See section 7.2.1 for definition of SubRegNum)

It is ignored if <src0> is an immediate operand.

IHD-OS-072810-R1V4PT2 143

Table 7-12. Instruction Source-0 Doubleword in Indirect+Align16 mode

Bits Description

31:26 Reserved: MBZ

25 FlagSubRegNum – Flag Sub-Register Number. This field specifies the sub-register number for a flag
register operand.

24:21 Src0.VertStride – Source-0 Vertical Stride. This is the VertStride field for <src0> operand. (See section
7.2.1 for definition of VertStride)

It is ignored if <src0> is an immediate operand.

20 Reserved: MBZ

19:16 Src0.ChanSel[7:4] – Source-0 Channel Select. This is bits [7:4] of the ChanSel field for <src0> operand.
(See section 7.2.1 for definition of ChanSel).

It is ignored if <src0> is an immediate operand.

15 Src0.AddrMode – Source-0 Address Mode. This is the AddrMode for source operand <src0>. (See
section 7.2.1 for definition of AddrMode)

It is ignored if <src0> is an immediate operand.

14:13 Src0.SrcMod – Source-0 Source Modifier. This is the SrcMod field for source operand <src0>. (See
section 7.2.1 for definition of SrcMod)

It is ignored if <src0> is an immediate operand.

12:10 Src0.AddrSubRegNum – Source-0 Address Sub-Register Number. This is the AddrSubRegNum field
for source operand <src0>. (See section 7.2.1 for definition of AddrSubRegNum.)

It is ignored if <src0> is an immediate operand.

9:4 Src0.AddrImm[9:4] – Source-0 Address Immediate. This contains the half-register aligned AddrImm
field ((bits [9:4]) for <src0>. (See section 7.2.1 for definition of AddrImm)

It is ignored if <src0> is an immediate operand.

3:0 Src0.ChanEn – Source-0 Channel Enable . This is the ChanEn field for source operand <src0>. (See
section 7.2.1 for definitions of ChanEn)

It is ignored if <src0> is an immediate operand.

144 IHD-OS-072810-R1V4PT2

Table 7-13. Instruction Source-0 Doubleword in Indirect+Align1 mode

Bits Description

31:26 Reserved: MBZ

25 FlagSubRegNum – Flag Sub-Register Number. This field specifies the sub-register number for a flag
register operand.

24:21 Src0.VertStride – Source-0 Vertical Stride. This is the VertStride field for <src0> operand. (See section
7.2.1 for definition of VertStride)

It is ignored if <src0> is an immediate operand.

20:18 Src0.Width. This is the Width field for source operand <src0>. (See section 7.2.1 for definition of Width)

It is ignored if <src0> is an immediate operand.

17:16 Src0.HorzStride. This is the HorzStride field for source operand <src0>. (See section 7.2.1 for definition of
HorzStride)

It is ignored if <src0> is an immediate operand.

15 Src0.AddrMode – Source-0 Address Mode. This is the AddrMode for source operand <src0>. (See
section 7.2.1 for definition of AddrMode)

It is ignored if <src0> is an immediate operand.

14:13 Src0.SrcMod – Source-0 Source Modifier. This is the SrcMod field for source operand <src0>. (See
section 7.2.1 for definition of SrcMod)

It is ignored if <src0> is an immediate operand.

12:10 Src0.AddrSubRegNum – Source-0 Address Sub-Register Number. This is the AddrSubRegNum field
for source operand <src0>. (See section 7.2.1 for definition of AddrSubRegNum.)

It is ignored if <src0> is an immediate operand.

9:0 Src0.AddrImm – Source-0 Address Immediate. This is the byte aligned AddrImm field for <src0>. (See
section 7.2.1 for definition of AddrImm)

It is ignored if <src0> is an immediate operand.

IHD-OS-072810-R1V4PT2 145

7.2.4.2 3-src Instructions

This section describes the field in DW2 and DW3 of the 3-src instruction format.

Table 7-14. Instruction DW2 and DW3

DW Bits Description

31:29 Reserved: MBZ

28:21 Source2 Register Number. This field contains the register number for source2.

20:18 Source2 Subregister Number. This field contains the subregister number for source2.

17:10 Source2 Swizzle. This field contains the swizzle control for source2.

Refer to Table.5-5 for encoding.

9:9 Source2 Replication Control. This field controls replication for source2.

Refer to Table.5-5 for encoding.

8:8 Reserved: MBZ

DW3

7:0 Source1 Register Number. This field contains the register number for source1.

31:29 Source1 Subregister Number. This field contains the subregister number for source1.

28:21 Source1 Swizzle. This field contains the swizzle control for source1.

Refer to Table.5-5 for encoding.

20:20 Source1 Replication Control. This field controls replication for source1.

Refer to Table.5-5 for encoding.

19:19 Reserved: MBZ

18:11 Source0 Register Number. This field contains the register number for source0.

10:8 Source0 Subregister Number. This field contains the subregister number for source0.

7:1 Source0 Swizzle. This field contains the swizzle control for source0.

Refer to Table.5-5 for encoding.

DW2

0:0 Source0 Replication Control. This field controls replication for source0.

Refer to Table.5-5 for encoding.

146 IHD-OS-072810-R1V4PT2

7.2.5 Instruction Source-1 Doubleword (DW3)

Source-1 Doubleword (DW3) contains the second source operand (<src1>) and is used to hold the 32-bit immediate
source (imm32 as <src0> or <src1>). Table 7-15 and Table 7-16 define the fields in this doubleword with the
following exceptions:

• If <src0> is an immediate operand, this doubleword contains imm32 for <src0>.

• If <src1> is an immediate operand, this doubleword contains imm32 for <src1>.

• If the instruction is a send, bit 31 of this doubleword contains EOT field.

o If <src1> is immediate, the remaining 31 bits in this doubleword is MsgDescpt31.

o If <src1> is a register, <src1> must be a0.0. The rest of this doubleword will be configured
accordingly.

• If indirect address is supported for <src1>, Table 7-17 and Table 7-18 define the fields in DW3 for indirectly
addressed <src1> in Align16 and Align1 modes.

Table 7-15. Instruction Source-1 Doubleword in Direct + Align16 mode

Bits Description

31:25 Reserved: MBZ

24:21 Src1.VertStride – Source-1 Vertical Stride. This field is the VertStride for <src1> operand. (See section
7.2.1 for definition of VertStride)

It is ignored if <src1> is an immediate operand.

20 Reserved: MBZ

19:16 Src1.ChanSel[7:4]

This contains bits [7:6] of the ChanSel field for <src1> operand. (See section 7.2.1 for definition of
ChanSel)

It is ignored if <src1> is an immediate operand.

15 Reserved: MBZ

14:13 Src1.SrcMod – Source-1 Source Modifier. This field is the SrcMod for <src1> operand. (See section
7.2.1 for definition of SrcMod)

It is ignored if <src1> is an immediate operand.

12:5 Src1.RegNum. This field is the RegNum field for <src1> operand. (See section 7.2.1 for definition of
RegNum.)

It is ignored if <src1> is an immediate operand.

4 Src1.SubRegNum[4]. This field is bit [4] of the SubRegNum field for <src1>. (See section 7.2.1 for
definition of SubRegNum)

It is ignored if <src1> is an immediate operand.

3:0 Src1.ChanEn – Source-1 Channel Enable. It is the channel enable field for <src1>. (See section 7.2.1 for
definitions of ChanEn)It is ignored if <src1> is an immediate operand.

IHD-OS-072810-R1V4PT2 147

Table 7-16. Instruction Source-1 Doubleword in Direct + Align1 mode

Bits Description

31:25 Reserved: MBZ

24:21 Src1.VertStride – Source-1 Vertical Stride. This field is the VertStride for <src1> operand. (See section
7.2.1 for definition of VertStride)

It is ignored if <src1> is an immediate operand.

20:18 Src1.Width. This is the Width field for source operand <src1>. (See section 7.2.1 for definition of Width)

It is ignored if <src1> is an immediate operand.

17:16 Src1.HorzStride. This is the HorzStride field for source operand <src1>. (See section 7.2.1 for definition of
HorzStride)

It is ignored if <src1> is an immediate operand.

15 Reserved: MBZ

14:13 Src1.SrcMod – Source-1 Source Modifier. This field is the SrcMod for <src1> operand. (See section
7.2.1 for definition of SrcMod)

It is ignored if <src1> is an immediate operand.

12:5 Src1.RegNum – Source-1 Register Number. This is the RegNum field for source operand <src1>. (See
section 7.2.1 for definition of RegNum.)

It is ignored if <src1> is an immediate operand.

4:0 Src1.SubRegNum – Source-1 Sub-Register Number. This is the SubRegNum field for source operand
<src1>. (See section 7.2.1 for definition of SubRegNum)

It is ignored if <src1> is an immediate operand.

Table 7-17. Instruction Source-1 Doubleword in Indirect+Align16 mode

Bits Description

31:25 Reserved: MBZ

24:21 Src1.VertStride – Source-1 Vertical Stride

This is the VertStride field for <src1> operand. (See section 7.2.1 for definition of VertStride)

It is ignored if <src1> is an immediate operand.

20 Reserved: MBZ

19:16 Src1.ChanSel[7:4] – Source-1 Channel Select

This is bits [7:4] of the ChanSel field for <src1> operand. (See section 7.2.1 for definition of ChanSel).

It is ignored if <src1> is an immediate operand.

15 Src1.AddrMode – Source-1 Address Mode

This is the AddrMode for source operand <src1>. (See section 7.2.1 for definition of AddrMode)

It is ignored if <src1> is an immediate operand.

14:13 Src1.SrcMod – Source-1 Source Modifier

This is the SrcMod field for source operand <src1>. (See section 7.2.1 for definition of SrcMod)

It is ignored if <src1> is an immediate operand.

148 IHD-OS-072810-R1V4PT2

Bits Description

12:10 Src1.AddrSubRegNum – Source-1 Address Sub-Register Number

This is the AddrSubRegNum field for source operand <src1>. (See section 7.2.1 for definition of
AddrSubRegNum.)

It is ignored if <src1> is an immediate operand.

9:4 Src1.AddrImm[9:4] – Source-1 Address Immediate

This contains the half-register aligned AddrImm field ((bits [9:4]) for <src1>. (See section 7.2.1 for definition
of AddrImm)

It is ignored if <src1> is an immediate operand.

3:0 Src1.ChanEn – Source-1 Channel Enable

This is the ChanEn field for source operand <src1>. (See section 7.2.1 for definitions of ChanEn)

It is ignored if <src1> is an immediate operand.

Table 7-18. Instruction Source-1 Doubleword in Indirect+Align1 mode

Bits Description

31:25 Reserved: MBZ

24:21 Src1.VertStride – Source-1 Vertical Stride

This is the VertStride field for <src1> operand. (See section 7.2.1 for definition of VertStride)

It is ignored if <src1> is an immediate operand.

20:18 Src1.Width

This is the Width field for source operand <src1>. (See section 7.2.1 for definition of Width)

It is ignored if <src1> is an immediate operand.

17:16 Src1.HorzStride

This is the HorzStride field for source operand <src1>. (See section 7.2.1 for definition of HorzStride)

It is ignored if <src1> is an immediate operand.

15 Src1.AddrMode – Source-1 Address Mode

This is the AddrMode for source operand <src1>. (See section 7.2.1 for definition of AddrMode)

It is ignored if <src1> is an immediate operand.

14:13 Src1.SrcMod – Source-1 Source Modifier

This is the SrcMod field for source operand <src1>. (See section 7.2.1 for definition of SrcMod)

It is ignored if <src1> is an immediate operand.

12:10 Src1.AddrSubRegNum – Source-1 Address Sub-Register Number

This is the AddrSubRegNum field for source operand <src1>. (See section 7.2.1 for definition of
AddrSubRegNum.)

It is ignored if <src1> is an immediate operand.

9:0 Src1.AddrImm – Source-1 Address Immediate

This is the byte aligned AddrImm field for <src1>. (See section 7.2.1 for definition of AddrImm)

It is ignored if <src1> is an immediate operand.

IHD-OS-072810-R1V4PT2 149

7.3 Opcode Encoding

Byte 0 of the 128-bit instruction word contains the opcode. The opcode uses 7 bits. Bit location 7 in byte 0 is reserved
for future opcode extension.

There are total of 48 opcodes defined. These opcodes are encoded and organized into five groups based on the type of
operations: Special instructions, move/logic instructions (opcode=00xxxxxb), flow control instructions
(opcode=010xxxxb), miscellaneous instructions (opcode=011xxxxb), parallel arithmetic instructions
(opcode=100xxxxb), and vector arithmetic instructions (opcode=101xxxxb). Opcodes 110xxxb are reserved.

7.3.1 Move and Logic Instructions
This instruction group has an opcode format of 00xxxxxb.

• The opcodes for move instructions (mov, sel and movi) share the common 5 MSBs in the form of 00000xxb.

• The opcodes for logic instructions (not, and, or, and xor) share the common 5 MSBs in the form of
00001xxb.

• The opcodes for shift instructions (shr, shl, and asr) share the common 4 MSBs in the form of 0001xxxb. Bit
2 indicates arithmetic or logic shift (0 = logic, 1 = arithmic). Bit 1 is always 0 (which is reserved for future
extension to support rotation shift as 0 = shift, 1 = rotate). Bit 0 indicates the shift direction (0 = right, 1 =
left).

• The opcodes for compare instructions (cmp and cmpn) share the common 6 MSBs in the form of 001000xb.
Bit 0 indicates whether it is a normal compare, cmp, or a special compare-NaN, cmpn.

• This group of instructions does not implicitly update the accumulators.

• Instruction compression applies to this group.

150 IHD-OS-072810-R1V4PT2

Table 7-19. Move and Logic Instructions

Opcode

dec hex

Instruction Description #src #dst

1 0x01 mov Component-wise move 1 1

2 0x02 sel Component-wise selective move based on predication 2 1

3 0x03 movi Fast component-wise indexed move 1 1

4 0x04 not Component-wise one’s compliment (bitwise not) 1 1

5 0x05 and Component-wise logical AND (bitwise and) 2 1

6 0x06 or Component-wise logical OR (bitwise or) 2 1

7 0x07 xor Component-wise logical XOR (bitwise xor) 2 1

8 0x08 shr Component-wise logical shift right 2 1

9 0x09 shl Component-wise logical shift left 2 1

10-11 0x0A-
0x0B

Reserved

12 0x0C asr Component-wise arithmetic shift right 2 1

13-15 0x0D-
0x0F

Reserved

16 0x10
cmp Component-wise compare, store condition code in

destination 2 1

17 0x11 cmpn Component-wise compare-NaN, store condition code in
destination

2 1

18 0x12 Reserved

21-22 0x15-
0x16

Reserved

20-31 0x12-
0x1F

Reserved

IHD-OS-072810-R1V4PT2 151

7.3.2 Flow Control Instructions
This instruction group has an opcode format of 010xxxxb.

• This group of instructions does not implicitly update the accumulators.

• Instruction compression is not allowed for this group.

Table 7-20. Flow Control Instructions

Opcode

dec hex

Instruction Description #src #dst

32 0x20 jmpi Jump indexed 1 0

34

if If 0/2 0
if

36 0x24 else Else 1 0

37 0x25 endif End if 0 0

38 0x26 case Case – Inside Switch block 0/2 0

39 0x27 while While 1 0

40 0x28 break Break 1 0

41 0x29 cont Continue 1 0

42 0x2A halt Halt 1 0

43 0x2B Reserved

44 0x2C call Subroutine call 1 1

45 0x2D return Subroutine return 1 1

46 0x2E
fork go into 16pixel execution mode from 32pixel execution

mode 1 0

47 0x2F Reserved

152 IHD-OS-072810-R1V4PT2

7.3.3 Miscellaneous Instructions
This instruction group has an opcode format of 011xxxxb.

• This group of instructions does not implicitly update the accumulators.

• Instruction compression is not allowed for this group.

Table 7-21. Miscellaneous Instructions

Opcode

dec hex

Instruction Description #src #dst

48 0x30 wait Wait for (external) notification 1 0

49 0x31 send Send 1 1

50 0x32 sendc Conditional Send (based on TDR) 1 1

51-55
0x33-
0x37

Reserved

56 0x38 math Math functions for extended math pipeline 1/2 1/2

57-63
0x39-
0x3F

Reserved

IHD-OS-072810-R1V4PT2 153

7.3.4 Parallel Arithmetic Instructions
This instruction group has an opcode format of 100xxxxb.

• The opcode for round instructions (rndu, rndd, rnde, and rndz) share the common 5 MSBs in the form of
10001xxb, with the lower 2 bits indicate the type of round.

• These instructions implicitly update the accumulators if the Accumulator Disable bit in control register cr0.0
not set.

o Some instructions such as frc, lzd, etc, perform the operation after the accumulator. Therefore, when
the accumulator is implicitly updated, the content is undefined. Details can be found in ISA
Reference Chapter.

• Instruction compression applies to this group.

Table 7-22. Parallel Arithmetic Instructions

Opcode

dec hex

Instruction Description #src #dst

64 0x40 add Component-wise addition 2 1

65 0x41 mul Component-wise multiply 2 1

66 0x42 avg Component-wise average of the two source operands 2 1

67 0x43
frc Component-wise floating point truncate-to-minus-infinity

fraction 1 1

68 0x44 rndu Component-wise floating point rounding up (ceiling) 1 1

69 0x45 rndd Component-wise floating point rounding down (floor) 1 1

70 0x46
rnde Component-wise floating point rounding toward nearest

even 1 1

71 0x47 rndz Component-wise floating point rounding toward zero 1 1

72 0x48 mac Component-wise multiply accumulate 2 1

73 0x49 mach multiply accumulate high 2 1

74 0x4A lzd leading zero detection 1 1

154 IHD-OS-072810-R1V4PT2

7.3.5 Vector Arithmetic Instructions

• This instruction group has an opcode format of 101xxxxb.

• These instructions implicitly update the accumulators if the Accumulator Disable bit in control register cr0.0
not set.

o Some instructions such as dp4-dp2, etc, perform the operation after the accumulator. Therefore,
when the accumulator is implicitly updated, the content is undefined. Details can be found in ISA
Reference Chapter.

• Instruction compression applies to this group.

Table 7-23. Vector Arithmetic Instructions

Opcode

dec hex

Instruction Description #src #dst

80 0x50 sad2 2-wide sum of absolute difference 2 1

81 0x51 sada2 2-wide sad accumulate 2 1

82-83
0x52-
0x53

reserved

84 0x54 dp4 4-wide dot product for 4-vector 2 1

85 0x55 dph 4-wide homogenous dot product for 4-vector 2 1

86 0x56 dp3 3-wide dot product for 4-vector 2 1

87 0x57 dp2 2-wide dot product for 4-vector 2 1

88 0x58 reserved

89 0x59
line Component-wise line equation computation (a multiply-

add) 2 1

90 0x5A
 pln Component-wise floating point plane equation

computation (a multiply-multiply-add) 2(3) 1

91 0x5B
mad Component-wise floating point mad computation (a

multiple-add) 3 1

92 0x5C lrp Component-wise floating point lrp computation (blend) 3 1

93-95
0x5D-
0x5F

reserved

IHD-OS-072810-R1V4PT2 155

7.3.6 Special Instructions
There are two special instructions, namely, nop (opcode = 0x7E) and illegal (opcode = 0x00).

• Nop instruction may be used for instruction padding in memory between two normal instructions to force
alignment or to introduce instruction execution delay. Currently, there is no need for between-instruction
padding.

• Illegal instruction may be used for instruction padding in memory outside the normal instruction sequence
such as before or after the kernel program as well as between subroutines.

• Nop and illegal instructions do not have source operands or destination operand. Therefore, they do not
implicitly update the accumulator register. They cannot be compressed.

Table 7-24. Special Instructions

Opcode

dec hex

Instruction Description #src #dst

0 0x00 illegal Illegal instruction 0 0

96-
124

0x60-
0x7C

Reserved

125 0x7D nenop Non-executed No-op 0 0

126 0x7E nop No-op 0 0

127 0x7F Reserved (may be used as an extension code)

156 IHD-OS-072810-R1V4PT2

7.4 Native Instruction BNF

The Backus-Naur Form (BNF) grammar identifies the assembly language syntax, which is native to the hardware. It
does not include intelligent defaults, assembler pragmas, etc.

7.4.1 Instruction Groups
<Instruction> ::= <UnaryInstruction>

| <BinaryAccInstruction>
| <BinaryInstruction>
| <TriInstruction>
| <JumpInstruction>
| <BranchLoopInstruction>
| <ElseInstruction>
| <BreakInstruction>
| <MaskControlInstruction>
| <SyncInstruction>
| <SpecialInstruction>

<UnaryInstruction> ::= <Predicate> <UnaryInst> <ExecSize> <Dst> <SrcAccImm> <InstOptions>
<UnaryInst> ::= <UnaryOp> <ConditionalModifier> <Saturate>
<UnaryOp> ::= “mov” | “frc” | “rndu” | “rndd” | “rnde” | “rndz” | “not” | “lzd”

<BinaryInstruction> ::= <Predicate> <BinaryInst> <ExecSize> <Dst> <Src> <SrcImm> <InstOptions>
<BinaryInst> ::= <BinaryOp> <ConditionalModifier> <Saturate>
<BinaryOp> ::= “mul” | “mac” | “mach” | “line”
 | “sad2” | “sada2” | “dp4” | “dph” | “dp3” | “dp2”

<BinaryAccInstruction> ::= <Predicate> <BinaryAccInst> <ExecSize> <Dst> <SrcAcc> <SrcImm>

<InstrOptions>
<BinaryAccInst> ::= <BinaryAccOp> <ConditionalModifier> <Saturate>
<BinaryAccOp> ::= “avg” | “add” | “sel”
 | “and” | “or” | “xor”
 | “shr” | “shl” | “asr”
 | “cmp” | “cmpn”

<TriInstruction> ::= <Predicate> <TriInst> <ExecSize> <PostDst> <CurrDst> <TriSrc> <MsgDesc>

<InstOptions>
<TriInst> ::= <TriOp> <ConditionalModifier> <Saturate>
<TriOp> ::= “send”

<JumpInstruction> ::= <JumpOp> <RelativeLocation2>
<JumpOp> ::= “jmpi”

<BranchLoopInstruction> ::= <Predicate> <BranchLoopOp> < RelativeLocation>
<BranchLoopOp> ::= “if” | “iff” | “while”

<ElseInstruction> ::= <ElseOp> < RelativeLocation>

IHD-OS-072810-R1V4PT2 157

<ElseOp> ::= “else”

<BreakInstruction> ::= <Predicate> <BreakOp> <LocationStackCtrl>
<BreakOp> ::= “break” | “cont” | “halt”

<SyncInstruction> ::= <Predicate> <SyncOp> <NotifyReg>
<SyncOp> ::= “wait”

<SpecialInstruction> ::= “do” | “endif” |“nop” | “illegal”

7.4.2 Destination Register
<Dst> ::= <DstOperand>

| <DstOperandEx>

<DstOperand> ::= <DstReg> <DstRegion> <WriteMask> <DstType>
<DstOperandEx> ::= <AccReg> <DstRegion> <DstType>
 | <FlagReg> <DstRegion> <DstType>
 | <AddrReg> <DstRegion> <DstType>
 | <MaskReg> <DstRegion> <DstType>
 | <MaskStackReg>
 | <ControlReg>
 | <IPReg>
 | <NullReg>

<DstReg> ::= <DirectGenReg> | <IndirectGenReg>
 | <DirectMsgReg> | <IndirectMsgReg>

<PostDst> ::= <PostDstReg> <DstRegion> <WriteMask> <DstType>
 | <NullReg>

<PostDstReg> ::= <DirectGenReg> | <IndirectGenReg>

<CurrDst> ::= <DirectAlignedMsgReg>

158 IHD-OS-072810-R1V4PT2

7.4.3 Source Register

Source with Accumulator Access and with Immediate
<SrcAccImm> ::= <SrcAcc>

| <Imm32> <SrcImmType>

<SrcAcc> ::= <DirectSrcAccOperand>

| <IndirectSrcOperand>

<DirectSrcAccOperand> ::= <DirectSrcOperand>
 | <SrcArcOperandEx>
 | <AccReg> <SrcType>

<SrcArcOperandEx> ::= <FlagReg> <Region> <SrcType>
 | <AddrReg> <Region> <SrcType>
 | <MaskReg> <Region> <SrcType> [Pre-DevSNB]
 | <MaskStackReg> [Pre-DevSNB]
 | <ControlReg>
 | <StateReg>
 | <NotifyReg>
 | <IPReg>
 | <NullReg>

<IndirectSrcOperand> ::= <SrcModifier> <IndirectGenReg> <IndirectRegion> <Swizzle > <SrcType>

Source without Accumulator Access
<Src> ::= <DirectSrcOperand>

| <IndirectSrcOperand>

< DirectSrcOperand > ::= <SrcModifier> <DirectGenReg> <Region> <Swizzle> <SrcType>
 | <SrcArcOperandEx>

<TriSrc> ::= <SrcModifier> <DirectGenReg> <Region> <Swizzle> <SrcType>

| <NullReg>

<MsgDesc> ::= <ImmDesc>

| <Reg32>
<Reg32> ::= <DirectGenReg> <Region> <SrcType>

Source without Accumulator Access or IP Access
<SrcImm> ::= <DirectSrcOperand>

| <Imm32> <SrcImmType>

IHD-OS-072810-R1V4PT2 159

7.4.4 Address Registers
<AddrParam> ::= <AddrReg> <ImmAddrOffset>
<ImmAddrOffset> ::= “”
 | “,” <ImmAddrNum>

7.4.5 Register Files and Register Numbers
<DirectGenReg> ::= <GenRegFile> <GenRegNum> <GenSubRegNum>
<IndirectGenReg> ::= <GenRegFile> “[“ <AddrParam> “]”
<GenRegFile> ::= “r”
<GenRegNum> :: = “0”…“127”
<GenSubRegNum> :: = “”
 | “.0”...“.7”
 | “.0”...“.15”
 | “.0”...“.31”

<DirectMsgReg> ::= <DirectAlignedMsgReg> <MsgSubRegNum>
<DirectAlignedMsgReg> ::= <MsgRegFile> <MsgRegNum>
<IndirectMsgReg> ::= <MsgRegFile> “[“ <AddrParam> “]”
<MsgRegFile> ::= “m”
<MsgRegNum> :: = “0”…“15”
<MsgSubRegNum> :: = <GenSubRegNum>

<AddrReg> ::= <AddrRegFile> <AddrSubRegNum>
<AddrRegFile> ::= “a0”
<AddrSubRegNum> :: = “”
 | “.0” … “.7”

<AccReg> ::= “acc” <AccRegNum><AccSubRegNum>
<AccRegNum> :: = “0” | “1”
<AccSubRegNum> :: = <GenSubRegNum>

<FlagReg> ::= “f0” <FlagSubRegNum>
<FlagSubRegNum> :: = “”
 | “.0”...“.1”
These are Pre-devGT and should not be in this spec.

[Pre-DevGT] <MaskReg> ::= “Mask0” <MaskSubRegNum>
 | “AMask” | “IMask” | “LMask” | “CMask”
[Pre-DevGT] <MaskSubRegNum> :: = “”
 | “.0” … “.3”

[Pre-DevGT] <MaskStackReg> ::= “ms0” <MaskStackSubRegNum>
 | “ims” | “lms”
[Pre-DevGT] <MaskStackSubRegNum> :: = “”

160 IHD-OS-072810-R1V4PT2

 | “.0” | “.16”

[Pre-DevGT] <MaskStackDepthReg> ::= “MSD0” <MaskStackDepthSubRegNum>
 | “IMSD” | “LMSD”
[Pre-DevGT] <MaskStackDepthSubRegNum> :: = “”
 | “.0” … “.1”

<NotifyReg> ::= “n” <NotifyRegNum>
[Pre-DevGT] <NotifyRegNum> :: = “0”...“1”

<NotifyReg> ::= “n” <NotifyRegNum>
<NotifyRegNum> :: = “0”...“2”

<StateReg> ::= “sr0” <StateSubRegNum>
<StateSubRegNum> :: = “.0”... “.1”

<ControlReg> ::= “cr0” <ControlSubRegNum>
<ControlSubRegNum> :: = “.0” ...“.2”

<IPReg> ::= “ip”

<NullReg> ::= “null”

7.4.6 Relative Location and Stack Control
<RelativeLocation> ::= <imm16>
<RelativeLocation2> ::= <imm32> | <reg32>
<LocationStackCtrl> ::= <imm32>

7.4.7 Regions
<DstRegion> ::= “<” <HorzStride> “>”

<IndirectRegion> ::= <Region> | <RegionWH> | <RegionV>

<Region> ::= “<” <VertStride> “;” <Width> “,” <HorzStride> “>”
<RegionWH> ::= “<” <Width> “,” <HorzStride> “>”
<RegionV> ::= “<”<VertStride> “>”

<VertStride> ::= “0” | “1” | “2” | “4” | “8” | “16” | “32”
<Width> ::= “1” | “2” | “4” | “8” | “16”
<HorzStride> ::= “0” | “1” | “2” | “4”

IHD-OS-072810-R1V4PT2 161

7.4.8 Types
<SrcType> ::= “:f” | “:ud” | “:d” | “:uw” | “:w” | “:ub” | “:b”
<SrcImmType> ::= <SrcType> | “:v” | “:vf”
<DstType> ::= <SrcType>

7.4.9 Write Mask
<WriteMask> ::= “”
 | “.” “x” | “.” “y” | “.” “z” | “.” “w”
 | “.” “xy” | “.” “xz” | “.” “xw” | “.” “yz” | “.” “yw” | “.” “zw”
 | “.” “xyz” | “.” “xyw” | “.” “xzw” | “.” “yzw”
 | “.” “xyzw”

162 IHD-OS-072810-R1V4PT2

7.4.10 Swizzle Control
<Swizzle> ::= “”
 | “.” <ChanSel>
 | “.” <ChanSel> <ChanSel> <ChanSel> <ChanSel>

<ChanSel> ::= “x” | “y” | “z” | “w”

7.4.11 Immediate Values
<ImmAddrNum> ::= “-512”… “511”
<Imm32> ::= “0.0”… “±1.0*2-128…127” | “0”…”232-1” | “-231”…”231-1”
<Imm16> ::= “0”…”216-1” | “-215”…”215-1”
<ImmDesc> ::= “0”…”232-1”

7.4.12 Predication and Modifiers

Instruction Predication
<Predicate> ::= “”
 | “(” <PredState> <FlagReg> <PredCntrl> “)”

<PredState> ::= “”
 | “+”
 | “-“
<PredCntrl> ::= “”
 | “.x” | “.y” | “.z” | “.w”
 | “.any2h” | “.all2h”
 | “.any4h” | “.all4h”
 | “.any8h” | “.all8h”
 | “.any16h” | “.all16h”
 | “.anyv” | “.allv”

Source Modification
<SrcModifier> ::= “”
 | “-”
 | “(abs)”
 | “-” “(abs)”

Instruction Modification
<ConditionalModifier> ::= “”
 | <CondMod> “. ” <FlagReg>
<CondMod> ::= “.z” | “.e” | “.nz” | “.ne” | “.g” | “.ge” | “.l” | “.le” | “.o” | “.r” | “.u”

IHD-OS-072810-R1V4PT2 163

<Saturate> ::= “”
 | “.sat”

Execution Size
<ExecSize> ::= “(“ <NumChannels> “)”
<NumChannels> ::= “1” | “2” | “4” | “8” | “16” | “32”

7.4.13 Instruction Options
<InstOptions> ::= “”
 | “{” <InstOption> “}”
 | “{” <InstOption> <InstOptionEx> “}”

<InstOptionEx> ::= “”
 | “,” <InstOption> <InstOptionEx>

<InstOption> ::= <AccessMode>
 | <ComprCtrl>
 | <ThreadCtrl>
 | <DependencyCtrl>
 | <MaskCtrl> [Pre-DevSNB]
 | <SendCtrl>
 | <AccWrCtrl> [DevSNB+]
 | <WECtrl> [DevSNB+]

<AccessMode> ::= “Align1” | “Align16”
<ComprCtrl> ::= “SecHalf” | “Compr”
<ThreadCtrl> ::= “Switch”
<DependencyCtrl> ::= “NoDDChk” | “NoDDClr”
<MaskCtrl> ::= “NoMask”
<SendCtrl> ::= “EOT”

Note for Assembler: Compression control “Compr” has a direct map to the binary instruction word. It may be omitted
as long as the Assembler is able to determine whether an instruction is in compressed mode or not based on the
execution size and the mode of operation.

164 IHD-OS-072810-R1V4PT2

7.5 Deprecated Features

7.5.1 Defeatured Instructions

The following instructions are removed from GEN implementation mainly due to implementation cost/schedule
reasons. They are candidates for future generations.

• Sum of Absolute Difference 4 (sad4)
• Sum of Absolute Difference Accumulate 4 (sada4)
• Add Accumulate (aac)
• Min (min)
• Max (max)
• Next (next)
• Swizzle (swz)
• Dot Product Accumulate 2 (dpa2)
• Rotation Shift Left (rsl)
• Rotation Shift Right (rsr)

7.5.2 Others

The following features are also deprecated from GEN implementation.

• Restricted 16-bit Half Floating-Point Numbers

IHD-OS-072810-R1V4PT2 165

8. Instruction Set Reference
This chapter describes the functions of GEN instructions. Each GEN instruction is given a different page and the pages
are sorted in alphabetical order according to assembly language mnemonic.

8.1 Conventions

8.1.1 Pseudo Code Format

The instructions are explained in the following pseudo-code format that resembles the GEN assembly instruction
format.

[(<pred>)] opcode (<exec_size>) <dst> <src0> [<src1>]

Square bracket “[]” is used to signify that the field is optional. Saturation modifier and instruction options are omitted
for simplicity.

8.1.2 General Macros and Definitions

INST_BYTE_COUNT is defined as a constant of 16 bytes.

#define INST_BYTE_COUNT 16 // byte count of instruction word

Function floor() converts a floating point value to an integral floating point value. For a given floating point value,
from its closest two integral float values, function floor() returns the one that is closer to the negative infinity. For
example, floor(1.3f) = 1.0f, and floor(-1.3f) = -2.0f.

float floor(float g)
{

return maximum(any integral float f: f <= g)
}

Function Condition() takes the conditional signals {SN, ZR, OF, IN, NC} of result, generates a Boolean data according
to a conditional evaluation controlled by the conditional modifier cmod, and returns the Boolean data.

Bool Condition(result, cmod)
{
}

166 IHD-OS-072810-R1V4PT2

Function ConditionNaN() takes the conditional signals {SN, ZR, OF, IN, NC, NS} of result, generates a Boolean data
according to a conditional evaluation controlled by the conditional modifier cmod, and returns the Boolean data. The
only difference between Condition() and ConditionNaN() is that ConditionNaN() uses the NS (NaN of the second
source) signal.

Bool ConditionNaN(result, cmod)
{
}

Function Jump() jumps the instruction sequence from the current instruction location by InstCount number of
instructions. If InstCount is a positive number, it jumps forward; if InstCount is a negative number, it jumps backward;
if InstCount is zero, it is effectively an infinite loop on the current instruction.

void Jump(int InstCount)
{

IP = IP + (InstCount * INST_BYTE_COUNT)
}

8.2 Evaluate Write Enable

The WrEn should be evaluated as below.

if (WECtrl == 1) {

for (n =0; n < exec_size; n++) {
WrEn[n] = 1;

}
} else {

for (n =0; n < exec_size; n++) {
if (PcIP[n] == ExIP) {

WrEn[n] = 1;
} else {

WrEn[n] = 0;
}

}
}

if (PredCtrl != “0000”) {

for (n =0; n < exec_size; n++) {
WrEn[n] = WrEn[n] & PMask[n];

}
}

IHD-OS-072810-R1V4PT2 167

8.3 Instruction Description

The rest of the chapter contains the description of GEN instructions.

8.3.1 add – Addition

Opcode Instruction Description

64
(0x40)

add <dst> <src0> <src1> Component-wise addition of <src0> and <src1> and storing the
results in <dst>.

Pred Sat Cond
Mod

Src
Mod

Src
Types

Dst
Types

• • • • [FLT] [FLT]

• • • • [INT] [INT]

• • • • [INT] [FLT]

Format:

[(<pred>)] add[.<cmod>] (<exec_size>) <dst> <src0> <src1>

Syntax:

[(<pred>)] add[.<cmod>] (<exec_size>) reg reg reg
[(<pred>)] add[.<cmod>] (<exec_size>) reg reg imm32

Pseudocode:

Evaluate(WrEn);
for (n = 0; n < exec_size; n++) {
 if (WrEn.chan[n] == 1) {
 dst.chan[n] = src0.chan[n] + src1.chan[n];
 }
}

Description:

The add instruction performs component-wise addition of <src0> and <src1> and stores the results in <dst>.

Addition of two floating point numbers follows rules in Table 8-1 (or Table 8-2), if the current floating point
mode is IEEE mode (or ALT mode).

168 IHD-OS-072810-R1V4PT2

Table 8-1. Floating point addition of A (column) and B (row) in IEEE mode

 –inf –finite –denorm –0 +0 +denorm +finite +inf NaN
–inf –inf –inf –inf –inf –inf –inf –inf NaN NaN
–finite –inf * A A A A ** +inf NaN
–denorm –inf B –0 –0 +0 +0 B +inf NaN
–0 –inf B –0 –0 +0 +0 B +inf NaN
+0 –inf B +0 +0 +0 +0 B +inf NaN
+denorm –inf B +0 +0 +0 +0 B +inf NaN
+finite –inf ** A A A A *** +inf NaN
+inf NaN +inf +inf +inf +inf +inf +inf +inf NaN
NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

Notes:
* Result can be { –finite}

** Result can be {–finite, –0, +0, +finite}
*** Result can be { +finite}

Table 8-2. Floating point addition of A (column) and B (row) in ALT mode

 – fmax –finite –denorm –0 +0 +denorm +finite + fmax ****
–fmax –fmax –fmax –fmax –fmax –fmax –fmax –finite +0
–finite –fmax * A A A A ** +fmax
–denorm –fmax B –0 –0 +0 +0 B +fmax
–0 –fmax B –0 –0 +0 +0 B +fmax
+0 –fmax B +0 +0 +0 +0 B +fmax
+denorm –fmax B +0 +0 +0 +0 B +fmax
+finite –finite ** A A A A *** +fmax
+fmax +0 +fmax +fmax +fmax +fmax +fmax +fmax +fmax

Notes:
* Result can be { –fmax, –finite}

** Result can be {–finite, –0, +0, +finite}
*** Result can be { +fmax, +finite}

**** Result is undefined If any of A and/or is {–inf, +inf, NaN}

Restrictions:

Dword integer source is not allowed for this instruction in float execution mode. In other words, if one source
is of type float (:f, :vf), the other source cannot be of type dword integer (:ud or :d).

IHD-OS-072810-R1V4PT2 169

8.3.2 and – Logical And

Opcode Instruction Description

5
(0x05)

and <dst> <src0> <src1> Performing component-wise logic AND of <src0> and <src1> and
storing the results in <dst>.

Pred Sat Cond
Mod

Src
Mod

Src
Types

Dst
Types

• • • [INT] [INT]

Format:

[(<pred>)] and[.<cmod>] (<exec_size>) <dst> <src0> <src1>

Syntax:

[(<pred>)] and[.<cmod>] (<exec_size>) reg reg reg
[(<pred>)] and[.<cmod>] (<exec_size>) reg reg imm32

Pseudocode:

Evaluate(WrEn);
for (n = 0; n < exec_size; n++) {
 if (WrEn.chan[n] == 1) {
 dst.chan[n] = src0.chan[n] & src1.chan[n];
 }
}

Description:

The and instruction performs component-wise logic AND operation between <src0> and <src1> and stores
the results in <dst>. Source modifiers are allowed.

Accumulator register is allowed to be the destination of this instruction with the restrictions listed below.

Restrictions:

Sign (SN) and Overflow (OF) conditions are undefined for this logic instruction. Consequently, saturation
modifier (.sat) is not allowed.

This instruction only applies to integer data types. The behavior is undefined if any operand is float.

When accumulator is the destination of this instruction, only the low bits corresponding to the data type (16
bits for word or 32 bits for dword integer instruction) in the accumulator contain the correct results. The

170 IHD-OS-072810-R1V4PT2

internal extra-precision bits as well as the sign bit of the accumulator are undefined. Consequently, there are
restrictions for subsequent instructions that use the data in the accumulator register created from the previous
logical instruction.

• Only logical and data move instructions are allowed to source the accumulator. Results of other
instructions (e.g. arithmetic or shift) are undefined.

• When the accumulator is the source of a data move (mov or sel) instruction, the destination operand
must be of integer type (e.g. no conversion to float) and this instruction cannot have satuation
instruction modifier.

8.3.3 asr – Arithmetic Shift Right

Opcode Instruction Description

12
(0x0C)

asr <dst> <src0> <src1> Performing component-wise arithmetic right shift of <src0> and
storing the results in <dst>.

Pred Sat Cond
Mod

Src
Mod

Src
Types

Dst
Types

• • • • [INT] [INT]

Format:

[(<pred>)] asr[.<cmod>] (<exec_size>) <dst> <src0> <src1>

Syntax:

[(<pred>)] asr[.<cmod>] (<exec_size>) reg reg reg
[(<pred>)] asr[.<cmod>] (<exec_size>) reg reg imm32

Pseudocode:

Evaluate(WrEn);
for (n = 0; n < exec_size; n++) {
 if (WrEn.channel[n] == 1) {
 if (src0.chan[n] >= 0) {
 dst.chan[n] = src0.chan[n] >> src1.chan[n];
 } else {
 int maskLSB = pow(2, src1.chan[n]) – 1;
 if (maskLSB & src0.chan[n] == 0) {
 dst.chan[n] = sign(src0.chan[n]) *

((abs)src0.chan[n] >> src1.chan[n]);
 } else {

IHD-OS-072810-R1V4PT2 171

 dst.chan[n] = sign(src0.chan[n]) *
((abs)src0.chan[n] >> src1.chan[n])–1;

 }
 }
 }
}

Description:

The asr instruction performs component-wise arithmetic right shift of <src0> and storing the results in <dst>.
Arithmetic right shift performs sign-extension by repeating the MSB of each data channel of <src0>. The
amount of bit shift is provided by <src1>. Only the 5 LSBs of each channel of <src1> are used as an unsigned
integer value. The rest of MSBs of <src1> data channels are ignored.

Operands for this instruction can be signed or unsigned integers, but cannot be floating point type. 5-bit
shifting applies to packed-dword mode and packed-word mode. For packed word mode, the accumulators
have 33 bits per channel.

This instruction is effectively a power-of-2 integer divide with truncate in 2’s compliment form. Truncate in
2’s compliment form is also known as downward rounding – closest integer that is smaller than or equal to the
result. For example, regardless of the bit shift amount in <src1>, the result of arithmetic right-shift of -1
(<src0>) is always -1.

Restrictions:

This instruction does not work with float type operands.

172 IHD-OS-072810-R1V4PT2

8.3.4 avg – Average

Opcode Instruction Description

66
(0x42)

avg <dst> <src0> <src1> Component-wise averaging of <src0> and <src1> and storing the
results in <dst>.

Pred Sat Cond
Mod

Src
Mod

Src
Types

Dst
Types

• • • • [INT] [INT]

Format:

[(<pred>)] avg[.<cmod>] (<exec_size>) <dst> <src0> <src1>

Syntax:

[(<pred>)] avg[.<cmod>] (<exec_size>) reg reg reg
[(<pred>)] avg[.<cmod>] (<exec_size>) reg reg imm32

Pseudocode:

Evaluate(WrEn);
for (n = 0; n < exec_size; n++) {
 if (WrEn.chan[n] == 1) {
 dst.chan[n] = (src0.chan[n] + src1.chan[n] + 1) >> 1;
 }
}

IHD-OS-072810-R1V4PT2 173

Description:

The avg instruction performs component-wise integer average of <src0> and <src1> and stores the results in
<dst>. An integer average uses integer upward rounding. It is equivalent to increment one to the addition of
<src0> and <src1> and then apply an arithmetic right shift to this intermediate value.

Restrictions:

This instruction only applies to integer data types. The behavior is undefined if any operand is float.

Description:

The break instruction is used to early-out from the inner most loop, or early-out from the inner swtich block.

When used in a loop, upon execution, the break instruction terminates the loop for all execution channels
enabled by PMask. This is performed by updating the per channel IP to the <UIP>. In case of all the enabled
channels hit the break instruction, a jump will be performed to the instruction based <JIP>. <UIP> should be
the offset to the end of the inner most conditional or loop block, <JIP> should be the offset to the first
instruction after the loop block. In case of the break instruction directly under the loop, the <JIP> and the
<UIP> will be the same.

When used in a switch block, predication is not allowed. When executed, the break instruction terminates the
current enabled channels for the rest of the switch code block. In case of all the channels hit the break
instruction, a jump will be performed to the instruction based on <JIP>. <JIP> should be the offset to the first
instruction after the switch block. <JIP> and <UIP> must be the same when break is used inside a switch
block.

The following table describes the 2 16-bit instruction pointer offset. Both the <JIP> and <UIP> are signed 16-
bit numbers, added to IP pre-increment In GEN binary, <JIP> and <UIP> are at location <src1> and must be
of type W (signed word integer).

Bit Description

31:16 UIP (Update Target Offset). This field specifies the jump distance in number of 64bits data
chunks if a jump is taken for the instruction.

Format = S15. Signed integer in 2’s compliment

15:0 JIP (Jump Target Offset). This field specifies the jump distance in number of 64bits data
chunks if a jump is taken for the instruction.

Format = S15. Signed integer in 2’s compliment

If SPF is ON, none of the PcIP is updated.

174 IHD-OS-072810-R1V4PT2

8.3.5 break – Break [DevGT+]

Opcode Instruction Description

40
(0x28)

Break <JIP><UIP> Terminating enabled execution channels and conditionally
breaking out from the inner most loop.

Instr
Comp

Imp’d
Accu

Pred Sat Cond
Mod

Src
Mod

Src
Types

Dst
Types

 •

Format:

[(<pred>)] break (<exec_size>) <JIP> <UIP>

Syntax:

[(<pred>)] break (<exec_size>) imm16 imm16

Pseudocode:

Evaluate(WrEn);
for (n = 0; n < exec_size; n++) {

if (WrEn.channel[n] == 1) {
if (PMask[n] == 1) {

PcIP[n] = IP + <UIP>;
}
else {

PcIP[n] = IP+1;
}

}
}
if (PcIP != (IP + 1)) { //all channels

Jump(IP + <JIP>);
}

Description:

The break instruction is used to early-out from the inner most loop, or early-out from the inner swtich block.

When used in a loop, upon execution, the break instruction terminates the loop for all execution channels
enabled by PMask. This is performed by updating the per channel IP to the <UIP>. In case of all the enabled
channels hit the break instruction, a jump will be performed to the instruction based <JIP>. <UIP> should be
the offset to the end of the inner most conditional or loop block, <JIP> should be the offset to the first
instruction after the loop block. In case of the break instruction directly under the loop, the <JIP> and the
<UIP> will be the same.

IHD-OS-072810-R1V4PT2 175

When used in a switch block, predication is not allowed. When executed, the break instruction terminates the
current enabled channels for the rest of the switch code block. In case of all the channels hit the break
instruction, a jump will be performed to the instruction based on <JIP>. <JIP> should be the offset to the first
instruction after the switch block. <JIP> and <UIP> must be the same when break is used inside a switch
block.

The following table describes the 2 16-bit instruction pointer offset. Both the <JIP> and <UIP> are signed 16-
bit numbers, added to IP pre-increment In GEN binary, <JIP> and <UIP> are at location <src1> and must be
of type W (signed word integer).

Bit Description

31:16 UIP (Update Target Offset). This field specifies the jump distance in number of 64bits data
chunks if a jump is taken for the instruction.

Format = S15. Signed integer in 2’s compliment

15:0 JIP (Jump Target Offset). This field specifies the jump distance in number of 64bits data
chunks if a jump is taken for the instruction.

Format = S15. Signed integer in 2’s compliment

need to add detail for SPF.

Restrictions:

Instruction compression is not allowed.

176 IHD-OS-072810-R1V4PT2

8.3.6 case – Case [DevGT+]

Opcode Instruction Description

38
(0x26)

case <dst> <src0> <src1> <JIP> Signifying the start of an case block of code.

Instr
Comp

Imp’d
Accu

Pred Sat Cond
Mod

Src
Mod

Src
Types

Dst
Types

 • •

Format:

[(<pred>)] case (<exec_size>) null null null <JIP>
 case[.<cmod>] (<exec_size>) null <src0> <src1> <JIP>

Syntax:

[(<pred>)] case (<exec_size>) null null null imm16
 case[.<cmod>] (<exec_size>) null reg reg imm16
 case[.<cmod>] (<exec_size>) null reg imm32 imm16

Pseudocode:

Evaluate(WrEn);
for (n = 0; n < exec_size; n++) {

if (WrEn.channel[n] == 1) {
 if (<cmod> == 0) { // no embedded compare

if (PMask.channel[n] == 0) {
PcIP[n] = IP + <JIP>;

}
else
{

PcIP[n] = IP + 1;
}

}
else { // with embedded compare

if (cmod.channel[n] == 0) {
PcIP[n] = IP + <JIP>;

}
else
{

IHD-OS-072810-R1V4PT2 177

PcIP[n] = IP + 1;
}

}
}

}
if (<cmod> == 0) { // no embedded compare

if (PcIP != (IP+1)) { // all channels false
Jump(IP + <JIP>);

}
}
else { // with embedded compare

if (PcIP != (IP+1)) { // all channels false
Jump(IP + <JIP>);

}
}

Description:

The case instruction starts an case/break code block. It restricts execution within the conditional block to only
those channels that were enabled via either the predicate control or the condition from <cmod>.

Each case instruction must have a matching break instruction.

If all channels are inactive (for the case/break block), a jump is performed of the relative distance as specified
in the instruction. This jump must be to right after the matching break instruction when present, or otherwise
to the end of switch code block.

The following table describes the 16-bit exit code <JIP>. <JIP> must be an immediate operand, whereas it is
a signed 16-bit number. When a jump occurs, this value is added to IP pre-increment. In GEN instruction
binary, <JIP> is at location <dst> and must be of type W (signed word integer).

Bit Description

15:0 JIP (Jump Instruction Count). This field specifies the jump distance in number of 64bits
data chunks if a jump is taken for the instruction.

Format = S15. Signed integer in 2’s compliment

need to add detail for SPF.

Restrictions:

Instruction compression is not allowed.

To use embedded compares, the predicate control field for this instruction must be zero, and the conditional
modifier field must be none zero.

To use predicated case instruction, the conditional modifier field must be zero.

The case code block must end with a break instruction.

178 IHD-OS-072810-R1V4PT2

8.3.7 cmp – Compare

Opcode Instruction Description

16
(0x10)

cmp.<cmod> <dst> <src0> <src1> Component-wise comparison of <src0> and <src1> according to
conditional modifier in <cmod> and storing the results in flag
register in <cmod> and <dst>.

Instr
Comp

Imp’d
Accu

Pred Sat Cond
Mod

Src
Mod

Src
Types

Dst
Types

• • • • [FLT]
[INT]

[FLT]
[INT]

Format:

[(<pred>)] cmp[.<cmod>] (<exec_size>) <dst> <src0> <src1>

Syntax:

[(<pred>)] cmp[.<cmod>] (<exec_size>) reg reg reg
[(<pred>)] cmp[.<cmod>] (<exec_size>) reg reg imm32

Pseudocode:

Evaluate(WrEn);
for (n = 0; n < exec_size; n++) {

bitMask[n] = 0;
if (WrEn.chan[n] == 1) {

results[n] = src0.chan[n] - src1.chan[n];
bitMask[n] = Condition(results[n]);
dst.chan[n][0] = bitMask[n];

}
}
flag# = bitMask;

Description:

The cmp instruction performs component-wise comparison of <src0> and <src1> and stores the results in the
selected flag register and in <dst>. It takes component-wise subtraction of <src0> and <src1>, evaluating the
conditional code (excluding NS signal) based on the conditional modifier, and storing the conditional bits in
bit-packed form in the destination flag register and, optionally, in vector form in the LSB of the channels in
<dst>. Conditional modifier field cannot be 0000b, i.e., it must be one of the defined conditional modifier
codes. Destination operand can be a GRF, an MRF or a null register. If it is not null, for the enabled channels,
the LSB of the result in the destination channel contains the flag value for the channel. The other bits are
undefined. When the instruction operates on packed word format, one GRF register may store up to 16 such
comparison results. In dword format, one GRF may store up to 8 results. When the register is used later as a

IHD-OS-072810-R1V4PT2 179

vector of Booleans, as only LSB at each channel contains meaning data, software should make sure all higher
bits are masked out (e.g. by ‘and-ing’ an 0x01 constant).

If <exec_size> is equal or less than 8, when ‘SecHalf’ option flag is not set, only the lower 8 bits of the
selected flag register is updated; otherwise, the higher 8 bits are updated.

When at least one of the source operands is float, the cmp instruction obeys the floating point rules detailed in
the tables in the Floating Point Mode section of Data Type chapter.

Restrictions:

Destination operand cannot be an ARF register, including accumulator.

Saturation modifier cannot be set in this instruction.

Dword integer source is not allowed for this instruction in float execution mode. In other words, if one source
is of type float (:f, :vf), the other source cannot be of type dword integer (:ud or :d).

180 IHD-OS-072810-R1V4PT2

8.3.8 cmpn – Compare NaN

Opcode Instruction Description

17
(0x11)

cmpn.<cmod> <dst> <src0> <src1> Performing component-wise special NaN comparison of
<src0> and <src1> according to conditional modifier in <cmod>
and storing the results in flag register in <cmod> and <dst>.

Instr
Comp

Imp’d
Accu

Pred Sat Cond
Mod

Src
Mod

Src
Types

Dst
Types

• • • • [FLT]
[INT]

[FLT]
[INT]

Format:

[(<pred>)] cmpn[.<cmod>] (<exec_size>) <dst> <src0> <src1>

Syntax:

[(<pred>)] cmpn[.<cmod>] (<exec_size>) reg reg reg
[(<pred>)] cmpn[.<cmod>] (<exec_size>) reg reg imm32

Pseudocode:

Evaluate(WrEn);
for (n = 0; n < exec_size; n++) {

bitMask[n] = 0;
if (EMask.chan[n] == 1) {

results[n] = src0.chan[n] - src1.chan[n];
bitMask[n] = ConditionNaN(results[n]);
dst.chan[n][0] = bitMask[n];

}
}
flag# = bitMask;

Description:

The cmpn instruction performs component-wise special-NaN comparison of <src0> and <src1> and stores the
results in the selected flag register and in <dst>. It takes component-wise subtraction of <src0> and <src1>,
evaluating the conditional signals including NS based on the conditional modifier, and storing the conditional
flag bits in bit-packed form in the destination flag register and, optionally, in vector form in the LSB of the
channels in <dst>. Conditional modifier field cannot be 0000b, i.e., it must be one of the defined conditional
modifier codes. Destination operand can be a GRF, an MRF or a null register. If it is not null, for the enabled
channels, the LSB of the result in the destination channel contains the flag value for the channel. The other
bits are undefined. When the instruction operates on packed word format, one GRF register may store up to 16

IHD-OS-072810-R1V4PT2 181

such comparison results. In dword format, one GRF may store up to 8 results. When the register is used later
as a vector of Booleans, as only LSB at each channel contains meaning data, software should make sure all
higher bits are masked out (e.g. by ‘and-ing’ an 0x01 constant).

If <exec_size> is equal or less than 8, when ‘SecHalf’ option flag is not set, only the lower 8 bits of the
selected flag register is updated; otherwise, the higher 8 bits are updated.

When at least one of the source operands is float, the cmpn instruction obeys the floating point rules detailed
in the tables in the Floating Point Mode section of Data Type chapter.

This instruction is similar to cmp. The only difference is that if the second source operand <src1> is a NaN,
the result for any conditional modifier except .nz is true (see details in Section Error! Reference source not
found.).

For integer operands, cmpn and cmp are identical.

Restrictions:

Destination operand cannot be an ARF register, including accumulator.

Saturation modifier cannot be set in this instruction.

Dword integer source is not allowed for this instruction in float execution mode. In other words, if one source
is of type float (:f, :vf), the other source cannot be of type dword integer (:ud or :d).

182 IHD-OS-072810-R1V4PT2

8.3.9 cont – Continue [DevGT+]

Opcode Instruction Description

41
(0x29)

cont <JIP><UIP> Temporally disabling enabled execution channels for the
remainder of the inner most loop and conditionally jumping to the
last instruction (while) of the loop.

Instr
Comp

Imp’d
Accu

Pred Sat Cond
Mod

Src
Mod

Src
Types

Dst
Types

 •

Format:

[(<pred>)] cont (<exec_size>) <JIP> <UIP>

Syntax:

[(<pred>)] cont (<exec_size>) imm16 imm16

Pseudocode:

Evaluate(WrEn);
for (n = 0; n < exec_size; n++) {

if (WrEn.channel[n] == 1) {
if (PMask[n] == 1) {

PcIP[n] = IP + <UIP>;
}
else {

PcIP[n] = IP + 1;
}

}
}
if (PcIP != (IP+1)) { //all channel true

Jump(IP + <JIP>);
}

Description:

The cont instruction disables execution for the subset of channels for the remainder of the current loop
iteration. Channels remain disabled until right before the while instuction or right before the condition check
code block for the while instruction. In case of all enabled channels hit this instruction, a jump is made a
distance of <JIP> where execution continues.

IHD-OS-072810-R1V4PT2 183

The following table describes the two 16-bit exit code, <JIP> and <UIP>. The field are signed 16-bit
numbers, added to IP pre-increment. The <UIP> should always point to the loop’s associated ‘while’
instruction, and the <JIP> should point to the last instruction of the inner most conditional block if the cont
instruction is inside a conditional block. In case of the break instruction directly under the loop, the <JIP> and
the <UIP> will be the same. In GEN binary, <JIP> and <UIP> are at location <src1> and must be of type W
(signed eword integer).

Bit Description

31:16 UIP (Update Target Offset). This field specifies the jump distance in number of 64bits data
chunks if a jump is taken for the instruction.

Format = S15. Signed integer in 2’s compliment

15:0 JIP (Jump Target Offset). This field specifies the jump distance in number of 64bits data
chunks if a jump is taken for the instruction.

Format = S15. Signed integer in 2’s compliment

need to add detail for SPF.

(1) PMask here is for all the channels enabled for the cont instruction.

Restrictions:

Instruction compression is not allowed.

184 IHD-OS-072810-R1V4PT2

8.3.10 do – Do
Opcode Instruction Description

38
(0x26)

do Updating mask and mask stack to enter a do-while loop.

Instr
Comp

Imp’d
Accu

Pred Sat Cond
Mod

Src
Mod

Src
Types

Dst
Types

Format:

do

Syntax:

do

Pseudocode:

Evaluate(EMask);
LStack.push(LMask);
LStack.push(CMask);
LMask = EMask;
CMask = EMask;

Description:

The do instruction indicates the start of a do-while block. Each do must have a matching while instruction.
Execution of the do instruction causes the LMask and CMask (in that order) to be saved to the LStack for
preservation and eventual restoration upon completion of the do-while block.

This instruction is equivalent to two msave instructions (in the order of “msave lstack lmask” and “msave
lstack cmask”). It is an efficient construct for a do-while block.

This instruction performs a mask-stack push/pop operation. Mask-stack push/pop operations are always done
in 16-bit width regardless of execution size. Nesting depths must be tracked to ensure that a mask-stack
under/overflow does not occur, or that an appropriate mask-stack exception handler is in place.

SPF effectively turns this instruction into a nop, as LMask
and CMask should be coherent with EMask. It may be used as
instruction filler for code readability keeping in mind that
a nop wastes an instruction cycle.

Restrictions:

Predication is not allowed. Instruction compression does not apply to this instruction.

Execution size is ignored for this instruction.

IHD-OS-072810-R1V4PT2 185

8.3.11 p2 – Dot Product 2

Opcode Instruction Description

87
(0x57)

Dp2 <dst> <src0> <src1> Performing two-wide dot product in four-tuples of <src0> and
<src1> and storing the replicated results in four-tuples in <dst>.

Pred Sat Cond
Mod

Src
Mod

Src
Types

Dst
Types

• • • • [FLT] [FLT]

Format:

[(<pred>)] dp2[.<cmod>] (<exec_size>) <dst> <src0> <src1>

Syntax:

[(<pred>)] dp2[.<cmod>] (<exec_size>) reg reg reg
[(<pred>)] dp2[.<cmod>] (<exec_size>) reg reg imm32
Pseudocode: Evaluate(WrEn);
for (n = 0; n < exec_size; n+=4) {
 fTmp = src0.chan[n] * src1.chan[n]

+ src0.chan[n+1] * src1.chan[n+1];
if (WrEn.chan[n] == 1) dst.chan[n] = fTmp;
if (WrEn.chan[n+1] == 1) dst.chan[n+1] = fTmp;
if (WrEn.chan[n+2] == 1) dst.chan[n+2] = fTmp;
if (WrEn.chan[n+3] == 1) dst.chan[n+3] = fTmp;

}

Description:

The dp2 instruction performs a two-wide dot-product on four-tuple vector basis and storing the same scalar
result per four-tuple to all four channels in <dst>. This instruction is similar to dp4 except that every third and
fourth elements of <src0> (post-source-swizzle if present) are not involved in the computation.

Special care has been taken in the hardware such that if the resulting value for a given group of four channels
is 0.0f, the sign of the result correctly reflects the input data of the first two channels of the group of four.

186 IHD-OS-072810-R1V4PT2

Restrictions:

Source operands cannot be an accumulator register.

Execution size cannot be less than 4.

This instruction does not support integer operation.

Horizontal stride must be 1.

[Pre-DevSNB]The results are NOT stored in the accumulator register. This instruction does implicitely update
accumulator register, however with undefined values.

8.3.12 dp3 – Dot Product 3

Opcode Instruction Description

86
(0x56)

dp3 <dst> <src0> <src1> Performing three-wide dot product in four-tuples of <src0> and
<src1> and storing the replicated results in four-tuples in <dst>.

Pred Sat Cond
Mod

Src
Mod

Src
Types

Dst
Types

• • • • [FLT] [FLT]

Format:

[(<pred>)] dp3[.<cmod>] (<exec_size>) <dst> <src0> <src1>

Syntax:

[(<pred>)] dp3[.<cmod>] (<exec_size>) reg reg reg
[(<pred>)] dp3[.<cmod>] (<exec_size>) reg reg imm32

Pseudocode:

Evaluate(WrEn);
for (n = 0; n < exec_size; n+=4) {
 fTmp = src0.chan[n] * src1.chan[n]

+ src0.chan[n+1] * src1.chan[n+1]
+ src0.chan[n+2] * src1.chan[n+2];

if (WrEn.chan[n] == 1) dst.chan[n] = fTmp;
if (WrEn.chan[n+1] == 1) dst.chan[n+1] = fTmp;
if (WrEn.chan[n+2] == 1) dst.chan[n+2] = fTmp;
if (WrEn.chan[n+3] == 1) dst.chan[n+3] = fTmp;

}

IHD-OS-072810-R1V4PT2 187

Description:

The dp3 instruction performs a three-wide dot-product on four-tuple vector basis and storing the same scalar
result per four-tuple to all four channels in <dst>. This instruction is similar to dp4 except that every fourth
element of <src0> (post-source-swizzle if present) is not involved in the computation.

Special care has been taken in the hardware such that if the resulting value for a given group of 4 channels is
0.0f, the sign of the result correctly reflects the input data of the first three channels of the group of four.

Restrictions:

Source operands cannot be an accumulator register.

Execution size cannot be less than 4.

This instruction does not support integer operation.

Horizontal stride must be 1.

[Pre-DevSNB]The results are NOT stored in the accumulator register. This instruction does implicitly update
accumulator register, however with undefined values.

[DevSNB+]The results can be stored in the accumulator register, the channels are wirrten the same way as the
<dst> register with replication.

8.3.13 dp4 – Dot Product 4

Opcode Instruction Description

84
(0x54)

dp4 <dst> <src0> <src1> Performing four-wide dot product of <src0> and <src1> and
storing the four-wide replicated results in <dst>.

Pred Sat Cond
Mod

Src
Mod

Src
Types

Dst
Types

• • • • [FLT] [FLT]

Format:

[(<pred>)] dp4[.<cmod>] (<exec_size>) <dst> <src0> <src1>

Syntax:

[(<pred>)] dp4[.<cmod>] (<exec_size>) reg reg reg
[(<pred>)] dp4[.<cmod>] (<exec_size>) reg reg imm32

188 IHD-OS-072810-R1V4PT2

Pseudocode:

Evaluate(WrEn);
for (n = 0; n < exec_size; n+=4) {
 fTmp = src0.chan[n] * src1.chan[n]

+ src0.chan[n+1] * src1.chan[n+1]
+ src0.chan[n+2] * src1.chan[n+2]
+ src0.chan[n+3] * src1.chan[n+3];

if (WrEn.chan[n] == 1) dst.chan[n] = fTmp;
if (WrEn.chan[n+1] == 1) dst.chan[n+1] = fTmp;
if (WrEn.chan[n+2] == 1) dst.chan[n+2] = fTmp;
if (WrEn.chan[n+3] == 1) dst.chan[n+3] = fTmp;

}

Description:

The dp4 instruction performs a four-wide dot-product on four-tuple vector basis and storing the same scalar
result per four-tuple to all four channels in <dst>.

Restrictions:

Source operands cannot be an accumulator register.

Execution size cannot be less than 4.

This instruction does not support integer operation.

Horizontal stride must be 1.

[Pre-DevSNB]The results are NOT stored in the accumulator register. This instruction does implicitely update
accumulator register, however with undefined values.

IHD-OS-072810-R1V4PT2 189

8.3.14 dph –Dot Product Homogeneous

Opcode Instruction Description

85
(0x55)

dph <dst> <src0> <src1> Performing four-wide homogeneous dot product of <src0> and
<src1> and storing the four-wide replicated results in <dst>.

Pred Sat Cond
Mod

Src
Mod

Src
Types

Dst
Types

• • • • [FLT] [FLT]

Format:

[(<pred>)] dph[.<cmod>] (<exec_size>) <dst> <src0> <src1>

Syntax:

[(<pred>)] dph[.<cmod>] (<exec_size>) reg reg reg
[(<pred>)] dph[.<cmod>] (<exec_size>) reg reg imm32

Pseudocode:

Evaluate(WrEn);
for (n = 0; n < exec_size; n+=4) {
 fTmp = src0.chan[n] * src1.chan[n]

+ src0.chan[n+1] * src1.chan[n+1]
+ src0.chan[n+2] * src1.chan[n+2]
+ src1.chan[n+3];

if (WrEn.chan[n] == 1) dst.chan[n] = fTmp;
if (WrEn.chan[n+1] == 1) dst.chan[n+1] = fTmp;
if (WrEn.chan[n+2] == 1) dst.chan[n+2] = fTmp;
if (WrEn.chan[n+3] == 1) dst.chan[n+3] = fTmp;

}

Description:

The dph instruction performs a four-wide homogeneous dot-product on four-tuple vector basis and storing the
same scalar result per four-tuple to all four channels in <dst>. This instruction is similar to dp4 except that
every fourth element of <src0> (post-source-swizzle if present) is forced to 1.0f.

190 IHD-OS-072810-R1V4PT2

Restrictions:

Source operands cannot be an accumulator register.

Execution size cannot be less than 4.

This instruction does not support integer operation.

Horizontal stride must be 1.

[Pre-DevSNB]The results are NOT stored in the accumulator register. This instruction does implicitely update
accumulator register, however with undefined values.

8.3.15 else – Else [DevGT+]

Opcode Instruction Description

36
(0x24)

else <JIP> An optional statement within an if/else/endif block of code.

Instr
Comp

Imp’d
Accu

Pred Sat Cond
Mod

Src
Mod

Src
Types

Dst
Types

Format:

else (<exec_size>) <JIP>

Syntax:

else (<exec_size>) imm16

Pseudocode:

Evaluate(WrEn);
for (n = 0; n < exec_size; n++) {

if (WrEn.channel[n] == 1) {
PcIP[n] = IP + <JIP>;

}
}
if (PcIP != (IP+1)) { // for all channels

Jump(IP + <JIP>);
}

IHD-OS-072810-R1V4PT2 191

Description:

The else instruction is an optional statement within an if/else/endif block of code. It restricts execution within
the else/endif portion to the opposite set of channels enabled under the if/else portion. Channels which were
inactive prior to entering the if/endif block remain inactive throughout the entire block.

All enabled channels upon arriving the else instruction will be redirected to the matching endif. If all channels
are redirected (by else or before else), a relative jump is performed to the location specified by <JIP>. The
jump target should be the the matching endif instruction for that conditional block.

The following table describes the 16-bit <JIP>. In GEN binary, <JIP> is at location <dst> and must be of
type W (signed word integer). <JIP> must be an immediate operand, it is a signed 16-bit number and is
intended to be forward referencing. This value is added to IP pre-increment.

Bit Description

15:0 JIP (Jump Instruction Count). This field specifies the jump distance in number of 64bits
data chunks if a jump is taken for the instruction.

Format = S15. Signed integer in 2’s compliment

Restrictions:

Instruction compression is not allowed.

Predication is not allowed.

192 IHD-OS-072810-R1V4PT2

8.3.16 endif – End-If

Opcode Instruction Description

37
(0x24)

endif <JIP> Restoring execution to those data channels that were active prior to
the if/else/endif block. Jump to next hop point if all channels are
disabled.

Pred Sat Cond
Mod

Src
Mod

Src
Types

Dst
Types

Format:

endif <JIP>

Syntax:

endif imm16

Pseudocode:

Evaluate(WrEn);
if (WrEn == 0) { // all channels false

Jump(IP + <JIP>);
}

Description:

The endif instruction terminates an if/else/endif block of code. It restores the execution to these data channels
that were active prior to the if/else/endif block.

The endif instruction is also used to hop out nested conditionals by jumping to the end of the next outer
conditional block when all channels are disabled.

The following table describes the 16-bit jump target offset <JIP>. In GEN binary, <JIP> is at location <dst>
and must be of type W (signed word integer). <JIP> must be an immediate operand.

Bit Description

31:16 Reserved: MBZ

15:0 JIP (Jump Target Offset). This field specifies the jump distance in number of 64bits data
chunks if a jump is taken for the instruction.

Format = S15. Signed integer in 2’s compliment

IHD-OS-072810-R1V4PT2 193

Opcode Instruction Description

20
(0x14)

f16to32 <dst> <src0> Component-wise convert the half precision float in <src0> to single
precision float and storing in <dst>.

Imp’d
Accu

Pred Sat Cond
Mod

Src
Mod

Src
Types

Dst
Types

 • • • • [W] [FLT]

Format:

[(<pred>)] f16to32[.<cmod>] (<exec_size>) <dst> <src0>

Syntax:

[(<pred>)] f16to32[.<cmod>] (<exec_size>) reg reg
[(<pred>)] f16to32[.<cmod>] (<exec_size>) reg imm16

Pseudocode:

Evaluate(WrEn);
for (n = 0; n < exec_size; n++) {
 if (WrEn.chan[n] == 1) {

 dst.chan[n] = convert half precision float to single precision
float(src0.chan[n]);

 }
}

Description:

The f16to32 instruction converts the half precision float in <src0> to single precision float and storing in
<dst>.

Since half precision float is not a defined type in Gen, the source data type for f16to32 instruction must be
Word.

Table n-n: Floating point coversion in IEEE mode
Half Precision Float Single Precision Float
-inf -inf
-finite -finite
-denorm -finite
-0 -0

194 IHD-OS-072810-R1V4PT2

+0 +0
+denorm +finite
+finite +finite
+inf +inf
NaN NaN

 Input denorm should not be flushed.

Restrictions:

if (src0 == VMask) {

if (VMask.channel[n] == 0) {
PcIP[n] = IP + <JIP>;

}
else {

PcIP[n] = IP+1;
}

}
}

if (PcIP != (IP+1)) { // for all channels

Jump(IP + <JIP>);
}

}

Description:

The fork instruction starts a fork block of code. It restricts execution within the fork block to only those
channels that were enabled via select register (dispatch mask or vector mask) and further qualified by the
predicate control.

If all channels are inactive (for the fork block), a jump is performed of the relative distance as specified in the
instruction.

The following table describes the 16-bit exit code <JIP>. <JIP> must be an immediate operand, whereas
JumpIP is a signed 16-bit number. When a jump occurs, this value is added to IP pre-increment. In GEN
instruction binary, <JIP> is at location <dst> and must be of type W (signed word integer).

If the register specified is NULL, fork simply set SPF = 1.

The fork instruction should be used to turn SPF off in a middle of a program, it will bring the PcIPs the the
current ExIP for continuing execution.

IHD-OS-072810-R1V4PT2 195

Bit Description

15:0 JIP (Jump Instruction Count). This field specifies the jump distance in number of 64bits
data chunks if a jump is taken for the instruction.

Format = S15. Signed integer in 2’s compliment

Restrictions:

Instruction is only allowed at global scope.

Src0 is limited to DMask.0, Dmask.1, Vmask.0, Vmask.1 and NULL.

• The fork instruction should only be used to enable 32 channel execution where per-channel branch is
required. The SPF control must be set during thread dispatch time based on 32 channel dispatch.
Within the shader, the fork instruction should only be used to switch between the 3 modes below:

- 32 channel execution in SPF on mode, where no per-channel branch can be performed

- lo-16 channel execution in SPF off mode, where per-channel branch on the low 16 channels can
be performed, QtrCtrl {H1} must be used in this case.

- hi-16 channel execution in SPF off mode, where per-channel branch on the high 16 channels can
be performed, QtrCtrl {H2} must be used in this case.

• Qtr control is not allowed for the fork instruction.

196 IHD-OS-072810-R1V4PT2

8.3.17 frc – Fraction

Opcode Instruction Description

67
(0x43)

frc <dst> <src0> Taking component-wise truncate-to-minus-infinity fraction operation
of <src0> and storing the results in <dst>.

Pred Sat Cond
Mod

Src
Mod

Src
Types

Dst
Types

• • • [FLT] [FLT]

• • • [FLT] [INT]

Format:

[(<pred>)] frc[.<cmod>] (<exec_size>) <dst> <src0>

Syntax:

[(<pred>)] frc[.<cmod>] (<exec_size>) reg reg
[(<pred>)] frc[.<cmod>] (<exec_size>) reg imm32

Pseudocode:

Evaluate(WrEn);
for (n = 0; n < exec_size; n++) {
 if (WrEn.chan[n] == 1) {
 dst.chan[n] = src0.chan[n] – floor(src0.chan[n]);
 }
}

Description:

The frc instruction computes, component-wise, the truncate-to-minus-infinity fractional values of <src0> and
stores the results in <dst>. The results, in the range of [0.0, 1.0], are the fractional portion of the source data.

Source operand for this instruction must be of floating point type. This instruction can only operate on
normalized floating source and therefore can not take accumulator as source or destination operand.

This instruction only applies to floating point operands.

Floating point fraction computation follows rules in Table 8-3 (or Table 8-4), if the current floating point
mode is IEEE mode (or ALT mode).

IHD-OS-072810-R1V4PT2 197

Table 8-3. Floating point fraction computation in IEEE mode

<src0> –inf –finite –denorm –0 +0 +denorm +finite +inf NaN
<dst> NaN * +0 +0 +0 +0 * NaN NaN

Notes:
* Result is in the range of [+0, 1) – not including 1.

Table 8-4. Floating point fraction computation in ALT mode

<src0> – fmax –finite –denorm –0 +0 +denorm +finite + fmax **
<dst> +0 * +0 +0 +0 +0 * +0

Notes:
* Result is in the range of [+0, 1) – not including 1.

** Result is undefined if <src0> is {–inf, +inf, NaN}.

Restrictions:

Saturation modifier does not apply to this instruction.

This instruction can not take accumulator as source or destination operand as it can only operate on
normalized floating source.

This instruction does implicitely update accumulator register when enabled, however with undefined values.

In case of the halt instruction not inside any conditional code block, the value of <JIP> and <UIP> should be
the same. In case of the halt instruction inside conditional code block, the <UIP> should be the end of the
program, and the <JIP> should be end of the most inner conditional code block.

The following table describes the 16-bit jump offsets. In GEN binary, <JIP> and <UIP> are at location
<src1> and must be of type W (signed word integer). The <JIP> and <UIP> are added to IP pre-increment.

Bit Description

31:16 UIP (Update Target Offset). This field specifies the jump distance in number of 64bits data
chunks if a jump is taken for the channel.

Format = S15. Signed integer in 2’s compliment

15:0 JIP (Jump Target Offset). This field specifies the jump distance in number of 64bits data
chunks if a jump is taken for the instruction.

Format = S15. Signed integer in 2’s compliment

If SPF is ON, none of the PcIP is updated. The UIP must be used to update the execution IP, the JIP is not
used in this case.

Restrictions:

<dst> and <src0> must be NULL.jmpi – Jump Indexed

198 IHD-OS-072810-R1V4PT2

Opcode Instruction Description

32
(0x20)

jmpi <index> Redirecting program execution to <index> instructions forward of the
current post-incremented instruction pointer.

Pred Sat Cond
Mod

Src
Mod

Src
Types

Dst
Types

•

Format:

[(<pred>)] jmpi (1) <exitcode> {NoMask}

Syntax:

[(<pred>)] jmpi (1) reg32 {NoMask}
[(<pred>)] jmpi (1) imm32 {NoMask}

Pseudocode:

Evaluate(WrEn);
if (WrEn != 0) {
 Jump(<exitcode.index> + 1); of // +1 if compacted, +2 if not.
}

Description:

The jmpi instruction redirects program execution to <exitcode.index> instructions forward of the current post-
incremented instruction pointer. <exitcode.index> is treated a signed integer value, with positive integers or
zero generating forward jumps, and negative integers generating backward jumps. An <exitcode.index> value
of 0 means execution continues at the instruction immediately following the jmpi instruction, while an index
value of -1 would imply an infinite loop.

Bit Description

31:16 Reserved: MBZ

15:0 index (Jump Index)

This field specifies the jump distance in number of 64bits data chunks if a jump is taken for
the instruction.

Format = S15. Signed integer in 2’s compliment

<exitcode> may be a scalar register or an immediate. The data type of <exitcode > must be D (signed
doubleword integer). However, hardware only uses lower 16 bits of <exitcode>. The valid range of
<exitcode.index> is [–32768, 32767]. Behavior for <exitcode.index> outside that range is undefined.

IHD-OS-072810-R1V4PT2 199

This instruction executes regardless of the calculated WrEn at the time of issue. – To reduce hardware
complexity, instruction optional control {NoMask} must be set for this instruction. This instruction invokes a
thread switch after issue to allow any masks and/or IP to be resolved if necessary.

Execution size must be 1.

Predication is allowed to provide conditional jump with a scalar condition. As the execution size is 1, the first
channel of PMASK (flags post prediction control and negate) is used to determine whether the jump is taken
or not. If the condition is false, the jump is not taken and the IP immediately following will be executed next.

In GEN binary, <exitcode.index> is at location <src1>. IP register must be put (for example, by the
assembler) at <dst> and <src0> locations.

If SPF is ON, none of the PcIP is updated.

200 IHD-OS-072810-R1V4PT2

8.3.18 halt – Halt [DevGT+]

Opcode Instruction Description

42
(0x2A)

halt <JIP> Temporarily suspending execution for all enabled execution
channels.

Instr
Comp

Imp’d
Accu

Pred Sat Cond
Mod

Src
Mod

Src
Types

Dst
Types

 •

Format:

[(<pred>)] halt (<exec_size>) <JIP>

Syntax:

[(<pred>)] halt (<exec_size>) imm16

Pseudocode:

Evaluate(WrEn);
for (n = 0; n < exec_size; n++) {

if (WrEn.channel[n] == 1) {
PcIP[n] = IP + <JIP>;

else {
PcIP[n] = (IP+1);

}
}
if (PcIP != (IP+1)) { // for all channels

Jump(IP + <JIP>);
}

Description:

The halt instruction temporarily suspends execution for all enabled compute channels. The value of AMask is
updated, with bits in positions of enabled channels set to ‘0’. If all the bits of the resultant AMask are cleared,
a jump is made <inst_count> instructions away.

The halt instruction is also used inside subroutines as a ‘return’, utilizing AMask to keep track of which
execution channels have returned and which to continue execution. Since there is no hardware mask stack for
AMask, software must manually preserve the value of AMask around a subroutine call.

The following table describes the 16-bit jump offset <JIP>. In GEN4 binary, <JIP> is at location <src1> and
must be of type W (signed word integer). The <JIP> is added to IP pre-increment.

IHD-OS-072810-R1V4PT2 201

Bit Description

15:0 JIP (Jump Instruction Count). This field specifies the jump distance in number of 64bits
data chunks if a jump is taken for the instruction.

Format = S15. Signed integer in 2’s compliment

Restrictions:

Instruction compression is not allowed.

IP register must be put (for example, by the assembler) at <dst> and <src0> locations.

8.3.19 if – If [DevGT+]

Opcode Instruction Description

34
(0x22)

if <dst> <src0> <src1> <JIP> Signifying the start of an if/else/endif block of code.

Instr
Comp

Imp’d
Accu

Pred Sat Cond
Mod

Src
Mod

Src
Types

Dst
Types

 • •

Format:

[(<pred>)] if (<exec_size>) null null null <JIP>
 if[.<cmod>] (<exec_size>) null <src0> <src1> <JIP>

Syntax:

[(<pred>)] if (<exec_size>) null null null imm16
 if[.<cmod>] (<exec_size>) null reg reg imm16
 if[.<cmod>] (<exec_size>) null reg imm32 imm16

Pseudocode:

Evaluate(WrEn);
for (n = 0; n < exec_size; n++) {

if (WrEn.channel[n] == 1) {
 if (<cmod> == 0) { // no embedded compare

if (PMask.channel[n] == 0) {
PcIP[n] = IP + <JIP>;

202 IHD-OS-072810-R1V4PT2

}
else {

PcIP[n] = IP+1;
}

}
else { // with embedded compare

if (cmod.channel[n] == 0) {
PcIP[n] = IP + <JIP>;

}
else {

PcIP[n] = (IP+1);
}

}
}

}
if (<cmod> == 0) { // no embedded compare

if (PcIP != (IP+1)) { // for all channels
Jump(IP + <JIP>);

}
}
else { // with embedded compare

if (PcIP != (IP+1)) { // for all channels
Jump(IP + <JIP>);

}
}

Description:

The if instruction starts an if/endif or an if/else/endif block of code. It restricts execution within the
conditional block to only those channels that were enabled via either the predicate control or the condition
from <cmod>.

Each if instruction must have a matching endif instruction and may have up to one matching else instruction
before endif.

If all channels are inactive (for the if/endif or if/else block), a jump is performed of the relative distance as
specified in the instruction. This jump must be to right after the matching else instruction when present, or
otherwise to the matching endif instruction of that conditional block.

The following table describes the 16-bit exit code <JIP>. <JIP> must be an immediate operand, whereas
JumpIP is a signed 16-bit number. When a jump occurs, this value is added to IP pre-increment. In GEN
instruction binary, <JIP> is at location <dst> and must be of type W (signed word integer).

IHD-OS-072810-R1V4PT2 203

Bit Description

15:0 JIP (Jump Instruction Count). This field specifies the jump distance in number of 64bits
data chunks if a jump is taken for the instruction.

Format = S15. Signed integer in 2’s compliment

need to add detail for SPF.

Restrictions:

Instruction compression is not allowed.

To use embedded compares, the predicate control field for this instruction must be zero, and the conditional
modifier field must be none zero.

To use predicated if instruction, the conditional modifier field must be zero.

204 IHD-OS-072810-R1V4PT2

8.3.20 line – Line

Opcode Instruction Description

89
(0x59)

Line <dst> <src0> <src1> Computing a component-wise line equation (v = p*u+q) of <src0>
and <src1> and storing the results in <dst>.

Pred Sat Cond
Mod

Src
Mod

Src
Types

Dst
Types

• • • • [FLT]
[INT]

[FLT]
[INT]

Format:

[(<pred>)] line[.<cmod>] (<exec_size>) <dst> <src0> <src1>

Syntax:

[(<pred>)] line[.<cmod>] (<exec_size>) reg reg reg
[(<pred>)] line[.<cmod>] (<exec_size>) reg reg imm32

Pseudocode:

Evaluate(WrEn);
for (n = 0; n < exec_size; n++) {
for (n = 0; n < exec_size; n++) {
 dwP = src0.RegNum.SubRegNum[bits4:2] // a DW aligned scalar
 dwQ = src0.RegNum.(SubRegNum[bit4]|0x8) // 4-th component
 if (WrEn.chan[n] == 1) {
 dst.chan[n] = dwP * src1.chan[n] + dwQ
 }
}

Description:

The line instruction computes a component-wise line equation (v = p*u+q where u/v are vectors and p/q are
scalars) of <src0> and <src1> and storing the results in <dst>. <src1> is the input vector u. <src0> provides
input scalars p and q, where p is the scalar value based on the region description of <src0> and q is the scalar
value implied from <src0> region. Specifically, q is the fourth component of the 4-tuple (128-bit aligned) that
p belongs to.

IHD-OS-072810-R1V4PT2 205

Restrictions:

This is a specialized instruction that only support execution size of 8 or 16.

<src0> region must be a replicated scalar (with HorzStride = VertStride = 0).

Dword integer source is not allowed for this instruction in float execution mode. In other words, if one source
is of type float (:f, :vf), the other source cannot be of type dword integer (:ud or :d).

In particular, <src0> must be float. <src1> may be float, byte or word integer. <src1> cannot be dword
integer. <dst> may be float or integer of any size.

Source operands cannot be an accumulator register.

<src0> for line instruction has to have .0 or .4 as the subregister number.

8.3.21 lzd – Leading Zero Detection

Opcode Instruction Description

74
(0x4A)

lzd <dst> <src0> Performing component-wise leading zero detection of <src0> and
storing the results in <dst>.

Instr
Comp

Imp’d
Accu

Pred Sat Cond
Mod

Src
Mod

Src
Types

Dst
Types

• • • • • [INT] [INT]

Format:

[(<pred>)] lzd[.<cmod>] (<exec_size>) <dst> <src0>

Syntax:

[(<pred>)] lzd[.<cmod>] (<exec_size>) reg reg
[(<pred>)] lzd[.<cmod>] (<exec_size>) reg reg

206 IHD-OS-072810-R1V4PT2

Pseudocode:

Evaluate(WrEn);
for (n = 0; n < exec_size; n++) {
 if (WrEn.chan[n] == 1) {
 UD udScalar = src0.chan[n];
 UD cnt = 0;
 while ((udScalar & (1<<31)) == 0 && cnt != 32) {
 cnt ++;
 udScalar = udScalar << 1;

}
 dst.chan[n] = cnt;
 }
}

Description:

The lzd instruction counts component-wise the leading zeros from <src0> and storing the resulting counts in
<dst>.

This instruction only work on unsigned dword source. Source operand may be a signed or unsigned. If it is a
signed integer, source modifier (abs) must be used to convert the source into an unsigned integer type.

The destination operand must also be of unsigned dword type.

Restrictions:

The destination operand cannot be the accumulator.

This instruction does implicitely update accumulator register when enabled, however with undefined values.

IHD-OS-072810-R1V4PT2 207

8.3.22 lrp – Linear Interpolation
Opcode Instruction Description

92
(0x5c)

lrp <dst> <src0> <src1> Computing a component-wise lrp equation (w = u*x+v*(1-x) of
vectors (u, v, x) from <src0> and vector <src1> (and implied vector
<src2>) and storing the results in <dst>.

Pred Sat Cond
Mod

Src
Mod

Src
Types

Dst
Types

• • • [FLT] [FLT]

Format:

[(<pred>)] lrp[.<cmod>] (<exec_size>) <dst> <src0> <src1>

Syntax:

[(<pred>)] lrp[.<cmod>] (<exec_size>) reg reg reg

Pseudocode:

Evaluate(WrEn);
for (n = 0; n < exec_size; n++) {
 if (WrEn.chan[n] == 1) {
 dst.chan[n] = src0.chan[n] * src2.chan[n] + src1.chan[n]
* (1 – src2.chan[n])
 }
}

Description:

The lrp instruction takes component-wise multiplication of <src0> and <src1>, and adds the result to the
component-wise multiplication of <src2> and (1 - <src0>) , and then stores the final results in <dst>.

The lrp instruction uses the 3-source instruction format.

Restrictions:

This instruction only supports float source and destination.

Immediate source is not allowed for lrp.

The vertical stride is overloaded to 4 in HW for 3-src instructions.

The overflow conditional modifier is not allowed.

208 IHD-OS-072810-R1V4PT2

8.3.23 mac – Multiply Accumulate

Opcode Instruction Description

72
(0x48)

mac <dst> <src0> <src1> Performing component-wise multiply accumulate of <src0> and
<src1> and storing the results in <dst>.

Pred Sat Cond
Mod

Src
Mod

Src
Types

Dst
Types

• • • • [FLT] [FLT]

• • • • [INT] [INT]

Format:

[(<pred>)] mac[.<cmod>] (<exec_size>) <dst> <src0> <src1>

Syntax:

[(<pred>)] mac[.<cmod>] (<exec_size>) reg reg reg
[(<pred>)] mac[.<cmod>] (<exec_size>) reg reg imm32

Pseudocode:

Evaluate(WrEn);
for (n = 0; n < exec_size; n++) {
 if (WrEn.chan[n] == 1) {
 dst.chan[n] = src0.chan[n] * src1.chan[n] + acc0.chan[n]
 }
}

Description:

The mac instruction takes component-wise multiplication of <src0> and <src1>, adds the results with the
corresponding accumulator values, and then stores the final results in <dst>.

Restrictions:

Accumulator is an implied source to the addition portion of the computation. Explicit source operands cannot
be accumulator.

This instruction doesn’t support dword integers (D or UD).

IHD-OS-072810-R1V4PT2 209

8.3.24 mach – Multiply Accumulate High

Opcode Instruction Description

73
(0x49)

mach <dst> <src0> <src1> Performing component-wise multiply accumulation of <src0>,
<src1> and accumulator register, and returning the high dword of
results in <dst>.

Pred Sat Cond
Mod

Src
Mod

Src
Types

Dst
Types

• • • [INT] [INT]

Format:

[(<pred>)] mach[.<cmod>] (<exec_size>) <dst> <src0> <src1>

Syntax:

[(<pred>)] mach[.<cmod>] (<exec_size>) reg reg reg
[(<pred>)] mach[.<cmod>] (<exec_size>) reg reg imm32

Pseudocode:

Evaluate(WrEn);
for (n = 0; n < exec_size; n++) {

acc0.chan[n][63:0]
= (src0.chan[n][31:16] * src1.chan[n][31:0])<<16

+ acc0.chan[n][63:0];
if (WrEn.channel[n] == 1) {

dst.channel[n][31:0] = acc0.chan[n][63:32]
}

}

210 IHD-OS-072810-R1V4PT2

Description:

The mach instruction performs dword integer multiply-accumulate operation and outputs the high dword (bits
[63:32]). On a component by component basis, this instruction multiplies dwords in <src1> with the high
words of dwords in <src0>, left-shifts the results by 16 bits, adds them with the corresponding accumulator
values, and keeps the whole 64-bit results in the accumulator. It then stores the high dword (bits [63:32]) of
the results in <dst>.

This instruction is intended to be used to emulate 32-bit dword integer multiplication by utilizing the large
number of bits available in the accumulator. For example, the following three instructions perform vector
multiplication of two 32-bit signed integer source from r2 and r3 and store the resulting vectors with high 32-
bit in r4 and low 32-bit in r5.

mul (8) acc0:d r2.0<8;8,1>d r3.0<8;8,1>:d

mach (8) rTemp<1>:d r2.0<8;8,1>d r3.0<8;8,1>:d

mov (8) r5.0<1>:d rTemp:d // hi-32bits

mov (8) r6.0<1>:d acc0:d // lo-32bits

The MUL and MACH instruction should have all channels enabled. The first MOV should have channel
enable from the destHI of IMUL, the second MOV should have the channel enable from the destLO of IMUL.

As mach is used to generate part of 64-bit dword integer results, saturation modifier should not be used. In
fact, saturation modifier should not be used for any of these three instructions.

Source and destination operands must be dword integers. Source and destination must be of the same type,
signed integer or unsigned integer.

• If <dst> is UD, <src0> and <src1> may be UD and/or D. However, if any of <src0> and <src1> is D,
source modifier, (abs), must be present to convert it to match with <dst>.

• If <dst> is D, <src0> and <src1> must also be D. They cannot be UD as it may cause unexpected
overflow because the computed results are limited to 64 bits.

Restrictions:

Accumulator is an implied source to the addition portion of the computation. Therefore, explicit source
operands cannot be accumulator.

IHD-OS-072810-R1V4PT2 211

8.3.25 mad – Multiply Add

Opcode Instruction Description

91
(0x5B)

mad <dst> <src0> <src1> <src2> Component-wise multiply add of <src0>, <src1>, and <src2>
and storing the results in <dst>.

Pred Sat Cond
Mod

Src
Mod

Src
Types

Dst
Types

• • • • [FLT] [FLT]

Format:

[(<pred>)] mad[.<cmod>] (<exec_size>) <dst> <src0> <src1> <src2>

Syntax:

[(<pred>)] mad[.<cmod>] (<exec_size>) reg reg reg reg

Pseudocode:

Evaluate(WrEn);
for (n = 0; n < exec_size; n++) {
 if (WrEn.chan[n] == 1) {
 dst.chan[n] = src1.chan[n] * src2.chan[n] + src0.chan[n]
 }
}

Description:

The mad instruction follows the 3-src instruction format.

The mad instruction takes component-wise multiplication of <src1> and <src2>, adds the results with the
corresponding <src0> values, and then stores the final results in <dst>.

Restrictions:

This instruction only supports float source and destination.

Immediate source is not allowed for mad.

The vertical stride is overloaded to 4 in HW for 3-src instructions.

212 IHD-OS-072810-R1V4PT2

8.3.26 movi – Move Indexed

Opcode Instruction Description

3

 (0x3)

movi <dst> <src0> Fast component-wise indexed move from <src0> to <dst>.

Pred Sat Cond
Mod

Src
Mod

Src
Types

Dst
Types

• • • • [FLT]
[INT]

[FLT]
[INT]

Format:

[(<pred>)] movi[.<cmod>] (<exec_size>) <dst> <src0>

Syntax:

[(<pred>)] movi[.<cmod>] (<exec_size>) reg reg

Pseudocode:

Evaluate(WrEn)
srcregfile = regfile(src0)
srcreg = reg(address[0])
for (n = 0; n < exec_size; n++) {
 if (WrEn.chan[n] == 1) {
 srcsubreg = subreg(address[n] + addr imm)
 dst.chan[n] = srcregfile.srcreg.srcsubreg
 }
}

Description:

The movi instruction performs a fast component-wise indexed move for subfields from <src0> to <dst>. The
source operand must be an indirectly-addressed register. All channels of the source operand share the same
register number, which is provided by the register field of the first address subregister, with a possible
immediate address offset. The register fields of the subsequent address subregisters are ignored by hardware.
The subregister number of a source channel is provided by the subregister field of the corresponding address
subregister.

Destination register may be either a directly-addressed or an indirectly-addressed register.

IHD-OS-072810-R1V4PT2 213

This instruction effectively performs a subfield shuffling from one register to another. Up to eight subfields
can be selected by an instruction.

Restrictions:

Source operand must be a GRF register.

Source and destination must be the same type.

This instruction does not implicitly update accumulator register.

Execution size must be less than 16 (as there are only 8 address registers)

Address register for source must be aligned to the base (a0.0).

Destination register (directly or indirectly addressed) must be half GRF aligned (i.e. 16-byte aligned).

Destination stride in unit of byte must equal to the source element size in unit of byte.

Align16 access mode is not allowed for MOVI.

Alll the index registers used in MOVI instruction must all point to the same GRF register.

MOVI must use 1x1 indirect regioning.

MOVI is always based on register offset zero no matter what the destination offset is. The destination offset is
used in HW only to create channel enables. The first index register (a0.0) will always be used to select the
first element of the destination start from offset zero. Each index register will be used to select 1 element if
type is byte, each index register will be used to select 2 elements if type is word, and each index register will
be used to select 4 elements if type is dword

Conditional Modifier is not allowed for this instruction.

HW Implementation Details:

The destination offset of the movi instruction is only used in HW to generate destination write enables. Each
element of the destination is directly mapped to the index registers for the movi instruction.

For Byte movi, byte0 of the destination is selected by a0.0[4:0], byte1 is selected by a0.1[4:0], ..., and byte7 is
selected by a0.7[4:0]. The rest of the bytes are undefined.

For Word movi, byte0 of the destination is selected by (a0.0[4:1] & “0”), byte1 is selected by (a0.0[4:1] &
“1”), byte2 is selected by (a0.1[4:1] & “0”), byte3 is selected by (a0.1[4:1] & “1”), ..., and byte15 is selected
by (a0.7[4:1] & “1”). The rest of the bytes are undefined.

For DWord or float movi, byte0 of the destination is selected by (a0.0[4:2] & “00”), byte1 is selected by
(a0.0[4:2] & “01”), byte2 is selected by (a0.0[4:2] & “10”), byte3 is selected by (a0.0[4:2] & “11”), byte4 is
selected by (a0.1[4:2] & “00”), byte5 is selected by (a0.1[4:2] & “01”), ..., byte31 is selected by (a0.7[4:2] &
“11”).

For all 3 conditions above, a0.n’[4:0] = a0.n[4:0] + addr_imm[4:0].

214 IHD-OS-072810-R1V4PT2

8.3.27 mul – Multiply

Opcode Instruction Description

65
(0x41)

mul <dst> <src0> <src1> Performing component-wise multiplication of <src0> and <src1>
and storing the results in <dst>.

Pred Sat Cond
Mod

Src
Mod

Src
Types

Dst
Types

• • • • [FLT]
[INT]

[FLT]
[INT]

Format:

[(<pred>)] mul[.<cmod>] (<exec_size>) <dst> <src0> <src1>

Syntax:

[(<pred>)] mul[.<cmod>] (<exec_size>) reg reg reg
[(<pred>)] mul[.<cmod>] (<exec_size>) reg reg imm32

Pseudocode:

Evaluate(WrEn);
for (n = 0; n < exec_size; n++) {
 if (WrEn.chan[n] == 1) {
 dst.chan[n] = src0.chan[n] * src1.chan[n];
 }
}

Description:

The mul instruction performs component-wise multiplication of <src0> and <src1> and stores the results in
<dst>.

When both <src0> and <src1> are of type D or UD, only the lower 16 bits of each element of <src0> are used.
Accumulator maintains full 48-bit precision. The macro described in mach instruction should be used to
obtain the full precision 64 bits multiplication results.

Multiplication of two floating point numbers follows rules in Table 8-5 (or Table 8-6), if the current floating
point mode is IEEE mode (or ALT mode).

IHD-OS-072810-R1V4PT2 215

Table 8-5. Floating point multiplication of A (column) and B (row) in IEEE mode

 –inf –finite –1.0 –denorm –0 +0 +denorm +1.0 +finite +inf NaN
–inf +inf +inf +inf NaN NaN NaN NaN –inf –inf –inf NaN
–finite +inf * –A +0 +0 –0 –0 A ** –inf NaN
–1.0 +inf –B +1.0 +0 +0 –0 –0 –1.0 –B –inf NaN
–denorm NaN +0 +0 +0 +0 –0 –0 –0 –0 NaN NaN
–0 NaN +0 +0 +0 +0 –0 –0 –0 –0 NaN NaN
+0 NaN –0 –0 –0 –0 +0 +0 +0 +0 NaN NaN
+denorm NaN –0 –0 –0 –0 +0 +0 +0 +0 NaN NaN
+1.0 –inf B –1.0 –0 –0 +0 +0 +1.0 B +inf NaN
+finite –inf ** –A –0 –0 +0 +0 A * +inf NaN
+inf –inf –inf –inf NaN NaN NaN NaN +inf +inf +inf NaN
NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

Note:
* Result may be {+finite, +inf (overflow)}

** Result may be {–inf (overflow), –finite}

Table 8-6. Floating point multiplication of A (column) and B (row) in ALT mode

 – fmax –finite –1.0 –denorm –0 +0 +denorm +1.0 +finite +fmax ***

– fmax +fmax +fmax
+fma

x –0 –0 +0 +0 –fmax –fmax –fmax
–finite +fmax * –A +0 +0 –0 –0 A ** –fmax
–1.0 +fmax –B +1.0 +0 +0 –0 –0 –1.0 –B –fmax
–denorm +0 +0 +0 +0 +0 –0 –0 –0 –0 –0
–0 +0 +0 +0 +0 +0 –0 –0 –0 –0 –0
+0 –0 –0 –0 –0 –0 +0 +0 +0 +0 +0
+denorm –0 –0 –0 –0 –0 +0 +0 +0 +0 +0
+1.0 –fmax B –1.0 –0 –0 +0 +0 +1.0 B +fmax
+finite –fmax ** –A –0 –0 +0 +0 A * +fmax

+fmax –fmax –fmax
–

fmax –0 –0 +0 +0 +fmax +fmax +fmax

Note:
* Result may be {+finite, +fmax (overflow)}

** Result may be {–fmax (overflow), –finite}
*** Result is undefined If any of A and/or is {–inf, +inf, NaN}

Restrictions:

Source operands cannot be an accumulator register.

When operating on integers with at least one of the source being a dword type (signed or unsigned), the
destination cannot be a float (implementation note: the data converter only looks at the lower 34 bits of the
results).

Dword integer source is not allowed for this instruction in float execution mode. In other words, if one source
is of type float (:f, :vf), the other source cannot be of type dword integer (:ud or :d).

216 IHD-OS-072810-R1V4PT2

When operating on integers with at least one of the source being a dword type (signed or unsigned), the
Overflow and Sign flags are undefined. Therefore, conditional modifier and instruction operation ‘.sat’ cannot
be used.

When multiple a DW and a W, the W has to be on src0, and the DW has to be on src1.

8.3.28 nop – No Operation

Opcode Instruction Description

126
(0x7E)

nop Issuing an dummy instruction and performing no operation.

Pred Sat Cond
Mod

Src
Mod

Src
Types

Dst
Types

Format:

nop

Syntax:

nop

Pseudocode:

n/a

Description:

The nop instruction takes an instruction dispatch but performs no operation. It may be used for assembly
patching in memory, or be used to insert an instruction delay in the program sequence.

The nop instruction takes no operands, no instruction modifier, no conditional modifier and no predication.

IHD-OS-072810-R1V4PT2 217

8.3.29 not – Logic Not

Opcode Instruction Description

4
(0x04)

not <dst> <src0> Performing component-wise logic NOT of <src0> and storing the
results in <dst>.

Pred Sat Cond
Mod

Src
Mod

Src
Types

Dst
Types

• • • [INT] [INT]

Format:

[(<pred>)] not[.<cmod>] (<exec_size>) <dst> <src0>

Syntax:

[(<pred>)] not[.<cmod>] (<exec_size>) reg reg
[(<pred>)] not[.<cmod>] (<exec_size>) reg imm32

Pseudocode:

Evaluate(WrEn);
for (n = 0; n < exec_size; n++) {
 if (WrEn.chan[n] == 1) {
 dst.chan[n] = !src0.chan[n]
 }
}

Description:

The not instruction performs logical NOT operation (or one’s compliment) of <src0> and storing the results in
<dst>.

Source modifiers are allowed.

Accumulator register is allowed to be the destination of this instruction with the restrictions listed below.

Restrictions:

This instruction does not work with float type operands.

Sign (SN) and Overflow (OF) conditions are undefined for this logic instruction. Consequently, saturation
modifier (.sat) is not allowed.

This instruction does not implicitely update accumulator register.

218 IHD-OS-072810-R1V4PT2

Accumulator is allowed to be the source of this instruction, but source modifier is not allowed for an
accumulator source.

When accumulator is the destination of this instruction, only the low bits corresponding to the data type (16
bits for word or 32 bits for dword integer instruction) in the accumulator contain the correct results. The
internal extra-precision bits as well as the sign bit of the accumulator are undefined. Consequently, there are
restrictions for subsequent instructions that use the data in the accumulator register created from the previous
logical instruction.

• Only logical and data move instructions are allowed to source the accumulator. Results of other
instructions (e.g. arithmetic or shift) are undefined.

• When the accumulator is the source of a data move (mov or sel) instruction, the destination operand
must be of integer type (e.g. no conversion to float) and this instruction cannot have satuation
instruction modifier.

8.3.30 or – Logic Or

Opcode Instruction Description

6
(0x06)

or <dst> <src0> <src1> Performing component-wise logic OR of <src0> and <src1> and
storing the results in <dst>.

Pred Sat Cond
Mod

Src
Mod

Src
Types

Dst
Types

• • • [INT] [INT]

Format:

[(<pred>)] or[.<cmod>] (<exec_size>) <dst> <src0> <src1>

Syntax:

[(<pred>)] or[.<cmod>] (<exec_size>) reg reg reg
[(<pred>)] or[.<cmod>] (<exec_size>) reg reg imm32

Pseudocode:

Evaluate(WrEn);
for (n = 0; n < exec_size; n++) {
 if (WrEn.chan[n] == 1) {
 dst.chan[n] = src0.chan[n] | src1.chan[n];
 }
}

IHD-OS-072810-R1V4PT2 219

Description:

The or instruction performs component-wise logic OR operation between <src0> and <src1> and stores the
results in <dst>.

Source modifiers are allowed.

Accumulator register is allowed to be the destination of this instruction with the restrictions listed below.

Restrictions:

Sign (SN) and Overflow (OF) conditions are undefined for this logic instruction. Consequently, saturation
modifier (.sat) is not allowed.

This instruction does not work with float type operands.

Accumulator is allowed to be the source of this instruction, but source modifier is not allowed for an
accumulator source.

This instruction does not implicitely update accumulator register.

When accumulator is the destination of this instruction, only the low bits corresponding to the data type (16
bits for word or 32 bits for dword integer instruction) in the accumulator contain the correct results. The
internal extra-precision bits as well as the sign bit of the accumulator are undefined. Consequently, there are
restrictions for subsequent instructions that use the data in the accumulator register created from the previous
logical instruction.

• Only logical and data move instructions are allowed to source the accumulator. Results of other
instructions (e.g. arithmetic or shift) are undefined.

• When the accumulator is the source of a data move (mov or sel) instruction, the destination operand
must be of integer type (e.g. no conversion to float) and this instruction cannot have satuation
instruction modifier.

220 IHD-OS-072810-R1V4PT2

8.3.31 pln – Plane

Opcode Instruction Description

90
(0x5A)

PLN <dst> <src0> <src1> Computing a component-wise plane equation (w = p*u+q*v+r) of
scalar (p, q, r) from <src0> and vector <src1> (and implied vector
<src2>) and storing the results in <dst>.

Pred Sat Cond
Mod

Src
Mod

Src
Types

Dst
Types

• • • • [FLT] [FLT]

Format:
[(<pred>)] pln[.<cmod>] (<exec_size>) <dst> <src0> <src1>

Syntax:
[(<pred>)] pln[.<cmod>] (<exec_size>) reg reg reg

IHD-OS-072810-R1V4PT2 221

Pseudocode:

Evaluate(WrEn);
for (n = 0; n < exec_size; n++) {
for (n = 0; n < exec_size; n++) {
 float dwP = src0.RegNum.SubRegNum[bits4:2] // a dword
aligned scalar
 float dwQ = src0.RegNum.(SubRegNum[bit4:2]|0x1) // 2nd
component
 float dwR = src0.RegNum.(SubRegNum[bit4:2]|0x3) // 4th
component
 src2 = src1.(RegNum + 1) // Next GRF register
 if (WrEn.chan[n] == 1) {
 dst.chan[n] = dwP * src1.chan[n] + dwQ *
src2.chan[n] + dwR
 }
}

Description:

The pln instruction computes a component-wise plane equation (w = p*u+q*v+r where u/v/w are vectors and
p/q/r are scalars) of <src0> and <src1> and storing the results in <dst>. <src1> is the input vector u. The
second input vector v is implied from <src1>, as the next adjacent GRF register. <src0> provides input scalars
p, q and r, where p is the scalar value based on the region description of <src0> and q and r are the scalar
values implied from <src0> region. Specifically, q/r is the second/fourth component of the 4-tuple (128-bit
aligned) that p belongs to.

When pln instruction is used in SIMD16 form, the same input data channels p/q/r for <src0> are used for both
SIMD8 instructions. However, as <src1> has two vectors u/v, where v is implied, the second SIMD8
instruction takes src1.(RegNum+2) as the second source operand.

Restrictions:

This is a specialized instruction that only support execution size of 8 or 16.

<src0> region must be a replicated scalar (with HorzStride = VertStride = 0).

<src0>, <src1>, <src2>, and <dst> may be float.

Source operands cannot be an accumulator register.

<src0> for pln instruction has to has .0 or .4 as the subregister number.

<src1> must be even register aligned.

222 IHD-OS-072810-R1V4PT2

8.3.32 rndd – Round Down

Opcode Instruction Description

69
(0x45)

rndd <dst> <src0> Taking component-wise floating point downward rounding of <src0>
and storing the results in <dst>.

Pred Sat Cond
Mod

Src
Mod

Src
Types

Dst
Types

• • • • [FLT] [FLT]

Format:

[(<pred>)] rndd[.<cmod>] (<exec_size>) <dst> <src0>

Syntax:

[(<pred>)] rndd[.<cmod>] (<exec_size>) reg reg
[(<pred>)] rndd[.<cmod>] (<exec_size>) reg imm32

Pseudocode:

Evaluate(WrEn);
for (n = 0; n < exec_size; n++) {
 if (WrEn.chan[n] == 1) {
 dst.chan[n] = floor(src0.chan[n]);
 }
}

Description:

The rndd instruction takes component-wise floating point downward rounding (to the integral float number
closer to negative infinity) of <src0> and storing the rounded integral float results in <dst>. This is commonly
referred to as the floor() function.

This instruction only applies to floating point source and destination operands.

IHD-OS-072810-R1V4PT2 223

Output data <dst> for floating point rounding-down follow rules in Table 8-7 (or Table 8-8), if the current
floating point mode is IEEE mode (or ALT mode).

Table 8-7. Floating point round-down in IEEE mode

<src0> –inf –finite –denorm –0 +0 +denorm +finite +inf NaN
<dst> –inf * –0 –0 +0 +0 ** +inf NaN

Notes:
* Result may be {–finite, –0}.

** Result may be {+finite, +0}.

Table 8-8. Floating point round-down in ALT mode

<src0> – fmax –finite –denorm –0 +0 +denorm +finite + fmax ***
<dst> –fmax * –0 –0 +0 +0 ** +fmax

Notes:
* Result may be {–finite, –0}.

** Result may be {+finite, +0}.
*** Result is undefined if <src0> is {–inf, +inf, NaN}.

Restrictions:

This instruction cannot take accumulator as source or destination operand. However, when the accumulator is
implicitly updated by this instruction, the results in the accumulator are undefined.

224 IHD-OS-072810-R1V4PT2

8.3.33 rndu – Round Up

Opcode Instruction Description

68
(0x44)

rndu <dst> <src0> Taking component-wise floating point upward rounding of <src0>
and storing the results in <dst>.

Pred Sat Cond
Mod

Src
Mod

Src
Types

Dst
Types

• • • • [FLT] [FLT]

Format:

[(<pred>)] rndu[.<cmod>] (<exec_size>) <dst> <src0>

Syntax:

[(<pred>)] rndu[.<cmod>] (<exec_size>) reg reg
[(<pred>)] rndu[.<cmod>] (<exec_size>) reg imm32

Pseudocode:

Evaluate(WrEn);
for (n = 0; n < exec_size; n++) {
 if (WrEn.chan[n] == 1) {
 if (src0.chan[n]-floor(src0.chan[n]) > 0.0f)
 dst.chan[n] = floor(src0.chan[n]) + 1;
 else
 dst.chan[n] = src0.chan[n];
 }
}

Description:

The rndu instruction takes component-wise floating point upward rounding (to the integral float number
closer to positive infinity) of <src0>, commonly known as the ceiling() function.

This instruction only applies to floating point source and destination operands.

Output data <dst> for floating point rounding-up follow rules in Error! Reference source not found. (or
Error! Reference source not found.), if the current floating point mode is IEEE mode (or ALT mode).

IHD-OS-072810-R1V4PT2 225

Table 8-9. Floating point round-up in IEEE mode

<src0> –inf –finite –denorm –0 +0 +denorm +finite +inf NaN
<dst> –inf * –0 –0 +0 +0 ** +inf NaN

Notes:
* Result may be {–finite, –0}.

** Result may be {+finite, +0}.
*** Increment may be {0, 1}. It is 0 if source data is an integral float, and is 1 otherwise.

Table 8-10. Floating point round-up in ALT mode

<src0> – fmax –finite –denorm –0 +0 +denorm +finite + fmax ****
<dst> –fmax * –0 –0 +0 +0 ** +fmax

Notes:
* Result may be {–finite, –0}.

** Result may be {+finite, +0}.
*** Increment may be {0, 1}. It is 0 if source data is an integral float, and is 1 otherwise.

**** Result is undefined if <src0> is {–inf, +inf, NaN}.

Restrictions:

8.3.34 rnde – Round to Even

Opcode Instruction Description

70
(0x46)

Rnde <dst> <src0> Taking component-wise floating point round-to-even operations of
<src0> and storing the results in <dst>.

Pred Sat Cond
Mod

Src
Mod

Src
Types

Dst
Types

• • • • [FLT] [FLT]

Format:

[(<pred>)] rnde[.<cmod>] (<exec_size>) <dst> <src0>

Syntax:

[(<pred>)] rnde[.<cmod>] (<exec_size>) reg reg
[(<pred>)] rnde[.<cmod>] (<exec_size>) reg imm32

226 IHD-OS-072810-R1V4PT2

Pseudocode:

Evaluate(WrEn);
for (n = 0; n < exec_size; n++) {
 if (WrEn.chan[n] == 1) {
 dst.chan[n] = floor(src0.chan[n]);
 if (src0.chan[n]-floor(src0.chan[n]) > 0.5f) {
 dst.chan[n] = floor(src0.chan[n]) + 1;
 } else if (src0.chan[n]-floor(src0.chan[n]) < 0.5f) {
 dst.chan[n] = floor(src0.chan[n]);
 } else {
 if (dst.chan[n] is odd) {
 dst.chan[n] = floor(src0.chan[n]) + 1;
 } else {
 dst.chan[n] = floor(src0.chan[n]);
 }
 }
 }
}

Description:

The rnde instruction takes component-wise floating point round-to-even operation of <src0> with results in
two pieces – a downward rounded integral float results stored in <dst> and the round-to-even increments
stored in the rounding increment bits. The round-to-even increment must be added to the results in <dst> to
create the final round-to-even values to emulate the round-to-even operation, commonly known as the round()
function. The final results are the one of the two integral float values that is nearer to the input values. If the
neither possibility is nearer, the even alternative is chosen.

Output data <dst> for floating point rounding-to-even follow rules in Table 8-11 (or Table 8-12), if the current
floating point mode is IEEE mode (or ALT mode).

Table 8-11. Floating point round-to-even in IEEE mode

<src0> –inf –finite –denorm –0 +0 +denorm +finite +inf NaN
<dst> –inf * –0 –0 +0 +0 ** +inf NaN

Notes:
* Result may be {–finite, –0}.

** Result may be {+finite, +0}.
*** Increment may be {0, 1}. It is 0 if source data is an integral float. It may be 0 or 1 otherwise.

IHD-OS-072810-R1V4PT2 227

Table 8-12. Floating point round-to-even in ALT mode

<src0> – fmax –finite –denorm –0 +0 +denorm +finite + fmax ****
<dst> –fmax * –0 –0 +0 +0 ** +fmax

Notes:
* Result may be {–finite, –0}.

** Result may be {+finite, +0}.
*** Increment may be {0, 1}. It is 0 if source data is an integral float. It may be 0 or 1 otherwise.

**** Result is undefined if <src0> is {–inf, +inf, NaN}.

Restrictions:

8.3.35 rndz – Round to Zero
Opcode Instruction Description

71
(0x47)

rndz <dst> <src0> Taking component-wise floating point round-to-zero operations of
<src0> and storing the results in <dst>.

Pred Sat Cond
Mod

Src
Mod

Src
Types

Dst
Types

• • • • [FLT] [FLT]

Format:

[(<pred>)] rndz[.<cmod>] (<exec_size>) <dst> <src0>

Syntax:

[(<pred>)] rndz[.<cmod>] (<exec_size>) reg reg
[(<pred>)] rndz[.<cmod>] (<exec_size>) reg imm32

Pseudocode:

Evaluate(WrEn);
for (n = 0; n < exec_size; n++) {
 if (WrEn.chan[n] == 1) {
 dst.chan[n] = floor(src0.chan[n]);
 if (abs(src0.chan[n]) < abs(dst.chan[n])) {
 dst.chan[n] = floor(src0.chan[n]) + 1;
 } else {
 dst.chan[n] = floor(src0.chan[n]);
 }
 }
}

228 IHD-OS-072810-R1V4PT2

Description:

The rndz instruction takes component-wise floating point round-to-zero operation of <src0> with results in
two pieces – a downward rounded integral float results stored in <dst> and the round-to-zero increments
stored in the rounding increment bits. The round-to-zero increment must be added to the results in <dst> to
create the final round-to-zero values to emulate the round-to-zero operation, commonly known as the
truncate() function. The final results are the one of the two closest integral float values to the input values that
is nearer to zero.

Output data <dst> for floating point rounding-to-zero follow rules in Table 8-13 (or Table 8-14), if the current
floating point mode is IEEE mode (or ALT mode).

Table 8-13. Floating point round-to-zero in IEEE mode

<src0> –inf –finite –denorm –0 +0 +denorm +finite +inf NaN
<dst> –inf * –0 –0 +0 +0 ** +inf NaN

Notes:
* Result may be {–finite, –0}.

** Result may be {+finite, +0}.
*** Increment may be {0, 1}. It is 0 if source data is an integral float, and is 1 otherwise.

Table 8-14. Floating point round-to-zero in ALT mode

<src0> – fmax –finite –denorm –0 +0 +denorm +finite + fmax ****
<dst> –fmax * –0 –0 +0 +0 ** +fmax

Notes:
* Result may be {–finite, –0}.

** Result may be {+finite, +0}.
*** Increment may be {0, 1}. It is 0 if source data is an integral float, and is 1 otherwise.

**** Result is undefined if <src0> is {–inf, +inf, NaN}.

Restrictions:

8.3.36 sad2 – Sum of Absolute Difference 2

Opcode Instruction Description

80
(0x50)

sad2 <dst> <src0> <src1> Performing a two-wide sum-of-absolute-difference operation on a
2-tuple basis of <src0> and <src1>, and storing the scalar result to
the first channel per 2-tuple in <dst>.

Pred Sat Cond
Mod

Src
Mod

Src
Types

Dst
Types

• • • • [INT] [INT]

IHD-OS-072810-R1V4PT2 229

Format:

[(<pred>)] sad2[.<cmod>] (<exec_size>) <dst> <src0> <src1>

Syntax:

[(<pred>)] sad2[.<cmod>] (<exec_size>) reg reg reg
[(<pred>)] sad2[.<cmod>] (<exec_size>) reg reg imm32

Pseudocode:

Evaluate(WrEn);
for (n = 0; n < exec_size; n+=2) {
 if (WrEn.chan[n] == 1) {
 dst.chan[n] = abs(src0.chan[n] - src1.chan[n])

+ abs(src0.chan[n+1] - src1.chan[n+1]);
}

Description:

The sad2 instruction takes source data channels from <src0> and <src1> in groups of 2-tuples. For each 2-
tuple, it computes the sum-of-absolute-difference (SAD) between <src0> and <src1> and stores the scalar
result in the first channel of the 2-tuple in <dst>.

This instruction only applies to integer operands. In particular, source operands must be unsigned bytes and/or
signed bytes and destination operand must be of word type. Source modifiers are allowed.

The results are also stored in the accumulator register. Destination operand and accumulator maintain 16-bit
per channel precision.

Destination register must have a stride of 2 bytes and must be aligned to even word. The even words in
destination region will contain the correct data. The odd words are also written but with undefined values.

Restrictions:

Source operands cannot be an accumulator register.

Execution size cannot be 1 as the computation requires at least two data channels.

230 IHD-OS-072810-R1V4PT2

8.3.37 sada2 – Sum of Absolute Difference Accumulate 2

Opcode Instruction Description

81
(0x51)

sada2 <dst> <src0> <src1> Performing a two-wide sum-of-absolute-difference operation on a
2-tuple basis of <src0> and <src1>, added to that from the
accumulator, and storing the scalar result to the first channel per
2-tuple in <dst>.

Pred Sat Cond
Mod

Src
Mod

Src
Types

Dst
Types

• • • • [INT] [INT]

Format:

[(<pred>)] sada2[.<cmod>] (<exec_size>) <dst> <src0> <src1>

Syntax:

[(<pred>)] sada2[.<cmod>] (<exec_size>) reg reg reg
[(<pred>)] sada2[.<cmod>] (<exec_size>) reg reg imm32

Pseudocode:

Evaluate(WrEn);
for (n = 0; n < exec_size; n+=2) {

uwTmp = abs(src0.channel[n] - src1.channel[n])
+ abs(src0.channel[n+1] - src1.channel[n+1])

if (WrEn.channel[n] == 1) {
dst.channel[n] = uwTmp + acc[n]

}
}

Description:

The sada2 instruction takes source data channels from <src0> and <src1> in groups of 2-tuples. For each 2-
tuple, it computes the sum-of-absolute-difference (SAD) between <src0> and <src1>, adds the intermediate
result with the accumulator value corresponding to the first channel, and stores the scalar result in the first
channel of the 2-tuple in <dst>.

This instruction only applies to integer operands. In particular, source operands must be unsigned bytes and/or
signed bytes and destination operand must be of word type. Source modifiers are allowed.

The results are also stored in the accumulator register. Destination operand and accumulator maintain 16-bit
per channel precision. Higher precision (guide bits) stored in the accumulator allows multiple rounds (64
rounds) of sada2 instructions to be issued back to back without overflow the accumulator.

IHD-OS-072810-R1V4PT2 231

Destination register must have a stride of 2 words and must be aligned to even word. The even words in
destination region will contain the correct data. The odd words are also written but with undefined values

Restrictions:

Source operands cannot be an accumulator register.

Execution size cannot be 1 as the computation requires at least two data channels.

8.3.38 sel – Select

Opcode Instruction Description

2
(0x02)

(pred) sel <dst> <src0> <src1> Component-wise selective move from <src0> or <src1> to <dst>
based on predication or cmod result. . The sel instruction can not
use accumulator as destination

Pred Sat Cond
Mod

Src
Mod

Src
Types

Dst
Types

• • • • [FLT]
[INT]

[FLT]
[INT]

Format:

(<pred>) sel (<exec_size>) <dst> <src0> <src1>

Syntax:

(<pred>) sel (<exec_size>) reg reg reg
(<pred>) sel (<exec_size>) reg reg imm32

Pseudocode:

Evaluate(WrEn, NoPMask);

if (cmod == “0000”) { // no CMod

Evaluate(PMask);
for (n = 0; n < exec_size; n++) {

if (WrEn.channel[n] == 1) {
if (PMask.channel[n] == 1) {

dst.channel[n] = src0.channel[n]
} else {

dst.channel[n] = src1.channel[n]
}

}
}

232 IHD-OS-072810-R1V4PT2

}
else { // with CMod

Evaluate(CMod);
for (n = 0; n < exec_size; n++) {

if (WrEn.channel[n] == 1) {
if (CMod.channel[n] == 1) {

dst.channel[n] = src0.channel[n]
} else {

dst.channel[n] = src1.channel[n]
}

}
}

}

Description:

The sel instruction selectively moves the components in <src0> or <src1> into the channels of <dst> based on
the predication. On a channel by channel basis, if the channel condition is true, data in <src0> is moved into
<dst>; Otherwise, data in <src1> is moved into <dst>.

As the predication is used to select the two sources, it is not included in the evaluation of WrEn. <pred> is
mandatory if <cmod> is “0000”. If it is <omitted> and <cmod> is “0000”, the results are unpredictable.

In case of <cmod> not equal to “0000”, a compare will be performed and the result flag will be used for the
sel instruction. <cmod> .ge and .l follow the CMPN rules, and all other <cmod> follow the CMP rules.
<pred> is not allowed in this mode.

sel instruction with <cmod> .l should be used to emulate MIN instruction.

sel instruction with <cmod> .ge should be used to emulate MAX instruciton.

If any of the source of the sel instruction is NaN, the non-NaN source will be the result, in case both sources
are NaN, the result will also be NaN. This only applies to sel instruction with .l and .ge conditional modifier.
For the other conditional modifiers, src1 will be always be selected if either or both sources is/are NaN.

sel instruction with <cmod> will flush denorm to zero; sel instruction without <cmod> will retain denorm.

Format conversion is not allowed.

sel instruction can not use accumulator source.

Restrictions:

Destination channels cannot be on odd-byte sub-register locations. In other words, when destination is of byte
type, destination horizontal stride cannot be 1. If destination horizontal stride is not 1, destination register
region origin cannot be on an odd byte location. This is because that the conditional flag for execution
channels that have minimal granularity of word are used by this instruction.

 The sel instruction can not use accumulator as destination

IHD-OS-072810-R1V4PT2 233

8.3.39 send – Send Message

Table 8-17. Sideband Signals Associated with Each Message Sent to the Shared Function

Signal Bits Source

EOT 1 End of Thread: Sourced from the EOT bit in send instruction word

SFID 3 Shared Function Identifier: Sourced from the target function ID field in
<ex_desc> of send

MLEN 4 Message Length: Sourced from the message length field in <desc> of send

RLEN 5 Response Length: Sourced from the response length field in <desc> of send

FC 19 Function Control: Sourced from the function control field in <desc> of send

REG 7 Destination Register: Sourced from the 256-bit register aligned register
number of the <dest> field of send

CE 16 Channel Enable: Sourced from the write enable of send

CLEAR 1 Destination Register Clear: Source from the Destination Dependency Control
field (inverse of NoDDClr) in send instruction word

FFID 4 Fixed Function Identifier: Sourced from the Fixed Function ID field in sr0

EUID 4 Execution Unit Identifier: Sourced from the EUID field in sr0

TID 2 Thread Identifier: Sourced from the TID field in sr0

Restrictions:

Software must obey the following rules in signaling the end of thread using the send instruction:

• The posted destination operand must be null.

o No acknowledgement is allowed for the send instruction that signifies the end of thread.
This is to avoid deadlock as the EU is expecting to free up the terminated thread’s resource.

• A thread must terminate with a send instruction with message to a shared function on the output
message bus; therefore, it cannot terminate with a send instruction with message to the following
shared functions: Sampler unit, NULL function

o For example, a thread may terminate with a URB write message or a render cache write
message.

• A root thread originated from the media (generic) pipeline must terminate with a send instruction with
message to the Thread Spawner unit. A child thread should also terminate with a send to TS. Please
refer to the Media Chapter for more detailed description.

The send instruction can not update accumulator registers.

Saturate is not supported for send instruction.

ThreadCtrl are not supported for send instruction.

The MRF register must be writen into for every send instruction, using the same MRF register for multiple send without
updating it in between is not allowed.

234 IHD-OS-072810-R1V4PT2

Table 8-17. Sideband Signals Associated with Each Message Sent to the Shared Function

Signal Bits Source

EOT 1 End of Thread: Sourced from the EOT bit in send instruction word

SFID 3 Shared Function Identifier: Sourced from the target function ID field in
<ex_desc> of send

MLEN 4 Message Length: Sourced from the message length field in <desc> of send

RLEN 5 Response Length: Sourced from the response length field in <desc> of send

FC 19 Function Control: Sourced from the function control field in <desc> of send

REG 7 Destination Register: Sourced from the 256-bit register aligned register
number of the <dest> field of send

CE 16 Channel Enable: Sourced from the write enable of send

CLEAR 1 Destination Register Clear: Source from the Destination Dependency Control
field (inverse of NoDDClr) in send instruction word

FFID 4 Fixed Function Identifier: Sourced from the Fixed Function ID field in sr0

EUID 4 Execution Unit Identifier: Sourced from the EUID field in sr0

TID 2 Thread Identifier: Sourced from the TID field in sr0

Restrictions:

Software must obey the following rules in signaling the end of thread using the send instruction:

• The posted destination operand must be null.

o No acknowledgement is allowed for the send instruction that signifies the end of thread.
This is to avoid deadlock as the EU is expecting to free up the terminated thread’s resource.

• A thread must terminate with a send instruction with message to a shared function on the output
message bus; therefore, it cannot terminate with a send instruction with message to the following
shared functions: Sampler unit, NULL function

o For example, a thread may terminate with a URB write message or a render cache write
message.

• A root thread originated from the media (generic) pipeline must terminate with a send instruction with
message to the Thread Spawner unit. A child thread should also terminate with a send to TS. Please
refer to the Media Chapter for more detailed description.

The send instruction can not update accumulator registers.

Saturate is not supported for send instruction.

ThreadCtrl are not supported for send instruction.

The MRF register must be writen into for every send instruction, using the same MRF register for multiple send without
updating it in between is not allowed.

IHD-OS-072810-R1V4PT2 235

8.3.40 sendc – Conditional Send Message

Opcode Instruction Description

49
(0x31)

sendc <dest> <src> <desc> <ex_dest> Wait for the dependencies in the TDR register cleared,
then send a message stored in MRF starting at <str> to a
shared function identified by <ex_desc> along with control
from <desc> with a GRF writeback location at <dest>.

Pred Sat Cond
Mod

Src
Mod

Src
Types

Dst
Types

• [FLT]
[INT]

Format:

[(<pred>)] sendc (<exec_size>) <dest> <src> <desc> <exdesc>

Syntax:

[(<pred>)] sendc (<exec_size>) reg reg reg32a imm4
[(<pred>)] sendc (<exec_size>) reg reg imm32 imm4

Pseudocode:

if ((TDR[7]... || TDR[2] || TDR[1] || TDR[0]) == TRUE) {
wait;

}
Evaluate(WrEn);
<MsgChEnable> = WrEn;
<SourceReg> = <src>.RegNum;
MessageEnqueue(<MsgChEnable>, <ResponseReg>, <SourceReg>, <desc>,
<ex_dest>);

Description:

The sendc instruction has the same behavior as the send instruction except the following.

The sendc instruction first check the dependent threads inside the Thread Dependency Register, there are up
to 4 dependent threads in the TDR register. The sendc instruction will be executed only when all the
dependent threads in the TDR register are retired.

Restrictions:

The sendc instruction has the same restrictions as the send instruction.

236 IHD-OS-072810-R1V4PT2

8.3.41 shl – Shift Left

Opcode Instruction Description

9
(0x09)

shl <dst> <src0> <src1> Performing component-wise logic left shift of <src0> and storing
the results in <dst>.

Pred Sat Cond
Mod

Src
Mod

Src
Types

Dst
Types

• • • • [INT] [INT]

Format:

[(<pred>)] shl[.<cmod>] (<exec_size>) <dst> <src0> <src1>

Syntax:

[(<pred>)] shl[.<cmod>] (<exec_size>) reg reg reg
[(<pred>)] shl[.<cmod>] (<exec_size>) reg reg imm32

Pseudocode:

Evaluate(WrEn);
for (n = 0; n < exec_size; n++) {
 if (WrEn.chan[n] == 1) {
 dst.chan[n] = src0.chan[n] << src1.chan[n]
 }
}

Description:

The shl instruction performs component-wise logical left shift of <src0> with zero-insertion and storing the
results in <dst>. The amount of bit shift is provided by <src1>, where only the 5 LSBs of each channel of
<src1> are used as an unsigned integer value. The MSBs of <src1> data channels are ignored. The results are
NOT stored in the accumulator register.

5-bit shifting applies to packed-dword mode and packed-word mode. For packed word mode, the
accumulators have 33 bits per channel. <src0> and <dst> can be signed or unsigned integers and can be of
different types. This instruction does not work with float type operands. Saturation modifier is only allowed
when this instruction is in packed-word mode. Hardware detects overflow properly and use it to perform
saturation operation on the output, as long as the shifted result is within 33 bits. Otherwise, the result is
undefined.

Results of saturation in packed-dword mode are unpredicable.

Restrictions:

This instruction does not work with float type operands.

IHD-OS-072810-R1V4PT2 237

8.3.42 shr – Shift Right

Opcode Instruction Description

8
(0x08)

shr <dst> <src0> <src1> Performing component-wise logic right shift of <src0> and storing
the results in <dst>.

Pred Sat Cond
Mod

Src
Mod

Src
Types

Dst
Types

• • • • [INT] [INT]

Format:

[(<pred>)] shr[.<cmod>] (<exec_size>) <dst> <src0> <src1>

Syntax:

[(<pred>)] shr[.<cmod>] (<exec_size>) reg reg reg
[(<pred>)] shr[.<cmod>] (<exec_size>) reg reg imm32

Pseudocode:

Evaluate(WrEn);
for (n = 0; n < exec_size; n++) {
 if (WrEn.chan[n] == 1) {
 dst.chan[n] = src0.chan[n] >> src1.chan[n]
 }
}

Description:

The shr instruction performs component-wise logical right shift of <src0> with zero-insertion and storing the
results in <dst>. The amount of bit shift is provided by <src1> where only the 5 LSBs of each channel of
<src1> are used as an unsigned integer value. The MSBs of <src1> data channels are ignored.

5-bit shifting applies to packed-dword mode and packed-word mode. For packed word mode, the
accumulators have 33 bits per channel.

This instruction only takes on unsigned sources. When <src0> contains unsigned integers, no source modifier
is allowed. <src0> is only allowed to be signed integer if source modifier (abs) is used. Note: for unsigned
sources, the behavior of shr and asr are effectively the same.

Restrictions:

This instruction does not work with float type operands.

238 IHD-OS-072810-R1V4PT2

8.3.43 wait – Wait Notification

Opcode Instruction Description

48
(0x30)

wait <nreg> Waiting for notification on the notification register <nreg>.

Pred Sat Cond
Mod

Src
Mod

Src
Types

Dst
Types

Format:

wait (<exec_size>) <nreg>

Syntax:

wait (1) n#

Pseudocode:

n/a

Description:

The wait instruction evaluates the value of the notification count register <nreg>. If <nreg> is zero, the
execution of the thread is stalled and the thread is put in ‘wait_for_notification’ state. If <nreg> is not zero
(i.e., one or more notifications have been received), <nreg> is decremented by one and the thread continues
executing on the next instruction. If a thread is in the ‘wait_for_notification’ state, when a notification arrives,
the notification count register is incremented by one. As the notification count register becomes non-zero, the
thread wakes up to continue execution and at the same time the notification register is decremented by one. If
there was only one notification arrived, the notification register value becomes zero. However, during the
above mentioned time period, it is possible that more notifications may arrive, making the notification register
non-zero again.

When multiple notifications are received, software must use ‘wait’ instruction to decrement notification count
register for each of the notifications.

Notification register n0:ud is for thread to thread communication (through message gateway shared function)
and n1:ud for host to thread communication (through MMIO registers). See Message Gateway chapter for
thread-thread communication.

Restrictions:

Only one source operand.

 <src0> and <dst> must be n0 or n1pr n2, <src1> must be null.

IHD-OS-072810-R1V4PT2 239

Execution size must be 1 as the notification registers are scalar.

Predication is not allowed.

Implementation restriction: Two back-to-back wait instructions in a program (without any instruction in
between) are not allowed. As a minimal, a nop has to be inserted between two wait instructions.

}
else { // with embedded compare

if (cmod.channel[n] == 1) {
PcIP[n] = IP + <JIP>;

}
else {
 PcIP[n] = IP + 1;
}

}
}

}
if (<cmod> == 0) { // no embedded compare

if (|PMask == 1) { // any enabled channel true
Jump(IP + <JIP>);

}
}
else { // with embedded compare

if (|cmod == 1) { // any enabled channel true
Jump(IP + <JIP>);

}
}

Description:

The while instruction marks the end of a do-while block. The instruction first evaluates the loop termination
condition for each channel based the current channel enables the predication flag specified in the instruction.
If any channel has not terminated, a branch is taken to a destination address based specified in the instruction,
and the loop continued for those channels. Otherwise, execution continue down to the next instruction.

The following table describes the 16-bit jump target offset <JIP>. <JIP> is a signed 16-bit number, added to
IP pre-increment, and should point to the first instruction with the do label of the do-while block of code. It
should be a negative number for the backward referencing. In GEN binary, <JIP> is at location <dst> and
must be of type W (signed word integer).

240 IHD-OS-072810-R1V4PT2

Bit Description

15:0 JIP (Jump Target Offset). This field specifies the jump distance in number of 64bits data
chunks if a jump is taken for the instruction.

Format = S15. Signed integer in 2’s compliment

If SPF is ON, none of the PcIP is updated.

Restrictions:

To use embedded compares, the predicate control field for this instruction must be zero, and the conditional
modifier field must be none zero. The destination must follow the rules below:

1. Must has the same element size as source0

2. Must have horizontal stride of 1

To use predicated if instruction, the conditional modifier field must be zero.

IHD-OS-072810-R1V4PT2 241

8.3.44 while – While [DevGT+]

Opcode Instruction Description

39
(0x27)

while if <dst> <src0> <src1> <JIP> Marking the end of a do-while block of code.

Instr
Comp

Imp’d
Accu

Pred Sat Cond
Mod

Src
Mod

Src
Types

Dst
Types

 • •

Format:

[(<pred>)] while (<exec_size>) null null null <JIP>
 while (<exec_size>) null <src0> <src1> <JIP>

Syntax:

[(<pred>)] while (<exec_size>) null null null imm16
 while (<exec_size>) null reg reg imm16
 while (<exec_size>) null reg imm32 imm16

Pseudocode:

Evaluate(WrEn);
for (n = 0; n < exec_size; n++) {

if (WrEn.channel[n] == 1) {
 if (<cmod> == 0) { // no embedded compare

if (PMask.channel[n] == 1) {
PcIP[n] = IP + <JIP>;

}
}
else { // with embedded compare

if (cmod.channel[n] == 1) {
PcIP[n] = IP + <JIP>;

}
}

}
}
if (<cmod> == 0) { // no embedded compare

if (|PMask == 1) { // any enabled channel true
Jump(IP + <JIP>);

242 IHD-OS-072810-R1V4PT2

}
}
else { // with embedded compare

if (|cmod == 1) { // any enabled channel true
Jump(IP + <JIP>);

}
}

Description:

The while instruction marks the end of a do-while block. The instruction first evaluates the loop termination
condition for each channel based the current channel enables the predication flag specified in the instruction.
If any channel has not terminated, a branch is taken to a destination address based specified in the instruction,
and the loop continued for those channels. Otherwise, execution continue down to the next instruction.

The following table describes the 16-bit jump target offset <JIP>. <JIP> is a signed 16-bit number, added to
IP pre-increment, and should point to the first instruction with the do label of the do-while block of code. It
should be a negative number for the backward referencing. In GEN binary, <JIP> is at location <dst> and
must be of type W (signed word integer).

Bit Description

15:0 JIP (Jump Target Offset). This field specifies the jump distance in number of 64bits data
chunks if a jump is taken for the instruction.

Format = S15. Signed integer in 2’s compliment

need to add detail for SPF.

Restrictions:

Instruction compression is not allowed.

IHD-OS-072810-R1V4PT2 243

8.3.45 xor – Logic Xor

Opcode Instruction Description

7
(0x07)

xor <dst> <src0> <src1> Performing component-wise logic XOR of <src0> and <src1> and
storing the results in <dst>.

Pred Sat Cond
Mod

Src
Mod

Src
Types

Dst
Types

• • • [INT] [INT]

Format:

[(<pred>)] xor[.<cmod>] (<exec_size>) <dst> <src0> <src1>

Syntax:

[(<pred>)] xor[.<cmod>] (<exec_size>) reg reg reg
[(<pred>)] xor[.<cmod>] (<exec_size>) reg reg imm32

Pseudocode:

Evaluate(WrEn);
for (n = 0; n < exec_size; n++) {
 if (WrEn.chan[n] == 1) {
 dst.chan[n] = src0.chan[n] ^ src1.chan[n];
 }
}

Description:

The xor instruction performs component-wise logic XOR operation between <src0> and <src1> and stores the
results in <dst>.

Source modifiers are allowed.

Accumulator register is allowed to be the destination of this instruction with the restrictions listed below.

Restrictions:

Sign (SN) and Overflow (OF) conditions are undefined for this logic instruction. Consequently, saturation
modifier (.sat) is not allowed.

This instruction does not work with float type operands.

The results are NOT stored in the accumulator register.

244 IHD-OS-072810-R1V4PT2

Accumulator is allowed to be the source of this instruction, but source modifier is not allowed for an
accumulator source.

When accumulator is the destination of this instruction, only the low bits corresponding to the data type (16
bits for word or 32 bits for dword integer instruction) in the accumulator contain the correct results. The
internal extra-precision bits as well as the sign bit of the accumulator are undefined. Consequently, there are
restrictions for subsequent instructions that use the data in the accumulator register created from the previous
logical instruction.

• Only logical and data move instructions are allowed to source the accumulator. Results of other
instructions (e.g. arithmetic or shift) are undefined.

• When the accumulator is the source of a data move (mov or sel) instruction, the destination operand
must be of integer type (e.g. no conversion to float) and this instruction cannot have satuation
instruction modifier.

IHD-OS-072810-R1V4PT2 245

9. EU Programming Guide

9.1 Assembler Pragmas

9.1.1 Declarations

A register or a register region can be declared as a symbol using the following form

.declare <symbol> Base=RegFile RegBase {.SubRegBase} ElementSize=ElementSize
{SrcRegion=DefaultSrcRegion} {DstRegion=DefaultDstRegion} {Type=DefaultType}

The register file, the base of the register origin and the element size (in unit of bytes) are the mandatory parameters for
a declared register region. Optionally, the base of the sub-register address, the default source region, the default
destination region and the default type can be provided in the declaration for the symbol.

For immediate register addressing mode, the declared symbol can be used in the following Cartesian form

<symbol>(RegOff, SubRegOff) RegNum = RegBase + RegOff; SubRegNum = SubRegBase +
SubRegOff

or in the following simplified row-aligned form

<symbol>(RegOff) RegNum = RegBase + RegOff; SubRegNum = SubRegBase

For register-indirect-register-addressing mode, the declared symbol can be used to provide immediate address term in
the following Cartesian form

<symbol>[IdxReg, RegOff, SubRegOff] RegNum (byte-aligned) = [IdxReg] +(RegBase + RegOff)*32 +
(SubRegBase + SubRegOff)*ElementSize

or in the following simplified row-aligned form

<symbol>[IdxReg, RegOff] RegNum (byte-aligned) = [IdxReg] +(RegBase + RegOff)*32

or in the form without the immediate address term

<symbol>[IdxReg] RegNum (byte-aligned) = [IdxReg] + RegBase

246 IHD-OS-072810-R1V4PT2

9.1.2 Defaults and Defines

The default execution size is set according to the destination register type as the following
Destination Register Type Default Execution Size

UB | B (16)

UW | W (16)

F | UD | D (8)

The default execution size can be overwritten globally for all instructions using

.default_execution_size (Execution_Size)

or be set according the destination register type using

.default_execution_size_Type (Execution_Size)

The default register type can be set for all register files using

.default_register_type Type

or be set per register file using

.default_register_type_RegFile Type

The default source register region for all symbols can be set using

.default_source_register_region <VirtStride; Width, HorzStride>

or be set per register type using

.default_source_register_region_type <VirtStride; Width, HorzStride>

The default destination register region for all symbols can be set using

.default_destination_register_region < HorzStride>

or be set per register type using

.default_destination_register_region_type < HorzStride>

Finally, the precompiler supports the string replacement statement of .define in the following form

.define <symbol> Expression

IHD-OS-072810-R1V4PT2 247

Notes:

• .declare does not support nesting. In other words, each symbol in .declare must be self defined. This would
allow the pre-processor to expand all symbols in one pass.

• .define does support nesting. Only string substitution is supported (currently).

• White space within square, angle and round brackets are allowed for easy source code alignment.

9.1.3 Example Pragma Usages

Example 1: Declaration for 8x4=32-Byte Regions:

The following symbol Block can be used to address any 8x4 byte region within the Cartisian system of a 16x8 byte
GRF register area starting from r0.

Declaration
// 32x4 Byte Array

.declare Block Base=r0 ElementSize=1 Region=<32;8,1> Type=b

Fully-Expressed
Instr

mov(32) ?:b r0.16<32;8,1>:b // r0 xxxxxxxxxxxxxxxxooooooooxxxxxxxx

 // r1 xxxxxxxxxxxxxxxxooooooooxxxxxxxx

 // r2 xxxxxxxxxxxxxxxxooooooooxxxxxxxx

 // r3 xxxxxxxxxxxxxxxxooooooooxxxxxxxx

Short-handed Instr
Mov ?:b Block(0,16) // (0,16): RegNum=0, SubRegNum=16

Example 2: Declaration for 8x1 Float Regions:
The following symbol Trans can be used to address any 8x1 float region within the Cartisian system
of a 8x4 float GRF register area starting from r5.

Declaration
// 8x4 float Array starting at r5

.declare Trans Base=r5 ElementSize=4 Region=<0;8,1> Type=f

Fully-Expressed
Instr

mov(8) ?:f r6.0<0;8,1>:f // 2nd 16x1 Row of Trans. Matrix

 // r5 FFFFFFFF

 // r6 OOOOOOOO

 // r7 FFFFFFFF

 // r8 FFFFFFFF

Short-handed Instr
mov ?:f Trans(1) // RegNum = 5+1 = 6

Example 3: Declaration for 8x1 Float Regions with 1x1 Indirect Addressing:
Trans region defined (same as in the previous example) is used in conjunction with the address
register.

Declaration
//8x4 float data array and 16x1 word address array

.declare Trans Base=r5 ElementSize=4 Region=<0;8,1> Type=f

Fully-Expressed
Instr

mov(8) ?:f r[a0.0,224]<0;8,1>:f

Short-handed Instr
mov ?:f Trans[a0.0,2] // [a0.0 + 5*32 + 2*32]

Example 4: Declaration with VxH Indirect Addressing:
The VxH register-indirect-register-addressing for Trans can be provided in the following short-hand
form.

248 IHD-OS-072810-R1V4PT2

Declaration
//8x4 float data array and word indices

.declare Trans Base=r5 ElementSize=4 Region=<0;8,1> Type=f

Fully-Expressed
Instr

mov(8) ?:f r[a0.0,224]<1,0>:f

Short-handed Instr
mov ?:f Trans[a0.0,2]<1,0> // [a0.0+224] [a0.1+224] … [a0.7+224]

Example 5: Declaration with Vx1 Indirect Addressing:
As width (4) is smaller than the execution region size (8), multiple indexed registers are used.

Declaration
//8x4 float data array and word address array

.declare Trans Base=r5 ElementSize=4 Region=<0;8,1> Type=f

Fully-Expressed
Instr

mov(8) ?:f r[a0.0,244]<4,1>:f

Short-handed Instr

mov ?:f Trans[a0.0,2]<4,1> // [a0.0+224] [a0.1+224]

IHD-OS-072810-R1V4PT2 249

9.1.4 Assembly Programming Guideline

The following program skeleton illustrates the basic structure of a typical assembly program.

// single line comment

/*
 block comment
*/

<preproc_directive> // macros, include, etc. Are global – handled by the pre-processor
<preproc_directive> // applies to all code that follows in sequence

// ------------ some kernel ---------------------------
.kernel <kernel_name_string> // [REQUIRED]
 // ------- Register requirements --------
 .reg_count_total <uint> // [REQUIRED] a more direct way to specify the exact parameters
require
 .reg_count_payload <uint> // [REQUIRED] rather than to have to indirectly do that by adding the
 // the payload and temps together to get the total (as is the case
now)
 // Note: no more “reg-count-temp”

 // -------------- Defaults ---------------
 <default…> // these should be specified per-kernel and have only kernel-scope
 <default…> // Same defaults as those already defined in the ISA doc, but just
 <default…> // moved within the kernel to make each kernel completely self-
sufficient
 // and not impacted defaults of earlier kernels

 // --------- Memory Requirements ---------
 // [optional] memory block info (just a placeholder for now...)
 <MBDa> // memory block descriptor a (TBD)
 <MBDb> // memory block descriptor b (TBD)
 <MBDc> // memory block descriptor c (TBD)
 <MBDd> // memory block descriptor d (TBD)

 // ---------------- Code ----------------
 .code // [REQUIRED]
 <instruction>
 <instruction>
 <instruction>
 <LabelLine> // labels are code-block scope
 <instruction>
 <instruction>

 .end_code // [REQUIRED]

.end_kernel // [REQUIRED]

// --------- next kernel -------------

// --------- next kernel -------------

// ...

250 IHD-OS-072810-R1V4PT2

9.2 Usage Examples

9.2.1 Vector Immediate

The immediate form of vector allows a constant vector to be in-lined in the instruction stream. An immediate vector is
denoted by type v as imm32:v, where the 32-bit immediate field is partitioned into 8 4-bit subfields. Each 4-bit subfield
contains a signed integer value in 2’s compliment form. Therefore each 4-bit subfield has a range of [-8, +7]. This is
depicted in the following figure.

31
28

27
24

23
20

19
16

15
12

11 8 7 4 3 0

V7 V6 V5 V4 V3 V2 V1 V0

9.2.1.1 Supporting OpenGL Vertex Shader Instruction SWZ

When an OpenGL Vertex Shader program is converted to run on GEN in Vertex Pair, i.e., two 4-wide vectors in
parallel, the special OpenGL Shader instruction SWZ (Swizzle) needs to be emulated. OpenGL SWZ instruction uses
an extended swizzle control field that, in addition to the 4-wide full swizzle control, also includes constant 0 and 1
replacement as well as per channel sign reversal. The later two are not supported by the GEN native instruction. The
vector immediate can significantly reduce the overhead of emulating such OpenGL instruction.

Consider an OpenGL Shader instruction in the form of

SWZ r1 r0.0-zx-1 // Expected results: r1.x = 0; r1.y = -r0.z; r1.z = r0.x; r1.w = -1

It can be emulated by the following three GEN instructions.

mul (8) r1.0<1>:f r0.xzxz 0x1F111F11:v // Constant vector of (1 -1 1 1 1 -1 1 1)

mov (1) f0.0 8b’10011001 // Set flag & masked out channels y and z

(f0.0)mov(8) r1.0<1>:f 0x000F000F:v // Constant vector of (0 0 0 -1 0 0 0 -1)

In case that only 0, 1, -1 channel replacement is used and there is no signed swizzle, it may be emulated in two GEN
instructions. This is illustrated by the following example:

OpenGL:

SWZ r1 r0.0zx-1 // Expected results: r1.x = 0; r1.y = r0.z; r1.z = r0.x; r1.w = -1

GEN:

mov (1) f0.0 8b’01100110 // Set flag and masked out channels x and w

(f0.0)sel (8) r1.0<1>:f r0.yzxy 0x000F000F:v // Constant vector of (0 0 0 -1 0 0 0 -1)

IHD-OS-072810-R1V4PT2 251

9.2.2 Destination Mask for DP4 and Destination Dependency Control

The following example demonstrates the use of destination mask mode of floating point dot-product instruction as well
as the use of destination dependency control to improve performance (i.e., avoiding unnecessary thread switch due to
possible false dependencies).

Consider a generic Vertex Shader macro of matrix-vector product that is implemented on GEN in the pair of 4-
component vector mode. The equivalent Shader instructions are as the following.

dp4 r5.x r0 r4

dp4 r5.y r1 r4

dp4 r5.z r2 r4

dp4 r5.w r3 r4

With destination dependency control, the GEN instructions are as the following. The first instruction in the sequence
checks for the destination dependency, but does not clear the dependency bit. The subsequent two instructions would
do neither of them. The last instruction avoids checking the destination dependency, but at completion, it clears the
destination scoreboard. It ensures that the content of the destination register is coherent, if any of the following
instructions uses the same register as source.

dp4 (8) r5.0<1>.x:f r0.0<4;4,1>:f r4.0<4;4,1>:f {NoDDClr}

dp4 (8) r5.0<1>.y:f r1.0<4;4,1>:f r4.0<4;4,1>:f {NoDDClr, NoDDCChk}

dp4 (8) r5.0<1>.z:f r2.0<4;4,1>:f r4.0<4;4,1>:f {NoDDClr, NoDDCChk}

dp4 (8) r5.0<1>.w:f r3.0<4;4,1>:f r4.0<4;4,1>:f {NoDDChk}

Just as a comparison, IF GEN DP4 implies reduction at the destination; additional shifted moves are required to
achieve the same results. The corresponding codes are as the following. The lower performance due to the additional
three move instruction as well as added back-to-back dependencies shows that why we choose to implement the
destination channel replication for floating point DP4.

dp4 (8) r5.0<1>.y:f r1.0<4;4,1>:f r4.0<4;4,1>:f

mov (1) r5.1<1>:f r8.0<1;1,1>:f

dp4 (8) r5.0<1>.z:f r2.0<4;4,1>:f r4.0<4;4,1>:f

mov (1) r5.2<1>:f r8.0<1;1,1>:f

dp4 (8) r5.0<1>.w:f r3.0<4;4,1>:f r4.0<4;4,1>:f

mov (1) r5.3<1>:f r8.0<1;1,1>:f

dp4 (8) r5.0<1>.x:f r0.0<4;4,1>:f r4.0<4;4,1>:f

252 IHD-OS-072810-R1V4PT2

9.2.3 Null Register as the Destination

Null register can be used as the destination for most of the instructions. Here are some example usages.

• Null as destination for regular ALU instructions: As all ALU instructions can be configured to update the flag
registers using the conditional modifiers, it is not necessary to have a destination register if the programmer
only cares about the conditionals of the operation. In that case, a null in the destination operand field saves
register space as well as one less dependency checking.

• Null as the destination for SEND/STOR instructions: for the send instruction that only send messages out to
an external unit and does not require any return data or feedback, a null in the destination register field
signifies the case.

o One extension of such case is that even though the operation does not have any return values, a
return phase with no payload but simply updating the scoreboard flag for a non-null register can
provide a signaling mechanism between the thread and the target external unit. One application of
this usage is to allow software to manage the coherency of shared memory resources such like the
many caches in the system (particularly, valuable for read/write caches). This is not currently the
POR for GEN though.

9.2.4 Use of LINE Instruction

LINE instruction is specifically designed to speed up floating point vector/matrix computation when a program
operates in channel serial.

The following example demonstrates how to use LINE instruction to compute Line Equations for Pixel Shader. In this
example, 2 sets of (Cx#, Cy#, Don’t Care, C0#) 4-tuple coefficient vectors are stored in registers R1.

R1: Cx0 Cy0 DC Co0 Cx1 Cy1 DC Co1

8 sets of coordinate 2-D vectors (X, Y) are stored in R2 and R3 in the channel serial mode as

R2: X0 X1 … X7
R3: Y0 Y1 … Y7

The objective is to compute the following two line equations for each set of 2D coordinate and store the results in R4
and R5 as

R4: (X0*Cx0 + Y0*Cy0+Co0) ... (X7*Cx0 + Y7*Cy0+Co0)
R5: (X0*Cx1 + Y0*Cy1+Co1) ... (X7*Cx1 + Y7*Cy1+Co1)

IHD-OS-072810-R1V4PT2 253

Example 9-1. LINE Equations

//---
// Example compute LINE equation in channel serial scenario
//---

line (8) acc:f r1<0;1,0>:f r2<0;8,1>:f // does acc = X# * Cx0 + Co0
mac (8) r4<1>:f r1.1<0;1,0>:f r3<0;8,1>:f // does r4.# = Y# * Cy0 + acc.#

line (8) acc:f r1<0;1,0>:f r2<0;8,1>:f // does acc = X# * Cx0 + Co0
mac (8) r4<1>:f r1.1<0;1,0>:f r3<0;8,1>:f // does r4.# = Y# * Cy0 + acc.#

The next example is to compute homogeneous dot product for OpenGL pixel shader running in Channel Serial. In this
example, an original OpenGL PS instruction is like

dph R2.x R0 R1

With register remapping, we can store the input coefficient vector R0 in original format in r0, but 8 sets of input
coordinate vectors in channel serial format in r2, r3, r4 and r5, and the destination R2.x component in r6.

r0: Cx0 Cy0 Cz0 Co0 DC DC DC DC
r2: X0 X1 … X7
r3: Y0 Y1 … Y7
r4: Z0 Z1 … Z7
r5: W0 W1 … W7

The objective is to compute the following DPH equations and store the results in r6 as

R6: (X0*Cx0+Y0*Cy0+Z0*Cz0+Co0) ... (X7*Cx0+Y7*Cy0+Z7*Cz0+Co0)

Example 9-2. Homogeneous Dot Product in Channel Serial

//---

// Example compute homogeneous dot product in channel serial scenario

//---

line (8) acc:f r0<0;1,0>:f r2<0;8,1>:f // does acc = X# * Cx0 + Co0

mac (8) acc:f r0.1<0;1,0>:f r3<0;8,1>:f // does acc.# = Y# * Cy0 + acc.#

mac (8) r6<1>:f r0.2<0;1,0>:f r4<0;8,1>:f // does r6.# = Z# * Cz0 + acc.#

254 IHD-OS-072810-R1V4PT2

9.2.5 Mask for SEND Instruction

Execution mask (upto 16 bits) for the SEND instruction is transferred to the Shared Function. This provides optimized
implementation of Shader instructions.

9.2.5.1 Channel Enables for Extended Math Unit

The following example demonstrates how to use the SEND instruction to get service from the Extended Math unit.

Let’s consider COS instruction in the following form

[([!]p0.{select|any|all})] cos[_sat] dest[.mask], [-]src0[_abs][.swizzle]

For a SIMD4x2 VS implementation with the following register mappings

p0 f0.0

src0 r0

dest r1

The equivalent GEN instruction is as the following

[([!]f0.0.{select|any4h|all4h})] SEND (8) r1[.mask]:f m0 [-][(abs)]r0[.swizzle]:f MATHBOX|COS[|SAT]

If the source swizzle is replication, the message description field can be modified to MATHBOX|COS|SCALAR to
take advantage of the fast mode (scalar mode) supported by the Extended Math. The implied move of the SEND
instruction is equivalent to the following instruction:

MOV (8) m0[.mask]:f [-][(abs)]r0.0[.swizzle]:f {NoMask}

For a SIMD16 PS implementation, the register mappings are as the followings

p0 f0…f3 // in order of R, G, B, A

src0 r0,r1; r2,r3; r4,r5; r6,r7

dest r8,r9; r10,r11; r12,r13; r14,r15

send (8) r8:f m0 -(abs)r2:f MATHBOX|COS

send (8) r9:f m1 -(abs)r3:f MATHBOX|COS {SecHalf} // use the second half of 8 flag bits

mov (16) r10:f r8:f // All destination color chan’s are same

mov (16) r12:f r8:f // MOV is faster than most MathBox func’s

mov (16) r14:f r8:f // These MOV’s are compressed instructions

Notice that instead of issuing Extended Math messages with the same input data, destination color channel replication
is performed by the MOV instructions. This is faster for the thread for most cases as many Extended Math functions
consume multiple cycles. This also conserves message bus bandwidth as well as the usage of the shared resource –
Extended Math. The destination mask in the instruction indicates which of the r8 to r15 registers are updated. If the
source swizzle is not replication, there will be 8 SEND instructions.

IHD-OS-072810-R1V4PT2 255

With predication on, if the predication modifier is p0.select, translation is to take the selected flag register f#. The other
predication modifiers ‘.any’ and ‘.all’ are translated into ‘.any4v’ and ‘.all4v’, respectively. Notice that with
predication on, it is not required to run all 4 pixels in a subspan in the same way, so no need to enforce .any4h/.any4v.
The following example shows the instruction with predication (but without .select modifier).

(f0[.any4v|.all4v]) send (8) r8:f m0 -(abs)r2:f MATHBOX|COS

(f0[.any4v|.all4v]) send (8) r9:f m1 -(abs)r3:f MATHBOX|COS {SecHalf}

(f1[.any4v|.all4v]) mov (16) r10:f r8:f // All destination color chan’s are same

(f2[.any4v|.all4v]) mov (16) r12:f r8:f // MOV is faster than most MathBox func’s

(f3[.any4v|.all4v]) mov (16) r14:f r8:f // These MOV’s are compressed instructions

The same instructions works also for predication with select component modifier. We simply replace f0 to f3 above by
the selected flag register, say, f1. The modifier of any4h/all4v would also work.

9.2.5.2 Channel Enables for Scratch Memory

The following example demonstrates how to use the SEND instruction to get service from the Data Port for scratch
memory access.

Let’s consider general instruction that uses scratch memory as a source operand

[([!]p0.{select|any|all})] add dest[.mask], [-]src0[_abs][.swizzle], [-]src1[_abs][.swizzle]

For a SIMD4x2 VS implementation with the following register mappings

p0 f0

src0 r0

src1 s2 / r10

dest r1

In this example, the scratch memory offset is provided by an immediate and a GRF register r10 is used as the
intermediate GRF location for spill/fill of scratch buffer accesses. This arithmetic instruction is converted into a Data
Port read followed by an arithmetic instruction.

mov (8) r3:d r0:d {NoMask} // move scratch base address to be assembled with offset values

mov (1) r3.0:d 2*32 {NoMask} // s2 for vertex 0

mov (1) r3.1:d 2*32+16 {NoMask} // s2 for vertex 1

send (8) r10 m0 r3 DATAPORT|RC|READ_SIMD2

[([!]f0.{sel|any4h|all4h})] add (8) r1[.mask]:f [-][(abs)]r0[.swizzle]:f [-][(abs)]r10[.swizzle]:f

So if scratch register is the source, there is no need to use the channel enable side band. This is also true for channel-
serial PS cases.

Now, let’s consider the case when a scratch register is the destination of an instruction.

256 IHD-OS-072810-R1V4PT2

p0 f0

src0 r0

src1 r1

dest s2 / r10

We have

add (8) m1:f [-][(abs)]r0[.swizzle]:f [-][(abs)]r1[.swizzle]:f

mov (8) r3:d r0:d {NoMask} // move scratch base address to be assembled with offset values

mov (1) r3.0:d 2*32 {NoMask} // s2 for vertex 0

mov (1) r3.1:d 2*32+16 {NoMask} // s2 for vertex 1
[([!]f0.{sel|any4h|all4h})] send (8) null[.mask] m0 r3 DATAPORT|RC|WRITE_SIMD2

Notice that with a null as the posted destination register, we are able to transfer the [.mask] over the message channel
enables. In many cases for scratch memory assess, a write-with-commit is required, therefore, the posted destination
register could be r10.

Now, let’s consider the PS case when a scratch register is the destination of an instruction.

p0 f0-f4

src0 r0-r7

src1 r8-r15

dest s16-s23 / r16-r23

When predication is not on (or predication with swizzle control on), we have

add (16) m4:f [-][(abs)]r0/2/4/6_BasedOnSwizzle:f [-][(abs)] r8/10/12/14_BasedOnSwizzle:f

add (16) m6:f [-][(abs)]r0/2/4/6_BasedOnSwizzle:f [-][(abs)] r8/10/12/14_BasedOnSwizzle:f

add (16) m8:f [-][(abs)]r0/2/4/6_BasedOnSwizzle:f [-][(abs)] r8/10/12/14_BasedOnSwizzle:f

add (16) m10:f [-][(abs)]r0/2/4/6_BasedOnSwizzle:f [-][(abs)] r8/10/12/14_BasedOnSwizzle:f

mov (8) r3:d 0x76543210:v {NoMask} // ramp function

mul (16) acc0:d r3:d 16 {NoMask} // ramp function

add (8) acc0:d acc0:d 64 {NoMask,SecHalf} // ramp function

add (16) m2:d acc0:d 2*256 {NoMask} // ramp function
send (16) null m1 r3 DATAPORT|RC|WRITE_SIMD16

As there is no bit left from the unit specified descriptor field, the 4 bit mask must be put into the header field in m1,
which requires at least two more instructions.

Alternatively, or for the case that predication without modifier is on, we can do a read-modify-write.

IHD-OS-072810-R1V4PT2 257

mov (8) r3:d 0x76543210:v {NoMask} // ramp function

mul (16) acc0:d r3:d 16 {NoMask} // ramp function

add (8) acc0:d acc0:d 64 {NoMask,SecHalf} // ramp function

add (16) m2:d acc0:d 2*256 {NoMask} // ramp function
send (16) r16 m1 r3 DATAPORT|RC|READ_SIMD16 // read from scratch

// some of the following four instructions may be omitted based on [.mask] field

[([!]f0.{sel|any4v|all4v})] add (16) r16:f [-][(abs)]r0/2/4/6_BasedOnSwizzle:f [-][(abs)]
r8/10/12/14_BasedOnSwizzle:f

[([!]f0.{sel|any4v|all4v})] add (16) r18:f [-][(abs)]r0/2/4/6_BasedOnSwizzle:f [-][(abs)]
r8/10/12/14_BasedOnSwizzle:f

[([!]f0.{sel|any4v|all4v})] add (16) r20:f [-][(abs)]r0/2/4/6_BasedOnSwizzle:f [-][(abs)]
r8/10/12/14_BasedOnSwizzle:f

[([!]f0.{sel|any4v|all4v})] add (16) r22:f [-][(abs)]r0/2/4/6_BasedOnSwizzle:f [-][(abs)]
r8/10/12/14_BasedOnSwizzle:f

mov (16) m4:f r16:f {NoMask}

mov (16) m6:f r18:f {NoMask}

mov (16) m8:f r20:f {NoMask}

mov (16) m10:f r22:f {NoMask}
send (16) null m1 null DATAPORT|RC|WRITE_SIMD16 {NoMask} // write back to scratch

258 IHD-OS-072810-R1V4PT2

9.2.6 Flow Control Instructions

Unconditional branches are performed through direct manipulation of the 32-bit IP architectural register. For example:

mov (1) IP <memory_address> // jump absolute
add (1) IP IP <byte_count> // jump relative

Note that jump distances are specified in terms of bytes, as opposed to instruction counts in the case of break, halt, etc.
To minimize confusion, an assembler-only instruction ‘jmp <inst_count>’, where <inst_count> is an immediate term,
may be defined which takes an instruction count for a distance. The jmp pseudo-opcode can be mapped to an “add (1)
ip ip <inst_count> * 16” instruction.

Also note that IP is always an instruction-sized aligned address (16 bytes), thus the 4 LSB’s are not maintained in the
IP architectural register and should not be relied upon by software.

IP, when used as a source operand, reflects the memory address of the instruction in which it is used. The following are
examples illustrating the use of IP:

add (1) IP 4*16 // jumps to HERE_1
add (1) IP 0x35 // jumps to HERE_1 (4 lsb’s don’t-care)

 <instruction>
 <instruction>
HERE_1: <instruction>
HERE_2: <instruction>
 <instruction>
 add (1) IP -2*16 // jumps to HERE_2
 ...
 add (1) IP 0 // infinite loop
 add (1) IP 0xF // infinite loop
 ...

Note for Assembler: The if/iff/else/while/break instructions identify relative
addresses as the targets of an implicit jump associated with the instruction.
These are optional in the assembly syntax as the jitter can determine the
location of the matching instruction (e.g. matching endif instruction for a
given if instruction).

IHD-OS-072810-R1V4PT2 259

9.2.7 Execution Masking

9.2.7.1 Branching

Example 9-3. If / Else / EndIf

//---
// Example if/else/endif scenario
// “if (r5==r4) ...else ... end-if”
//---
 ...
 cmp.e.f0 (8) null r5 r4 // does r5 == r4?
 (f0) if (8) HERE_1 // “if” part - save then update IMASK;
 // or goto the ‘else’ if all false
 ...
 ...
HERE_1: // now do the ‘else’ part
 else (8) HERE_2 // “else” part - invert IMASK
 // or goto the ‘endif’ if all false
 ...
 ...
HERE_2:
 endif // “end-if” part – restore IMASK
 // and continue...

If it is known that the code has no nested conditionals, a predicate can be used for a lower overhead, more efficient
if/else/endif. (One must consider the probability of all channels taking the same branch, and the number of instructions
under the if/else blocks as to which conditional method, predicate or mask, is most efficient).

260 IHD-OS-072810-R1V4PT2

9.2.7.2 Fast-If

Below is an example of a fast-if instruction. For the ‘iff’ instruction, only and iff-endif construct is allowed, as opposed
to a if-else-endif. Note that the target address for branching if all enabled channels fail is one instruction beyond the
endif, as the ‘iff’ does not push and update the IMask unless the branch is taken for at least one execution channel.

Example 9-4. Fast If

//---
// Example – Fast If
// One instruction overhead conditional
//---
 ...
 cmp.e.f0 (8) null r5 r4 // any flag update
 ...
 (f0) iff (8) HERE_1 // “fast-if” – only pushes IMask;
 // if execution falls through,
 // else go to HERE_1
 ...
 ...
 endif // “end-if” part – restores IMask
HERE_1:

 ... // and continue...

9.2.7.3 Cascade Branching

As there is no ‘elseif’ instruction, a C-like cascade branching such as if / elseif / else / endif, can be realized using the
basic building blocks of if / else / endif as shown in the following example. Notice that two ‘endif’s’ are required in
order to pop the IStack correctly.

IHD-OS-072810-R1V4PT2 261

Example 9-5 If / Elseif / Else / EndIf

//---
// Example if/elseif/else/endif scenario
// “if (r5==r4) ...elseif (r6>r7) else ... end-if”
//---
 ...
 cmp.e.f0 (8) null r5 r4 // does r5 == r4?
 (f0) if (8) HERE_1 // “if” part - save then update IMask;
 // or go to the ‘else’ part if all false
 ...
 ...
HERE_1: // now do the ‘else’ part
 else (8) HERE_2 // “else if” part - invert IMask
 // or go to the ‘else’ part if all false
 cmp.g.f0 (8) null r6 r7 // is r6 > r7?
 (f0) if (8) HERE_3 // “if” part - save then update IMask;
 // or go to the ‘else’ part if all false
 ...
 ...
HERE_3: // now do the ‘else’ part
 else (8) HERE_4 // “else” part - invert IMask
 // or go to the ‘end-if’ part if all false
 ...
 ...
HERE_4:
 endif // “end-if” part – restore IMask for elseif
HERE_2:
 endif // “end-if” part – restore IMask for if

9.2.7.4 Compound Branches
Compound branches are supported through the ability logically combine flag registers for each intermediate result.

Example 9-6 Compound Branch

//---
// Example: “if (r0 > r1) OR (r2 <= r3)”
//---
 ...
 cmp.g.f0 (8) null r0:d r1:d // r0 > r1?
 cmp.le.f1 (8) null r2:d r3:d // r2 <= r3?
 or (1) f0:w f0:w f1:w // combine f0 and f1
 (f0) if (8) HERE_1 // Can now do normal if/else
 ...
 ...
HERE_1: endif

 ...

262 IHD-OS-072810-R1V4PT2

Example 9-7. Compound Branch Using 'Any' or 'All'

//---
// Example: assuming we’re doing a channel-serial vector in r0-r3
// We want to know if all components of the vector are > 0x80
//---
 ...
 cmp.g.f0 (16) null r0 0x80 // r0 > 0x80?
 cmp.g.f1 (16) null r1 0x80 // r1 > 0x80?
 cmp.g.f2 (16) null r2 0x80 // r0 > 0x80?
 cmp.g.f3 (16) null r3 0x80 // r1 > 0x80?
 (f0.all4v) if (16) HERE_1
 ...
 ... // code executed only for those channels
 ... // where per-channel r0,r1,r2,r3 all > 0x80
 ...
HERE_1: endif
 ... // and continue...

9.2.7.5 Looping

Due to GEN’s SIMD-16 architecture, it must support the case of up to 16 loops running in parallel. These must be
handled as independent loops, each with its own loop-exit condition which could occur after a different number of loop
iterations. To account for each channel’s progress, a 16b loop-mask ‘LMask’ is defined with 1b associated to each
execution channel. This mask keeps track of which channels remain active inside a loop block.

Basic Do-While Loop

Example 9-8 illustrates the most basic loop. Two operations must be accomplished before loop entry. (1) Prior to loop
entry, there is some subset of enabled channels as dictated by the code sequence prior. In general, the active status of
each channel is indicated in the virtual EMask any point in time. These active channels will become the channels over
which the loop is run, and LMask must be initialized with the EMask value. (2) Since a given loop may be nested
within another loop, the previous LMask & CMask must be saved to the LStack for later restoration upon loop
completion. The ‘msave’ instruction performs both the save and update in a single instruction, and thus all loop-blocks
should be fronted with a “msave LStack LMask” and “msave LStack CMask” operation.

Note that the LMask and CMask share the same mask-stack. Thus, CMask must always be a 1’s-subset of the LMask
for proper stack operation. This is the case if CMask is updated to LMask each pass through the loop (see Example
9-8) and through the ‘break’ instruction updating both masks.

Each pass through the loop, a loop terminating operation must be evaluated and stored in a flag register. This condition
must be evaluated on a channel-by-channel basis as exemplified:

 cmp.z.f0 (8) null r2 d3 // any operation that updates a flag

The result of this operation sets a bit per channel in the specified flag register, which is then used in the ‘while’
instruction. As loops are performed, channels may become disabled as their termination condition is met.

‘While’ termination is determined on a channel-by-channel basis by the logical AND of corresponding bit positions of
AMask, CMask and the specified flag. If the result is ‘1’ the channel remains enabled for the next pass of the loop; if
‘0’ the channel is disabled until loop fall-through. The ‘while’ instruction causes the LMask to be updated with the
latest result of enabled channels. If any channel remains enabled (LMask != ...000b), an additional pass through the
loop is made. Once a channel is terminated for the loop operation, it remains terminated until the loop is complete for
all channels.

IHD-OS-072810-R1V4PT2 263

Upon fall through, the ‘while’ instruction causes the previously saved LMask & CMask to be popped from the LStack,
enabling execution on the same subset of channels enabled prior to loop entry (unless a channel had been otherwise
terminate inside the loop via ‘halt’).

Example 9-8. Basic Loop Construct

//--
// Example: Basic do-while loop structure
//--
 ...
 do // save L/CMask & update
BEGIN_LOOP:
 mov (1) CMask LMask {NoMask} // update CMask for this pass
 ...
 ...
 <some flag update>
 (<p>) while (8) BEGIN_LOOP // cond. branch
 // + restores LMask on fall-thru
 ...

Do-While Loop with Break

A loop may also be terminated for any channel via the ‘break’ instruction. The ‘break’ instruction causes the
corresponding bit positions of enabled channels to be cleared in the LMask. If the updated LMask = ...000b, a branch is
made to the specified instruction location. An example is shown below in which the ‘break’ is at the same conditional-
nesting level as the terminating ‘while’. Its primary value may simply be to support a “do...break.. while (true)” –type
structure for a more direct 1:1 translation from higher-level source code.

Example 9-9. Loop Construct With Non-Nested ‘Break’

//---
// Example: While-true loop
//---
#define BrkCode(i,d) (i << 16) + d

 do // save L/CMask & update
BEGIN_LOOP:
 mov (1) CMask LMask {NoMask} // update CMask for this pass
 ...
 <some flag update>
 (<p>) break (8) BrkCode(0,HERE_1) // Restores LMask when all
 // channels complete loop.
 ...
 ...
 while (8) BEGIN_LOOP // while true
HERE_1:
 ...

A break condition may occur from various levels of nested-ifs. This gives rise to the possibility that a the loop may
terminate from within nested ‘if’s, and due to the jump inherent in the ‘break’ instruction, the associated ‘endif’s are
not encountered to clean-up the IStack as nesting levels are exited.

264 IHD-OS-072810-R1V4PT2

Example 9-10 Loop Construct With ‘Break’ From Within Nested If’s

//---
// Example: General Loop Structure w/ break inside if’s
//---
#define BrkCode(i,d) (i << 16) + d

 do // save L/CMask & update
BEGIN_LOOP:
 mov (1) CMask LMask {NoMask} // update CMask for this pass
 ...
 if ...
 if ...
 if ...
 ...
 (<p>) break (8) BrkCode(3,HERE_1) // we’re 3 levels deep, so
 ...
 endif
 endif
 endif
 ...
 (<p>) break (8) BrkCode(0,HERE_1)
 ...
 while (8) <flag_spec> BEGIN_LOOP // cond. branch
 // + restores C/LMask on fall-thru
HERE_1:

Do-While Loop with Continue

A continue instruction ‘cont’ is provided skip to the next iteration of the loop. Because not all channels participating in
the loop may be enabled at the time this instruction is executed, some channels may require continuation of the loop. A
special mask ‘CMask’ is defined which accounts for channels temporarily disabled for the current loop pass.

Since loops may nested, the CMask must be saved and restored around a loop similar to LMask. Since the CMask
value within a properly constructed loop is always a subset of the LMask, it can share the LStack for storage, so long as
it is pushed after LMask as shown in Example 9-11. This save/restore operations are not required if the loop being
entered does not have any occurrence of a continue instruction.

Example 9-11. Do-While with Continue

//---
// Example: General Loop Structure w/ basic break and cont.
//---
#define ContCode(i,d) (i << 16) + d

 do // save L/CMask & update
BEGIN_LOOP:
 mov (1) CMask EMask // re-initialize CMask for this pass
 ...
 ...
 (<p>) cont (8) ContCode(0,HERE_1)
 ...
HERE_1:
 (<p>) while (8) BEGIN_LOOP // cond. branch
 // + restores C/LMask on fall-thru

IHD-OS-072810-R1V4PT2 265

 ...

9.2.7.6 Indexed Jump

Example 9-12. Indexed Jump
 //---
 // Code example shows the use of jmpi to perform a case statement
 // of any number of options in 3 jumps
 //---
 .default_execution_size 8
 ...
 jmpi r0<0,1,0> // jump relative, based on r0.a.x
 // ----- Jump Table ------
 jmp HERE_0 // redirect for case 0
 jmp HERE_1 // redirect for case 1
 jmp HERE_2 // redirect for case 2
 jmp HERE_3 // redirect for case 3
 ...
HERE_0: // ... case 0 ...
 ...
 jmp DONE
HERE_1: // ... case 1 ...
 ...
 jmp DONE
HERE_2: // ... case 2 ...
 ...
 jmp DONE
HERE_3: // ... case 3 ...
 ...
DONE:
 ... // and continue...

