
 Doc Ref #: IHD_OS_V4Pt1_3_10

Intel® OpenSource HD Graphics PRM

Volume 4 Part 1: Subsystem and Cores - Shared Functions

For the all new 2010 Intel Core Processor Family
Programmer’s Reference Manual (PRM)

March 2010

Revision 1.0

2 Doc Ref #: IHD_OS_V4Pt1_3_10

Creative Commons License

You are free:

to Share — to copy, distribute, display, and perform the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or licensor (but not in any

way that suggests that they endorse you or your use of the work).

No Derivative Works. You may not alter, transform, or build upon this work.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN
INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL
DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, or life sustaining
applications.
Intel may make changes to specifications and product descriptions at any time, without notice.
Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.
The Sandy Bridge chipset family, Havendale/Auburndale chipset family, Intel® 965 Express Chipset Family, Intel® G35 Express Chipset, and Intel®
965GMx Chipset Mobile Family Graphics Controller may contain design defects or errors known as errata which may cause the product to deviate
from published specifications. Current characterized errata are available on request.
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.
I2C is a two-wire communications bus/protocol developed by Philips. SMBus is a subset of the I2C bus/protocol and was developed by Intel.
Implementations of the I2C bus/protocol may require licenses from various entities, including Philips Electronics N.V. and North American Philips
Corporation.
Intel and the Intel are trademarks of Intel Corporation in the U.S. and other countries.
*Other names and brands may be claimed as the property of others.
Copyright © 2010, Intel Corporation. All rights reserved.

Doc Ref #: IHD_OS_V4Pt1_3_10 3

Revision History

Document Number Revision
Number

Description Re vision Date

IHD_OS_V4Pt1_3_10 1.0 First Release. March 2010

4 Doc Ref #: IHD_OS_V4Pt1_3_10

Contents
1. Introduction.. 7

1.1 Notations and Conventions.. 9
1.1.1 Reserved Bits and Software Compatibility... 9

1.2 Terminology ... 9
2. Subsystem Overview .. 17

2.1 Introduction .. 17
2.2 Subsystem Topology.. 17
2.3 Execution Units (EUs) .. 17
2.4 Thread Dispatching .. 18
2.5 Shared Functions ... 18
2.6 Messages... 20

2.6.1 Message Register File (MRF) .. 21
2.6.2 Send Instruction ... 22
2.6.3 Creating and Sending a Message.. 22
2.6.4 Message Payload Containing a Header .. 23
2.6.5 Writebacks.. 23
2.6.6 Message Delivery Ordering Rules ... 23
2.6.7 Execution Mask and Messages ... 23
2.6.8 End-Of-Thread (EOT) Message... 24
2.6.9 Performance... 25
2.6.10 Message Description Syntax.. 25
2.6.11 Message Errors .. 26

3. Shared Functions .. 28
4. Sampling Engine ... 28

4.1 Texture Coordinate Processing ... 29
4.1.1 Texture Coordinate Normalization ...29
4.1.2 Texture Coordinate Computation ...30

4.2 Texel Address Generation ... 30
4.2.1 Level of Detail Computation (Mipmapping).. 31
4.2.2 Inter-Level Filtering Setup .. 34
4.2.3 Intra-Level Filtering Setup .. 34
4.2.4 Texture Address Control .. 38

4.3 Texel Fetch .. 40
4.3.1 Texel Chroma Keying... 41

4.4 Shadow Prefilter Compare... 41
4.5 Texel Filtering... 42
4.6 Texel Color Gamma Linearization ... 42
4.7 Denoise/Deinterlacer [DevILK]... 43

4.7.1 Introduction... 43
4.7.2 Block Noise Estimate (part of Global Noise Estimate)... 45
4.7.3 Deinterlacer Algorithm.. 45
4.7.4 Field Motion Detector ... 47
4.7.5 Implementation Overview... 47

4.8 Adaptive Video Scaler [DevILK+]... 49
4.8.1 Filtering Operations.. 51

4.9 Image Enhancement Filter and Video Signal Analysis [DevILK+] ... 51
4.10 State ... 51

4.10.1 BINDING_TABLE_STATE ... 51
4.10.2 SURFACE_STATE... 52

Doc Ref #: IHD_OS_V4Pt1_3_10 5

4.10.3 SAMPLER_STATE... 83
4.10.4 SAMPLER_8x8_STATE [DevILK+]..101
4.10.5 SAMPLER_BORDER_COLOR_STATE ..104
4.10.6 3DSTATE_CHROMA_KEY..106
4.10.7 3DSTATE_SAMPLER_PALETTE_LOAD0..108
4.10.8 3DSTATE_SAMPLER_PALETTE_LOAD1 [DevCTG-B+] ...109
4.10.9 3DSTATE_MONOFILTER_SIZE [DevILK+] ..110

4.11 Messages ...111
4.11.1 Initiating Message ..111
4.11.2 Writeback Message..128

5. Data Port...141
5.1 Cache Agents...141
5.2 Cache Agents...141

5.2.1 Render Cache ..142
5.2.2 Data Cache ..142

5.3 Surfaces ...142
5.3.1 Surface State Model...142
5.3.2 Stateless Model..142

5.4 Read/Write Ordering ..143
5.5 Accessing Buffers ..144
5.6 Accessing Media Surfaces...144
5.7 Accessing Render Targets...145

5.7.1 Single Source ...145
5.7.2 Dual Source [DevCL-B, DevCTG+]..145
5.7.3 Replicate Data..145
5.7.4 Multiple Render Targets (MRT)..146

5.8 Flushing the Render Cache [Pre-DevSNB]..146
5.9 State ...146

5.9.1 BINDING_TABLE_STATE ...146
5.9.2 SURFACE_STATE...146

5.10 Messages ...146
5.10.1 Global Definitions ...146
5.10.2 Data Port Messages...147
5.10.3 OWord Block Read/Write ...152
5.10.4 OWord Dual Block Read/Write...156
5.10.5 Media Block Read/Write...159
5.10.6 DWord Scattered Read/Write...165
5.10.7 Render Target Write...169
5.10.8 Render Target UNORM Read/Write [DevCTG] to [DevILK]] ...182
5.10.9 Streamed Vertex Buffer Write ..187
5.10.10 AVC Loop Filter Read [DevCTG] to [Devilk] ..188
5.10.11 Flush Render Cache [Pre-DevSNB]...204

6. Extended Math...205
6.1 Messages...205

6.1.1 Initiating Message ..205
6.1.2 Writeback Message..210

6.2 Performance...211
6.3 Function Reference..212

6.3.1 INV ...212
6.3.2 LOG..213
6.3.3 EXP ..213
6.3.4 SQRT ...214
6.3.5 RSQ..214

6 Doc Ref #: IHD_OS_V4Pt1_3_10

6.3.6 POW...215
6.3.7 SIN ...215
6.3.8 COS..216
6.3.9 SINCOS..217
6.3.10 INT DIV...218

Doc Ref #: IHD_OS_V4Pt1_3_10 7

1. Introduction
This Programmer’s Reference Manual (PRM) describes the architectural behavior and programming environment of the
Havendale/Auburndale chipset family, the Intel® 965 Chipset family and Intel® G35 Express Chipset GMCH graphics devices
(see Table 1-1). The GMCH’s Graphics Controller (GC) contains an extensive set of registers and instructions for configuration,
2D, 3D, and Video systems. The PRM describes the register, instruction, and memory interfaces and the device behaviors as
controlled and observed through those interfaces. The PRM also describes the registers and instructions and provides detailed
bit/field descriptions.

The Programmer’s Reference Manual is organized into five volumes:

PRM, Volume 1: Graphics Core
Volume 1, Part 1, 2, 3, 4 and 5 covers the overall Graphics Processing Unit (GPU), without much detail on 3D, Media, or the
core subsystem. Topics include the command streamer, context switching, and memory access (including tiling). The
Memory Data Formats can also be found in this volume.

The volume also contains a chapter on the Graphics Processing Engine (GPE). The GPE is a collective term for 3D, Media,
the subsystem, and the parts of the memory interface that are used by these units. Display, blitter and their memory interfaces
are not included in the GPE.

PRM, Volume 2: 3D/Media
Volume 2, Part 1, 2 covers the 3D and Media pipelines in detail. This volume is where details for all of the “fixed functions”
are covered, including commands processed by the pipelines, fixed-function state structures, and a definition of the inputs
(payloads) and outputs of the threads spawned by these units.

This volume also covers the single Media Fixed Function, VLD. It describes how to initiate generic threads using the thread
spawner (TS). It is generic threads which will be used for doing the majority of media functions. Programmable kernels will
handle the algorithms for media functions such IDCT, Motion Compensation, and even Motion Estimation (used for
encoding MPEG streams).

PRM, Volume 3: Display Registers
Volume 3, Part 1, 2, 3 describes the control registers for the display. The overlay registers and VGA registers are also cover
in this volume.

PRM, Volume 4: Subsystem and Cores
Volume 4, Part 1 and 2 describes the GMCH programmable cores, or EUs, and the “shared functions”, which are shared by
more than one EU and perform functions such as I/O and complex math functions.

The shared functions consist of the sampler: extended math unit, data port (the interface to memory for 3D and media),
Unified Return Buffer (URB), and the Message Gateway which is used by EU threads to signal each other. The EUs use
messages to send data to and receive data from the subsystem; the messages are described along with the shared functions
although the generic message send EU instruction is described with the rest of the instructions in the Instruction Set
Architecture (ISA) chapters.

8 Doc Ref #: IHD_OS_V4Pt1_3_10

This latter part of this volume describes the GMCH core, or EU, and the associated instructions that are used to program it.
The instruction descriptions make up what is referred to as an Instruction Set Architecture, or ISA. The ISA describes all of
the instructions that the GMCH core can execute, along with the registers that are used to store local data.

Device Tags and Chipsets

Device “Tags” are used in various parts of this document as aliases for the device names/steppings, as listed in the following
table. Note that stepping info is sometimes appended to the device tag, e.g., [DevBW-C]. Information without any device
tagging is applicable to all devices/steppings.

Table 1-1. Supported Chipsets

Chipset Family Name Device
Name

Device Tag

Intel® Q965 Chipset
Intel® Q963 Chipset
Intel® G965 Chipset

82Q965
GMCH
82Q963
GMCH
82G965
GMCH

[DevBW]

Intel® G35 Chipset 82G35
GMCH

[DevBW-E]

Intel® GM965 Chipset
Intel® GME965 Chipset

GM965
GMCH
GME965
GMCH

[DevCL]

Mobile Intel® GME965 Express Chipset
Mobile Intel® GM965 Express Chipset
Mobile Intel® PM965 Express Chipset
Mobile Intel® GL960 Express Chipset

 [DevCL]

[Cantiga A-step (not productized)] N/A [DevCTG],
[DevCTG-A]

[Cantiga B-step/Eaglelake converged
core (not productized)]

TBD [DevCTG-B],

[Havendale/Auburndale] TBD [DevILK]

NOTES:
1. Unless otherwise specified, the information in this document applies to all of the devices mentioned in Table 1-1. For

Information that does not apply to all devices, the Device Tag is used.
2. Throughout the PRM, references to “All” in a project field refters to all devices in

Table 1-1.
3. Throughout the PRM, references to [DevBW] apply to both [DevBW] and [DevBW-E]. [DevBW-E] is referenced

specifically for information that is [DevBW-E] only.
4. Stepping info is sometimes appended to the device tag (e.g., [DevBW-C]). Information without any device tagging is

applicable to all devices/steppings.
5. A shorthand is used to (a) identify all devices/steppings prior to the device/stepping that the item pertains (e.g., “[Pre-

DevILK”], .

Doc Ref #: IHD_OS_V4Pt1_3_10 9

1.1 Notations and Conventions

1.1.1 Reserved Bits and Software Compatibility
In many register, instruction and memory layout descriptions, certain bits are marked as “Reserved”. When bits are marked as
reserved, it is essential for compatibility with future devices that software treat these bits as having a future, though unknown,
effect. The behavior of reserved bits should be regarded as not only undefined, but unpredictable. Software should follow these
guidelines in dealing with reserved bits:
Do not depend on the states of any reserved bits when testing values of registers that contain such bits. Mask out the reserved bits
before testing. Do not depend on the states of any reserved bits when storing to instruction or to a register.
When loading a register or formatting an instruction, always load the reserved bits with the values indicated in the documentation,
if any, or reload them with the values previously read from the register.

1.2 Terminology

Term Abbr. Definition

3D Pipeline -- One of the two pipelines supported in the GPE. The 3D pipeline is a set of
fixed-function units arranged in a pipelined fashion, which process 3D-
related commands by spawning EU threads. Typically this processing
includes rendering primitives. See 3D Pipeline.

Adjacency -- One can consider a single line object as existing in a strip of connected
lines. The neighboring line objects are called “adjacent objects”, with the
non-shared endpoints called the “adjacent vertices.” The same concept can
be applied to a single triangle object, considering it as existing in a mesh of
connected triangles. Each triangle shares edges with three other adjacent
triangles, each defined by an non-shared adjacent vertex. Knowledge of
these adjacent objects/vertices is required by some object processing
algorithms (e.g., silhouette edge detection). See 3D Pipeline.

Application IP AIP Application Instruction Pointer. This is part of the control registers for
exception handling for a thread. Upon an exception, hardware moves the
current IP into this register and then jumps to SIP.

Architectural Register
File

ARF A collection of architecturally visible registers for a thread such as address
registers, accumulator, flags, notification registers, IP, null, etc. ARF should
not be mistaken as just the address registers.

Array of Cores -- Refers to a group of Gen4 EUs, which are physically organized in two or
more rows. The fact that the EUs are arranged in an array is (to a great
extent) transparent to CPU software or EU kernels.

Binding Table -- Memory-resident list of pointers to surface state blocks (also in memory).

Binding Table Pointer BTP Pointer to a binding table, specified as an offset from the Surface State
Base Address register.

Bypass Mode -- Mode where a given fixed function unit is disabled and forwards data down
the pipeline unchanged. Not supported by all FF units.

Byte B A numerical data type of 8 bits, B represents a signed byte integer.

10 Doc Ref #: IHD_OS_V4Pt1_3_10

Term Abbr. Definition

Child Thread A branch-node or a leaf-node thread that is created by another thread. It is a
kind of thread associated with the media fixed function pipeline. A child
thread is originated from a thread (the parent) executing on an EU and
forwarded to the Thread Dispatcher by the TS unit. A child thread may or
may not have child threads depending on whether it is a branch-node or a
leaf-node thread. All pre-allocated resources such as URB and scratch
memory for a child thread are managed by its parent thread.

Clip Space -- A 4-dimensional coordinate system within which a clipping frustum is
defined. Object positions are projected from Clip Space to NDC space via
“perspecitive divide” by the W coordinate, and then viewport mapped into
Screen Space

Clipper -- 3D fixed function unit that removes invisible portions of the drawing
sequence by discarding (culling) primitives or by “replacing” primitives with
one or more primitives that replicate only the visible portion of the original
primitive.

Color Calculator CC Part of the Data Port shared function, the color calculator performs fixed-
function pixel operations (e.g., blending) prior to writing a result pixel into
the render cache.

Command -- Directive fetched from a ring buffer in memory by the Command Streamer
and routed down a pipeline. Should not be confused with instructions which
are fetched by the instruction cache subsystem and executed on an EU.

Command Streamer CS or CSI Functional unit of the Graphics Processing Engine that fetches commands,
parses them and routes them to the appropriate pipeline.

Constant URB Entry CURBE A UE that contains “constant” data for use by various stages of the pipeline.

Control Register CR The read-write registers are used for thread mode control and exception
handling for a thread.

Degenerate Object -- Object that is invisible due to coincident vertices or because does not
intersect any sample points (usually due to being tiny or a very thin sliver).

Destination -- Describes an output or write operand.

Destination Size The number of data elements in the destination of a Gen4 SIMD instruction.

Destination Width The size of each of (possibly) many elements of the destination of a Gen4
SIMD instruction.

Double Quad word
(DQword)

DQ A fundamental data type, DQ represents 16 bytes.

Double word (DWord) D or DW A fundamental data type, D or DW represents 4 bytes.

Drawing Rectangle -- A screen-space rectangle within which 3D primitives are rendered. An
objects screen-space positions are relative to the Drawing Rectangle origin.
See Strips and Fans.

End of Block EOB A 1-bit flag in the non-zero DCT coefficient data structure indicating the end
of an 8x8 block in a DCT coefficient data buffer.

End Of Thread EOT a message sideband signal on the Output message bus signifying that the
message requester thread is terminated. A thread must have at least one
SEND instruction with the EOT bit in the message descriptor field set in
order to properly terminate.

Exception -- Type of (normally rare) interruption to EU execution of a thread’s
instructions. An exception occurrence causes the EU thread to begin
executing the System Routine which is designed to handle exceptions.

Execution Channel --

Doc Ref #: IHD_OS_V4Pt1_3_10 11

Term Abbr. Definition

Execution Size ExecSize Execution Size indicates the number of data elements processed by a
GEN4 SIMD instruction. It is one of the GEN4 instruction fields and can be
changed per instruction.

Execution Unit EU Execution Unit. An EU is a multi-threaded processor within the GEN4 multi-
processor system. Each EU is a fully-capable processor containing
instruction fetch and decode, register files, source operand swizzle and
SIMD ALU, etc. An EU is also referred to as a GEN4 Core.

Execution Unit
Identifier

EUID The 4-bit field within a thread state register (SR0) that identifies the row and
column location of the EU a thread is located. A thread can be uniquely
identified by the EUID and TID.

Execution Width ExecWidth The width of each of several data elements that may be processed by a
single Gen4 SIMD instruction.

Extended Math Unit EM A Shared Function that performs more complex math operations on behalf
of several EUs.

FF Unit -- A Fixed-Function Unit is the hardware component of a 3D Pipeline Stage. A
FF Unit typically has a unique FF ID associated with it.

Fixed Function FF Function of the pipeline that is performed by dedicated (vs. programmable)
hardware.

Fixed Function ID FFID Unique identifier for a fixed function unit.

FLT_MAX fmax The magnitude of the maximum representable single precision floating
number according to IEEE-754 standard. FLT_MAX has an exponent of
0xFE and a mantissa of all one’s.

Gateway GW See Message Gateway.

GEN4 Core Alternative name for an EU in the GEN4 multi-processor system.

General Register File GRF Large read/write register file shared by all the EUs for operand sources and
destinations. This is the most commonly used read-write register space
organized as an array of 256-bit registers for a thread.

General State Base
Address

-- The Graphics Address of a block of memory-resident “state data”, which
includes state blocks, scratch space, constant buffers and kernel programs.
The contents of this memory block are referenced via offsets from the
contents of the General State Base Address register. See Graphics
Processing Engine.

Geometry Shader GS Fixed-function unit between the vertex shader and the clipper that (if
enabled) dispatches “geometry shader” threads on its input primitives.
Application-supplied geometry shaders normally expand each input primitive
into several output primitives in order to perform 3D modeling algorithms
such as fur/fins. See Geometry Shader.

Graphics Address The GPE virtual address of some memory-resident object. This virtual
address gets mapped by a GTT or PGTT to a physical memory address.
Note that many memory-resident objects are referenced not with Graphics
Addresses, but instead with offsets from a “base address register”.

Graphics Processing
Engine

GPE Collective name for the Subsystem, the 3D and Media pipelines, and the
Command Streamer.

Guardband GB Region that may be clipped against to make sure objects do not exceed the
limitations of the renderer’s coordinate space.

Horizontal Stride HorzStride The distance in element-sized units between adjacent elements of a Gen4
region-based GRF access.

12 Doc Ref #: IHD_OS_V4Pt1_3_10

Term Abbr. Definition

Immediate floating
point vector

VF A numerical data type of 32 bits, an immediate floating point vector of type
VF contains 4 floating point elements with 8-bit each. The 8-bit floating point
element contains a sign field, a 3-bit exponent field and a 4-bit mantissa
field. It may be used to specify the type of an immediate operand in an
instruction.

Immediate integer
vector

V A numerical data type of 32 bits, an immediate integer vector of type V
contains 8 signed integer elements with 4-bit each. The 4-bit integer
element is in 2’s compliment form. It may be used to specify the type of an
immediate operand in an instruction.

Index Buffer IB Buffer in memory containing vertex indices.

In-loop Deblocking
Filter

ILDB The deblocking filter operation in the decoding loop. It is a stage after MC in
the video decoding pipe.

Instance In the context of the VF unit, an instance is one of a sequence of sets of
similar primitive data. Each set has identical vertex data but may have
unique instance data that differentiates it from other sets in the sequence.

Instruction -- Data in memory directing an EU operation. Instructions are fetched from
memory, stored in a cache and executed on one or more Gen4 cores. Not
to be confused with commands which are fetched and parsed by the
command streamer and dispatched down the 3D or Media pipeline.

Instruction Pointer IP The address (really an offset) of the instruction currently being fetched by an
EU. Each EU has its own IP.

Instruction Set
Architecture

ISA The GEN4 ISA describes the instructions supported by a GEN4 EU.

Instruction State
Cache

ISC On-chip memory that holds recently-used instructions and state variable
values.

Interface Descriptor -- Media analog of a State Descriptor.

Intermediate Z IZ Completion of the Z (depth) test at the front end of the Windower/Masker
unit when certain conditions are met (no alpha, no pixel-shader computed Z
values, etc.)

Inverse Discrete
Cosine Transform

IDCT the stage in the video decoding pipe between IQ and MC

Inverse Quantization IQ A stage in the video decoding pipe between IS and IDCT.

Inverse Scan IS A stage in the video decoding pipe between VLD and IQ. In this stage, a
sequence of none-zero DCT coefficients are converted into a block (e.g. an
8x8 block) of coefficients. VFE unit has fixed functions to support IS for both
MPEG-2 and WMV.

Jitter Just-in-time compiler.

Kernel -- A sequence of Gen4 instructions that is logically part of the driver or
generated by the jitter. Differentiated from a Shader which is an application
supplied program that is translated by the jitter to Gen4 instructions.

Least Significant Bit LSB

MathBox -- See Extended Math Unit

Media -- Term for operations that are normally performed by the Media pipeline.

Media Pipeline -- Fixed function stages dedicated to media and “generic” processing,
sometimes referred to as the generic pipeline.

Doc Ref #: IHD_OS_V4Pt1_3_10 13

Term Abbr. Definition

Message -- Messages are data packages transmitted from a thread to another thread,
another shared function or another fixed function. Message passing is the
primary communication mechanism of GEN4 architecture.

Message Gateway -- Shared function that enables thread-to-thread message
communication/synchronization used solely by the Media pipeline.

Message Register
File

MRF Write-only registers used by EUs to assemble messages prior to sending
and as the operand of a send instruction.

Most Significant Bit MSB

Motion Compensation MC Part of the video decoding pipe.

Motion Picture Expert
Group

MPEG MPEG is the international standard body JTC1/SC29/WG11 under ISO/IEC
that has defined video compression standards such as MPEG-1, MPEG-2,
and MPEG-4, etc.

Motion Vector Field
Selection

MVFS A four-bit field selecting reference fields for the motion vectors of the current
macroblock.

Multi Render Targets MRT Multiple independent surfaces that may be the target of a sequence of 3D or
Media commands that use the same surface state.

Normalized Device
Coordinates

NDC Clip Space Coordinates that have been divided by the Clip Space “W”
component.

Object -- A single triangle, line or point.

Open GL OGL A Graphics API specification associated with Linux.

Parent Thread -- A thread corresponding to a root-node or a branch-node in thread
generation hierarchy. A parent thread may be a root thread or a child thread
depending on its position in the thread generation hierarchy.

Pipeline Stage -- A abstracted element of the 3D pipeline, providing functions performed by a
combination of the corresponding hardware FF unit and the threads
spawned by that FF unit.

Pipelined State
Pointers

PSP Pointers to state blocks in memory that are passed down the pipeline.

Pixel Shader PS Shader that is supplied by the application, translated by the jitter and is
dispatched to the EU by the Windower (conceptually) once per pixel.

Point -- A drawing object characterized only by position coordinates and width.

Primitive -- Synonym for object: triangle, rectangle, line or point.

Primitive Topology -- A composite primitive such as a triangle strip, or line list. Also includes the
objects triangle, line and point as degenerate cases.

Provoking Vertex -- The vertex of a primitive topology from which vertex attributes that are
constant across the primitive are taken.

Quad Quad word
(QQword)

QQ A fundamental data type, QQ represents 32 bytes.

Quad Word (QWord) QW A fundamental data type, QW represents 8 bytes.

Rasterization Conversion of an object represented by vertices into the set of pixels that
make up the object.

Region-based
addressing

-- Collective term for the register addressing modes available in the EU
instruction set that permit discontiguous register data to be fetched and
used as a single operand.

14 Doc Ref #: IHD_OS_V4Pt1_3_10

Term Abbr. Definition

Render Cache RC Cache in which pixel color and depth information is written prior to being
written to memory, and where prior pixel destination attributes are read in
preparation for blending and Z test.

Render Target RT A destination surface in memory where render results are written.

Render Target Array
Index

-- Selector of which of several render targets the current operation is targeting.

Root Thread -- A root-node thread. A thread corresponds to a root-node in a thread
generation hierarchy. It is a kind of thread associated with the media fixed
function pipeline. A root thread is originated from the VFE unit and
forwarded to the Thread Dispatcher by the TS unit. A root thread may or
may not have child threads. A root thread may have scratch memory
managed by TS. A root thread with children has its URB resource managed
by the VFE.

Sampler -- Shared function that samples textures and reads data from buffers on behalf
of EU programs.

Scratch Space -- Memory allocated to the subsystem that is used by EU threads for data
storage that exceeds their register allocation, persistent storage, storage of
mask stack entries beyond the first 16, etc.

Shader -- A Gen4 program that is supplied by the application in a high level shader
language, and translated to Gen4 instructions by the jitter.

Shared Function SF Function unit that is shared by EUs. EUs send messages to shared
functions; they consume the data and may return a result. The Sampler,
Data Port and Extended Math unit are all shared functions.

Shared Function ID SFID Unique identifier used by kernels and shaders to target shared functions and
to identify their returned messages.

Single Instruction
Multiple Data

SIMD The term SIMD can be used to describe the kind of parallel processing
architecture that exploits data parallelism at instruction level. It can also be
used to describe the instructions in such architecture.

Source -- Describes an input or read operand

Spawn -- To initiate a thread for execution on an EU. Done by the thread spawner as
well as most FF units in the 3D pipeline.

Sprite Point -- Point object using full range texture coordinates. Points that are not sprite
points use the texture coordinates of the point’s center across the entire
point object.

State Descriptor -- Blocks in memory that describe the state associated with a particular FF,
including its associated kernel pointer, kernel resource allowances, and a
pointer to its surface state.

State Register SR The read-only registers containing the state information of the current
thread, including the EUID/TID, Dispatcher Mask, and System IP.

State Variable SV An individual state element that can be varied to change the way given
primitives are rendered or media objects processed. On Gen4 state
variables persist only in memory and are cached as needed by
rendering/processing operations except for a small amount of non-pipelined
state.

Stream Output -- A term for writing the output of a FF unit directly to a memory buffer instead
of, or in addition to, the output passing to the next FF unit in the pipeline.
Currently only supported for the Geometry Shader (GS) FF unit.

Doc Ref #: IHD_OS_V4Pt1_3_10 15

Term Abbr. Definition

Strips and Fans SF Fixed function unit whose main function is to decompose primitive
topologies such as strips and fans into primitives or objects.

Sub-Register Subfield of a SIMD register. A SIMD register is an aligned fixed size register
for a register file or a register type. For example, a GRF register, r2, is 256-
bit wide, 256-bit aligned register. A sub-register, r2.3:d, is the fourth dword
of GRF register r2.

Subsystem -- The Gen4 name given to the resources shared by the FF units, including
shared functions and EUs.

Surface -- A rendering operand or destination, including textures, buffers, and render
targets.

Surface State -- State associated with a render surface including

Surface State Base
Pointer

-- Base address used when referencing binding table and surface state data.

Synchronized Root
Thread

-- A root thread that is dispatched by TS upon a ‘dispatch root thread’
message.

System IP SIP There is one global System IP register for all the threads. From a thread’s
point of view, this is a virtual read only register. Upon an exception,
hardware performs some bookkeeping and then jumps to SIP.

System Routine -- Sequence of Gen4 instructions that handles exceptions. SIP is
programmed to point to this routine, and all threads encountering an
exception will call it.

Thread An instance of a kernel program executed on an EU. The life cycle for a
thread starts from the executing the first instruction after being dispatched
from Thread Dispatcher to an EU to the execution of the last instruction – a
send instruction with EOT that signals the thread termination. Threads in
GEN4 system may be independent from each other or communicate with
each other through Message Gateway share function.

Thread Dispatcher TD Functional unit that arbitrates thread initiation requests from Fixed Functions
units and instantiates the threads on EUs.

Thread Identifier TID The field within a thread state register (SR0) that identifies which thread
slots on an EU a thread occupies. A thread can be uniquely identified by the
EUID and TID.

Thread Payload Prior to a thread starting execution, some amount of data will be pre-loaded
in to the thread’s GRF (starting at r0). This data is typically a combination of
control information provided by the spawning entity (FF Unit) and data read
from the URB.

Thread Spawner TS The second and the last fixed function stage of the media pipeline that
initiates new threads on behalf of generic/media processing.

Topology See Primitive Topology.

Unified Return Buffer URB The on-chip memory managed/shared by GEN4 Fixed Functions in order for
a thread to return data that will be consumed either by a Fixed Function or
other threads.

Unsigned Byte
integer

UB A numerical data type of 8 bits.

Unsigned Double
Word integer

UD A numerical data type of 32 bits. It may be used to specify the type of an
operand in an instruction.

Unsigned Word
integer

UW A numerical data type of 16 bits. It may be used to specify the type of an
operand in an instruction.

16 Doc Ref #: IHD_OS_V4Pt1_3_10

Term Abbr. Definition

Unsynchronized Root
Thread

-- A root thread that is automatically dispatched by TS.

URB Dereference --

URB Entry UE URB Entry: A logical entity stored in the URB (such as a vertex), referenced
via a URB Handle.

URB Entry Allocation
Size

-- Number of URB entries allocated to a Fixed Function unit.

URB Fence Fence Virtual, movable boundaries between the URB regions owned by each FF
unit.

URB Handle -- A unique identifier for a URB entry that is passed down a pipeline.

URB Reference --

Variable Length
Decode

VLD The first stage of the video decoding pipe that consists mainly of bit-wide
operations. GEN4 supports hardware VLD acceleration in the VFE fixed
function stage.

Vertex Buffer VB Buffer in memory containing vertex attributes.

Vertex Cache VC Cache of Vertex URB Entry (VUE) handles tagged with vertex indices.

Vertex Fetcher VF The first FF unit in the 3D pipeline responsible for fetching vertex data from
memory. Sometimes referred to as the Vertex Formatter.

Vertex Header -- Vertex data required for every vertex appearing at the beginning of a Vertex
URB Entry.

Vertex ID -- Unique ID for each vertex that can optionally be included in vertex attribute
data sent down the pipeline and used by kernel/shader threads.

Vertex URB Entry VUE A URB entry that contains data for a specific vertex.

Vertical Stride VertStride The distance in element-sized units between 2 vertically-adjacent elements
of a Gen4 region-based GRF access.

Video Front End VFE The first fixed function in the GEN4 generic pipeline; performs fixed-function
media operations.

Viewport VP

Windower IZ WIZ Term for Windower/Masker that encapsulates its early (“intermediate”) depth
test function.

Windower/Masker WM Fixed function triangle/line rasterizer.

Word W A numerical data type of 16 bits, W represents a signed word integer.

Doc Ref #: IHD_OS_V4Pt1_3_10 17

2. Subsystem Overview

2.1 Introduction

The Gen4 subsystem consists of an array of execution units (EUs, sometimes referred to as an arrray of cores) along with a set of
shared functions outside the EUs that the EUs leverage for I/O and for complex computations. Programmers access the Gen4
Subsystem via the 3D or Media pipelines.

EUs are general-purpose programmable cores that support a rich instruction set that has been optimized to support various 3D
API shader languages as well as media functions (primarily video) processing.

Shared functions are hardware units which serve to provide specialized supplemental functionality for the EUs. A shared function
is implemented where the demand for a given specialized function is insufficient to justify the costs on a per-EU basis. Instead a
single instantiation of that specialized function is implemented as a stand-alone entity outside the EUs and shared amongst the
EUs.

Invocation of the shared functionality is performed via a communication mechanism call a “message”. A message is a small, self-
contained packet of information created by a kernel and directed to specific shared function. The message is defined by sequential
series of MRF registers which hold message operands, a destination shared function ID, a function-specific encoding of the
desired operation to be performed, and a destination GRF register to which any writeback response is to be directed. Messages are
dispatched to the shared function under software control via the ‘send’ instruction. This instruction identifies the contents of the
message and the GRF register location(s) to direct any response.

The message construction and delivery mechanisms are general in their definition and capable of supporting a wide variety of
shared functions.

2.2 Subsystem Topology

The subsystem is organized as an array of EUs, and a set of functions that are shared among all of the EUs. (The EU array is
further divided into rows with each row having its own first level instruction cache and Extended Math shared function, though
this aspect of the implemented topology is not exposed to software). The Sampler, DataPort, URB and Message Gateway
functions are shared among the entire array of EUs.

2.3 Execution Units (EUs)

Each EU is a vector machine capable of performing a given operation on as many as 16 pieces of data of the same type in parallel
(though not necessarily on the same instant in time). In addition, each EU can support a number of execution contexts called
threads that are used to avoid stalling the EU during a high-latency operation (external to the EU) by providing an opportunity for
the EU to switch to a completely different workload with minimal latency while waiting for the high-latency operation to
complete.

18 Doc Ref #: IHD_OS_V4Pt1_3_10

For example, if a program executing on an EU requires a texture read by the sampling engine, the EU may not necessarily idle
while the data is fetched from memory, arranged, filtered and returned to the EU. Instead the EU will likely switch execution to
another (unrelated) thread associated with that EU. If that thread encounters a stall, the EU may switch to yet another thread and
so on. Once the Sampler result arrives back at the EU, the EU can switch back to the original thread and use the returned data as
it continues execution of that thread.

The fact that there are multiple EU cores each with multiple threads can generally be ignored by software. There are some
exceptions to this rule: e.g., for

• thread-to-thread communication (see Message Gateway, Media)
• synchronization of thread output to memory buffers (see Geometry Shader).

In contrast, the internal SIMD aspects of the EU are very much exposed to software.

This volume will not deal with the details of the EUs. See the Gen4 Core volume for details such as EU registers and instruction
set.

2.4 Thread Dispatching

When the 3D and Media pipelines send requests for thread initiation to the Subsystem, the thread Dispatcher receives the
requests. The dispatcher performs such tasks as arbitrating between concurrent requests, assigning requested threads to hardware
threads on EUs, allocating register space in each EU among multiple threads, and initializing a thread’s registers with data from
the fixed functions and from the URB. This operation is largely transparent to software.

2.5 Shared Functions

In general, a shared function has the ability to receive messages at its input, perform some specialized amount of work for each,
and if required, generate output back to the message’s originating execution unit (Message Gateway may generate output to a
target execution unit specified by the message).

To uniquely identify shared functions, each is assigned a unique 4-bit identifier code called its ‘Function ID’. This ID is specified
in the ‘send’ instruction’s 32b <desc> field of each message. Gen4 Function ID assignments are listed in the Graphics Processing
Engine chapter of this specification.

Each shared function may support one or more related operations within itself. For example an Extended Math shared function
may support operations such as reciprocal, sine, cosine, and/or others. These are generically referred to as sub-functions. The
communication method as to which sub-function is desired is typically contained in the 16b ‘function-control’ field of the ‘send’
instruction <desc> field. Alternatively, a function may choose to define sub-function encodings in-band within message payload,
or in the case of a single function shared-function, the function code may be implied. The architecture, in no way interprets the
sub-function code and the actual implementation choice is left to the function itself.

Doc Ref #: IHD_OS_V4Pt1_3_10 19

The Shared Function units included in the Subsystem are as follows (refer to the chapters devoted to each of these functions):
• Extended Math function
• Sampling Engine function
• DataPort function
• Message Gateway function
• Unified Return Buffer (URB)
• Thread Spawner (TS)
• Null function

The Extended Math function acts as an extension of the math functions already available inside the EUs. Certain functions such
as inverse, square root, exponentiation, etc., require significant hardware resources to implement and are used infrequently
enough that it is inefficient to implement them separately in each EU. The EUs therefore send the operands for these operations
along with the operation to be performed to the Extended Math function which computes and returns the result to the requesting
EU.

The Sampling Engine acts a (read-only) I/O port on behalf of the EUs, translating texture coordinates (and/or structure
references) to memory addresses, reading texels and/or other data from memory, and in the case of texels, combining and filtering
them according to programmed state. The resulting pixel and/or other data are then returned to the requesting EU.

The Data Port function acts as another I/O port on behalf of the EUs. It is both a read and a write port, and the only way for the
Graphics Processing Engine to write results (e.g., images) back to memory. The Data Port contains the render and depth caches
which receive the newly rendered pixels and write them out to memory when necessary. They also permit previously rendered
objects to be read back efficiently by the Graphics Processing Engine in order to blend them with other rendered objects and test
for visibility of newly rendered objects. Finally, the Data Port also provides read access constant buffers (arrays of constants in
memory.)

The Message Gateway allows a thread to communicate (send a message to) another thread. A key is used to connect the sender
and receiver threads, and a simple gateway protocol is used to send messages. This is primarily intended for media where a
parent/child thread model is sometimes used and requires parent and child threads to synchronize and efficiently share
information. It is not intended to be used by 3D graphics rendering threads.

The Unified Return Buffer (URB) is a single set of registers that EU threads use to return result data for future fixed functions
and their threads to make use of. Individual entries in the buffer are “owned” by a given fixed function but a mechanism is
provided where other fixed functions (those that follow) can read the data placed there by another fixed function. The buffer is
considered a “Shared Function” since EUs need to be able to write result data to it using messages. In general, EU threads write
their final results either to memory via the Data Port or to the URB for re-use by subsequent EU threads or certain 3D pipeline
fixed-function units (CLIP, GS).

The Thread Spawner (TS) is a Shared Function that acts as a conduit for dispatching kernel-software-generated threads, one
thread can request another thread to be dispatched by sending a request to the TS. TS is unique as it is also a Fixed Function in
the media pipeline for dispatching threads originated from Video Front End fixed function.

The Null shared function is supported to allow the broadcast of certain information (e.g, End Of Thread) without invoking any
other operation or response.

20 Doc Ref #: IHD_OS_V4Pt1_3_10

2.6 Messag es

Communication between the EUs and the shared functions and between the fixed function pipelines (which are not considered
part of the “Subsystem”) and the EUs is accomplished via packets of information called messages. Message transmission is
requested via the ‘send’ instruction. Refer to the ‘send’ instruction definition in the ISA Reference chapter for details.

The information transmitted in a message falls into two categories:

• Message Payload data sourced from some number of registers (from 1 to 15 registers) in the Message Register File
(MRF). The contents of the payload are dependent on the target function and specific function (etal), and may contain a
header portion and/or data portion.

• Associated (“sideband”) information provided by:

o Message Descriptor specified with the ‘send’ instruction. Included in the message descriptor is control and
routing information such as the target function ID, message payload length, response length, etc.

o Additional information provided by the ‘send’ instruction, e.g., the starting destination register number, the
execution mask (EMASK), etc.

o A small subset of Thread State, such as the Thread ID, EUID, etc.

The software view of messages is shown in Figure 2-1. There are four basic phases to a message’s lifetime as illustrated below:

1. Creation The thread assembles the message payload into the Message Register File (MRF). This is done by a
series of one or more instruction which specify a MRF register as the destination.

2. Delivery The thread issues the message for delivery via the ‘send’ instruction. The ‘send’ instruction specifies
the MRF register which is the first of a sequential register series which makes the data payload, the
length of the message payload within the MRF, the destination shared function ID (SFID), and
where in the GRF any response is to be directed. The messaging subsystem will enqueue the
message for delivery and eventually route the message to the specified shared function.

3. Processing The shared function receives the message and services it accordingly, as defined by the shared
function definition.

4. Writeback If called for, the shared function delivers an integral number of registers of data to the thread’s GRF
in response to the message.

Doc Ref #: IHD_OS_V4Pt1_3_10 21

Figure 2-1. Data Flow Associated With Messages

B6876-01

Thread

Thread-State

GRF

MRF

Execution
Pipeline

Shared Func X

Shared Func Y

Shared Func Z

Instruction
Stream

Operands

1. Message Creation

2. Message Delivery

3. Message Processing

4. Write-back Response

2.6.1 Message Register File (MRF)

Each thread has a dedicated MRF which is logically identical to the GRF: 256 bits wide per register, with word-wide
addressability. There are 16 MRF registers, referred to as “m0”..”m15”. From a software perspective, the MRF is write-only and
thus may only be used as a destination specifier. Limited register-region specifications are allowed so long as the region is
contained within a single MRF register.

Each register of the MRF has an associated in-flight status, indicating the contents of the register is needed as part of a pending
message, but has yet to be transmitted by the hardware. This bit is set at the time the message is enqueued for delivery via the
‘send’ instruction. Should a subsequent write to an in-flight register be attempted, the execution unit will temporarily suspend the
thread’s execution until the register’s in-flight status is cleared (i.e., the message has been transmitted).

Register m0 is reserved for System Routine (exception handling) purposes, thus normal threads should construct their messages in
m1..m15. The thread is free to start a message payload at any MRF register location, even to the point of having multiple
messages under construction at the same time in non-overlapping spaces in the MRF. Further multiple messages over non-
overlapping MRF space can be enqueued awaiting transmission at the same time. Regardless of actual hardware implementation,
the thread should not assume that MRF addresses above m15 wrap to legal MRF registers.

22 Doc Ref #: IHD_OS_V4Pt1_3_10

2.6.2 Send Instruction

Messages are sent programmatically by the thread through the ‘send’ instruction. This instruction enqueues a message for
delivery and marks as in-flight all MRF registers used for the message payload. It also allows for an optional implied move of one
GRF register to a MRF register prior to the message being issued. This implied move allows for a higher message performance,
eliminating the explicit ‘mov’ that would normally be required to move R0 to the lead MRF register of the message (as required
by many message definitions).

A typical ‘send’ instruction is exemplified here (please see the ISA for a full instruction description). This example performs an
implicit move from r0 to m3, then issues a message to the Extended Math unit, with a payload of 1 register starting at m3, and
expecting 1 register in reply to be placed in r5.

 send (16) r5 m3 r0 0x01110001

The execution unit guarantees that any prior instruction which wrote to a MRF register is guaranteed to have retired, and its result
written to the destination MRF register in time for message transmission.

2.6.3 Creating and Sending a Message

A code snippet is listed below, showing a 4-register message (m3 to m6) whose response is directed to r30. Note that message
construction does not have to occur in MRF register order.

 ...
 mul (8) m4 r20 r19
 mov (8) m6 r21
 add (8) m5 r29 r28
 send (8) r30 m3 r0 <desc>
 ...

Once a ‘send’ instruction is issued, the MRF registers used for its payload are marked as ‘in-flight’. These registers remain in this
state until the message is actually transmitted to the shared function and the register contents are no longer need. Any subsequent
write to a MRF register which is in-flight results in a dependency and a thread switch until such time that the in-flight condition is
cleared. An example is shown below in which the attempt to re-use m6 may result in a thread switch until message 1 is
transmitted.

 ...
 // --- message 1 ---
 mul (8) m4 r20 r19
 mov (8) m6 r21
 add (8) m5 r29 r28
 send (8) r30 m3 r0 <desc>
 ...

 // --- message 2 ---
 mov (8) m6 r15 // thread switch until the
 // previous msg is sent and
 // m6 in-flight is cleared.
 ...

Doc Ref #: IHD_OS_V4Pt1_3_10 23

MRF registers of one message may be reused for a subsequent message without restriction. The in-flight check mechanism
prevents a MRF register staged as part of a pending message from being altered while awaiting transmission. Further, a thread
may rely on the contents of a MRF register being unaltered after message transmission. This allows the thread to quickly issue an
identical or slightly altered message using the same MRF register set without having to re-construct the entire payload.

Although more than one message may be enqueued at any point in time, care must be taken by the programmer to ensure that
each message’s destination GRF register region, if any, does no over lap with that of another enqueued message. This condition is
not checked by HW. Due to varying latencies between two messages, and out-of-order, non-contiguous writeback cycles in the
current implementation, the outcome in the GRF is indeterminate; It may be the result from the first message, or the result from
the second message, or a mixture of data from both.

2.6.4 Message Payload Containing a Header

For most shared functions, the first register of the message payload contains the header payload of the message (or simply the
message header). It contains the state fields (such as binding table pointer, sampler state pointer, etc.) following a consistent
format structure. Consequently, the rest of the message payload is referred to as the data payload.

Messages to Extended Math do not have a header and only contain data payload. Those messages may be referred to as header-
less messages. Messages to Gateway combine the header and data payloads in a single message register.

2.6.5 Writebacks

Some messages generate return data as dictated by the ‘function-control’ (opcode) field of the ‘send’ instruction (part of the
<desc> field). The Gen4 execution unit and message passing infrastructure do not interpret this field in any way to determine if
writeback data is to be expected. Instead explicit fields in the ‘send’ instruction to the execution unit the starting GRF register and
count of returning data. The execution unit uses this information to set in-flight bits on those registers to prevent execution of any
instruction which uses them as an operand until the register(s) is(are) eventually written in response to the message. If a message
is not expected to return data, the ‘send’ instruction’s writeback destination specifier (<post_dest>) must be set to ‘null’ and the
response length field of <desc> must be 0 (see ‘send’ instruction for more details).

The writeback data, if called for, arrives as a series of register writes to the GRF at the location specified by the starting GRF
register and length as specified in the ‘send’ instruction. As each register is written back to the GRF, its in-flight flag is cleared
and it becomes available for use as an instruction operand. If a thread was suspended pending return of that register, the
dependency is lifted and the thread is allowed to continue execution (assuming no other dependency for that thread remains
outstanding).

2.6.6 Message Delivery Ordering Rules

All messages between a thread and an individual shared function are delivered in the ordered they were sent. Messages to
different shared functions originating from a single thread may arrive at their respective shared functions out of order.

The writebacks of various messages from the shared functions may return in any order. Further individual destination registers
resulting from a single message may return out of order, potentially allowing execution to continue before the entire response has
returned (depending on the dependency chain inherent in the thread).

2.6.7 Execution Mask and Messages

The Gen4 Architecture defines an Execution Mask (EMask) for each instruction issued. This 16b bit-field identifies which SIMD
computation channels are enabled for that instruction. Since the ‘send’ instruction is inherently scalar, the EMask is ignored as far

24 Doc Ref #: IHD_OS_V4Pt1_3_10

as instruction dispatch is concerned. Further the execution size has no impact on the size of the ‘send' instruction’s implicit move
(it is always 1 register regardless of specified execution size).

The 16b EMask is forwarded with the message to the destination shared function to indicate which SIMD channels were enabled
at the time of the ‘send’. A shared function may interpret or ignore this field as dictated by the functionality it exposes. For
instance, the Extended Math shared function observes this field and performs the specified operation only on the operands with
enabled channels, while the DataPort writes to the render cache ignore this field completely, instead using the pixel mask included
in-band in the message payload to indicate which channels carry valid data.

2.6.8 End-Of-Thread (EOT) Message

The final instruction of all threads must be a ‘send’ instruction which signals ‘End-Of-Thread’ (EOT). An EOT message is one in
which the EOT bit is set in the ‘send’ instruction’s 32b <desc> field. When issuing instructions, the EU looks for an EOT
message, and when issued, shuts down the thread from further execution and considers the thread completed.

Only a subset of the shared functions can be specified as the target function of an EOT message, as shown in the table below.

Target Shared Functions

supporting EOT messages

Target Shared Functions

not supporting EOT messages

DataPortWrite, URB, MessageGateway,
ThreadSpawner

DataPortRead, Sampler

Both the fixed-functions and the thread dispatcher require EOT notification at the completion of each thread. The thread
dispatcher and fixed functions in the 3D pipeline obtain EOT notification by snooping all message transmissions, regardless of
the explicit destination, looking for messages which signal end-of-thread. The Thread Spawner in the media pipeline does not
snoop for EOT. As it is also a shared function, all threads generated by Thread Spawner must send a message to Thread Spawner
to explicity signal end-of-thread.

The thread dispatcher, upon detecting an end-of-thread message, updates its accounting of resource usage by that thread, and is
free to issue a new thread to take the place of the ended thread. Fixed functions require end-of-thread notification to maintain
accounting as to which threads it issued have completed and which remain outstanding, and their associated resources such as
URB handles.

Unlike the thread dispatcher, fixed-functions discriminate end-of-thread messages, only acting upon those from threads which
they originated, as indicated by the 4b fixed-function ID present in R0 of end-of-thread message payload. This 4b field is attached
to the thread at new-thread dispatch time and is placed in its designated field in the R0 contents delivered to the GRF. Thus to
satisfy the inclusion of the fixed-function ID, the typical end-of-thread message generally supplies R0 from the GRF as the first
register of an end-of-thread message.

Doc Ref #: IHD_OS_V4Pt1_3_10 25

As an optimization, an end-of-thread message may be overload upon another “productive” message, saving the cost in execution
and bandwidth of a dedicated end-of-thread message. Outside of the end-of-thread message, most threads issue a message just
prior to their termination (for instance, a Dataport write to the framebuffer) so the overloaded end-of-thread is the common case.
The requirement is that the message contains R0 from the GRF (to supply the fixed-function ID), and that destination shared
function be either (a) the URB; (b) the Read or Write Dataport; or, (c) the Gateway, as these functions reside on the O-Bus. In the
case where the last real message of a thread is to some other shared function, the thread must issue a separate message for the
purposes of signaling end-of-thread to the “null” shared function.

2.6.9 Performance

The Gen4 Architecture imposes no requirement as to a shared function’s latency or throughput. Due to this as well as factors such
as message queuing, shared bus arbitration, implementation choices in bus bandwidth, and instantaneous demand for that
function, the latency in delivering and obtaining a response to a message is non-deterministic. It is expected that a Gen4
implementation has some notion of fairness in transmission and servicing of messages so as to keep latency outliers to a
minimum.

Other factors to consider with regard to performance:
• A thread may choose to have multiple messages under construction in non-overlapping registers the MRF at the same

time.
• Multiple messages are allowed to be enqueued for transmission at the same time, so long as their MRF payload registers

do not overlap.
• Messages may rely on the MRF registers being maintained across a send message, thus constructing subsequent

messages overlaid on portions of a previous message,
• Software prefetching techniques may be beneficial for long latency data fetches (i.e. issue a load early in the thread for

data that is required late in the thread).

2.6.10 Message Description Syntax

All message formats are defined in terms of DWords (32 bits). The message registers in all cases are 256 bits wide, or 8 DWords.
The registers and DWords within the registers are named as follows, where n is the register number, and d is the DWord number
from 0 to 7, from the least significant DWord at bits [31:0] within the 256-bit register to the most significant DWord at bits
[255:224], respectively. For writeback messages, the register number indicates the offset from the specified starting destination
register.

Dispatch Messages: Rn.d

Dispatch messages are sent by the fixed functions to dispatch threads. See the fixed function chapters in the 3D and Media
volume.

SEND Instruction Messages: Mn.d

These are the messages initiated by the thread via the SEND instruction to access shared functions. See the chapters on the shared
functions later in this volume.

Writeback Messages: Wn.d

These messages return data from the shared function to the GRF where it can be accessed by thread that initiated the message.

The bits within each DWord are given in the second column in each table.

26 Doc Ref #: IHD_OS_V4Pt1_3_10

2.6.11 Message Errors

Messages are constructed via software, and not all possible bit encodings are legal, thus there is the possibility that a message may
be sent containing one or more errors in its descriptor or payload contents. There are two points of error detection in the message
passing system: (a) the message delivery subsystem is capable of detecting bad FunctionIDs and some cases of bad message
lengths; (b) the shared functions contain various error detection mechanisms which identify bad sub-function codes, bad message
lengths, and other misc errors. The error detection capabilities are specific to each shared function. The execution unit hardware
itself does not perform message validation prior to transmission.

In both cases, information regarding the erroneous message is captured and made visible through MMIO registers, and the driver
notified via an interrupt mechanism. The set of possible errors is listed in Table 2-1 with the associated outcome. Please see the
chapter on error handling for detailed information.

Table 2-1. Error Cases

Error Outcome

Bad Shared Function ID The message is discarded before reaching any shared function.
If the message specified a destination, those registers will be
marked as in-flight, and any future usage by the thread of
those registers will cause a dependency which will never clear,
resulting in a hung thread and eventual time-out.

Unknown opcode

Incorrect message length

The destination shared function detects unknown opcodes (as
specified in the ‘send’ instructions <desc> field), and known
opcodes where the message payload is either too long or too
short, and threats these cases as errors. When detected, the
shared function latches and makes available via MMIO
registers the following information: the EU and thread ID
which sent the message, the length of the message and
expected response, and any relevant portions of the first
register (R0) of the message payload. The shared function
alerts the driver of an erroneous message through and
interrupt mechanism (details tbd), then continues normal
operation with the subsequent message.

Bad message contents in
payload

Detection of bad data is an implementation decision of the
shared function. Not all fields may be checked by the shared
function, so an erroneous payload may return bogus data or no
data at all. If an erroneous value is detected by the shared
function, it is free to discard the message and continue with
the subsequent message. If the thread was expecting a
response, the destination registers specified in the associated
‘send’ instruction are never cleared potentially resulting in a
hung thread and time-out.

Incorrect response
length

Case: too few registers specified – the thread may proceed
with execution prior to all the data returning from the shared
function, resulting in the thread operating on bad data in the
GRF.

Case: too many registers specified – the message response
does not clear all the registers of the destination. In this case,
if the thread references any of the residual registers, it may
hand and result in an eventual time-out.

Doc Ref #: IHD_OS_V4Pt1_3_10 27

Error Outcome

Improper use of End-Of-
Thread (EOT)

Any ‘send’ instruction which specifies EOT must have a ‘null’
destination register. The EU enforces this and, if detected, will
not issue the ‘send’ instruction, resulting in a hung thread and
an eventual time-out.

The ‘send’ instruction specifies that EOT is only recognized if
the <desc> field of the instruction is an immediate. Should a
thread attempt to end a thread using a <desc> sourced from a
register, the EOT bit will not be recognized. In this case, the
thread will continue to execute beyond the intended end of
thread, resulting in a wide range of error conditions.

Two outstanding
messages using
overlapping GRF
destinations ranges

This is not checked by HW. Due to varying latencies between
two messages, and out-of-order, non-contiguous writeback
cycles, the outcome in the GRF is indeterminate; may be the
result from the first message, or the result from the second
message, or a combination of both.

28 Doc Ref #: IHD_OS_V4Pt1_3_10

3. Shared Functions
This volume includes all the GEN4 shared function chapters (Sampler, DataPort, ExtendedMath, MessageGateway, URB), which
are described in the following sections.

4. Sampling Engine
The Sampling Engine provides the capability of advanced sampling and filtering of surfaces in memory.

The sampling engine function is responsible for providing filtered texture values to the Gen4 Core in response to sampling engine
messages.. The sampling engine uses SAMPLER_STATE to control filtering modes, address control modes, and other features
of the sampling engine. A pointer to the sampler state is delivered with each message, and an index selects one of 16 states
pointed to by the pointer. Some messages do not require SAMPLER_STATE. In addition, the sampling engine uses
SURFACE_STATE to define the attributes of the surface being sampled. This includes the location, size, and format of the
surface as well as other attributes.

Although data is commonly used for “texturing” of 3D surfaces, the data can be used for any purpose once returned to the
execution core.

The following table summarizes the various subfunctions provided by the Sampling Engine. After the appropriate subfunctions
are complete, the 4-component (reduced to fewer components in some cases) filtered texture value is provided to the Gen4 Core
in order to complete the sample instruction.

Subfunction De scription

Texture
Coordinate
Processing

Any required operations are performed on the incoming pixel’s interpolated internal texture
coordinates. These operations may include: cube map intersection.

Texel Address
Generation

The Sampling Engine will determine the required set of texel samples (specific texel values
from specific texture maps), as defined by the texture map parameters and filtering modes.
This includes coordinate wrap/clamp/mirror control, mipmap LOD computation and sample
and/or miplevel weighting factors to be used in the subsequent filtering operations.

Texel Fetch The required texel samples will be read from the texture map. This step may require
decompression of texel data. The texel sample data is converted to an internal format.

Texture Palette
Lookup

For streams which have “paletted” texture surface formats, this function uses the “index”
values read from the texture map to look up texel color data from the texture palette.

Shadow Pre-
Filter Compare

For shadow mapping, the texel samples are first compared to the 3rd (R) component of the
pixel’s texture coordinate. The boolean results are used in the texture filter.

Texel Filtering Texel samples are combined using the filter weight coefficients computed in the Texture
Address Generation function. This “combination” ranges from simply passing through a
“nearest” sample to blending the results of anisotropic filters performed on two mipmap
levels. The output of this function is a single 4-component texel value.

Texel Color
Gamma
Linearization

Performs optional gamma decorrection on texel RGB (not A) values.

Doc Ref #: IHD_OS_V4Pt1_3_10 29

Subfunction De scription

Denoise/

Deinterlacer

Performs denoise and deinterlacing functions for video content ([DevILK+])

8x8 Video
Scaler

Performs scaling using an 8x8 filter ([DevILK+])

Image
Enhancement
Filter / Video
Signal Analysis

Image Enhancement functions for video content ([DevILK+])

4.1 Texture Coordinate Processing

The Texture Coordinate Processing function of the Sampling Engine performs any operations on the texture coordinates that are
required before physical addresses of texel samples can be generated.

4.1.1 Texture Coordinate Normalization

A texture coordinate may have normalized or unnormalized values. In this function, unnormalized coordinates are normalized.

Normalized coordinates are specified in units relative to the map dimensions, where the origin is located at the upper/left edge of
the upper left texel, and the value 1.0 coincides with the lower/right edge of the lower right texel . 3D rendering typically utilizes
normalized coordinates.

Unnormalized coordinates are in units of texels and have not been divided (normalized) by the associated map’s height or width.
Here the origin is the located at the upper/left edge of the upper left texel of the base texture map. Unnormalized coordinates
delivered to the sampling engine are only supported with the “ld” type messages.

Figure 4-1. Normalized vs. Unnormalized Texture Coordinates

B6877-01

Normalized
U0, 0

V

1, 1

Unnormalized
U0, 0

V

15, 11

30 Doc Ref #: IHD_OS_V4Pt1_3_10

4.1.2 Texture Coordinate Computation

Cartesian (2D) and homogeneous (projected) texture coordinate values are projected from (interpolated) screen space back into
texture coordinate space by dividing the pixel’s S and T components by the Q component. This operation is done as part of the
pixel shader kernel in the Gen4 Core.

Vector (cube map) texture coordinates are generated by first determining which of the 6 cube map faces (+X, +Y, +Z, -X, -Y, -Z)
the vector intersects. The vector component (X, Y or Z) with the largest absolute value determines the proper (major) axis, and
then the sign of that component is used to select between the two faces associated with that axis. The coordinates along the two
minor axes are then divided by the coordinate of the major axis, and scaled and translated, to obtain the 2D texture coordinate
([0,1]) within the chosen face. Note that the coordinates delivered to the sampling engine must already have been divided by the
component with the largest absolute value.

An illustration of this cube map coordinate computation, simplified to only two dimensions, is provided below:

Figure 4-2. Cube Map Coordinate Computation Example

B6878-01

J

+I face

I0

J0/I0

I0,J0

abs(I0)>abs(J0)

Selects +I face

+J face

-J face

-I face

Note:
Face origin is here

I1

4.2 Texel Address Generation

To better understand texture mapping, consider the mapping of each object (screen-space) pixel onto the textures images. In
texture space, the pixel becomes some arbitrarily sized and aligned quadrilateral. Any given pixel of the object may “cover”
multiple texels of the map, or only a fraction of one texel. For each pixel, the usual goal is to sample and filter the texture image
in order to best represent the covered texel values, with a minimum of blurring or aliasing artifacts. Per-texture state variables
are provided to allow the user to employ quality/performance/footprint tradeoffs in selecting how the particular texture is to be
sampled.

Doc Ref #: IHD_OS_V4Pt1_3_10 31

The Texel Address Generation function of the Sampling Engine is responsible for determining how the texture maps are to be
sampled. Outputs of this function include the number of texel samples to be taken, along with the physical addresses of the
samples and the filter weights to be applied to the samples after they are read. This information is computed given the incoming
texture coordinate and gradient values, and the relevant state variables associated with the sampler and surface. This function also
applies the texture coordinate address controls when converting the sample texture coordinates to map addresses.

4.2.1 Level of Detail Computation (Mipmapping)

Due to the specification and processing of texture coordinates at object vertices, and the subsequent object warping due to a
perspective projection, the texture image may become magnified (where a texel covers more than one pixel) or minified (a pixel
covers more than one texel) as it is mapped to an object. In the case where an object pixel is found to cover multiple texels
(texture minification), merely choosing one (e.g., the texel sample nearest to the pixel’s texture coordinate) will likely result in
severe aliasing artifacts.

Mipmapping and texture filtering are techniques employed to minimize the effect of undersampling these textures. With
mipmapping, software provides mipmap levels, a series of pre-filtered texture maps of decreasing resolutions that are stored in a
fixed (monolithic) format in memory. When mipmaps are provided and enabled, and an object pixel is found to cover multiple
texels (e.g., when a textured object is located a significant distance from the viewer), the device will sample the mipmap level(s)
offering a texel/pixel ratio as close to 1.0 as possible.

The device supports up to 14 mipmap levels per map surface, ranging from 8192 x 8192 texels to a 1 X 1 texel. Each successive
level has ½ the resolution of the previous level in the U and V directions (to a minimum of 1 texel in either direction) until a 1x1
texture map is reached. The dimensions of mipmap levels need not be a power of 2.

Each mipmap level is associated with a Level of Detail (LOD) number. LOD is computed as the approximate, log2 measure of the
ratio of texels per pixel. The highest resolution map is considered LOD 0. A larger LOD number corresponds to lower
resolution mip level.

The Sampler[]BaseMipLevel state variable specifies the LOD value at which the minification filter vs. the magnification filter
should be applied.

When the texture map is magnified (a texel covers more than one pixel), the base map (LOD 0) texture map is accessed, and the
magnification mode selects between the nearest neighbor texel or bilinear interpolation of the 4 neighboring texels on the base
(LOD 0) mipmap.

4.2.1.1 Base Level Of Detail (LOD)

The per-pixel LOD is computed in an implementation-dependent manner and approximates the log2 of the texel/pixel ratio at the
given pixel. The computation is typically based on the differential texel-space distances associated with a one-pixel differential
distance along the screen x- and y-axes. These texel-space distances are computed by evaluating neighboring pixel texture
coordinates, these coordinates being in units of texels on the base MIP level (multiplied by the corresponding surface size in
texels). The q coordinates represent the third dimension for 3D (volume) surfaces, this coordinate is a constant 0 for 2D surfaces.

32 Doc Ref #: IHD_OS_V4Pt1_3_10

The ideal LOD computation is included below.

,,max),(

:where
)],([log),(

222222

2

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=

=

y
q

y
v

y
u

x
q

x
v

x
uyx

yxyxLOD

ρ

ρ

4.2.1.2 LOD Bias

A biasing offset can be applied to the computed LOD and used to artificially select a higher or lower miplevel and/or affect the
weighting of the selected mipmap levels. Selecting a slightly higher mipmap level will trade off image blurring with possibly
increased performance (due to better texture cache reuse). Lowering the LOD tends to sharpen the image, though at the expense
of more texture aliasing artifacts.

The LOD bias is defined as sum of the LODBias state variable and the pixLODBias input from the input message (which can be
non-zero only for sample_b messages). The application of LOD Bias is unconditional, therefore these variables must both be set
to zero in order to prevent any undesired biasing.

Note that, while the LOD Bias is applied prior to clamping and min/mag determination and therefore can be used to control the
min-vs-mag crossover point, its use has the undesired effect of actually changing the LOD used in texture filtering.

4.2.1.3 LOD Pre-Clamping

The LOD Pre-Clamping function can be enabled or disabled via the LODPreClampEnable state variable. Enabling pre-clamping
matches OpenGL semantics, while disabling it matches Direct3D.

After biasing and/or adjusting of the LOD , the computed LOD value is clamped to a range specified by the (integer and fractional
bits of) MinLOD and MaxLOD state variables prior to use in Min/Mag Determination.

MaxLOD specifies the lowest resolution mip level (maximum LOD value) that can be accessed, even when lower resolution maps
may be available. Note that this is the only parameter used to specify the number of valid mip levels that be can be accessed, i.e.,
there is no explicit “number of levels stored in memory” parameter associated with a mip-mapped texture. All mip levels from
the base mip level map through the level specified by the integer bits of MaxLOD must be stored in memory, or operation is
UNDEFINED.

MinLOD specifies the highest resolution mip level (minimum LOD value) that can be accessed, where LOD==0 corresponds to
the base map. This value is primarily used to deny access to high-resolution mip levels that have been evicted from memory
when memory availability is low.

MinLOD and MaxLOD have both integer and fractional bits. The fractional parts will limit the inter-level filter weighting of the
highest or lowest (respectively) resolution map. For example if MinLOD is 4.5 and MipFilter is LINEAR, LOD 4 can contribute
only up to 50% of the final texel color.

Doc Ref #: IHD_OS_V4Pt1_3_10 33

4.2.1.4 Min/Mag Determination

The biased and clamped LOD is used to determine whether the texture is being minified (scaled down) or magnified (scaled up).

The BaseMipLevel state variable is subtracted from the biased and clamped LOD. The BaseMipLevel state variable therefore has
the effect of selecting the “base” mip level used to compute Min/Map Determination. (This was added to match OpenGL
semantics). Setting BaseMipLevel to 0 has the effect of using the highest-resolution mip level as the base map.

If the biased and clamped LOD is non-positive, the texture is being magnified, and a single (high-resolution) miplevel will be
sampled and filtered using the MagFilter state variable. At this point the computed LOD is reset to 0.0. Note that LOD
Clamping can restrict access to high-resolution miplevels.

If the biased LOD is positive, the texture is being minified. In this case the MipFilter state variable specifies whether one or two
mip levels are to be included in the texture filtering, and how that (or those) levels are to be determined as a function of the
computed LOD.

4.2.1.5 LOD Computation Pseudocode

This section illustrates the LOD biasing and clamping computation in pseudocode, encompassing the steps described in the
previous sections. The computation of the initial per-pixel LOD value LOD is not shown.

[if (sample_b)
 LOD += Bias + bias_parameter
else if (sample_l or ld)
 LOD = Bias + lod_parameter
else

LOD += Bias

If (PreClamp)
 LOD = min(LOD, MaxLod)
 LOD = max(LOD, MinLod)

MagMode = (LOD - Base <= 0)
If (MagMode or MipFlt = None)
 LOD = 0

LOD = min(LOD, ceil(MaxLod))
 LOD = max(LOD, floor(MinLod))
else if (MipFlt = Nearest)
 LOD = min(LOD, ceil(MaxLod))

LOD = max(LOD, floor(MinLod))
LOD = floor(LOD)

else // MipFlt = Linear
LOD = min(LOD, MaxLod)

 LOD = max(LOD, MinLod)
 TriBeta = frac(LOD)
 LOD0 = floor(LOD)
 LOD1 = LOD0 + 1

Lod += SurfMinLod

If Out_of_Bounds is true, LOD is set to zero and instead of sampling the surface the texels are replaced with zero in all channels,
except for surface formats that don’t contain alpha, for which the alpha channel is replaced with one. These texels then proceed
through the rest of the pipeline.

34 Doc Ref #: IHD_OS_V4Pt1_3_10

4.2.2 Inter-Level Filtering Setup

The MipFilter state variable determines if and how texture mip maps are to be used and combined. The following table describes
the various mip filter modes:

MipFilter Value Description

MIPFILTER_NONE Mipmapping is DISABLED. Apply a single filter on the highest resolution
map available (after LOD clamping).

MIPFILTER_NEAREST Choose the nearest mipmap level and apply a single filter to it. Here the
biased LOD will be rounded to the nearest integer to obtain the desired
miplevel. LOD Clamping may further restrict this miplevel selection.

MIPFILTER_LINEAR Apply a filter on the two closest mip levels and linear blend the results using
the distance between the computed LOD and the level LODs as the blend
factor. Again, LOD Clamping may further restrict the selection of miplevels
(and the blend factor between them).

When minifying and MIPFILTER_NEAREST is selected, the computed LOD is rounded to the nearest mip level.

When minifying and MIPFILTER_LINEAR is selected, the fractional bits of the computed LOD are used to generate an inter-
level blend factor. The LOD is then truncated. The mip level selected by the truncated LOD, and the next higher (lower
resolution) mip level are determined.

Regardless of MipFilter and the min/mag determination, all computed LOD values (two for MIPFILTER_LINEAR, otherwise
one) are then unconditionally clamped to the range specified by the (integer bits of) MinLOD and MaxLOD state variables.

4.2.3 Intra-Level Filtering Setup

Depending on whether the texture is being minified or magnified, the MinFilter or MagFilter state variable (respectively) is used
to select the sampling filter to be used within a mip level (intra-level, as opposed to any inter-level filter). Note that for volume
maps, this selection also applies to filtering between layers.

The processing at this stage is restricted to the selection of the filter type, computation of the number and texture map coordinates
of the texture samples, and the computation of any required filter parameters. The filtering of the samples occurs later on in the
Sampling Engine function.

The following table summarizes the intra-level filtering modes.
Sampler[]Min/MagFilter value Description

MAPFILTER_NEAREST Supported on all surface types. The texel nearest to the pixel’s U,V,Q
coordinate is read and output from the filter.

MAPFILTER_LINEAR Not supported on buffer surfaces. The 2, 4, or 8 texels (depending on 1D,
2D/CUBE, or 3D surface, respectively) surrounding the pixel’s U,V,Q
coordinate are read and a linear filter is applied to produce a single filtered
texel value.

MAPFILTER_ANISOTROPIC Not supported on buffer or 3D surfaces. A projection of the pixel onto the
texture map is generated and “subpixel” samples are taken along the major
axis of the projection (center axis of the longer dimension). The outermost
subpixels are weighted according to closeness to the edge of the projection,
inner subpixels are weighted equally. Each subpixel samples a bilinear 2x2
of texels and the results are blended according to weights to produce a
filtered texel value.

MAPFILTER_MONO Supported only on 2D surfaces. This filter is only supported with the
monochrome (MONO8) surface format. The monochrome texel block of the

Doc Ref #: IHD_OS_V4Pt1_3_10 35

Sampler[]Min/MagFilter value Description

specified size surrounding the pixel is selected and filtered.

4.2.3.1 MAPFILTER_NEAREST

When the MAPFILTER_NEAREST is selected, the texel with coordinates nearest to the pixel’s texture coordinate is selected and
output as the single texel sample coordinates for the level.

4.2.3.2 MAPFILTER_LINEAR

The following description indicates behavior of the MIPFILTER_LINEAR filter for 2D and CUBE surfaces. 1D and 3D surfaces
follow a similar method but with a different number of dimensions available.

When the MAPFILTER_LINEAR filter is selected on a 2D surface, the 2x2 region of texels surrounding the pixel’s texture
coordinate are sampled and later bilinearly filtered.

Figure 4-3. Bilinear Filter Sampling

B6879-01

Pixel’s Texel
Coords

Nearest
Texel Center

Bup

Bleft 1-Bleft

1-Bup

The four texels surrounding the pixel center are chosen for the bilinear filter. The filter weights each texel’s contribution
according to its distance from the pixel center. Texels further from the pixel center receive a smaller weight.

4.2.3.3 MAPFILTER_ANISOTROPIC

The MAPFILTER_ANISOTROPIC texture filter attempts to compensate for the anisotropic mapping of pixels into texture map
space. A possibly non-square set of texel sample locations will be sampled and later filtered. The MaxAnisotropy state variable
is used to select the maximum aspect ratio of the filter employed, up to 16:1.

36 Doc Ref #: IHD_OS_V4Pt1_3_10

The algorithm employed first computes the major and minor axes of the pixel projection onto the texture map. LOD is chosen
based on the minor axis length in texel space. The anisotropic “ratio” is equal to the ratio between the major axis length and the
minor axis length. The next larger even integer above the ratio determines the anisotropic number of “ways”, which determines
how many subpixels are chosen. A line along the major axis is determined, and “subpixels” are chosen along this line, spaced one
texel apart, as shown in the diagram below. In this diagram, the texels are shown in light blue, and the pixels are in yellow.

B6880-01

x

y

u

y

Pixel Center

Subpixel Center

1.0
 tex

el
0.5

 tex
el 0.5

 tex
el

1.0
 te

xel

Each subpixel samples a bilinear 2x2 around it just as if it was a single pixel. The result of each subpixel is then blended together
using equal weights on all interior subpixels (not including the two endpoint subpixels). The endpoint subpixels have lesser
weight, the value of which depends on how close the “ratio” is to the number of “ways”. This is done to ensure continuous
behavior in animation.

Doc Ref #: IHD_OS_V4Pt1_3_10 37

4.2.3.4 MAPFILTER_MONO

When the MAPFILTER_MONO filter is selected, a block of monochrome texels surrounding the pixel sample location are read
and filtered using the kernel described below. The size of this block is controlled by Monochrome Filter Height and Width
(referred to here as Nv and Nu, respectively) state. Filters from 1x1 to 7x7 are supported (not necessarily square).

The figure below shows a 6x5 filter kernel as an example. The footprint of the filter (filter kernel samples) is equal to the size of
the filter and the pixel center lies at the exact center of this footprint. The position of the upper left filter kernel sample (uf, vf)
relative to the pixel center at (u, v) is given by the following:

2

2
v

f

u
f

N
vv

N
uu

−=

−=

βu and βv are the fractional parts of uf and vf, respectively. The integer parts select the upper left texel for the kernel filter, given
here as T0,0.

Figure 4-4. Sampling Using MAPFILTER_MONO

B6881-01

pixel center (u,v)
texels
filter kernel samples

ßu

ßv
0

1

2

3

4

5

v

0 1 2 3 4 5 6 u

The formula for the final filter output F is given by the following. Since this is a monochrome filter, each texel value (T) is a
single bit, and the output F is an intensity value that is replicated across the color and alpha channels.

STTTTF

NN
S

u vu vu vu v N

i

N

j
jivu

N

i

N

j
jivu

N

i

N

j
jivu

N

i

N

j
jivu

vu

*)1()1()1)(1(

*
1

1 1
,

1

0 1
,

1

1

0
,

1

0

1

0
, ⎥

⎦

⎤
⎢
⎣

⎡
+−+−+−−=

=

∑∑∑∑∑∑∑∑
= =

−

= ==

−

=

−

=

−

=

ββββββββ

38 Doc Ref #: IHD_OS_V4Pt1_3_10

4.2.4 Texture Address Control

The [TCX,TCY,TCZ]ControlMode state variables control the access and/or generation of texel data when the specific texture
coordinate component falls outside of the normalized texture map coordinate range [0,1).

Note: For Wrap Shortest mode, the setup kernel has already taken care of correctly interpolating the texture coordinates.
Software will need to specify TEXCOORDMODE_WRAP mode for the sampler that is provided with wrap-shortest texture
coordinates, or artifacts may be generated along map edges.

TC[X,Y,Z] Control Operation

TEXCOORDMODE_CLAMP Clamp to the texel value at the edge of the map.

TEXCOORDMODE_CLAMP_BORDER Use the texture map’s border color for any texel samples falling
outside the map. The border color is specified via a pointer in
SAMPLER_STATE.

TEXCOORDMODE_WRAP Upon crossing an edge of the map, repeat at the other side of the
map in the same dimension.

TEXCOORDMODE_CUBE Only used for cube maps. Here texels from adjacent cube faces can
be sampled along the edges of faces. This is considered the highest
quality mode for cube environment maps.

TEXCOORDMODE_MIRROR Similar to the wrap mode, though reverse direction through the map
each time an edge is crossed. INVALID for use with unnormalized
texture coordinates.

TEXCOORDMODE_MIRROR_ONCE Similar to the wrap mode, though reverse direction through the map
each time an edge is crossed. INVALID for use with unnormalized
texture coordinates.

Separate controls are provided for texture TCX, TCY, TCZ coordinate components so, for example, the TCX coordinate can be
wrapped while the TCY coordinate is clamped. Note that there are no controls provided for the TCW component as it is only
used to scale the other 3 components before addressing modes are applied.

Maximum Wraps/Mirrors

The number of map wraps on a given object is limited to 32. Going beyond this limit is legal, but may result in artifacts due to
insufficient internal precision, especially evident with larger surfaces. Precision loss starts at the subtexel level (slight color
inaccuracies) and eventually reaches the texel level (choosing the wrong texels for filtering).

4.2.4.1 TEXCOORDMODE_WRAP Mode

In TEXCOORDMODE_WRAP addressing mode, the integer part of the texture coordinate is discarded, leaving only a fractional
coordinate value. This results in the effect of the base map ([0,1)) being continuously repeated in all (axes-aligned) directions.
Note that the interpolation between coordinate values 0.1 and 0.9 passes through 0.5 (as opposed to WrapShortest mode which
interpolates through 0.0).

Doc Ref #: IHD_OS_V4Pt1_3_10 39

4.2.4.2 TEXCOORDMODE_MIRROR Mode

TEXCOORDMODE_MIRROR addressing mode is similar to Wrap mode, though here the base map is flipped at every integer
junction. For example, for U values between 0 and 1, the texture is addressed normally, between 1 and 2 the texture is flipped
(mirrored), between 2 and 3 the texture is normal again, and so on. The second row of pictures in the figure below indicate a map
that is mirrored in one direction and then both directions. You can see that in the mirror mode every other integer map wrap the
base map is mirrored in either direction.

Figure 4-5. Texture Wrap vs. Mirror Addressing Mode

B6882-01

Wrap Mode

Mirror Mode

4.2.4.3 TEXCOORDMODE_ MIRROR_ONCE Mode

The TEXCOORDMODE_MIRROR_ONCE addressing mode is a combination of Mirror and Clamp modes. The absolute value
of the texture coordinate component is first taken (thus mirroring about 0), and then the result is clamped to 1.0. The map is
therefore mirrored once about the origin, and then clamped thereafter. This mode is used to reduce the storage required for
symmetric maps.

4.2.4.4 TEXCOORDMODE_CLAMP Mode

The TEXCOORDMODE_CLAMP addressing mode repeats the “edge” texel when the texture coordinate extends outside the
[0,1) range of the base texture map. This is contrasted to TEXCOORDMODE_CLAMPBORDER mode which defines a
separate texel value for off-map samples. TEXCOORDMODE_CLAMP is also supported for cube maps, where texture samples
will only be obtained from the intersecting face (even along edges).

The figure below illustrates the effect of clamp mode. The base texture map is shown, along with a texture mapped object with
texture coordinates extending outside of the base map region.

40 Doc Ref #: IHD_OS_V4Pt1_3_10

Figure 4-6. Texture Clamp Mode

B6883-01

Texture

Textured Object
(Clamp &,V Mode)

0,0 -1,-1

1,1

2,2

4.2.4.5 TEXCOORDMODE_ CLAMPBORDER Mode

For non-cube map textures, TEXCOORDMODE_CLAMPBORDER addressing mode specifies that the texture map’s border
value BorderColor is to be used for any texel samples that fall outside of the base map. The border color is specified via a
pointer in SAMPLER_STATE.

4.2.4.6 TEXCOORDMODE_CUBE Mode

For cube map textures TEXCOORDMODE_CUBE addressing mode can be set to allow inter-face filtering. When texel sample
coordinates that extend beyond the selected cube face (e.g., due to intra-level filtering near a cube edge), the correct sample
coordinates on the adjoining face will be computed. This will eliminate artifacts along the cube edges, though some artifacts at
cube corners may still be present.

4.3 Texel Fetch

The Texel Fetch function of the Sampling Engine reads the texture map contents specified by the texture addresses associated
with each texel sample. The texture data is read either directly from the memory-resident texture map, or from internal texture
caches. The texture caches can be invalidated by the Sampler Cache Invalidate field of the MI_FLUSH instruction or via the
Read Cache Flush Enable bit of PIPE_CONTROL. Except for consideration of coherency with CPU writes to textures and
rendered textures, the texture cache does not affect the functional operation of the Sampling Engine pipeline.

When the surface format of a texture is defined as being a compressed surface, the Sampler will automatically decompress from
the stored format into the appropriate [A]RGB values. The compressed texture storage formats and decompression algorithms
can be found in the Memory Data Formats chapter. When the surface format of a texture is defined as being an index into the
texture palette (format names includiong “Px”), the palette lookup of the index determines the appropriate RGB values.

Doc Ref #: IHD_OS_V4Pt1_3_10 41

4.3.1 Texel Chroma Keying

ChromaKey is a term used to describe a method of effectively removing or replacing a specific range of texel values from a map
that is applied to a primitive, e.g., in order to define transparent regions in an RGB map. The Texel Chroma Keying function of
the Sampling Engine pipeline conditionally tests texel samples against a “key” range, and takes certain actions if any texel
samples are found to match the key.

4.3.1.1 Chroma Key Testing

ChromaKey refers to testing the texel sample components to see if they fall within a range of texel values, as defined by
ChromaKey[][High,Low] state variables. If each component of a texel sample is found to lie within the respective (inclusive)
range and ChromaKey is enabled, then an action will be taken to remove this contribution to the resulting texel stream output.
Comparison is done separately on each of the channels and only if all 4 channels are within range the texel will be eliminated.

The Chroma Keying function is enabled on a per-sampler basis by the ChromaKeyEnable state variable.

The ChromaKey[][High,Low] state variables define the tested color range for a particular texture map.

4.3.1.2 Chroma Key Effects

There are two operations that can be performed to “remove” matching texel samples from the image. The ChromaKeyEnable
state variable must first enable the chroma key function. The ChromaKeyMode state variable then specifies which operation to
perform on a per-sampler basis.

The ChromaKeyMode state variable has the following two possible values:

KEYFILTER_KILL_ON_ANY_MATCH: Kill the pixel if any contributing texel sample matches the key

KEYFILTER_REPLACE_BLACK: Here the sample is replaced with (0,0,0,0). This matches the Direct3D
COLORKEYBLENDENABLE functionality

The Kill Pixel operation has an effect on a pixel only if the associated sampler is referenced by a sample instruction in the pixel
shader program. If the sampler is not referenced, the chroma key compare is not done and pixels cannot be killed based on it.

4.4 Shadow Prefilter Compare

When a sample_c message type is processed, a special shadow-mapping precomparison is performed on the texture sample values
prior to filtering. Specifically, each texture sample value is compared to the “ref” component of the input message, using a
compare function selected by ShadowFunction, and described in the table below. Note that only single-channel texel formats are
supported for shadow mapping, and so there is no specific color channel on which the comparison occurs.

42 Doc Ref #: IHD_OS_V4Pt1_3_10

ShadowFunction Result

PREFILTEROP_ALWAYS 0.0

PREFILTEROP_NEVER 1.0

PREFILTEROP_LESS (texel < ref) ? 0.0 : 1.0

PREFILTEROP_EQUAL (texel == ref) ? 0.0 : 1.0

PREFILTEROP_LEQUAL (texel <= ref) ? 0.0 : 1.0

PREFILTEROP_GREATER (texel > ref) ? 0.0 : 1.0

PREFILTEROP_NOTEQUAL (texel != ref) ? 0.0 : 1.0

PREFILTEROP_GEQUAL (texel >= ref) ? 0.0 : 1.0

The binary result of each comparison is fed into the subsequent texture filter operation (in place of the texel’s value which would
normally be used).

Software is responsible for programming the ”ref” component of the input message such that it approximates the same distance
metric programmed in the texture map (e.g., distance from a specific light to the object pixel). In this way, the comparison
function can be used to generate “in shadow” status for each texture sample, and the filtering operation can be used to provide soft
shadow edges.

Programming Notes:

• Refer to the Surface Formats table in section 4.10.2.1 for the specific surface formats that are supported with shadow
mapping.

4.5 Texel Filtering

The Texel Filtering function of the Sampling Engine performs any required filtering of multiple texel values on and possibly
between texture map layers and levels. The output of this function is a single texel color value.

The state variables MinFilter, MagFilter, and MipFilter are used to control the filtering of texel values. The MipFilter state
variable specifies how many mipmap levels are included in the filter, and how the results of any filtering on these separate levels
are combined to produce a final texel color. The MinFilter and MagFilter state variables specify how texel samples are filtered
within a level.

4.6 Texel Color Gamma Linearization

This function is supported to allow pre-gamma-corrected texel RGB (not A) colors to be mapped back into linear (gamma=1.0)
gamma space prior to (possible) blending with, and writing to the Color Buffer. This permits higher quality image blending by
performing the blending on colors in linear gamma space.

This function is enabled on a per-texture basis by use of a surface format with “_SRGB” in its name. If enabled, the pre-filtered
texel RGB color to be converted from gamma=2.4 space to gamma=1.0 space by applying a ^(1/2.4) = ^0.4167 exponential
function.

Doc Ref #: IHD_OS_V4Pt1_3_10 43

4.7 Denoise/Deinterlacer [DevILK]

The Denoise/Deinterlacer function takes a 4:2:0 or 4:2:2 video stream and first apply a denoise filter to it and then deinterlace it.

The denoise filter is applied before the deinterlacer. The denoise filter detects and tries to minimize noise in the input field, while
the deinterlacer takes a field consisting of every other lines converts a field into a frame. This block also gathers statistics for a
global noise estimate made in software at the end of the frame which is used in following frames to tune the denoise filter and
image enhancement filter.

The deinterlacer takes the top and bottom fields of each frame and converts them into two individual frames. This block also
gathers statistics for a film mode detector in software run at the end of the frame. If the film mode detector for the previous frame
concludes that the input is progressive rather than interlaced then the fields will be put together in the best order rather than being
interlaced.

4.7.1 Introduct ion

This diagram shows how the Denoise/Deinterlacer fits in with the other functions of the video pipe. This is only one possible
usage model, other models are possible.

Video Decoder
(MPEG-2,

AVC or VC1)

Encoded Video
Source

(e.g. DVD)

Denoise /
Deinterlacer

Advanced
Video
Scaler

Image
Enhancement

Color
Processing

44 Doc Ref #: IHD_OS_V4Pt1_3_10

4.7.1.1 Features

• Denoise Filter – detects noise and motion and filters the block with either a temporal filter when little motion is detected
or a spatial filter. Noise estimates are kept between frames and blended together. Since the filter is before the
deinterlacer it works on individual fields rather than frames. This usually improves the operation since the deinterlacer
can take a single pixel of noise and spread it to an adjacent pixel, making it harder to remove. The denoise filter works
the same whether deinterlacing or progressive cadence reconstruction is being done.

• Block Noise Estimate (BNE) – part of the Global Noise Estimate (GNE) algorithm, this estimates the noise over the
entire block. The GNE will be calculated at the end of the frame by combining all the BNEs. The final GNE value is
used to control the denoise filter for the next frame.

• Film Mode Detection (FMD) Variances – FMD determines if the input fields were created by sampling film and
converting it to interlaced video. If so the deinterlacer is turned off in favor of reconstructing the frame from adjacent
fields. Various sum-of-absolute differences are calcluated per block. The FMD algorithm is run at the end of the frame
by looking at the variances of all blocks for both fields in the frame.

• Deinterlacer – Estimates how much motion is occuring across the fields. Low motion scenes are reconstructed by
averaging pixels from fields from nearby times (temporal deinterlacer), while high motion scenes are reconstructed by
interpolating pixels from nearby space (spatial deinterlacer).

• Progressive Cadence Reconstruction – If the FMD for the previous frame determines that film was converted into
interlaced video, then this block reconstructs the original frame by directly putting together adjacent fields.

• Chroma Upsampling – If the input is 4:2:0 then chroma will be doubled vertically to convert to 4:2:2. Chroma will
then either go through it’s own version of the deinterlacer or progressive cadence reconstruction.

The output for a 16x4 block is sent to the EU for further processing and writing to memory.

An alternate mode will be provided to send the Deinterlacer intermediate results to the EU to finish the calculation. The denoise
filter output data will also be provided.

Doc Ref #: IHD_OS_V4Pt1_3_10 45

4.7.1.2 Motion Detection and Noise History Update

This block detection motion for the denoise filter, which it then combines with motion detected in the past in the same part of the
screen. The Denoise History is both saved to memory and also used to control the temporal denoise filter.

4.7.1.3 Temporal Filter

For each pixel we need to filter we look at the noise history for the associated 4x4.

4.7.1.4 Edge Detection

4.7.1.5 Edge detection is done on every pixel by estimating a gradient on the 3x3
neighborhood of pixels in the current field. Context Adaptive Spatial Filter

For each pixel in the local 3x3, compare it’s luma to the lumas of the pixel to be filtered.

4.7.1.6 Denoise Blend

The denoise blend combines the temporal and spatial denoise outputs.

4.7.2 Block Noise Estimate (part of Global Noise Estimate)

The block noise estimate is a single number for the 16x4 block (DI enabled) or a 16x8 block (DN only). The block noise estimate
for the entire frame is summed to get the global noise estimate.

The per block block_noise_estimate is also sent to the EU in the output message for possible use by the video encoder.

4.7.3 Deinterlacer Algorithm

The overall goal of the motion adaptive deinterlacer is to convert an interlaced video stream made of fields of alternating lines
into a progressive video stream made of frames in which every line is provided.

The Deinterlacer uses two frames for reference. The current frame contains the field that we are deinterlacing. The reference
frame is the closest frame in time to the field that we are deinterlacing – if we are working on the 1st field then it is the previous
frame, if it is the 2nd field then it is the next frame.

4.7.3.1 Spatial-Tem poral Motion Measure

This algorithm combines a complexity measure with a estimate of motion. This prevents high complexity scenes from incorrectly
causing motion to be detected.

46 Doc Ref #: IHD_OS_V4Pt1_3_10

4.7.3.2 Spatial Deinterlacer Angle Detection

Deciding the best pixels to interpolate in the current field is the job of the spatial deinterlacer.

 Chroma Up-Sampler

The DN/DI block supports 4:2:0, 4:1:1 and 4:2:2 inputs, but only outputs 4:2:2. For 4:2:0 and 4:1:1 the chroma needs to be up-
sampled to 4:2:2 before interpolation.

4.7.3.3 Chroma Deinterlace

The next step is to do the deinterlacing.

4.7.3.3.1 Progressiv e Cadence Reconstruction

When the FMD for the previous frame indicates that a progressive mode is being used rather than interlaced, the luma and chroma
will be taken from adjacent fields rather than spatially interpolated. The exact fields needed depend on state variables written to
memory by a thread at the end of the previous frame. The thread will use the FMD variances written to memory via CSunit on
the flush at the end of a frame.

Doc Ref #: IHD_OS_V4Pt1_3_10 47

4.7.4 Field Motion Detector

The Field Motion Detector is generated in either the EU or in the driver with a set of differences gathered across entire fields. It
is used to detect when a non-interlaced source like a film has been converted to interlaced video – in this case there will be pairs
of fields which can be put back together to make frames rather than interpolating. The variances for the block are sent to the
CSunit to be summed across the entire frame. The CSunit will write the final values to memory on the flush at the end of the
frame.

4.7.5 Implementation Overview

4.7.5.1 Input and Output Frames

Two frames are needed to do deinterlacing, but for any two frames, two fields can be deinterlaced, doubling the output for the
same input bandwidth. This also allows the denoise filter to only filter a frame once.

2nd field

1st field

Denoised
Previous

2nd field

1st field

Current

Denoise
Filter

Denoise
Filter

Deinterlacer

Saved to Memory
for Next Frame

1st of
Current

2nd of
Previous

The above picture shows that two frames are read in, called current and previous. The two fields of the next frame are denoised
using adjacent fields. The 2nd field of previous can be deinterlaced using current as the reference, and the 1st field of current can
be deinterlaced using previous as reference.

Since we are producing 2 16x4 outputs, and the performance goal is to output 2 pixels per clock, we have 64 clocks to run 2
denoise filters and 2 deinterlacers.

The fields are referred to as 1st and 2nd because either the top or bottom field can be the first in the sequence depending on a state
variable.

48 Doc Ref #: IHD_OS_V4Pt1_3_10

4.7.5.1.1 Statistics Surface Memory Format

The statistics memory page is used to store both STMM and Denoise history. The STMM and Denoise history are stored in
separate areas addressed by a single base address pointer:

Not UsedSTMM

Denoise
History

Pitch
Pitch/2 Pitch/4

The read and write surfaces for each frame must be separate, since any individual block will not know if the neighbor blocks have
been updated yet. This can be implemented as a ping-pong buffer pair with the write surface for each frame becoming the read
surface for the next.

Doc Ref #: IHD_OS_V4Pt1_3_10 49

4.7.5.2 First Frame Special Case

The first frame in the sequence is a special case for both denoise and deinterlace. Only data from the current frame address is
read, the previous frame, clean previous, statistics and control addresses are ignored. Behavior for each function is as follows:

1) Denoise – The denoise filter needs to use the spatial filter, since there is no previous frame from which to do a temporal
filter.

a. The Denoise Motion History is not read.
b. The blend between the temporal and spatial is forced to 100% spatial.
c. The Denoise Motion History output values are written to mot_hist_init state variable.

2) BNE – The Block Noise Estimate only uses current frame values and so works normally.
3) Deinterlacer – Only the 1st field of the current frame frame is deinterlaced in this case – the 2nd of previous does not

exist.
a. The spatial deinterlacer is used to produce the output.
b. The STMM input values are not read.
c. The STMM output values are written as a the maximum 255 value so that the next frame is correctly told that

spatial deinterlacing was used in this frame.
4) FMD – variances between the top and bottom of the current field should be output correctly. Variances that read from

the previous field should indicate a maximum difference.
5) Progressive Cadence Reconstruction – the FMD input is not read, so always assume interlaced (is there ever a case

where progressive should be assumed? If so maybe the control memory space should be used by the driver to indicate
this).

4.8 Adaptive Video Scaler [DevILK+]

The adaptive video scaler consists of a pair of filters. The results of the two filters are alpha blended together using an alpha
factor determined separately from an algorithm that examines the pixel values in the each vector.

50 Doc Ref #: IHD_OS_V4Pt1_3_10

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8

The above diagram shows two pixels (red and green) mapped onto a texture map, with the texel centers blue. The red/green
boxes around the pixels indicate the area where the pixel would choose the same 8x8 footprint for its filter, while the large
transparent box indicates the footprint for each pixel.

The u/v addresses for each pixel (in texel space) are as follows:
red pixel: u=3.3, v=3.3 (betau=0.3, betav=0.3)
green pixel: u=4.3, v=4.7 (betau=0.3, betav=0.7)

The integer u/v address of the upper left pixel of the footprint is a function of the pixel u/v address as follows:
u(UL) = floor(u(pix)) – 3
v(UL) = floor(v(pix)) – 3

When the 8x8 filter is selected, the 8x8 texel block surrounding the pixel sample point is selected. The blend factors "beta"
(horizontal and vertical) are determined by the relative distance between the pixel center and the nearest 4 texels (2x2). The betas
are first truncated to 5 bits (i).

The beta value is used to look up two sets of 8 coefficients, one set of 8 for horizontal (called Kh0..7), and one set of 8 for vertical
(called Kv0..7).

Doc Ref #: IHD_OS_V4Pt1_3_10 51

4.8.1 Filtering Operations

There are two separate filters, sharp and smooth, which are blended in an adaptive manner.

4.9 Image Enhancement Filter and Video Signal Analysis [DevILK+]

The IEF module takes in the YUV 444 color space with 10 bit components.

The IEF and VSA have 3 optional modes of operation: basic detail filter 3x3 mode, basic detail filter 5x5 mode and the
combination mode.

4.10 State

4.10.1 BINDI NG_TABLE_STATE

The binding table binds surfaces to logical resource indices used by shaders and other compute engine kernels. It is stored as an
array of up to 256 elements, each of which contains one dword as defined here. The start of each element is spaced one dword
apart. The first element of the binding table is aligned to a 32-byte boundary.

DWord Bit Description

0 31:5 Surface State Pointer. This 32-byte aligned address points to a surface state block. This
pointer is relative to the Surface State Base Address.

[DevBW-A,B] Errata BWT007: Surface State data pointed at by offsets from Surface State
Base must be contained within 32-bit physical address space (that is, must map to memory
pages under 4G.)

Format = SurfaceStateOffset[31:5]

 4:0 Reserved : MBZ

52 Doc Ref #: IHD_OS_V4Pt1_3_10

4.10.2 SURFACE_STATE

The surface state is stored as individual elements, each with its own pointer in the binding table. Each surface state element is
aligned to a 32-byte boundary.

Surface state defines the state needed for the following objects:
• texture maps (1D, 2D, 3D, cube) read by the sampling engine
• buffers read by the sampling engine
• constant buffers read by the data cache via the data port
• render targets read/written by the render cache via the data port
• streamed vertex buffer output written by the render cache via the data port
• media surfaces read from the texture cache or render cache via the data port
• media surfaces written to the render cache via the data port

Doc Ref #: IHD_OS_V4Pt1_3_10 53

4.10.2.1 For most messages
0 31:29 Surface Type

Project: All
Format: U3 enumerated type FormatDesc
This field defines the type of the surface.

Value Na me Description Project

0h SURFTYPE_1D Defines a 1-dimensional map or array of
maps

All

1h SURFTYPE_2D Defines a 2-dimensional map or array of
maps

All

2h SURFTYPE_3D Defines a 3-dimensional (volumetric)
map

All

3h SURFTYPE_CUBE Defines a cube map or array of cube
maps

All

4h SURFTYPE_BUFFER Defines an element in a buffer All

5h-6h Reserved All

7h SURFTYPE_NULL Defines a null surface All

Programming Notes

A null surface will be used in instances where an actual surface is not bound. When a
write message is generated to a null surface, no actual surface is written to. When a read
message (including any sampling engine message) is generated to a null surface, the
result is all zeros. All of the remaining fields in surface state are ignored for null surfaces,
with the following exceptions:

• Width, Height, Depth, LOD, MIP Map Layout Mode, and Render Target View
Extent fields must match the depth buffer’s corresponding state for all render
target surfaces, including null.

• Surface Format must be R8G8B8A8_UNORM.

The Surface Type of a surface used as a render target (accessed via the Data Port’s
Render Target Write message) must be the same as the Surface Type of all other render
targets and of the depth buffer (defined in 3DSTATE_DEPTH_BUFFER), unless either the
depth buffer or render targets are SURFTYPE_NULL.

28 Reserved Project: All Format: MBZ

54 Doc Ref #: IHD_OS_V4Pt1_3_10

27 Data Return Format
Project: All
Format: U1 enumerated type FormatDesc
For Sampling Engine Surfaces, [DevBW] and [DevCL] only:

This field determines the format of the return data from the sampling engine to the compute
engine, but only if the Data Return Format field in the message descriptor is set to
FLOAT32. This field is ignored for surfaces used by other units.
For Other Surfaces:

This field is ignored.

For [DevCTG+] Sampling Engine surfaces, the state of this bit is effectively
DATA_RETURN_FLOAT32 regardless of its programmed value.

Value Na me Description Project

0h DATA_RETURN_FLOAT32 FLOAT32 data is returned All

1h DATA_RETURN_S1.14 S1.14 fixed point data is
returned

[DevBW],
[DevCL]

Programming Notes

The S1.14 return format is only legal for returning data from normalized (UNORM, or
SNORM) map formats where all channels have <= 8 bits. It is not legal to use this format
with any floating point or integer map format.

S1.14 return format is only used for SIMD16 and SIMD8 messages from the sampling
engine. For SIMD4x2 messages, FLOAT32 format will be used for surfaces specifying
S1.14 data return format.

Data returned in format S1.14 will be converted to FLOAT32 before reaching the GRF
register, thus the state of this bit does not affect the kernel.

It is recommended that S1.14 format be used wherever it is legal, as the performance will
generally be improved.

Doc Ref #: IHD_OS_V4Pt1_3_10 55

26:18 Surface Format
Project: All
Format: U9 FormatDesc
Specifies the format of the surface or element within this surface. This field is ignored for
all data port messages other than the render target message and streamed vertex buffer
write message. Some forms of the media block messages use the surface format.
Refer to the table in section 4.10.2.1 for the formats supported and their encodings.

Programming Notes

Tile Walk TILEWALK_YMAJOR is UNDEFINED for render target formats that have 128
bits-per-element (BPE).

YUV (YCRCB) surfaces used as render targets can only be rendered to using
3DPRIM_RECTLIST with even X coordinates on all of its vertices, and the pixel shader
cannot kill pixels.

If Number of Multisamples is set to a value other than MULTISAMPLECOUNT_1, this
field cannot be set to the following formats:

• any format with greater than 64 bits per element
• any compressed texture format (BC*)
• any YCRCB* format

Errata De scription Project

surfaces with FLOAT format are not supported. [DevBW-A,B]
17:14 Color Buffer Component Write Disables

Project: All
Format: U4 bit mask of disables (0 or logical OR

of any of the enumerated values)
FormatDesc

For Render Target Surfaces:

This field contains a bitmask that controls the writing of individual color components into the
Color Buffer. If a component is disabled (bit set) writes to the color buffer will not modify
that component. If enabled (bit clear), that component can be overwritten.
For Other Surfaces:

this field is ignored.

Value Na me Description Project

1000b WRITEDISABLE_ALPHA All

0100b WRITEDISABLE_RED All

0010b WRITEDISABLE_GREEN All

0001b WRITEDISABLE_BLUE All

Programming Notes

For YUV surfaces, this field must be set to 0000B (all channels enabled).

[DevCTG+]: For render targets accessed with the Render Target UNORM Write
message, this field is ignored (all component writes are enabled)

Errata De scription Project

Desc All

56 Doc Ref #: IHD_OS_V4Pt1_3_10

13 Color Blend Enable
Project: All
Format: Enable FormatDesc

For Render Target Surfaces:

Specifies that color blend is enabled for this particular render target. The Color Buffer
Blend Enable state in COLOR_CALC_STATE provides global control over blending. See
Color Buffer Blending (Windower) for details.
For Other Surfaces:

this field is ignored.

Errata De scription Project

This Color Blend Enable bit is not used, and acts as if
it is ENABLED for each RenderTarget. Blending is
enabled or disabled only a a global basis by the Color
Buffer Blend Enable state variable in
COLOR_CALC_STATE.

[DevBW-A,B]

12 Vertical Line Stride

Project: All
Format: U1 in lines to skip between logically

adjacent lines
FormatDesc

For 2D Non-Array Surfaces accessed via the Sampling Engine or Data Port:

Specifies number of lines (0 or 1) to skip between logically adjacent lines – provides
support of interleaved (field) surfaces as textures.
For Other Surfaces:

Vertical Line Stride must be zero.

Programming Notes

This bit must not be set if the surface format is a compressed type (BCn*).

If this bit is set on a sampling engine surface, texture addess control modes cannot be set
to any mode other than TEXCOORDMODE_CLAMP and the mip mode filter must be set
to MIPFILTER_NONE.

11 Vertical Line Stride Offset

Project: All
Format: U1 in lines of initial offset (when Vertical

Line Stride == 1)
FormatDesc

For 2D Non-Array Surfaces accessed via the Sampling Engine or Data Port:

Specifies the offset of the initial line from the beginning of the buffer. Ignored when Vertical
Line Stride is 0.
For Other Surfaces:

Vertical Line Stride Offset must be zero.

Doc Ref #: IHD_OS_V4Pt1_3_10 57

10 MIP Map Layout Mode
Project: All
Format: U1 enumerated type FormatDesc
For 1D and 2D Surfaces and

For Cube Surfaces (ILK only):

This field specifies which MIP map layout mode is used, whether the map for LOD 1 is
stored to the right of the LOD 0 map, or stored below it. See Memory Data Formats for
details on the specifics of each layout mode.

For Other Surfaces:

This field is reserved : MBZ

Value Na me Description Project

0h MIPLAYOUT_BELOW All

1h MIPLAYOUT_RIGHT All

Programming Notes

MIPLAYOUT_RIGHT is legal only for 2D non-array surfaces

Errata De scription Project

MIPLAYOUT_RIGHT is not supported with “ld” sampler
message

[DevBW],
[DevCL]

MIPLAYOUT_RIGHT is not supported with
sample_c/sample_l_c/sample_b_c sampler messages.

[DevCL]

9 Cube Map Corner Mode

Project: All
Format: U1 enumerated type FormatDesc
For Cube Surfaces accessed by the Sampling Engine:

When filtering at the corner of cube map one of the four texels does not exist. This field
specifies if it gets replaced with the opposite corner texel or the average of all three that
exist.
For Other Surfaces:

This field is Reserved : MBZ

Value Na me Description Project

0h CUBE_REPLICATE All

1h CUBE_AVERAGE [ILK]

Programming Notes

CUBE_AVERAGE may only be selected if all of the Cube Face Enable fields are equal to
one.

[Pre-ILK]: Only CUBE_REPLICATE is supported.

ChromaKey Enable must not be set in CUBE_AVERAGE mode

58 Doc Ref #: IHD_OS_V4Pt1_3_10

8 Render Cache Read Write Mode
Project: All
Format: U1 enumerated type FormatDesc
For Surfaces accessed via the Data Port to Render Cache:

This field specifies the way Render Cache treats a write request. If unset, Render Cache
allocates a write-only cache line for a write miss. If set, Render Cache allocates a read-
write cache line for a write miss.
For Surfaces accessed via the Sampling Engine or Data Port to Texture Cache or
Data Cache:

This field is reserved : MBZ

Value Na me Description Project

0h Allocating write-only cache for a write miss All

1h Allocating read-write cache for a write miss All

Programming Notes

This field is provided for performance optimization for Render Cache read/write accesses
(from Gen4 EU’s point of view).

Errata De scription Project

This field must be set to 0h. [DevBW-A,B]

Doc Ref #: IHD_OS_V4Pt1_3_10 59

7:6 Media Boundary Pixel Mode

Project: All
Format: U2 enumerated type FormatDesc
For 2D Non-Array Surfaces accessed via the Data Port Media Block Read Message:

This field enables control of which rows are returned on vertical out-of-bounds reads using
the Data Port Media Block Read Message. In the description below, frame mode refers to
Vertical Line Stride = 0, field mode is Vertical Line Stride = 1 in which only the even or
odd rows are addressable. The frame refers to the entire surface, while the field refers
only to the even or odd rows within the surface. Refer to section 0 for more details.

For Other Surfaces:

Reserved : MBZ

Value Na me Description Project

0h NORMAL_MODE the row returned on an out-of-
bound access is the closest row
in the frame or field. Rows from
the opposite field are never
returned.

All

1h Reserved All

2h PROGRESSIVE_FRAME the row returned on an out-of-
bound access is the closest row
in the frame, even if in field mode.

[DevCTG+]

3h INTERLACED_FRAME in field mode, the row returned on
an out-of-bound access is the
closest row in the field. In frame
mode, even out-of-bound rows
return the nearest even row while
odd out-of-bound rows return the
nearest odd row.

[DevCTG+]

Programming Notes

[DevBW] and [DevCL]: Only NORMAL_MODE is supported.

60 Doc Ref #: IHD_OS_V4Pt1_3_10

5:0 Cube Face Enables
Project: All
Format: U6 bit mask of enables FormatDesc
For SURFTYPE_CUBE Surfaces accessed via the Sampling Engine:

Bits 5:0 of this field enable the individual faces of a cube map. Enabling a face indicates
that the face is present in the cube map, while disabling it indicates that that face is
represented by the texture map’s border color. Refer to Memory Data Formats for the
correlation between faces and the cube map memory layout. Note that storage for
disabled faces must be provided.

For other surfaces:

This field is reserved : MBZ

Value Na me Description Project

100000b -X face All

010000b +X face All

001000b -Y face All

000100b +Y face All

000010b -Z face All

000001b +Z face All

Programming Notes

When TEXCOORDMODE_CLAMP is used when accessing a cube map, this field must be
programmed to 111111b (all faces enabled).

This field is ignored unless the Surface Type is SURFTYPE_CUBE.

Doc Ref #: IHD_OS_V4Pt1_3_10 61

1 31:0 Surface Base Address
Project: All
Format: GraphicsAddress[31:0] FormatDesc
Specifies the byte-aligned base address of the surface.

Programming Notes

For SURFTYPE_BUFFER render targets, this field specifies the base address of first
element of the surface. The surface is interpreted as a simple array of that single element
type. The address must be naturally-aligned to the element size (e.g., a buffer containing
R32G32B32A32_FLOAT elements must be 16-byte aligned).

For SURFTYPE_BUFFER non-rendertarget surfaces, this field specifies the base address
of the first element of the surface, computed in software by adding the surface base
address to the byte offset of the element in the buffer.

Mipmapped, cube and 3D sampling engine surfaces are stored in a “monolithic” (fixed)
format, and only require a single address for the base texture.

Linear depth buffer surface base addresses must be 64-byte aligned. Note that while
render targets (color) can be SURFTYPE_BUFFER, depth buffers cannot.

Tiled surface base addresses must be 4KB-aligned. Note that only the offsets from
Surface Base Address are tiled, Surface Base Address itself is not transformed using
the tiling algorithm.

[DevCTG+]: For tiled surfaces, the actual start of the surface can be offset from the
Surface Base Address by the X Offset and Y Offset fields.

Certain message types used to access surfaces have more stringent alignment
requirements. Please refer to the specific message documentation for additional
restrictions.

62 Doc Ref #: IHD_OS_V4Pt1_3_10

2 31:19 Height
Project: All
Format: U13 FormatDesc
Range SURFTYPE_1D: must be zero

SURFTYPE_2D: height of surface – 1 (y/v dimension) [0,8191]
SURFTYPE_3D: height of surface – 1 (y/v dimension) [0,2047]
SURFTYPE_CUBE: height of surface – 1 (y/v dimension) [0,8191]
SURFTYPE_BUFFER: contains bits [19:7] of the number of entries
in the buffer – 1 [0,8191]

This field specifies the height of the surface. If the surface is MIP-mapped, this field
contains the height of the base MIP level. For buffers, this field specifies a portion of the
buffer size.

Programming Notes

For buffer surfaces, the number of entries in the buffer ranges from 1 to 227. After
subtracting one from the number of entries, software must place the fields of the resulting
27-bit value into the Height, Width, and Depth fields as indicated, right-justified in each
field. Unused upper bits must be set to zero.

If Vertical Line Stride is 1, this field indicates the height of the field, not the height of the
frame

The Height of a render target must be the same as the Height of the other render targets
and the depth buffer (defined in 3DSTATE_DEPTH_BUFFER), unless Surface Type is
SURFTYPE_1D or SURFTYPE_2D with Depth = 0 (non-array) and LOD = 0 (non-mip
mapped).

Errata De scription Project

The number of entries in a SURFTYPE_BUFFER is
restricted to 2^27 – 1

[DevBW-A,B]

Doc Ref #: IHD_OS_V4Pt1_3_10 63

18:6 Width
Project: All
Format: U13 FormatDesc
Range SURFTYPE_1D: width of surface – 1 (x/u dimension) [0,8191]

SURFTYPE_2D: width of surface – 1 (x/u dimension) [0,8191]
SURFTYPE_3D: width of surface – 1 (x/u dimension) [0,2047]
SURFTYPE_CUBE: width of surface – 1 (x/u dimension) [0,8191]
SURFTYPE_BUFFER: contains bits [6:0] of the number of entries
in the buffer – 1 [0,127]

This field specifies the width of the surface. If the surface is MIP-mapped, this field
specifies the width of the base MIP level. The width is specified in units of pixels or texels.
For buffers, this field specifies a portion of the buffer size.

For surfaces accessed with the Media Block Read/Write message, this field is in units of
DWords.

Programming Notes

For surface types other than SURFTYPE_BUFFER, the Width specified by this field must
be less than or equal to the surface pitch (specified in bytes via the Surface Pitch field).

For cube maps, Width must be set equal to the Height.

For MONO8 textures, Width must be a multiple of 32 texels.

The Width of a render target must be the same as the Width of the other render target(s)
and the depth buffer (defined in 3DSTATE_DEPTH_BUFFER), unless Surface Type is
SURFTYPE_1D or SURFTYPE_2D with Depth = 0 (non-array) and LOD = 0 (non-mip
mapped).

The Width of a render target with YUV surface format must be a multiple of 2.

64 Doc Ref #: IHD_OS_V4Pt1_3_10

5:2 MIP Count / LOD
Project: All
Format: Sampling Engine Surfaces: U4 in (LOD units – 1)

Render Target Surfaces: U4 in LOD units
FormatDesc

Range Sampling Engine Surfaces: [0,13] representing [1,14] MIP levels
Render Target Surfaces: [0,13] representing LOD
Other Surfaces: [0]

For Sampling Engine Surfaces:

This field indicates the number of MIP levels allowed to be accessed starting at Surface
Min LOD, which must be less than or equal to the number of MIP levels actually stored in
memory for this surface.

Force the mip map access to be between the mipmap specified by the integer bits of the
Min LOD and the ceiling of the value specified here.

For Render Target Surfaces:

This field defines the MIP level that is currently being rendered into. This is the absolute
MIP level on the surface and is not relative to the Surface Min LOD field, which is ignored
for render target surfaces.

For Other Surfaces:

This field is reserved : MBZ

Value Na me Description Project

0h Disable Desc All

1h Enable Desc All

Programming Notes

The LOD of a render target must be the same as the LOD of the other render target(s)
and of the depth buffer (defined in 3DSTATE_DEPTH_BUFFER).

For render targets with YUV surface formats, the LOD must be zero.

Errata De scription Project

Desc All

Doc Ref #: IHD_OS_V4Pt1_3_10 65

1:0 Render Target Rotation
Project: [DevCTG+]
Format: U2 enumerated type FormatDesc
For Render Target Surfaces:

This field specifies the rotation of this render target surface when being written to memory.

For Other Surfaces:
This field is ignored.

[DevBW, DevCL]: Reserved : MBZ

Value Na me Description Project

0h RTROTATE_0DEG No rotation (0 degrees) All

1h RTROTATE_90DEG Rotate by 90 degrees All

2h Reserved All

3h RTROTATE_270DEG Rotate by 270 degrees All

Programming Notes

Rotation is not supported for render targets of any type other than simple, non-mip-
mapped, non-array 2D surfaces. The surface must be using tiled with X major.

Width and Height fields apply to the dimensions of the surface before rotation.

For 90 and 270 degree rotated surfaces, the Height (rather than the Width) must be less
than or equal to the Surface Pitch (specified in bytes).

For 90 and 270 degree rotated surfaces, the actual Height and Width of the surface in
pixels (not the field value which is decremented) must both be even.

Rotation is supported only for surfaces with the following surface formats:
B5G6R5_UNORM, B5G6R5_UNORM_SRGB, R8G8B8[A|X]8_UNORM,
R8G8B8[A|X]8_UNORM_SRGB, B8G8R8[A|X]8_UNORM,
B8G8R8[A|X]8_UNORM_SRGB, B10G10R10[A|X]2_UNORM,
B10G10R10A2_UNORM_SRGB, R10G10B10A2_UNORM,
R10G10B10A2_UNORM_SRGB, R16G16B16A16_FLOAT, R16G16B16X16_FLOAT

66 Doc Ref #: IHD_OS_V4Pt1_3_10

3 31:21 Depth
Project: All
Format: U11 FormatDesc
Range SURFTYPE_1D: number of array elements – 1 [0,511]

SURFTYPE_2D: number of array elements – 1 [0,511]
SURFTYPE_3D: depth of surface – 1 (z/r dimension) [0,2047]
SURFTYPE_CUBE: number of array elements – 1 [see
programming notes for range]
SURFTYPE_BUFFER: contains bits [26:20] of the number of
entries in the buffer – 1 [0,127]

This field specifies the total number of levels for a volume texture or the number of array
elements allowed to be accessed starting at the Minimum Array Element for arrayed
surfaces. If the volume texture is MIP-mapped, this field specifies the depth of the base
MIP level. For buffers, this field specifies a portion of the buffer size.

Programming Notes

The Depth of a render target must be the same as the Depth of the other render target(s)
and of the depth buffer (defined in 3DSTATE_DEPTH_BUFFER).

For SURFTYPE_CUBE:

for all cube surfaces, this field must be zero as cube arrays are not supported.

20 Reserved Project: All Format: MBZ
19:3 Surface Pitch

Project: All
Format: U17 pitch in (#Bytes – 1) FormatDesc
Range For surfaces of type SURFTYPE_BUFFER: [0,2047] -> [1B, 2048B]

For other linear surfaces: [0, 131071] -> [1B, 128KB]

For X-tiled surface: [511, 131071] –> [512B, 128KB] = [1tile, 256 tiles]

For Y-tiled surfaces: [127, 131071]->[128B,128KB] = [1 tile, 1024 tiles]
This field specifies the surface pitch in (#Bytes - 1).

For surfaces of type SURFTYPE_BUFFER, this field indicates the size of the structure.

Programming Notes

For linear render target surfaces, the pitch must be a multiple of the element size for non-
YUV surface formats. Pitch must be a multiple of 2 * element size for YUV surface
formats.

For other linear surfaces, the pitch can be any multiple of bytes.

For tiled surfaces, the pitch must be a multiple of the tile width.

2 Reserved Project: All Format: MBZ

Doc Ref #: IHD_OS_V4Pt1_3_10 67

1 Tiled Surface
Project: All
Format: U1 enumerated type FormatDesc
This field specifies whether the surface is tiled.

Value Na me Description Project

0h FALSE Linear surface All

1h TRUE Tiled surface All

Programming Notes

Linear surfaces can be mapped to Main Memory (uncached) or System Memory
(cacheable, snooped). Tiled surfaces can only be mapped to Main Memory.

The corresponding cache(s) must be invalidated before a previously accessed surface is
accessed again with an altered state of this bit.

If Surface Type is SURFTYPE_BUFFER, this field must be FALSE (buffers are supported
only in linear memory)

If the target cache via the Data Port is the Data Cache, this field must be disabled (zero).
The data cache only supports access to linear memory.

If Surface Type is SURFTYPE_NULL, this field must be TRUE

0 Tile Walk

Project: All
Format: U1 enumerated type FormatDesc
This field specifies the type of memory tiling (XMajor or YMajor) employed to tile this
surface. See Memory Interface Functions for details on memory tiling and restrictions.

Value Na me Description Project

0h TILEWALK_XMAJOR X major tiling All

1h TILEWALK_YMAJOR Y major tiling All

Programming Notes

Refer to Memory Data Formats for restrictions on TileWalk direction for the various buffer
types. (Of particular interest is the fact that YMAJOR tiling is not supported for
display/overlay buffers).

The corresponding cache(s) must be invalidated before a previously accessed surface is
accessed again with an altered state of this bit.

Use of TILEWALK_YMAJOR is UNDEFINED for render target formats that have 128 bits-
per-element (BPE).

This field is ignored when the surface is linear.

68 Doc Ref #: IHD_OS_V4Pt1_3_10

4 31:28 Surface Min LOD
Project: All
Format: U4 in LOD units FormatDesc
Range [0,13]
For Sampling Engine Surfaces:

This field indicates the most detailed LOD that can be accessed as part of this surface.
This field is added to the delivered LOD (sample_l, ld, or resinfo message types) before it is
used to address the surface.
For Other Surfaces:

This field is ignored.

Programming Notes

This field must be zero if the Surface Format is MONO8

[DevBW-A,B]: this field must be zero

27:17 Minimum Array Element
Project: All
Format: U11 FormatDesc
Range 1D/2D/cube surfaces: [0,511]

3D surfaces: [0,2047]
For Sampling Engine and Render Target 1D and 2D Surfaces:

This field indicates the minimum array element that can be accessed as part of this surface.
This field is added to the delivered array index before it is used to address the surface.
For Render Target 3D Surfaces:

This field indicates the minimum ‘R’ coordinate on the LOD currently being rendered to.
This field is added to the delivered array index before it is used to address the surface.
For Sampling Engine Cube Surfaces:

This field must be set to zero.

Errata De scription Project

This field must be zero. [DevBW-A,B]

For sample_c/sample_b_c/sample_l_c instructions this
field is ignored. If it is tiled surface and not at a 4k
boundary it must be copied to a 4k aligned surface.
Then for any case it must be pointed to by the Surface
Base Address.

[DevBW-
A,B,C,D],
[DevCL-A,B]

Doc Ref #: IHD_OS_V4Pt1_3_10 69

16:8 Render Target View Extent
Project: All
Format: U9 FormatDesc
Range [0,511] to indicate extent of [1,512]
For Render Target 3D Surfaces:

This field indicates the extent of the accessible ‘R’ coordinates minus 1 on the LOD
currently being rendered to.

For Render Target 1D and 2D Surfaces:

This field must be set to the same value as the Depth field.

For Other Surfaces:

This field is ignored.

7 Reserved Project: All Format: MBZ
3 Reserved Project: All Format: MBZ

5 31:25 X Offset
Project: [DevCTG+]
Format: PixelOffset[8:2] FormatDesc
Range TileX surfaces: [0,ceil(512/BytesPerElement)4] in multiples of 4

(low 2 bits missing)
TileY surfaces: [0,ceil(128/BytesPerElement)-4] in multiples of 4

(low 2 bits missing)
This field specifies the horizontal offset in pixels from the Surface Base Address to the
start (origin) of the surface.

This field effectively loosens the alignment restrictions on the origin of tiled surfaces.
Previously, tiled surface origin was (by definition) located at the base address, and thus
needed to satisfy the 4KB base address alignment restriction. Now the origin can be
specified at a finer (4-wide x 2-high pixel) resolution.

Programming Notes

For linear surfaces, this field must be zero

For surfaces accessed with the Data Port Media Block Read/Write message, the pixel size
is assumed to be 32 bits in width

For Surface Format with other than 8, 16, 32, 64, or 128 bits per pixel, this field must be
zero.

If Render Target Rotation is set to other than RTROTATE_0DEG, this field must be zero.

24 Reserved Project: All Format: MBZ

70 Doc Ref #: IHD_OS_V4Pt1_3_10

23:20 Y Offset
Project: [DevCTG+]
Format: RowOffset[4:1] FormatDesc
Range TileX surfaces: [0,6] in multiples of 2 (low bit missing)

TileY surfaces: [0,30] in multiples of 2 (low bit missing)
This field specifies the vertical offset in rows from the Surface Base Address to the start of
the surface. (See additional description in the X Offset field)

Programming Notes

For linear surfaces, this field must be zero.

For render targets in which the Render Target Array Index is not zero, this field must be
zero.

For Surface Format with other than 8, 16, 32, 64, or 128 bits per pixel, this field must be
zero.

If Render Target Rotation is set to other than RTROTATE_0DEG, this field must be zero.

[ILK]: For surfaces accessed in field mode (Vertical Line Stride = 1 or equivalent Media
Block Read/Write message override), this field must be set to a multiple of 4.

Errata De scription Project

For surfaces accessed in field mode (Vertical Line
Stride = 1 or equivalent Media Block Read/Write
message override), the Y offset value must be divided
by 2 when setting this field.

[DevCTG],
[DevEL]

15:0 Reserved Project: All Format: MBZ

4.10.2.1.1 Surfac e Formats

The following table indicates the supported surface formats and the 9-bit encoding for each. Note that some of these formats are
used not only by the Sampling Engine, but also by the Data Port and the Vertex Fetch unit.

Support of each format and capability is as follows:
Y supported on all products
Y* supported only on [DevCTG+]
Y+ supported only on [DevCTG-B+]
Y~ supported only on [ILK]

Doc Ref #: IHD_OS_V4Pt1_3_10 71

Sa
m

pl
in

g
En

gi
ne

Sa
m

pl
in

g
En

gi
ne

 F
ilt

er
in

g

Sa
m

pl
in

g
En

gi
ne

 S
ha

do
w

 M
ap

Sa
m

pl
in

g
En

gi
ne

 C
hr

om
a

K
ey

R
en

de
r T

ar
ge

t

A
lp

ha
 B

le
nd

 R
en

de
r T

ar
ge

t

In
pu

t V
er

te
x

B
uf

fe
r

St
re

am
ed

 O
ut

pu
t V

er
te

x
B

uf
fe

rs

C
ol

or
 P

ro
ce

ss
in

g

Su
rf

ac
e

Fo
rm

at
 E

nc
od

in
g

(H
ex

)

Format Name B
its

 P
er

 E
le

m
en

t (
B

PE
)

Y Y~ Y Y Y Y 000 R32G32B32A32_FLOAT 128**
Y Y Y Y 001 R32G32B32A32_SINT 128**
Y Y Y Y 002 R32G32B32A32_UINT 128**

 Y 003 R32G32B32A32_UNORM 128
 Y 004 R32G32B32A32_SNORM 128
 Y 005 R64G64_FLOAT 128

Y Y~ 006 R32G32B32X32_FLOAT 128
 Y 007 R32G32B32A32_SSCALED 128
 Y 008 R32G32B32A32_USCALED 128

Y Y~ Y Y 040 R32G32B32_FLOAT 96
Y Y Y 041 R32G32B32_SINT 96
Y Y Y 042 R32G32B32_UINT 96

 Y 043 R32G32B32_UNORM 96
 Y 044 R32G32B32_SNORM 96

 Y 045 R32G32B32_SSCALED 96
 Y 046 R32G32B32_USCALED 96

Y Y Y Y+ Y Y^ 080 R16G16B16A16_UNORM 64
Y Y Y Y^ Y 081 R16G16B16A16_SNORM 64
Y Y Y 082 R16G16B16A16_SINT 64
Y Y Y 083 R16G16B16A16_UINT 64
Y Y Y Y Y 084 R16G16B16A16_FLOAT 64
Y Y~ Y Y Y Y 085 R32G32_FLOAT 64
Y Y Y Y 086 R32G32_SINT 64
Y Y Y Y 087 R32G32_UINT 64
Y Y~ Y 088 R32_FLOAT_X8X24_TYPELESS 64
Y 089 X32_TYPELESS_G8X24_UINT 64
Y Y~ 08A L32A32_FLOAT 64

 Y 08B R32G32_UNORM 64
 Y 08C R32G32_SNORM 64
 Y 08D R64_FLOAT 64

Y Y 08E R16G16B16X16_UNORM 64
Y Y 08F R16G16B16X16_FLOAT 64
Y Y~ 090 A32X32_FLOAT 64
Y Y~ 091 L32X32_FLOAT 64
Y Y~ 092 I32X32_FLOAT 64

72 Doc Ref #: IHD_OS_V4Pt1_3_10

Sa
m

pl
in

g
En

gi
ne

Sa
m

pl
in

g
En

gi
ne

 F
ilt

er
in

g

Sa
m

pl
in

g
En

gi
ne

 S
ha

do
w

 M
ap

Sa
m

pl
in

g
En

gi
ne

 C
hr

om
a

K
ey

R
en

de
r T

ar
ge

t

A
lp

ha
 B

le
nd

 R
en

de
r T

ar
ge

t

In
pu

t V
er

te
x

B
uf

fe
r

St
re

am
ed

 O
ut

pu
t V

er
te

x
B

uf
fe

rs

C
ol

or
 P

ro
ce

ss
in

g

Su
rf

ac
e

Fo
rm

at
 E

nc
od

in
g

(H
ex

)

Format Name B
its

 P
er

 E
le

m
en

t (
B

PE
)

 Y 093 R16G16B16A16_SSCALED 64
 Y 094 R16G16B16A16_USCALED 64
 Y 095 R32G32_SSCALED 64
 Y 096 R32G32_USCALED 64

Y Y Y Y Y Y Y^ 0C0 B8G8R8A8_UNORM 32
Y Y Y Y 0C1 B8G8R8A8_UNORM_SRGB 32
Y Y Y Y Y Y^ 0C2 R10G10B10A2_UNORM 32
Y Y Y^ 0C3 R10G10B10A2_UNORM_SRGB 32
Y Y Y 0C4 R10G10B10A2_UINT 32
Y Y Y 0C5 R10G10B10_SNORM_A2_UNORM 32
Y Y Y Y Y Y^ 0C7 R8G8B8A8_UNORM 32
Y Y Y Y Y^ 0C8 R8G8B8A8_UNORM_SRGB 32
Y Y Y Y^ Y 0C9 R8G8B8A8_SNORM 32
Y Y Y 0CA R8G8B8A8_SINT 32
Y Y Y 0CB R8G8B8A8_UINT 32
Y Y Y Y+ Y 0CC R16G16_UNORM 32
Y Y Y Y^ Y 0CD R16G16_SNORM 32
Y Y Y 0CE R16G16_SINT 32
Y Y Y 0CF R16G16_UINT 32
Y Y Y Y Y 0D0 R16G16_FLOAT 32
Y Y Y Y Y^ 0D1 B10G10R10A2_UNORM 32
Y Y Y Y Y^ 0D2 B10G10R10A2_UNORM_SRGB 32
Y Y Y Y Y 0D3 R11G11B10_FLOAT 32
Y Y Y Y 0D6 R32_SINT 32
Y Y Y Y 0D7 R32_UINT 32
Y Y~ Y Y Y Y Y 0D8 R32_FLOAT 32
Y Y~ Y 0D9 R24_UNORM_X8_TYPELESS 32
Y 0DA X24_TYPELESS_G8_UINT 32
Y Y 0DF L16A16_UNORM 32
Y Y~ Y 0E0 I24X8_UNORM 32
Y Y~ Y 0E1 L24X8_UNORM 32
Y Y~ Y 0E2 A24X8_UNORM 32
Y Y~ Y 0E3 I32_FLOAT 32
Y Y~ Y 0E4 L32_FLOAT 32
Y Y~ Y 0E5 A32_FLOAT 32

Doc Ref #: IHD_OS_V4Pt1_3_10 73

Sa
m

pl
in

g
En

gi
ne

Sa
m

pl
in

g
En

gi
ne

 F
ilt

er
in

g

Sa
m

pl
in

g
En

gi
ne

 S
ha

do
w

 M
ap

Sa
m

pl
in

g
En

gi
ne

 C
hr

om
a

K
ey

R
en

de
r T

ar
ge

t

A
lp

ha
 B

le
nd

 R
en

de
r T

ar
ge

t

In
pu

t V
er

te
x

B
uf

fe
r

St
re

am
ed

 O
ut

pu
t V

er
te

x
B

uf
fe

rs

C
ol

or
 P

ro
ce

ss
in

g

Su
rf

ac
e

Fo
rm

at
 E

nc
od

in
g

(H
ex

)

Format Name B
its

 P
er

 E
le

m
en

t (
B

PE
)

Y Y Y Y^ 0E9 B8G8R8X8_UNORM 32
Y Y 0EA B8G8R8X8_UNORM_SRGB 32
Y Y 0EB R8G8B8X8_UNORM 32
Y Y 0EC R8G8B8X8_UNORM_SRGB 32
Y Y 0ED R9G9B9E5_SHAREDEXP 32
Y Y 0EE B10G10R10X2_UNORM 32
Y Y 0F0 L16A16_FLOAT 32
 Y 0F1 R32_UNORM 32
 Y 0F2 R32_SNORM 32
 Y 0F3 R10G10B10X2_USCALED 32
 Y 0F4 R8G8B8A8_SSCALED 32
 Y 0F5 R8G8B8A8_USCALED 32
 Y 0F6 R16G16_SSCALED 32
 Y 0F7 R16G16_USCALED 32
 Y 0F8 R32_SSCALED 32
 Y 0F9 R32_USCALED 32

Y Y Y Y Y 100 B5G6R5_UNORM 16
Y Y Y Y 101 B5G6R5_UNORM_SRGB 16
Y Y Y Y Y 102 B5G5R5A1_UNORM 16
Y Y Y Y 103 B5G5R5A1_UNORM_SRGB 16
Y Y Y Y Y 104 B4G4R4A4_UNORM 16
Y Y Y Y 105 B4G4R4A4_UNORM_SRGB 16
Y Y Y Y Y 106 R8G8_UNORM 16
Y Y Y Y Y^ Y 107 R8G8_SNORM 16
Y Y Y 108 R8G8_SINT 16
Y Y Y 109 R8G8_UINT 16
Y Y Y Y Y+ Y Y# 10A R16_UNORM 16
Y Y Y Y^ Y 10B R16_SNORM 16
Y Y Y 10C R16_SINT 16
Y Y Y 10D R16_UINT 16
Y Y Y Y Y 10E R16_FLOAT 16

Y~ Y~ 10F A8P8_UNORM [palette0] 16
Y~ Y~ 110 A8P8_UNORM [palette1] 16
Y Y Y 111 I16_UNORM 16
Y Y Y 112 L16_UNORM 16

74 Doc Ref #: IHD_OS_V4Pt1_3_10

Sa
m

pl
in

g
En

gi
ne

Sa
m

pl
in

g
En

gi
ne

 F
ilt

er
in

g

Sa
m

pl
in

g
En

gi
ne

 S
ha

do
w

 M
ap

Sa
m

pl
in

g
En

gi
ne

 C
hr

om
a

K
ey

R
en

de
r T

ar
ge

t

A
lp

ha
 B

le
nd

 R
en

de
r T

ar
ge

t

In
pu

t V
er

te
x

B
uf

fe
r

St
re

am
ed

 O
ut

pu
t V

er
te

x
B

uf
fe

rs

C
ol

or
 P

ro
ce

ss
in

g

Su
rf

ac
e

Fo
rm

at
 E

nc
od

in
g

(H
ex

)

Format Name B
its

 P
er

 E
le

m
en

t (
B

PE
)

Y Y Y 113 A16_UNORM 16
Y Y Y 114 L8A8_UNORM 16
Y Y Y 115 I16_FLOAT 16
Y Y Y 116 L16_FLOAT 16
Y Y Y 117 A16_FLOAT 16
Y* Y* 118 L8A8_UNORM_SRGB 16
Y Y Y 119 R5G5_SNORM_B6_UNORM 16
 Y Y 11A B5G5R5X1_UNORM 16
 Y Y 11B B5G5R5X1_UNORM_SRGB 16
 Y 11C R8G8_SSCALED 16
 Y 11D R8G8_USCALED 16
 Y 11E R16_SSCALED 16
 Y 11F R16_USCALED 16

Y~ Y~ 122 P8A8_UNORM [palette0] 16
Y~ Y~ 123 P8A8_UNORM [palette1] 16
Y Y Y* Y Y Y 140 R8_UNORM 8
Y Y Y Y^ Y 141 R8_SNORM 8
Y Y Y 142 R8_SINT 8
Y Y Y 143 R8_UINT 8
Y Y Y Y Y 144 A8_UNORM 8
Y Y 145 I8_UNORM 8
Y Y Y 146 L8_UNORM 8
Y Y 147 P4A4_UNORM [palette0] 8
Y Y 148 A4P4_UNORM [palette0] 8
 Y 149 R8_SSCALED 8
 Y 14A R8_USCALED 8

Y* Y* 14B P8_UNORM [palette0] 8
Y* Y* 14C L8_UNORM_SRGB 8
Y+ Y+ 14D P8_UNORM [palette1] 8
Y+ Y+ 14E P4A4_UNORM [palette1] 8
Y+ Y+ 14F A4P4_UNORM [palette1] 8
Y Y 181 R1_UNORM/R1_UINT 1
Y Y Y Y Y^ 182 YCRCB_NORMAL 0
Y Y Y Y Y^ 183 YCRCB_SWAPUVY 0
Y* Y* 184 P2_UNORM [palette0] 2

Doc Ref #: IHD_OS_V4Pt1_3_10 75

Sa
m

pl
in

g
En

gi
ne

Sa
m

pl
in

g
En

gi
ne

 F
ilt

er
in

g

Sa
m

pl
in

g
En

gi
ne

 S
ha

do
w

 M
ap

Sa
m

pl
in

g
En

gi
ne

 C
hr

om
a

K
ey

R
en

de
r T

ar
ge

t

A
lp

ha
 B

le
nd

 R
en

de
r T

ar
ge

t

In
pu

t V
er

te
x

B
uf

fe
r

St
re

am
ed

 O
ut

pu
t V

er
te

x
B

uf
fe

rs

C
ol

or
 P

ro
ce

ss
in

g

Su
rf

ac
e

Fo
rm

at
 E

nc
od

in
g

(H
ex

)

Format Name B
its

 P
er

 E
le

m
en

t (
B

PE
)

Y+ Y+ 185 P2_UNORM [palette1] 2
Y Y 189 BC4_UNORM 0
Y Y 18A BC5_UNORM 0
Y 18E MONO8 1
Y Y Y Y^ 18F YCRCB_SWAPUV 0
Y Y Y Y^ 190 YCRCB_SWAPY 0
Y Y 192 FXT1 0

 Y 193 R8G8B8_UNORM 24
 Y 194 R8G8B8_SNORM 24
 Y 195 R8G8B8_SSCALED 24
 Y 196 R8G8B8_USCALED 24
 Y 197 R64G64B64A64_FLOAT 256
 Y 198 R64G64B64_FLOAT 192

Y Y 199 BC4_SNORM 0
Y Y 19A BC5_SNORM 0

Y~ Y~ Y^ 19B R16G16B16_FLOAT 48
 Y 19C R16G16B16_UNORM 48
 Y 19D R16G16B16_SNORM 48
 Y 19E R16G16B16_SSCALED 48
 Y 19F R16G16B16_USCALED 48

Y# Y# 1A1 BC6H_SF16 0
Y# Y# 1A2 BC7_UNORM 0
Y# Y# 1A3 BC7_UNORM_SRGB 0
Y# Y# 1A4 BC6H_UF16 0

 1FF RAW 0

** Note: 128 BPE Formats cannot be Tiled Y when used as render targets

NOTE: “RAW” is supported only with buffers and structured buffers accessed via the untyped surface read/write and untyped
atomic operation messages, which do not have a column in the table.

4.10.2.1.2 Sampler Output Channel Mapping

The following table indicates the mapping of the channels from the surface to the channels output from the sampling engine.
Formats with all four channels (R/G/B/A) in their name map each surface channel to the corresponding output, thus those formats
are not shown in this table.

76 Doc Ref #: IHD_OS_V4Pt1_3_10

Surface Format Name R G B A

R32G32B32X32_FLOAT R G B 1.0
R32G32B32_FLOAT R G B 1.0
R32G32B32_SINT R G B 1.0
R32G32B32_UINT R G B 1.0

R G 1.0 1.0 R32G32_FLOAT
R G 0.0 1.0

R32G32_SINT R G 0.0 1.0
R32G32_UINT R G 0.0 1.0
R32_FLOAT_X8X24_TYPELESS R 0.0 0.0 1.0
X32_TYPELESS_G8X24_UINT 0.0 G 0.0 1.0
L32A32_FLOAT L L L A
R16G16B16X16_UNORM R G B 1.0
R16G16B16X16_FLOAT R G B 1.0
A32X32_FLOAT 0.0 0.0 0.0 A
L32X32_FLOAT L L L 1.0
I32X32_FLOAT I I I I

R G 1.0 1.0 R16G16_UNORM
R G 0.0 1.0
R G 1.0 1.0 R16G16_SNORM
R G 0.0 1.0

R16G16_SINT R G 0.0 1.0
R16G16_UINT R G 0.0 1.0

R G 1.0 1.0 R16G16_FLOAT
R G 0.0 1.0

R11G11B10_FLOAT R G B 1.0
R32_SINT R 0.0 0.0 1.0
R32_UINT R 0.0 0.0 1.0

R 1.0 1.0 1.0 R32_FLOAT
R 0.0 0.0 1.0

R24_UNORM_X8_TYPELESS R 0.0 0.0 1.0
X24_TYPELESS_G8_UINT 0.0 G 0.0 1.0
L16A16_UNORM L L L A
I24X8_UNORM I I I I
L24X8_UNORM L L L 1.0
A24X8_UNORM 0.0 0.0 0.0 A
I32_FLOAT I I I I
L32_FLOAT L L L 1.0
A32_FLOAT 0.0 0.0 0.0 A
B8G8R8X8_UNORM R G B 1.0
B8G8R8X8_UNORM_SRGB R G B 1.0
R8G8B8X8_UNORM R G B 1.0
R8G8B8X8_UNORM_SRGB R G B 1.0
R9G9B9E5_SHAREDEXP R G B 1.0
B10G10R10X2_UNORM R G B 1.0
L16A16_FLOAT L L L A

Doc Ref #: IHD_OS_V4Pt1_3_10 77

Surface Format Name R G B A

B5G6R5_UNORM R G B 1.0
B5G6R5_UNORM_SRGB R G B 1.0

R G 1.0 1.0 R8G8_UNORM
R G 0.0 1.0
R G 1.0 1.0 R8G8_SNORM
R G 0.0 1.0

R8G8_SINT R G 0.0 1.0
R8G8_UINT R G 0.0 1.0
R16_UNORM R 0.0 0.0 1.0
R16_SNORM R 0.0 0.0 1.0
R16_SINT R 0.0 0.0 1.0
R16_UINT R 0.0 0.0 1.0

R 1.0 1.0 1.0 R16_FLOAT
R 0.0 0.0 1.0

I16_UNORM I I I I
L16_UNORM L L L 1.0
A16_UNORM 0.0 0.0 0.0 A
L8A8_UNORM L L L A
I16_FLOAT I I I I
L16_FLOAT L L L 1.0
A16_FLOAT 0.0 0.0 0.0 A
R5G5_SNORM_B6_UNORM R G B 1.0
R8_UNORM R 0.0 0.0 1.0
R8_SNORM R 0.0 0.0 1.0
R8_SINT R 0.0 0.0 1.0
R8_UINT R 0.0 0.0 1.0
A8_UNORM 0.0 0.0 0.0 A
I8_UNORM I I I I
L8_UNORM L L L 1.0
L8_UNORM_SRGB L L L 1.0
R1_UNORM/R1_UINT R 0.0 0.0 1.0
YCRCB_NORMAL Cr Y Cb 1.0
YCRCB_SWAPUVY Cr Y Cb 1.0
BC4_UNORM R 0.0 0.0 1.0
BC5_UNORM R G 0.0 1.0
YCRCB_SWAPUV Cr Y Cb 1.0
YCRCB_SWAPY Cr Y Cb 1.0
BC4_SNORM R 0.0 0.0 1.0
BC5_SNORM R G 0.0 1.0

4.10.2.2 For deinterlace, sample_8x8 messages

[ILK] only. This state definition is used only by the deinterlace and sample_8x8 sampling engine messages

78 Doc Ref #: IHD_OS_V4Pt1_3_10

DWord Bit Description

0 31:0 Surface Base Address

Specifies the byte-aligned base address of the surface. For PLANAR surface formats, this
address points to the Y (luma) plane, with the other plane(s) being specified via X/Y offsets.

Programming Notes:
• Tiled surface base addresses must be 4KB-aligned. Note that only the offsets

from Surface Base Address are tiled, Surface Base Address itself is not
transformed using the tiling algorithm.

Format = Bits 31:0 of MI_Graphics_Address

1 31:19 Height

This field specifies the height of the surface in units of pixels. For PLANAR surface
formats, this field indicates the height of the Y (luma) plane.

Programming Notes:

• Height (field value + 1) must be a multiple of 2 for PLANAR_420 surfaces.

Format = U13

Range = [0,8191] representing heights [1,8192]

 18:6 Width

This field specifies the width of the surface in units of pixels. For PLANAR surface formats,
this field indicates the width of the Y (luma) plane.

Programming Notes:

• The Width specified by this field multiplied by the pixel size in bytes must be less
than or equal to the surface pitch (specified in bytes via the Surface Pitch field).

• Width (field value + 1) must be a multiple of 2 for PLANAR_420, PLANAR_422,
and all YCRCB_* surfaces, and must be a multiple of 4 for PLANAR_411
surfaces.

Format = U13

Range = [0,8191] representing widths [1,8192]

 5:2 Reserved : MBZ

 1:0 Cr(V)/Cb(U) Pixel Offset V Direction

Specifies the distance to the U/V values with respect to the even numbered Y channels in
the V direction

Format = U0.2

Programming Notes:

• This field is ignored for all formats except PLANAR_420_8

Doc Ref #: IHD_OS_V4Pt1_3_10 79

DWord Bit Description

2 31:28 Surface Format

Specifies the format of the surface. All of the Y and G channels will use table 0 and all of
the Cr/Cb/R/B channels will use table 1.

0: YCRCB_NORMAL

1: YCRCB_SWAPUVY

2: YCRCB_SWAPUV

3: YCRCB_SWAPY

4: PLANAR_420_8

5: PLANAR_411_8 (deinterlace only)

6: PLANAR_422_8 (deinterlace only)

7: STMM_DN_STATISTICS (deinterlace only)

8: R10G10B10A2_UNORM (sample_8x8 only)

9: R8G8B8A8_UNORM (sample_8x8 only)

10: R8B8_UNORM (CrCb) (sample_8x8 only)

11: R8_UNORM (Cr/Cb) (sample_8x8 only)

12: Y8_UNORM

13-15 Reserved

 27 Interleave Chroma

This field indicates that the chroma fields are interleaved in a single plane rather than
stored as two separate planes. This field is only used for PLANAR surface formats.

Format = Enable

 26 Reserved : MBZ

 21:20 Reserved : MBZ

 19:3 Surface Pitch

This field specifies the surface pitch in (#Bytes - 1).

Programming Notes:

• For tiled surfaces, the pitch must be a multiple of the tile width

• For tiled surfaces, with Half Pitch for Chroma the pitch must be a multiple of the tile
width x 2

• For non tiled surfaces with Half Pitch for Chroma pitch must be even

• If Half Pitch for Chroma is set, this field must be a multiple of two tile widths for tiled
surfaces, or a multiple of 2 bytes for linear surfaces.

Format = U17 pitch in (Bytes - 1).

For surfaces of type SURFTYPE_BUFFER: Range = [0,2047] -> [1B, 2048B]

For other linear surfaces: Range = [0, 131071] -> [1B, 128KB]

For X-tiled surface: Range = [511, 131071] –> [512B, 128KB] = [1tile, 256 tiles]

For Y-tiled surfaces: Range = [127, 131071]->[128B,128KB] = [1 tile, 1024 tiles]

80 Doc Ref #: IHD_OS_V4Pt1_3_10

DWord Bit Description

 2 Half Pitch for Chroma

This field indicates that the chroma plane(s) will use a pitch equal to half the value specified
in the Surface Pitch field. This field is only used for PLANAR surface formats.

Format = Enable

 1 Tiled Surface

This field specifies whether the surface is tiled.

Programming Notes:

• Linear surfaces can be mapped to Main Memory (uncached) or System
Memory (cacheable, snooped). Tiled surfaces can only be mapped to Main
Memory.

• The corresponding cache(s) must be invalidated before a previously accessed
surface is accessed again with an altered state of this bit.

• The tiled surfaces of current picture and reference picture should be declared
as the identical type in VDI mode with the identical Height, Width and Format.

Format = Boolean

1: TRUE: Tiled

0: FALSE: Linear

 0 Tile Walk

This field specifies the type of memory tiling (XMajor or YMajor) employed to tile this
surface. See Memory Interface Functions for details on memory tiling and restrictions.

This field is ignored when the surface is linear.

Programming Notes:

• The corresponding cache(s) must be invalidated before a previously accessed
surface is accessed again with an altered state of this bit.

Format = 3D_TileWalk

0: TILEWALK_XMAJOR

1: TILEWALK_YMAJOR

3 31:29 Reserved : MBZ

 28:16 X Offset for U(Cb)

This field specifies the horizontal offset in pixels from the Surface Base Address to the
start (origin) of the U(Cb) plane or the interleaved UV plane if Interleave Chroma is
enabled. This field is only used for PLANAR surface formats.

Programming Notes:

• For PLANAR_420 and PLANAR_422 surface formats, this field must indicate an
even number of pixels.

Format = U13 Pixel Offset

 15:13 Reserved : MBZ

Doc Ref #: IHD_OS_V4Pt1_3_10 81

DWord Bit Description

 12:0 Y Offset for U(Cb)

This field specifies the veritical offset in rows from the Surface Base Address to the start
(origin) of the U(Cb) plane or the interleaved UV plane if Interleave Chroma is enabled.
This field is only used for PLANAR surface formats.

Programming Notes:

• This field must indicate an even number (bit 0 = 0).

• If Half Pitch for Chroma is set this will be equal to 2*(height of Y surface) if U is
above V or they are interleaved.. If not then it will be 2*(height of Y surface) +
(Height of V surface)

Format = U13 Row Offset

4 31:29 Reserved : MBZ

 28:16 X Offset for V(Cr)

This field specifies the horizontal offset in pixels from the Surface Base Address to the
start (origin) of the V(Cr) plane. This field is only used for PLANAR surface formats with
Interleave Chroma disabled.

Programming Notes:

• For PLANAR_420 and PLANAR_422 surface formats, this field must indicate an
even number of pixels.

Format = U13 Pixel Offset

 15:13 Reserved : MBZ

 12:0 Y Offset for V(Cr)

This field specifies the veritical offset in rows from the Surface Base Address to the start
(origin) of the V(Cr) plane. This field is only used for PLANAR surface formats with
Interleave Chroma disabled.

Programming Notes:

This field must indicate an even number (bit 0 = 0).

• If Half Pitch for Chroma is set this will be equal to 2*(height of Y surface) if V is
above U or they are interleaved. If not then it will be 2*(height of Y surface) +
(Height of U surface)

Format = U13 Row Offset

82 Doc Ref #: IHD_OS_V4Pt1_3_10

Cr(V)/Cb(U) Pixel Offset V Direction

The position of Y is brown and the position of Cr(V)/Cb(U) is blue.

full frame top field bottom field

V Offset 0.5 V Offset 0.25 V Offset 0.75

Doc Ref #: IHD_OS_V4Pt1_3_10 83

4.10.3 SAM PLER_STATE

SAMPLER_STATE has three different formats, depending on the message type used. For [ILK], all messages use the format
described under “For most messages”. For [ILK], the sample_8x8 and deinterlace messages use a different format of
SAMPLER_STATE as detailed in the corresponding sections.

4.10.3.1 For most messages

SAMPLER_STATE
Project: All
This is the normal sampler state used by all messages that use SAMPLER_STATE except sample_8x8 and
deinterlace. The sampler state is stored as an array of up to 16 elements, each of which contains the dwords
described here. The start of each element is spaced 4 dwords apart. The first element of the sampler state array is
aligned to a 32-byte boundary.
DWord Bit Description

0 31 Sampler Disable
Project: All
Format: Disable FormatDesc
This field allows the sampler to be disabled. If disabled, all output channels will return 0.

30 Reserved Project: All Format: MBZ
28 LOD PreClamp Enable

Project: All
Format: U1 enumerated type FormatDesc
When enabled, the computed LOD is clamped to [max,min] mip level before the mag-vs-
min determination is performed. This is how the OpenGL API currently performs min/mag
determination, and therefore it is expected that an OpenGL driver would need to set this
bit. D3D drivers would not set this bit.

Value Na me Description Project

0h D3D D3D Mode (LOD PreClamp disabled) All

1h OGL OGL Mode (LOD PreClamp enabled) All

27 Reserved Project: All Format: MBZ
26:22 Base Mip Level

Project: All
Format: U4.1 FormatDesc
Range [0.0,13.0]
Specifies which mip level is considered the “base” level when determining mag-vs-min filter
and selecting the “base” mip level.

84 Doc Ref #: IHD_OS_V4Pt1_3_10

SAMPLER_STATE
21:20 Mip Mode Filter

Project: All
Format: U2 enumerated type FormatDesc
This field determines if and how mip map levels are chosen and/or combined when texture
filtering.

Value Na me Description Project

0h MIPFILTER_NONE Disable mip mapping – force
use of the mipmap level
corresponding to Min LOD.

All

1h MIPFILTER_NEAREST Nearest, Select the nearest mip
map

All

2h Reserved All

3h MIPFILTER_LINEAR Linearly interpolate between
nearest mip maps (combined
with linear min/mag filters this is
analogous to “Trilinear”
filtering).

All

Programming Notes

MIPFILTER_LINEAR is not supported for surface formats that do not support “Sampling
Engine Filtering” as indicated in the Surface Formats table unless using the sample_c
message type.

Doc Ref #: IHD_OS_V4Pt1_3_10 85

SAMPLER_STATE
19:17 Mag Mode Filter

Project: All
Format: U2 enumerated type FormatDesc
This field determines how texels are sampled/filtered when a texture is being “magnified”
(enlarged). For volume maps, this filter mode selection also applies to the 3rd (inter-layer)
dimension.

Value Na me Description Project

0h MAPFILTER_NEAREST Sample the nearest texel All

1h MAPFILTER_LINEAR Bilinearly filter the 4
nearest texels

All

2h MAPFILTER_ANISOTROPIC Perform an “anisotropic”
filter on the chosen mip
level

All

3h-5h Reserved All

6h MAPFILTER_MONO Perform a monochrome
convolution filter

All

7h Reserved All

Programming Notes

Only MAPFILTER_NEAREST and MAPFILTER_LINEAR are supported for surfaces of
type SURFTYPE_3D.

Only MAPFILTER_NEAREST is supported for surface formats that do not support
“Sampling Engine Filtering” as indicated in the Surface Formats table unless using the
sample_c message type.

MAPFILTER_MONO: Only CLAMP_BORDER texture addressing mode is supported. .
Both Mag Mode Filter and Min Mode Filter must be programmed to
MAPFILTER_MONO. Mip Mode Filter must be MIPFILTER_NONE. Only valid on
surfaces with Surface Format MONO8 and with Surface Type SURFTYPE_2D.

MAPFILTER_ANISOTROPIC may cause artifacts at cube edges if enabled for cube maps
with the TEXCOORDMODE_CUBE addressing mode.

MAPFILTER_ANISOTROPIC will be overridden to MAPFILTER_LINEAR when using a
sample_l or sample_l_c message type or when Force LOD to Zero is set in the message
header. [DevBW, DevCL] Errata: Force LOD to Zero will not cause
MAPFILTER_ANISOTROPIC to get forced to MAPFILTER_LINEAR and instead it will
have to be worked around using sample_l or sample_l_c.

16:14 Min Mode Filter

Project: All
Format: U2 enumerated type FormatDesc
This field determines how texels are sampled/filtered when a texture is being “minified”
(shrunk). For volume maps, this filter mode selection also applies to the 3rd (inter-layer)
dimension.

See Mag Mode Filter

86 Doc Ref #: IHD_OS_V4Pt1_3_10

SAMPLER_STATE
13:3 Texture LOD Bias

Project: All
Format: S4.6 2’s complement FormatDesc
Range [-16.0, 16.0)
This field specifies the signed bias value added to the calculated texture map LOD prior to
min-vs-mag determination and mip-level clamping. Assuming mipmapping is enabled, a
positive LOD bias will result in a somewhat blurrier image (using less-detailed mip levels)
and possibly higher performance, while a negative bias will result in a somewhat crisper
image (using more-detailed mip levels) and may lower performance.

Programming Notes

There is no requirement or need to offset the LOD Bias in order to produce a correct LOD
for texture filtering (as was required for correct bilinear and anisotropic filtering in some
legacy devices).

2:0 Shadow Function

Project: All
Format: U3 enumerated type FormatDesc
This field is used for shadow mapping support via the sample_c message type, and
specifies the specific comparison operation to be used. The comparison is between the
texture sample red channel (except for alpha-only formats which use the alpha channel),
and the “ref” value provided in the input message.

Value Na me Description Project

0h PREFILTEROP_ALWAYS All

1h PREFILTEROP_NEVER All

2h PREFILTEROP_LESS All

3h PREFILTEROP_EQUAL All

4h PREFILTEROP_LEQUAL All

5h PREFILTEROP_GREATER All

6h PREFILTEROP_NOTEQUAL All

7h PREFILTEROP_GEQUAL All

Doc Ref #: IHD_OS_V4Pt1_3_10 87

SAMPLER_STATE
1 31:22 Min LOD

Project: All
Format: U4.6 in LOD units FormatDesc
Range [0.0, 13.0], where the upper limit is also bounded by the Max LOD.
This field specifies the minimum value used to clamp the computed LOD after LOD bias is
applied. Note that the minification-vs.-magnification status is determined after LOD bias
and before this maximum (resolution) mip clamping is applied.

The integer bits of this field are used to control the “maximum” (highest resolution) mipmap
level that may be accessed (where LOD 0 is the highest resolution map).

The fractional bits of this value effectively clamp the inter-level trilinear blend factor when
trilinear filtering is in use.

Programming Notes

If Min LOD is greater than Max LOD, Min LOD takes precedence, i.e. the resulting LOD
will always be Min LOD.

This field must be zero if the Min or Mag Mode Filter is set to MAPFILTER_MONO
21:12 Max LOD

Project: All
Format: U4.6 in LOD units FormatDesc
Range [0.0, 13.0]
This field specifies the maximum value used to clamp the computed LOD after LOD bias is
applied. Note that the minification-vs.-magnification status is determined after LOD bias
and before this minimum (resolution) mip clamping is applied.

The integer bits of this field are used to control the “minimum” (lowest resolution) mipmap
level that may be accessed.

The fractional bits of this value effectively clamp the inter-level trilinear blend factor when
trilinear filtering is in use.

Force the mip map access to be between the mipmap specified by the integer bits of the
Min LOD and the ceiling of the value specified here.

Programming Notes

If Min LOD is greater than Max LOD, Min LOD takes precedence, i.e. the resulting LOD
will always be Min LOD.

Errata De scription Project

If the Mip Mode Filter is set to MIPFILTER_NEAREST
and the fractional portion of Max LOD is < 0.5 but >
0.0, the LOD chosen is one too large. Zeroing the
fractional portion of Max LOD in these cases gives the
correct behavior as a software workaround.

[ILK]

11:10 Reserved Project: All Format: MBZ

88 Doc Ref #: IHD_OS_V4Pt1_3_10

SAMPLER_STATE
9 Cube Surface Control Mode

Project: All
Format: U1 enumerated type FormatDesc
When sampling from a SURFTYPE_CUBE surface, this field controls whether the TC*
Address Control Mode fields are interpreted as programmed or overridden to
TEXCOORDMODE_CUBE.

Value Na me Description Project

0h CUBECTRLMODE_PROGRAMMED All

1h CUBECTRLMODE_OVERRIDE All

Errata De scription Project

this field must be set to
CUBECTRLMODE_PROGRAMMED

[DevBW-A,B],
[DevCL-A]

Doc Ref #: IHD_OS_V4Pt1_3_10 89

SAMPLER_STATE
8:6 TCX Address Control Mode

Project: All
Format: U3 enumerated type FormatDesc
Controls how the 1st (TCX, aka U) component of input texture coordinates are mapped to
texture map addresses – specifically, how coordinates “outside” the texture are handled
(wrap/clamp/mirror). The setting of this field is subject to being overridden by the Cube
Surface Control Mode field when sampling from a SURFTYPE_CUBE surface.

Value Na me Description Project

0h TEXCOORDMODE_WRAP Map is repeated in the
U direction

All

1h TEXCOORDMODE_MIRROR Map is mirrored in the
U direction

All

2h TEXCOORDMODE_CLAMP Map is clamped to the
edges of the accessed
map

All

3h TEXCOORDMODE_CUBE For cube-mapping,
filtering in edges
access adjacent map
faces

All

4h TEXCOORDMODE_CLAMP_BORDER Map is infinitely
extended with the
border color

All

5h TEXCOORDMODE_MIRROR_ONCE Map is mirrored once
about origin, then
clamped

All

6h-7h Reserved All

Programming Notes

When using cube map texture coordinates, only TEXCOORDMODE_CLAMP and
TEXCOORDMODE_CUBE settings are valid, and each TC component must have the
same Address Control mode.

When TEXCOORDMODE_CLAMP is used when accessing a cube map, the map’s Cube
Face Enable field must be programmed to 111111b (all faces enabled).

MAPFILTER_MONO: Texture addressing modes must all be set to
TEXCOORDMODE_CLAMP_BORDER. The Border Color is ignored in this mode, a
constant value of 0 is used for border color. Software must pad the border texels within
the map itself with 0.

TEXCOORDMODE_MIRROR and TEXCOORDMODE_MIRROR_ONCE cannot be used
with the sample_unorm* message types.

90 Doc Ref #: IHD_OS_V4Pt1_3_10

SAMPLER_STATE
5:3 TCY Address Control Mode

Project: All
Format: U3 enumerated type FormatDesc
Controls how the 2nd (TCY, aka V) component of input texture coordinates are mapped to
texture map addresses – specifically, how coordinates “outside” the texture are handled
(wrap/clamp/mirror).

See Address TCX Control Mode above for details
Errata De scription Project

if this field is set to
TEXCOORDMODE_CLAMP_BORDER and a 1D
surface is sampled, incorrect blending with the border
color in the vertical direction may occur.

[Pre-ILK]

2:0 TCZ Address Control Mode

Project: All
Format: U3 enumerated type FormatDesc
Controls how the 3rd (TCZ) component of input texture coordinates are mapped to texture
map addresses – specifically, how coordinates “outside” the texture are handled
(wrap/clamp/mirror).
See Address TCX Control Mode above for details

2 31:5 Border Color Pointer
Project: All
Format: GeneralStateOffset[31:5]

[]

FormatDes

This field specifies the pointer to SAMPLER_BORDER_COLOR_STATE, which contains
the “border” color to be used when accessing texels not contained within the texture map.
This pointer is relative to the General State Base Address

4:0 Reserved Project: All Format: MBZ
3 31:29 Monochrome Filter Height

Project: [Pre-ILK]
Format: U3 FormatDesc
Range [1,7]
This field specifies the height of the monochrome filter. It is ignored if the monochrome
filter is not enabled.
[ILK]: Reserved : MBZ (this field has been moved to 3DSTATE_MONOFILTER_SIZE)

28:26 Monochrome Filter Width
Project: All
Format: U3 FormatDesc
Range [1,7]
This field specifies the width of the monochrome filter. It is ignored if the monochrome filter
is not enabled.
[ILK]: Reserved : MBZ (this field has been moved to 3DSTATE_MONOFILTER_SIZE)

Doc Ref #: IHD_OS_V4Pt1_3_10 91

SAMPLER_STATE
25 ChromaKey Enable

Project: All
Format: Enable FormatDesc
This field enables the chroma key function.

Programming Notes

Supported only on a specific subset of surface formats. See section 4.10.2.1 “Surface
Formats” for supported formats.

This field must be disabled if min or mag filter is MAPFILTER_MONO or
MAPFILTER_ANISOTROPIC.

This field must be disabled if used with a surface of type SURFTYPE_3D.

24:23 ChromaKey Index
Project: All
Format: U2 FormatDesc
Range [0,3]
This field specifies the index of the ChromaKey Table entry associated with this Sampler.
This field is a “don’t care” unless ChromaKey Enable is ENABLED.

22 ChromaKey Mode
Project: All
Format: U1 enumerated type FormatDesc
This field specifies the behavior of the device in the event of a ChromaKey match. This
field is ignored if ChromaKey is disabled.

KEYFILTER_KILL_ON_ANY_MATCH:

In this mode, if any contributing texel matches the chroma key, the corresponding pixel
mask bit for that pixel is cleared. The result of this operation is observable only if the
Killed Pixel Mask Return flag is set on the input message.

KEYFILTER_REPLACE_BLACK:

In this mode, each texel that matches the chroma key is replaced with (0,0,0,0) (black with
alpha=0) prior to filtering. For YCrCb surface formats, the black value is A=0, R(Cr)=0x80,
G(Y)=0x10, B(Cb)=0x80. This will tend to darken/fade edges of keyed regions. Note that
the pixel pipeline must be programmed to use the resulting filtered texel value to gain the
intended effect, e.g., handle the case of a totally keyed-out region (filtered texel alpha==0)
through use of alpha test, etc.

Value Na me Description Project

0h KEYFILTER_KILL_ON_ANY_MATCH All

1h KEYFILTER_REPLACE_BLACK All

92 Doc Ref #: IHD_OS_V4Pt1_3_10

SAMPLER_STATE
21:19 Maximum Anisotropy

Project: All
Format: U3 enumerated type FormatDesc
This field clamps the maximum value of the anisotropy ratio used by the
MAPFILTER_ANISOTROPIC filter (Min or Mag Mode Filter).

Value Na me Description Project

0h ANISORATIO_2 At most a 2:1 aspect ratio filter is used All

1h ANISORATIO_4 At most a 4:1 aspect ratio filter is used All

2h ANISORATIO_6 At most a 6:1 aspect ratio filter is used All

3h ANISORATIO_8 At most a 8:1 aspect ratio filter is used All

4h ANISORATIO_10 At most a 10:1 aspect ratio filter is used All

5h ANISORATIO_12 At most a 12:1 aspect ratio filter is used All

6h ANISORATIO_14 At most a 14:1 aspect ratio filter is used All

7h ANISORATIO_16 At most a 16:1 aspect ratio filter is used All

18:13 Address Rounding Enable
Project: All
Format: 6-bit mask of enables FormatDesc
Controls whether the U/V/R texture address is rounded or truncated before being used to
select texels to sample. Each bit provides independent control of rounding on one texture
address dimension (U/V/R) in either mag or min filter mode.

Value Na me Description Project

100000b U address mag filter All

010000b U address min filter All

001000b V address mag filter All

000100b V address min filter All

000010b R address mag filter All

000001b R address min filter All

12:1 Reserved Project: All Format: MBZ

1.11.3.2 For sample_8x8 message

[DevILK] This state definition is used only by the sample_8x8 message. This state is stored as an array of up to 4 elements, each
of which contains the dwords described here. The start of each element is spaced 16 dwords apart. The first element of the array
is aligned to a 32-byte boundary. The index with range 0-3 that selects which element is being used is multiplied by 4 to
determine the Sampler Index in the message descriptor.

Doc Ref #: IHD_OS_V4Pt1_3_10 93

DWord Bit Description

0 31 AVS Filter Type. Defines the type of adaptive video scaler filter that will be enabled.

0: Adaptive 8-tap polyphase filter

1: Nearest filter

 30 Reserved : MBZ

 29 IEF Bypass. Causes IEF function to be bypassed, VSA will output neutral values.

 28 IEF Filter Type

0: Combo mode

1: Detail Filter

 27 IEF Filter Size

0: 3x3

1: 5x5

Programming Notes:

• If IEF Filter Type is Advanced Filter, this field must be set to 5x5

 26:19 Reserved : MBZ

 18 ChromaKey Enable. This field enables chroma keying when accessing this particular
texture map.

Programming Notes:

• For sample_8x8 instructions KEYFILTER_REPLACE_BLACK is assumed if
chromakey is enabled.

• For 10 bit formats only the 8 MSBs will be compared.

Format = Enable

 17:16 ChromaKey Index. This field specifies the index of the ChromaKey Table entry associated
with this Sampler. This field is a “don’t care” unless ChromaKey Enable is ENABLED.

Format = U2

Range = [0,3]

 15:0 Reserved : MBZ

1 31:5 Sampler 8x8 State Pointer. This field specifies the pointer to the SAMPLER_8x8_STATE
structure. This pointer is relative to the General State Base Address for [ILK].
Programming Notes:

• This field must be set to the same value in all sample_8x8 type SAMPLER_STATE
instances applied to a given primitive.

• [ILK]: MI_FLUSH with State/Instruction Cache Invalidate set is required
between primitives that use different values of this field. (PIPE_CONTROL cannot
be used as an alternative to MI_FLUSH).

 [ILK]: GeneralStateOffset[31:5]

 4:0 Reserved : MBZ

2 31:16 Reserved : MBZ

 15:8 Global Noise Estimation. Global noise estimation of previous frame from DI.

Format = U8 (default = 22)

94 Doc Ref #: IHD_OS_V4Pt1_3_10

DWord Bit Description

 7:4 Strong Edge Threshold. If EM > Strong Edge Threshold, the basic VSA detects a
strong edge.

Format = U4 (default = 8)

 3:0 Weak Edge Threshold. If Strong Edge Threshold > EM > Weak Edge Threshold, the
basic VSA detects a weak edge.

Format = U4 (default = 1)

3 31 Reserved : MBZ

 30:28 Strong Edge Weight. Sharpening strength when a strong edge is found in basic VSA.

Format = U3 (default = 7)

 27 Reserved : MBZ

 26:24 Regular Weight. Sharpening strength when a weak edge is found in basic VSA.

Format = U3 (default = 2)

 23 Reserved : MBZ

 22:20 Non Edge Weight. Sharpening strength when no edge is found in basic VSA.

Format = U3 (default = 1)

 19:14 Gain Factor. User control sharpening strength.

Format = U6 (default = 40)

 13:11 Reserved : MBZ

 10:6 R3c Coefficient. IEF smoothing coefficient, see IEF map.

Format = U0.5 (default = (59+2) >> 2)

 5 Reserved : MBZ

 4:0 R3x Coefficient. IEF smoothing coefficient, see IEF map.

Format = U0.5 (default = ((25+2) >> 2)

4 31 Reserved : MBZ

 30:26 R5c Coefficient. IEF smoothing coefficient, see IEF map.

Format = U0.5 (default = 3)

 25 Reserved : MBZ

 24:20 R5cx Coefficient. IEF smoothing coefficient, see IEF map.

Format = U0.5 (default = 8)

 19 Reserved : MBZ

 18:14 R5x Coefficient. IEF smoothing coefficient, see IEF map.

Format = U0.5 (default = 9)

 13:12 Reserved : MBZ

 11:8 Steepness Threshold. VSA uses steepness only when greater than this threshold.

Format = U4 (default = 0)

 7 Steepness Boost. Used to increase effect of steepness.

Format = Enable (default = 0)

Doc Ref #: IHD_OS_V4Pt1_3_10 95

DWord Bit Description

 6:3 MR Threshold. VSA uses MR only when greater than this threshold.

Format = U4 (default = 5)

 2 MR Boost. Used to increase effect of MR.

Format = Enable (default = 0)

 1:0 Reserved : MBZ

5 31:24 PWL1 Point 4. Point 4 for PWL of both sharpening and smoothing strength.

Format = U8 (default = 26)

 23:16 PWL1 Point 3. Point 3 for PWL of both sharpening and smoothing strength.

Format = U8 (default = 16)

 15:8 PWL1 Point 2. Point 2 for PWL of both sharpening and smoothing strength.

Format = U8 (default = 12)

 7:0 PWL1 Point 1. Point 1 for PWL of both sharpening and smoothing strength.

Format = U8 (default = 4)

6 31:24 PWL1 R3 Bias 1. Bias 1 for PWL of smoothing strength.

Format = U8 (default = 98)

 23:16 PWL1 R3 Bias 0. Bias 0 for PWL of smoothing strength.

Format = U8 (default = 127)

 15:8 PWL1 Point 6. Point 6 for PWL of both sharpening and smoothing strength.

Format = U8 (default = 160)

 7:0 PWL1 Point 5. Point 5 for PWL of both sharpening and smoothing strength.

Format = U8 (default = 40)

 7 31:24 PWL1 R3 Bias 5. Bias 5 for PWL of smoothing strength.

Format = U8 (default = 0)

 23:16 PWL1 R3 Bias 4. Bias 4 for PWL of smoothing strength.

Format = U8 (default = 44)

 15:8 PWL1 R3 Bias 3. Bias 3 for PWL of smoothing strength.

Format = U8 (default = 64)

 7:0 PWL1 R3 Bias 2. Bias 2 for PWL of smoothing strength.

Format = U8 (default = 88)

8 31:24 PWL1 R5 Bias 2. Bias 2 for PWL of sharpening strength.

Format = U8 (default = 32)

 23:16 PWL1 R5 Bias 1. Bias 1 for PWL of sharpening strength.

Format = U8 (default = 32)

 15:8 PWL1 R5 Bias 0. Bias 0 for PWL of sharpening strength.

Format = U8 (default = 3)

 7:0 PWL1 R3 Bias 6. Bi as 6 for PWL of smoothing strength.

Format = U8 (default = 0)

96 Doc Ref #: IHD_OS_V4Pt1_3_10

DWord Bit Description

9 31:24 PWL1 R5 Bias 6. Bias 6 for PWL of sharpening strength.

Format = U8 (default = 88)

 23:16 PWL1 R5 Bias 5. Bias 5 for PWL of sharpening strength.

Format = U8 (default = 108)

 15:8 PWL1 R5 Bias 4. Bias 4 for PWL of sharpening strength.

Format = U8 (default = 100)

 7:0 PWL1 R5 Bias 3. Bias 3 for PWL of sharpening strength.

Format = U8 (default = 58)

10 31:24 PWL1 R3 Slope 3. Slope 3 for PWL of smoothing strength.

Format = S3.4 2’s complement (default = -32)

 23:16 PWL1 R3 Slope 2. Slope 2 for PWL of smoothing strength.

Format = S3.4 2’s complement (default = -96)

 15:8 PWL1 R3 Slope 1. Slope 1 for PWL of smoothing strength.

Format = S3.4 2’s complement (default = -20)

 7:0 PWL1 R3 Slope 0. Slope 0 for PWL of smoothing strength.

Format = S3.4 2’s complement (default = -116)

11 31:24 PWL1 R5 Slope 0. Slope 0 for PWL of sharpening strength.

Format = S3.4 2’s complement (default = 116)

 23:16 PWL1 R3 Slope 6. Slope 6 for PWL of smoothing strength.

Format = S3.4 2’s complement (default = 0)

 15:8 PWL1 R3 Slope 5. Slope 5 for PWL of smoothing strength.

Format = S3.4 2’s complement (default = 0)

 7:0 PWL1 R3 Slope 4. Slope 4 for PWL of smoothing strength.

Format = S3.4 2’s complement (default = -50)

12 31:24 PWL1 R5 Slope 4. Slope 4 for PWL of sharpening strength.

Format = S3.4 2’s complement (default = 9)

 23:16 PWL1 R5 Slope 3. Slope 3 for PWL of sharpening strength.

Format = S3.4 2’s complement (default = 67)

 15:8 PWL1 R5 Slope 2. Slope 2 for PWL of sharpening strength.

Format = S3.4 2’s complement (default = 104)

 7:0 PWL1 R5 Slope 1. Slope 1 for PWL of sharpening strength.

Format = S3.4 2’s complement (default = 0)

13 31:28 Maximum Limiter. Strength of overshoot limiter.

Format = U0.4 (default = 11)

 27:24 Minimum Limiter. Strength of undershoot limiter.

Format = U0.4 (default = 10)

 23:20 Reserved : MBZ

Doc Ref #: IHD_OS_V4Pt1_3_10 97

DWord Bit Description

 19:16 Limiter Boost. Used to increase limiter strength

Format = U0.4 (default = 0)

 15:8 PWL1 R5 Slope 6. Slope 6 for PWL of sharpening strength.

Format = S3.4 2’s complement (default = -15)

 7:0 PWL1 R5 Slope 5. Slope 5 for PWL of sharpening strength.

Format = S3.4 2’s complement (default = -3)

14 31:18 Reserved : MBZ

 17:8 Clip Limiter. If extreme point is on the boundary of the neighborhood, adjust limiter’s
strength.

Format = U10 (default = 130)

 7:0 Reserved : MBZ

4.10.3.2 For deinterlace message

[DevILK+] only. This state definition is used only by the deinterlace message. This state is stored as an array of up to 8
elements, each of which contains the dwords described here. The start of each element is spaced 8 dwords apart. The first
element of the array is aligned to a 32-byte boundary. The index with range 0-7 that selects which element is being used is
multiplied by 2 to determine the Sampler Index in the message descriptor.

DWord Bit Description

0 31:24 Denoise STAD Threshold. Threshold for denoise sum of temporal absolute differences.
Format = U8

 23:16 Denoise Maximum History. Maximum allowed value for denoise history.
Format = U8
Range = [128,240]

 15:8 Denoise History Delta. Amount that denoise_history is increased.
Format = U8
Range = [0,15]

 7:0 Denoise ASD Threshold. Threshold for denoise absolute sum of differences.
Format = U8
Range = [0,63]

1 31:30 Reserved : MBZ

 29:24 Temporal Difference Threshold.
Format = U6
Programming Notes:

o Temporal Difference Threshold – Low Temporal Difference Threshold must be
larger than 0 and less than or equal to 16.

 23:22 Reserved : MBZ

98 Doc Ref #: IHD_OS_V4Pt1_3_10

DWord Bit Description

 21:16 Low Temporal Difference Threshold.
Format = U6
Programming Notes:

o Temporal Difference Threshold – Low Temporal Difference Threshold must be
larger than 0 and less than or equal to 16.

 15:13 STMM C2: Bias for divisor in STMM equation.
Format = U3
Range = [0,7] representing values [1,8]

 12:8 Denoise Moving Pixel Threshold. Threshold for number of moving pixels to declare a
block to be moving.
Format = U5
Range = [0,16]

 7:0 Denoise Threshold for Sum of Complexity Measure.
Format = U8

2 31:24 Good Neighbor Threshold. Maximum difference from current pixel for neighboring pixels
to be considered a good neighbor.
Format = U8
Range = [0,63]

 23:16 Denoise Edge Threshold. Threshold for detecting an edge in denoise.
Format = U8
Range = [0,15]

 15:8 Block Noise Estimate Edge Threshold. Threshold for detecting an edge in block noise
estimate.
Format = U8
Range = [0,15]

 7:0 Block Noise Estimate Noise Threshold. Threshold for noise maximum/minimum.
Format = U8
Range = [0,31]

3 31 STMM Blending Constant Select.
Format = U1
0: Use the blending constant for small values of STMM for stmm_md_th
1: Use the blending constant for large values of STMM for stmm_md_th

 30:24 Blending constant across time for large values of STMM.
Format = U7

 23:16 Blending constant across time for small values of STMM.
Format = U8

 15:14 Reserved : MBZ

 13:8 Multiplier for VECM. Determines the strength of the vertical edge complexity measure.
Format = U6

 7:0 Maximum STMM. Largest allowed STMM in blending equations.
Format = U8

4 31:24 Minimum STMM. Smallest allowed STMM in blending equations.
Format = U8

Doc Ref #: IHD_OS_V4Pt1_3_10 99

DWord Bit Description

 23:22 STMM Shift Down. Amount to shift STMM down (quantize to fewer bits).
Format = U2
0: Shift by 4
1: Shift by 5
2: Shift by 6
3: Reserved

 21:20 STMM Shift Up. Amount to shift STMM up (set range).
Format = U2
0: Shift by 6
1: Shift by 7
2: Shift by 8
3: Reserved

 19:16 STMM Output Shift. Amount to shift output of STMM blend equation.
Programming Notes:

• The value of this field must satisfy the following equation: stmm_max – stmm_min
= 2 ^ stmm_output_shift

Format = U4
Range = [0,16]

 15:8 SDI Threshold. Threshold for angle detection in SDI algorithm.
Format = U8

 7:0 SDI Delta. Delta value for angle detection in SDI algorithm.
Format = U8

5 31:24 SDI Fallback Mode 1 T1 Constant.
Format = U8

 23:16 SDI Fallback Mode 1 T2 Constant.
Format = U8

 15:8 SDI Fallback Mode 2 Constant (Angle2x1).
Format = U8

 7:0 FMD Temporal Difference Threshold.
Format = U8

6 31:24 FMD #1 Vertical Difference Threshold.
Format = U8

 23:16 FMD #2 Vertical Difference Threshold.
Format = U8

 15:14 Reserved : MBZ

 13:8 FMD Tear Threshold.
Format = U6

 7 Reserved : MBZ

 6 Progressive DN. Indicates that the denoise algorithm should assume progressive input
when filtering neighboring pixels. DI Enable must be disabled when this field is enabled.
Format = Enable
0: DN assumes interlaced video and filters alternate lines together
1: DN assumes progressive video and filters neighboring lines together

100 Doc Ref #: IHD_OS_V4Pt1_3_10

DWord Bit Description

 5 DN/DI First Frame. Indicates that this is the first frame of the stream, so previous clean is
not available
Format = Enable
0: Not first field; previous clean surface state is valid
1: First field; previous clean surface state is invalid

 4 DN/DI Stream ID. Distinguishes between the two simultaneous streams that are supported.
Used to update the GNE and FMD counters for that stream.
Format = U1

 3 DN/DI Top First. Indicates the top field is first in sequence, otherwise bottom is first
Format = Enable
0 = Bottom field occurs first in sequence
1 = Top field occurs first in sequence

 2 DI Partial. If DI Enable and DI Partial are both enabled, the deinterlacer will output the
partial VDI writeback message.
Format = Enable
0: Output normal VDI writeback message (only if DI Enable is enabled also)
1: Output partial VDI writeback message (only if DI Enable is enabled also)

 1 DI Enable. Deinterlacer is bypassed if this is disabled: the output is the same as the input
(same as a 2:2 cadence). FMD and STMM are not calculated and the values in the
response message are 0.
Format = Enable
0: Do not calculate DI
1: Calculate DI
Programming Notes:

o DI Enable and DN Enable cannot both be disabled.
 0 DN Enable. Denoise is bypassed if this is low – BNE is still calculated and output, but the

denoised fields are not. VDI does not read in the denoised previous frame but uses the
pointer for the original previous frame.
Format = Enable
0: Do not denoise frame
1: Denoise frame
Programming Notes:

o DI Enable and DN Enable cannot both be disabled.
7 31:23 Column Width Minus1

This field specifies the (column width-1) / stride in units of blocks (Each blocks has width 16
pixels).
A column width * 16 that equals the width of the frame means the walker will walk to the end
of the frame.
Format = U9
Range = [0, 511] representing column widths [1 to 512]
(interpret value as binary value + 1)

 31:19 Reserved : MBZ

18 VDI Walker Enable
Format = U1
0: Walker Disabled. Use XY generated by Driver.
1: Walker Enabled. Use XY generated by VDIunit.

Doc Ref #: IHD_OS_V4Pt1_3_10 101

DWord Bit Description

 17:16 FMD for 2nd field of previous frame.
Format = U2
0: Deinterlace (not progressive output)
1: Put together with previous field in sequence (1st field of previous frame).
2: Put together with next field in sequence (1st field of current frame).

 15:10 Reserved : MBZ

 9:8 FMD for 1st field of current frame.
Format = U2
0: Deinterlace (not progressive output).
1: Put together with previous field in sequence (2nd field of previous frame).
2: Put together with next field in sequence (2nd field of current frame).

 7:0 Reserved : MBZ

4.10.4 SAMPLER_8x8_STATE [DevILK+]

The 8x8 coefficients and other state used by the sample_8x8 message are stored as indirect state, pointed to by a field in
SAMPLER_STATE. There are four different tables loaded using this structure (0X, 0Y, 1X, and 1Y). Each table is stored as an
array of 17 elements, each with either 4 or 8 coefficients.

DWord Bit Description

31:24 Table 0X Filter Coefficient[0,3]

Format = S1.6 in 2’s complement format

[ILK]: Range = [0.0, +2.0)

23:16 Table 0X Filter Coefficient[0,2]

Format = S1.6 in 2’s complement format

Range = [-1, +1)

15:8 Table 0X Filter Coefficient[0,1]

Format = S1.6 in 2’s complement format

Range = [-2-1, +2-1)

Programming Notes:

• Must be zero if the format is R10G10B10A2_UNORM or R8G8B8A8_UNORM

0

7:0 Table 0X Filter Coefficient[0,0]

Format = S1.6 in 2’s complement format

Range = [-2-2, +2-2)

Programming Notes:

• Must be zero if the format is R10G10B10A2_UNORM or R8G8B8A8_UNORM

1 31:24 Table 0X Filter Coefficient[0,7]
Format = S1.6 in 2’s complement format
Range = [-2-2, +2-2)

102 Doc Ref #: IHD_OS_V4Pt1_3_10

DWord Bit Description

23:16 Table 0X Filter Coefficient[0,6]
Format = S1.6 in 2’s complement format
Range = [-2-1, +2-1)

15:8 Table 0X Filter Coefficient[0,5]
Format = S1.6 in 2’s complement format
Range = [-1, +1)

7:0 Table 0X Filter Coefficient[0,4]

Format = S1.6 in 2’s complement format

[DevSNB]: Range = [0.0, +2.0)

2:3 Table 0Y Filter Coefficient[0,7:0]
This table has the same layout as Table 0X above.

4 31:24 Table 1X Filter Coefficient[0,3]
Format = S1.6 in 2’s complement format
Range = [0.0, +2.0)

23:16 Table 1X Filter Coefficient[0,2]

Format = S1.6 in 2’s complement format
Range = [-1, +1)

 15:0 Reserved : MBZ

5 31:16 Reserved : MBZ

 15:8 Table 1X Filter Coefficient[0,5]
Format = S1.6 in 2’s complement format
Range = [-1, +1)

 7:0 Table 1X Filter Coefficient[0,4]
Format = S1.6 in 2’s complement format
Range = [0.0, +2.0)

6:7 Table 1Y Filter Coefficient[0,7:0]
This table has the same layout as Table 1X above.

8:15 Filter Coefficient[1,7:0]

16:23 Filter Coefficient[2,7:0]

…

128:135 Filter Coefficient[16,7:0]

136 31:24 Default Sharpness Level. When adaptive scaling is off, determines the balance between
sharp and smooth scalers.
Format = U8
0: contribute 1 from the smooth scalar
255: contribute 1 from the sharp scalar

 23:16 Max Derivative 4 Pixels. Used in adaptive filtering to specify the lower boundary of the
smooth 4 pixel area.
Format = U8

 15:8 Max Derivative 8 Pixels. Used in adaptive filtering to specify the lower boundary of the
smooth 8 pixel area.
Format = U8

 7 Reserved : MBZ

Doc Ref #: IHD_OS_V4Pt1_3_10 103

DWord Bit Description

 6:4 Transition Area with 4 Pixels. Used in adaptive filtering to specify the width of the
transition area for the 4 pixel calculation.
Format = U3

 3 Reserved : MBZ

 2:0 Transition Area with 8 Pixels. Used in adaptive filtering to specify the width of the
transition area for the 8 pixel calculation.
Format = U3

137 31:23 Reserved : MBZ

 22 Bypass X Adaptive Filtering. When disabled, the X direction will use Default Sharpness
Level to blend between the smooth and sharp filters rather than the calculated value.
Format = Disable
1: Disable X adaptive filtering
0: Enable X adaptive filtering

 21 Bypass Y Adaptive Filtering. When disabled the, Y direction will use Default Sharpness
Level to blend between the smooth and sharp filters rather than the calculated value.
Format = Disable
1: Disable X adaptive filtering
0: Enable X adaptive filtering

 20:0 Reserved : MBZ

104 Doc Ref #: IHD_OS_V4Pt1_3_10

4.10.5 SAMPLER_BORD ER_COLOR_STATE

This structure is pointed to by a field in SAMPLER_STATE.

• For surface formats with one or more channels missing, the value from the border color is not used for the missing
channels, resulting in these channels resulting in the overall default value (0 for colors and 1 for alpha) regardless of
whether border color is chosen. The surface formats with “L” and “I” have special behavior with respect to the border
color. The border color value used for the replicated channels (RGB for “L” formats and RGBA for “I” formats) comes
from the red channel of border color. In these cases, the green and blue channels, and also alpha for “I”, of the border
color are ignored.

Programming Notes:

• The conditions under which this color is used depend on the Surface Type – 1D/2D/3D surfaces use the border color
when the coordinates extend beyond the surface extent; cube surfaces use the border color for “empty” (disabled) faces.

• The border color itself is accessed through the texture cache hierarchy rather than the state cache hierarchy. Thus, if the
border color is changed in memory, the texture cache must be invalidated and the state cache does not need to be
invalidated.

• MAPFILTER_MONO: The border color is ignored. Border color is fixed at a value of 0 by hardware.

4.10.5.1 [DevILK+]

For [DevIILK], if border color is used, all formats must be provided. Hardware will choose the appropriate format based on
Surface Format. The values represented by each format should be the same (other than being subject to range-based clamping
and precision) to avoid unexpected behavior.

DWord Bit Description

0 31:24 Border Color Alpha

Format = UNORM8

 23:16 Border Color Blue

Format = UNORM8

 15:8 Border Color Green

Format = UNORM8

 7:0 Border Color Red

Format = UNORM8

1 31:24 Border Color Alpha

Format = SNORM8

 23:16 Border Color Blue

Format = SNORM8

Doc Ref #: IHD_OS_V4Pt1_3_10 105

DWord Bit Description

 15:8 Border Color Green

Format = SNORM8

 7:0 Border Color Red

Format = SNORM8

2 31:0 Border Color Red

Format = IEEE_FP

3 31:0 Border Color Green

Format = IEEE_FP

4 31:0 Border Color Blue

Format = IEEE_FP

5 31:0 Border Color Alpha

Format = IEEE_FP

6 31:16 Border Color Green

Format = FLOAT_16

 15:0 Border Color Red

Format = FLOAT_16

7 31:16 Border Color Alpha

Format = FLOAT_16

 15:0 Border Color Blue

Format = FLOAT_16

8 31:16 Border Color Green

Format = UNORM16

 15:0 Border Color Red

Format = UNORM16

9 31:16 Border Color Alpha

Format = UNORM16

 15:0 Border Color Blue

Format = UNORM16

10 31:16 Border Color Green

Format = SNORM16

 15:0 Border Color Red

Format = SNORM16

11 31:16 Border Color Alpha

Format = SNORM16

 15:0 Border Color Blue

Format = SNORM16

106 Doc Ref #: IHD_OS_V4Pt1_3_10

4.10.6 3DSTATE_CHROMA_KEY

3DSTATE_CHROMA_KEY
Project: All Length Bias: 2

The 3DSTATE_CHROMA_KEY instruction is used to program texture color/chroma-key key values. A table
containing four set of values is supported. The ChromaKey Index sampler state variable is used to select which table
entry is associated with the map. Texture chromakey functions are enabled and controlled via use of the ChromaKey
Enable texture sampler state variable.

Texture Color Key (keying on a paletted texture index) is not supported.
DWord Bit Description

0 31:29 Command Type
Default
Value:

3h GFXPIPE Format: OpCode

28:27 Command SubType
Default
Value:

3h GFXPIPE_3D Format: OpCode

26:24 3D Command Opcode
Default
Value:

1h 3DSTATE Format: OpCode

23:16 3D Command Sub Opcode
Default
Value:

04h 3DSTATE_CHROMA_KEY Format: OpCode

15:8 Reserved Project: All Format: MBZ
7:0 DWord Length

Default Value: 2h Excludes DWord (0,1)
Format: =n Total Length - 2

1 31:30 ChromaKey Table Index
Project: All
Format: U2 index
Range 0..3
Selects which entry in the ChromaKey table is to be loaded

29:0 Reserved Project: All Format: MBZ
2 31:0 ChromaKey Low Value

This field specifies the “low” (minimum) value of the chroma key range. Texel
samples are considered “matching the key” if each component of the texel falls
within the (inclusive) chroma range.

See ChromaKey High Value for further format, programming info.

Doc Ref #: IHD_OS_V4Pt1_3_10 107

3DSTATE_CHROMA_KEY
3 31:0 ChromaKey High Value

This field specifies the “high” (maximum) value of the chroma key range. Texel
samples are considered “matching the key” if each component of the texel falls
within the (inclusive) chroma range.

Programming Notes

ChromaKey values are specified using 8-bit channels. When using surface formats
with less than 8 bits per channel, the device will expand channels by replicating the
required number of MSBs into the LSBs of each channel. Software must account
for this conversion when it programs Chromakey Low/High Values (e.g., by
performing the same replication).

For channels that do not exist in the actual surface (e.g., Alpha channel for non-
ARGB maps), software must explicitly program full range high/low values
(High=FFh, Low=0h for formats using unsigned chroma key values, High=7Fh,
Low=FFh for formats using sign magnitude chroma key values) in order to
effectively remove the comparison of that field from the ChromaKey function.

For channels in SNORM format in the surface format, the value in the high/low
value for that channel is interpreted in sign magnitude format. Negative zero value
is not supported (use positive zero instead). For channels with mixed
UNORM/SNORM formats (i.e. R5G5_SNORM_B6_UNORM), the ChromaKey is
programmed as if all channels are SNORM.

YUV ChromaKey will use an interpolated chrominance value from the map for
comparison to the chroma key values for those texels without chrominance due to
downsampling. The chrominance value used is the average of values to the left
and right of the texel in question.

It is UNDEFINED to program any component of the ChromaKey High Value to be
less than the corresponding component of ChromaKey Low Value.

Format = interpreted according to associated texel format “class”:

Only the surface formats listed as supported for chroma key in the surface formats
table can be used with this feature. Use of any other surface format with chroma
key enabled is UNDEFINED.

Surface Format 31:24 23:16 15:8 7:0

YCrCb formats A Cr Y Cb

108 Doc Ref #: IHD_OS_V4Pt1_3_10

4.10.7 3DSTATE_SAMPLER_PALETTE_LOAD0

3DSTATE_SAMPLER_PALETTE_LOAD0
Project: All Length Bias: 2

The 3DSTATE_SAMPLER_PALETTE_LOAD0 instruction is used to load 24-bit ([DevBW], [DevCL]) or 32-bit
([DevCTG-A+]) values into the first texture palette. The texture palette is used whenever a texture with a paletted
format (containing “Px [palette0]”) is referenced by the sampler.

[DevBW] and [DevCL]: This instruction is used to load all or a subset of the 16 entries of the first palette. Partial
loads always start from the first (index 0) entry.

[DevCTG-A+]: This instruction is used to load all or a subset of the 256 entries of the first palette. Partial loads
always start from the first (index 0) entry.

DWord Bit Description

0 31:29 Command Type
Default
Value:

3h GFXPIPE Format: OpCode

28:27 Command SubType
Default
Value:

3h GFXPIPE_3D Format: OpCode

26:24 3D Command Opcode
Default
Value:

1h 3DSTATE Format: OpCode

23:16 3D Command Sub Opcode
Default
Value:

02h 3DSTATE_SAMPLER_PALETTE_LO
AD0

Format: OpCode

15:8 Reserved Project: All Format: MBZ
7:0 DWord Length

Default Value: 0h Excludes DWord (0,1)
Format: =n Total Length - 2

1..n 31:24 Palette Alpha[0:N-1]
Project: [DevCTG-A+]
Alpha values loaded into the first N entries of the texture palette.
Format = U8

23:0 Palette Color[0:N-1]
Project: All
Colors loaded into the first N entries of the texture color palette.

Format = Bits 23:0 = U24 interpreted as RGB_888 color as follows:

[23:16] Red

[15:8] Green

[7:0] Blue

Doc Ref #: IHD_OS_V4Pt1_3_10 109

4.10.8 3DSTATE_SAMPLER_PA LETTE_LOAD1 [DevCTG-B+]

3DSTATE_SAMPLER_PALETTE_LOAD1
Project: [DevCTG-B+] Length Bias: 2

The 3DSTATE_SAMPLER_PALETTE_LOAD1 instruction is used to load 32-bit values into the second texture
palette. The second texture palette is used whenever a texture with a paletted format (containing “Px...[palette1]”) is
referenced by the sampler.

This instruction is used to load all or a subset of the 256 entries of the second palette. Partial loads always start from
the first (index 0) entry.

DWord Bit Description

0 31:29 Command Type
Default
Value:

3h GFXPIPE Format: OpCode

28:27 Command SubType
Default
Value:

3h GFXPIPE_3D Format: OpCode

26:24 3D Command Opcode
Default
Value:

1h 3DSTATE Format: OpCode

23:16 3D Command Sub Opcode
Default
Value:

0Ch 3DSTATE_SAMPLER_PALETTE_LO
AD1

Format: OpCode

15:8 Reserved Project: All Format: MBZ
7:0 DWord Length

Default Value: 0h Excludes DWord (0,1)
Format: =n Total Length - 2

1..n 31:0 Palette Color[0:N-1]
Project: All
Colors loaded into the first N entries of the texture color palette.

Format = Bits 31:0 = U32 interpreted as ARGB_8888 color as follows:

[31:24] Alpha

[23:16] Red

[15:8] Green

[7:0] Blue

110 Doc Ref #: IHD_OS_V4Pt1_3_10

4.10.9 3DSTATE_MONOFI LTER_SIZE [DevILK+]

3DSTATE_MONOFILTER_SIZE
Project: [DevILK+] Length Bias: 2
This state specifies the size of the filter which is used when filtering in MAPFILTER_MONO mode.

DWord Bit Description

0 31:29 Command Type
Default
Value:

3h GFXPIPE Format: OpCode

28:27 Command SubType
Default
Value:

3h GFXPIPE_3D Format: OpCode

26:24 3D Command Opcode
Default
Value:

1h 3DSTATE_NONPIPELINED Format: OpCode

23:16 3D Command Sub Opcode
Default
Value:

11h 3DSTATE_MONOFILTER_SIZE Format: OpCode

15:8 Reserved Project: All Format: MBZ
7:0 DWord Length

Default Value: 0h Excludes DWord (0,1)
Format: =n Total Length - 2
Project: All

1 31:6 Reserved Project: All Format: MBZ
5:3 Monochrome Filter Width

Project: All
Format: U3 FormatDesc
Range [1,7]
This field specifies the width of the monochrome filter. It is ignored if the
monochrome filter is not enabled.

2:0 Monochrome Filter Height
Project: All
Format: U3 FormatDesc
Range [1,7]
This field specifies the height of the monochrome filter. It is ignored if the
monochrome filter is not enabled.

Doc Ref #: IHD_OS_V4Pt1_3_10 111

4.11 Messag es

Restrictions:
• Use of any message to the Sampling Engine function with the End of Thread bit set in the message descriptor is not

allowed.
• [DevBW-A,B,C0, DevCL-A0] Errata: use of any Sampling Engine message in the same workload (between pipeline

flushes) with any Data Port read messages utilizing the Sampler Cache or Data Cache is not allowed.

4.11.1 Initiating Message

Execution Mask

SIMD16. The 16-bit execution mask forms the valid pixel signals. This determines which pixels are sampled and results
returned to the GRF registers. Samples for invalid pixels are not overwritten in the GRF. However, if LOD needs to be
computed for a subspan based on the message type and MIP filter mode and at least one pixel in the subspan being valid, the
sampling engine assumes that the parameters for the upper left, upper right, and lower left pixels in the subspan are valid
regardless of the execution mask, as these are needed for the LOD computation.

SIMD8. The lower 8 bits of the execution mask forms the valid pixel signals. If LOD needs to be computed based on MIP filter
mode and at least one pixel in the subspan being valid, the sampling engine assumes that the parameters for the upper left, upper
right, and lower left pixels in the subspan are valid regardless of the execution mask, as these are needed for the LOD
computation.

SIMD4x2. The lower 8 bits of the execution mask is interpreted in groups of four. If any of the high 4 bits are asserted, that
sample is valid. If any of the low 4 bits are asserted, that sample is valid. The Write Channel Mask rather than the execution
mask determines which channels are written back to the GRF.

SIMD32. The execution mask is ignored, all pixels are considered valid and all channels are returned regardless of the execution
mask.

112 Doc Ref #: IHD_OS_V4Pt1_3_10

4.11.1.1 Message Descriptor

4.11.1.1.1 [DevBW] and [DevCL]

The following message descriptor applies to [DevBW] and [DevCL].

Bit De scription

15:14 Message T ype: Specifies the type of message being sent, along with the message length (in the
general message descriptor)
Format = U2
Refer to the table in section 4.11.1.3 for encoding details.

13:12 Data Return Format: Specifies the format of the data returned to the requesting thread.
00: FLOAT32 – return a signed 32-bit IEEE Float to the thread. Required for all UNORM, SNORM,
and FLOAT surface formats. Also required for all resinfo messages.
01: Reserved
10: UINT32 – return an unsigned 32-bit integer. Required for all UINT surface formats.
11: SINT32 – return a signed 32-bit 2’s complement integer. Required for all SINT surface formats.

11:8 Sampler Index: Specifies the index into the sampler state table. Ignored for “ld” and “resinfo” type
messages.
Format = U4
Range = [0,15]

7:0 Binding Table Index: Specifies the index into the binding table.
Format = U8
Range = [0,255]

4.11.1.1.2 [DevCTG]

The following message descriptor applies to [DevCTG]. The Data Return Format Field has been removed. The data return
format used by the sampling engine depends on the Surface Format of the surface being sampled. UINT formats return
UINT32, SINT formats return SINT32, and all other formats return FLOAT32. The resinfo instruction returns UINT32 only. If
FLOAT32 is desired, the conversion must be done in the kernel.

Bit De scription

15:12 Message T ype: Specifies the type of message being sent, along with the message length (in the
general message descriptor)

Format = U4

Refer to the table in section 4.11.1.3 for encoding details.

11:8 Sampler Index: Specifies the index into the sampler state table. Ignored for “ld” and “resinfo” type
messages.

Format = U4

Range = [0,15]

7:0 Binding Table Index: Specifies the index into the binding table.

Format = U8

Range = [0,255]

Doc Ref #: IHD_OS_V4Pt1_3_10 113

4.11.1.1.3 [Dev ILK+]

The following message descriptor applies to [DevILK+]. Four more bits have been added to the message descriptor.

Bit De scription

19 Header Pr esent: Specifies whether the message includes a header phase. If the header is not
present (this field is zero), all of the fields normally contained in the header are assumed to be 0.

Format = Enable

18 Reserved : MBZ

17:16 SIMD Mode: Specifies the SIMD mode of the message being sent.

Format = U2
0 = SIMD4x2
1 = SIMD8
2 = SIMD16
3 = SIMD32/64

15:12 Message Type: Specifies the type of message being sent.

Format = U4

Refer to the table in section 4.11.1.3.2 for encoding details.

11:8 Sampler Index: Specifies the index into the sampler state table. Ignored for “ld”, “resinfo”, and
“sampleinfo” type messages.

Format = U4

Range = [0,15]

Programming Notes:

• for the deinterlace message, this field must be a multiple of 2 (even)

• for the sample_8x8 message, this field must be a multiple of 4

7:0 Binding Table Index: Specifies the index into the binding table.

Format = U8

Range = [0,255]

114 Doc Ref #: IHD_OS_V4Pt1_3_10

4.11.1.2 Message Header

The message header for the sampling engine is the same regardless of the message type. If the header is not present ([DevILK+]
only), behavior is as if the message was sent with all fields in the header set to zero (write channel masks are all enabled and
offsets are zero).

DWord Bit Description

M0.7 31:0 Reserved

M0.6 31:0 Reserved

M0.5 31:0 Ignored

M0.4 31:0 Ignored

M0.3 31:5 [Pre-DevILK]: Sampler State Pointer: Specifies the 32-byte aligned pointer to the
sampler state table. This field is ignored for “ld” and “resinfo” message types. This pointer
is relative to the General State Base Address.

Format = GeneralStateOffset[31:5]

[DevILK+]: Ignored

 4:0 Ignored

M0.2 31:17 Ignored

 16 [Pre-DevILK]: Force LOD to Zero: If this bit is enabled, the calculated LOD is replaced
with zero. The LOD is replaced just before entering the pseudocode in section 4.2.1.5,
therefore the LOD is still subject to bias, overriding by sample_l delivered LOD, and
clamping.

Format = Enable

[DevILK+]: Ignored

 15 Alpha Write Channel Mask: Enables the alpha channel to be written back to the
originating thread.

0: Alpha channel will be written back

1: Alpha channel will not be written back

Programming Notes:

• a message with all four channels masked is not allowed.

• [Pre-DevSNB]: this field is ignored for the sample_unorm*. The write channel
mask is generated from the message type itself.

• this field is ignored for the deinterlace message.

• this field must be set to zero for sample_8x8 in VSA mode.

 14 Blue Write Channel Mask: See Alpha Write Channel Mask

 13 Green Write Channel Mask: See Alpha Write Channel Mask

 12 Red Write Channel Mask: See Alpha Write Channel Mask

 11:8 Reserved

 7:4 Reserved

 3:0 Reserved

Doc Ref #: IHD_OS_V4Pt1_3_10 115

DWord Bit Description

M0.1 31:0 Ignored

M0.0 31:0 Ignored

4.11.1.3 Payload Parameter Definition

The table below shows all of the messages supported by the sampling engine. The message type field in the message descriptor in
combination with the message length determines which message is being sent. The table defines all of the parameters sent for
each message type. The position of the parameters in the payload is given in the section following corresponding to the SIMD
mode given in the table.

All parameters are of type IEEE_Float, except those in the ld and resinfo instruction message types, which are of type S31. Any
parameter indicated with a blank entry in the table is unused. A message register containing only unused parameters not included
as part of the message. The response lengths given below assume all channels are unmasked. SIMD16 messages with masked
channels will have reduced response length.

4.11.1.3.1 [Pre-Dev ILK]

parameters

[D
ev

B
W

] a
nd

[D

ev
C

L]
 m

es
sa

ge

ty
pe

[D

ev
C

TG
+]

m

es
sa

ge
 ty

pe

M
es

sa
ge

 le
ng

th

R
es

po
ns

e
le

ng
th

0 1 2 3 4 5 6 7 8 9 10 11

SI
M

D
 m

od
e

A
PI

 s
ha

de
r

in
st

ru
ct

io
n

00 0000 3 8 u SIMD16 sample
00 0000 5 8 u v SIMD16 sample
00 0000 7 8 u v r SIMD16 sample
00 0000 4 4 u v r SIMD8 sample
01 0001 4 5 u v r SIMD8 sample+killpix
00 0000 9 8 u v r bias SIMD16 sample_b
01 0001 9 8 u v r lod SIMD16 sample_l
01 0001 2 1 u v r lod SIMD4x2 sample_l
10 0010 9 8 u v r ref SIMD16 sample_c
00 0000 2 1 u v r ref SIMD4x2 sample_c
00 0000 6 4 u v r bias ref SIMD8 sample_b_c
01 0001 6 4 u v r lod ref SIMD8 sample_l_c
01 0001 3 1 u v r lod ref SIMD4x2 sample_l_c
11 0011 3 8 u SIMD16 ld
11 0011 5 8 u v SIMD16 ld
11 0011 7 8 u v r SIMD16 ld
11 0011 4 4 u v r SIMD8 ld
11 0011 9 8 u v r lod SIMD16 ld
11 0011 2 1 u v r lod SIMD4x2 ld
10 0010 7 4 u v dudx dudy SIMD8 sample_g
10 0010 10 4 u v r dudx drdx dudy drdy SIMD8 sample_g
10 0010 4 1 u v r dudx drdx dudy drdy SIMD4x2 sample_g
10 0010 3 8 lod SIMD16 resinfo
10 0010 2 1 lod SIMD4x2 resinfo
N/A 0100 2 8 payload details in “SIMD32 Payload” section SIMD32 sample_unorm
N/A 0101 2 4 payload details in “SIMD32 Payload” section SIMD32 sample_unorm_RG
N/A 0110 2 5 payload details in “SIMD32 Payload” section SIMD32 sample_unorm_RG

+killpix

Note that the SIMD8 messages actually contain only eight pixels of data. For the sample_g messages, this is due to the message
length constraint of 16 registers not allowing these messages of 16 pixels. The Jitter will need to send two messages to the
sampler to get 16 pixels of data.

116 Doc Ref #: IHD_OS_V4Pt1_3_10

4.11.1.3.2 [Dev ILK+]

The table below shows all of the message types supported by the sampling engine. The Message Type field in the message
descriptor determines which message is being sent. The SIMD Mode field determines the number of instances (i.e. pixels) and
the formatting of the initiating and writeback messages. The Header Present field determines whether a header is delivered as
the first phase of the message or the default header from R0 of the thread’s dispatch is used. The Message Length field is used to
vary the number of parameters sent with each message. Higher-numbered parameters are optional, and default to a value of 0 if
not sent but needed for the surface being sampled.

The message lengths are computed as follows, where “N” is the number of parameters (“N” is rounded up to the next multiple of
4 for SIMD4x2), and “H” is 1 if the header is present, 0 otherwise. The maximum message length allowed to the sampler is 11.
This would disallow sample_d, sample_b_c, and sample_l_c with a SIMD Mode of SIMD16.

SIMD Mode Message Length

SIMD4x2 H + (N/4)

SIMD8 H + N

SIMD16 H + (2*N)

The response lengths are computed as follows:

SIMD Mode Response Length

SIMD4x2 1

sample+killpix 5

SIMD8
all other message types

4

SIMD16
8 *

* For SIMD16, phases in the response length are reduced by 2 for each channel that is masked.

SIMD16 messages with six or more parameters exceed the maximum message length allowed, in which case they are not
supported. This includes some forms of sample_d, sample_b_c, and sample_l_c message types.

SIMD16 messages with six or more parameters exceed the maximum message length allowed, in which case they are not
supported. This includes some forms of sample_d, sample_b_c, and sample_l_c message types.

Doc Ref #: IHD_OS_V4Pt1_3_10 117

SIMD4x2, SIMD8, and SIMD16 Messages:
parameters Message

Type
mnemonic

0 1 2 3 4 5 6 7 8 9
0000 sample u v r ai
0001 sample_b u v r ai bias
0010 sample_l u v r ai lod
0011 sample_c u v r ai ref
0100 sample_d u v r ai dudx dudy drdx drdy
0101 sample_b_c u v r ai ref bias
0110 sample_l_c u v r ai ref lod
0111 ld u v r lod si
1000* load4 u v r ai
1001* LOD u v r ai
1010 resinfo lod
1011* sampleinfo
1100 sample+killpix u v r

118 Doc Ref #: IHD_OS_V4Pt1_3_10

4.11.1.4 Message Types

The behavior of each message type is as follows:

Message Type Description

sample
sample2dms

The surface is sampled using the indicated sampler state. LOD is computed using
gradients between adjacent pixels. One, two, or three parameters may be specified
depending on how many coordinate dimensions the indicated surface type uses.
Extra parameters specified are ignored. Missing parameters are defaulted to 0.

Programming Notes:

• The Surface Type of the associated surface must be SURFTYPE_1D,
SURFTYPE_2D, SURFTYPE_3D, or SURFTYPE_CUBE.

• The Surface Format of the associated surface cannot be MONO8 or any UINT or
SINT format.

• sample is not supported in SIMD4x2 mode.

sample+killpix The surface is sampled as in the sample message type. An additional register is
returned after the sample results which contains the kill pixel mask. This message
type is required to allow the result of a chroma key enabled sampler in
KEYFILTER_KILL_ON_ANY_MATCH mode to affect the final pixel mask.

Programming Notes:

• The Surface Type of the associated surface must be SURFTYPE_1D,
SURFTYPE_2D, SURFTYPE_3D, or SURFTYPE_CUBE.

• The Surface Format of the associated surface cannot be MONO8 or any UINT or
SINT format.

• sample+killpix is supported only in SIMD8 mode.
sample_b The surface is sampled using the indicated sampler state. LOD is computed using

gradients between adjacent pixels, then the value in the parameter is added to the
LOD for each pixel. The LOD bias delivered in the bias parameter is restricted to a
range of [-16.0, +16.0). Values outside this range produce undefined results.

Programming Notes:

• The Surface Type of the associated surface must be SURFTYPE_1D,
SURFTYPE_2D, SURFTYPE_3D, or SURFTYPE_CUBE.

• The Surface Format of the associated surface cannot be MONO8 or any UINT or
SINT format.

• sample_b is not supported in SIMD4x2 mode.
sample_l The surface is sampled using the indicated sampler state. LOD is not computed, but

instead is taken from the lod parameter.

Programming Notes:

• The Surface Type of the associated surface must be SURFTYPE_1D,
SURFTYPE_2D, SURFTYPE_3D, or SURFTYPE_CUBE.

• The Surface Format of the associated surface cannot be a UINT or SINT format.

Doc Ref #: IHD_OS_V4Pt1_3_10 119

Message Type Description

sample_c The surface is sampled using the indicated sampler state. All four coordinates must
be specified, however v and r may not be used depending on the indicated surface
type. The ai parameter indicates the array index for a cube surface. The ref
parameter specifies the reference value that is compared against the red channel of
the sampled surface, and the texel is replaced with either white or black depending
on the result of the comparison. The WGF sample_c_lz instruction is implemented
by issuing the sample_c message with Force LOD to Zero enabled in the message
header or by issuing the sample_l_c message with the LOD parameter set to zero.

Programming Notes:

• The Surface Type of the associated surface must be SURFTYPE_1D,
SURFTYPE_2D, or SURFTYPE_CUBE.

• 1D and 2D arrays are not supported (Depth of the associated surface must be 0).

• The Surface Format of the associated surface must be indicated as supporting
shadow mapping as indicated in the surface format table.

• With sample_c, MIPFILTER_LINEAR, MAPFILTER_LINEAR,
MAPFILTER_ANISOTROPIC are allowed even for surface formats that are listed
as not supporting filtering in the surface formats table.

• Use of the SIMD4x2 form of sample_c without Force LOD to Zero enabled in the
message header is not allowed, as it is not possible for the hardware to compute
LOD for SIMD4x2 messages. For [ILK], sample_c is not supported in SIMD4x2
mode.

• Use of sample_c with SURFTYPE_CUBE surfaces is undefined with the following
surface formats: I24X8_UNORM, L24X8_UNORM, A24X8_UNORM, I32_FLOAT,
L32_FLOAT, A32_FLOAT.

• [DevBW, DevCL] Errata: When sample_c is used on a texture map with
A16_FLOAT surface format, any value read in from the texture map that is a NaN
will be treated like a + inf.

• [Pre-ILK] Errata: When either the reference value or the source value from the
texture map is NaN the compare value will be incorrectly replaced with 1.0 rather
than 0.0 for Shadow Function of GEQUAL, GREATER, LEQUAL, or LESS.

sample_b_c This is a combination of sample_b and sample_c. Both the LOD bias and reference
values are delivered. All restrictions applying to both sample_b and sample_c must
be honored.

sample_l_c This is a combination of sample_l and sample_c. Both the LOD and reference values
are delivered. All restrictions applying to both sample_l and sample_c must be
honored. However, unlike sample_c, sample_l_c is allowed as a SIMD4x2 message.

Programming Notes:

• [DevBW, DevCL] Errata: SIMD4x2 sample_l_c is not allowed and must be worked
around using SIMD8 sample_l_c.

120 Doc Ref #: IHD_OS_V4Pt1_3_10

Message Type Description

sample_g

sample_d

The surface is sampled using the indicated sampler state. LOD is computed using
the gradients present in the message. The r coordinate and its gradients are
required only for surface types that use the third coordinate. Usage of this message
type on cube surfaces assumes that the u, v, and gradients have already been
transformed onto the appropriate face, but still in [-1,+1] range. The r coordinate
contains the faceid, and the r gradients are ignored by hardware.

Programming Notes:

• The Surface Type of the associated surface must be SURFTYPE_1D,
SURFTYPE_2D, SURFTYPE_3D, or SURFTYPE_CUBE.

• The Surface Format of the associated surface cannot be MONO8 or any UINT or
SINT format.

resinfo The surface indicated in the surface state is not sampled. Instead, the width, height,
depth, and MIP count of the surface are returned as indicated in the table below. The
format of the returned data is FLOAT32 for [Pre-DevCTG], and UINT32 for
[DevCTG+]. The width, height, and depth may be shifted right, per pixel, by the LOD
value provided in the lod parameter to give the dimensions of the specified mip level.
The lod parameter is an unsigned 32-bit integer in this mode (note that sending a
signed 32-bit integer always has the same effect, as negative values are out-of-range
when interpreted as unsigned integers). The Sampler State Pointer and Sampler
Index are ignored.

surface type red green blue alpha

SURFTYPE_1D (Width+1)>>LOD Depth==0 ? 0 :
Depth+1

0 MIPCount

SURFTYPE_2D (Width+1)>>LOD (Height+1)>>LOD Depth==0 ? 0 :
Depth+1

MIPCount

SURFTYPE_3D (Width+1)>>LOD (Height+1)>>LOD (Depth+1)>>LOD MIPCount

SURFTYPE_CUBE (Wdith+1)>>LOD (Height+1)>>LOD 0 MIPCount

Programming Notes:

• [DevBW-A,B] Errata: if lod is > 0xf it must be forced to 0xf.

Doc Ref #: IHD_OS_V4Pt1_3_10 121

Message Type Description

ld

ld2dms

ld_mcs

The su rface is sa mpled u sing a d efault samp ler state, in dicated b elow. The
parameter contains the LOD of the mip map to be sampled. The v and r channel may
be ig nored dep ending on th e in dicated su rface t ype. All in coming values ar e
unsigned 32-bit integers in this mode . The u, v, and r pa rameters contain integer
texel addresses on the LOD in dicated in th e parameter. T he Sampler State Po inter
and Sampler Index are ignored.

For these message types, the sampler state is defaulted as follows:

• min, mag, and mip filter modes are “nearest”

• all address control modes are “zero” (a special mode in which any texel off
the map or outside the MIP range of the surface has a value of zero in all
channels, except for surface formats without an alpha channel, which will
return a value of one in the alpha channel)

Programming Notes:

• The Surface Type of the associated surface must be SURFTYPE_1D,
SURFTYPE_2D, SURFTYPE_3D, or SURFTYPE_BUFFER for the ld message.

• The Surface Type of the associated surface must be SURFTYPE_2D for the
ld_mcs and ld2dms messages.

• [DevBW-A,B] Errata: Only non-array (Depth = 0) SURFTYPE_1D and
SURFTYPE_2D are supported with.

• The Surface Format of the associated surface cannot be MONO8.
• [DevBW, DevCL] Errata: For ld with SURFTYPE_BUFFER the lod channel MBZ.
• [Pre-ILK] Errata: Surface formats with 8 bits per channel and no alpha channel

will return zero in the alpha channel.
• [Pre-ILK] Errata: For the SIMD8 or SIMD4x2 forms of this message, the v

parameter must be set to zero for non-array SURFTYPE_1D, and r must be set to
zero for all SURFTYPE_1D and array SURFTYPE_2D surfaces.

sample_unorm [De vCTG+] only: The surface is sampled using the indicated sampler state. 32
contiguous pixels in a 8-wide by 4-high arrangement are sampled. The U and V
addresses for the upper left pixel is delivered in this message along with a Delta U
and Delta V parameter. Given a pixel at (x,y) relative to the upper left pixel (where
(0,0) is the upper left pixel), the U and V for that pixel are computed as follows:

U(x,y) = U(0,0) + DeltaU * x

V(x,y) = V(0,0) + DeltaV * y

Programming Notes:

• The Surface Type of the associated surface must be SURFTYPE_2D
• The Surface Format of the associated surface must be UNORM with <= 8 bits

per channel
• The MIP Count, Depth, Surface Min LOD, and Min Array Element of the

associated surface must be 0
• The Min and Mag Mode Filter must be MAPFILTER_NEAREST or

MAPFILTER_LINEAR
• The Mip Mode Filter must be MIPFILTER_NONE
• The TCX and TCY Address Control Mode cannot be

TEXCOORDMODE_CLAMP_BORDER
• DeltaU * Width of the associated surface must be less than or equal to 3.0
• DeltaV * Height of the associated surface must be less than or equal to 3.0

122 Doc Ref #: IHD_OS_V4Pt1_3_10

Message Type Description

sample_unorm_RG [DevCTG] to [ILK] only: This message is identical to the sample_unorm message
except it only returns the red and green channels in the writeback message. All
restrictions of the sample_unorm message apply to this message also.

sample_unorm_RG

+killpix

[DevCTG] to [ILK] only: This message is identical to the sample_unorm_RG message
except it returns a kill pixel mask in addition to the red and green channels in the
writeback message. This message type is required to allow the result of a chroma
key enabled sampler in KEYFILTER_KILL_ON_ANY_MATCH mode to affect the final
pixel mask. All restrictions of the sample_unorm message apply to this message
also.

sample_8x8 [ILK] only: The surface is sampled using an optional 8x8 filter followed by an
optional image enhancement filter, using state defined in SAMPLER_STATE and
3DSTATE_SAMPLE_8x8. The input can be one of three configurations. 64
contiguous pixels in an 8-wide by 8-high arrangement, 100 contiguous pixels in a 10-
wide by 10-high arrangement, or 144 contiguous pixels in a 12-wide by 12-high
arrangement. The address control mode behaves as clamp mode. The U and V
addresses for the upper left pixel are delivered in this message along with a Delta U
and Delta V parameter. Given a pixel at (x,y) relative to the upper left pixel (where
(0,0) is the upper left pixel), the U and V for that pixel are computed as follows:

U(x,y) = U(0,0) + DeltaU * x + U_2nd_Derivative * x * (x - 1)/2

V(x,y) = V(0,0) + DeltaV * y

Programming Notes:

• The Surface Type of the associated surface must be SURFTYPE_2D
• The Surface Format of the associated surface must be UNORM with <= 10 bits

per channel
• DeltaV * Height of the associated surface must be less than 16.0
• Map Width must be >= 4
• [ILK]: If sample_8x8 or deinterlace messages are used in a thread, software

must ensure that the same thread or other threads that can concurrently be
running do not use any other sampling engine messages.

deinterlace [ILK

] only: The surface is deinterlaced and/or denoised, using state defined in
SAMPLER_STATE. The U and V addresses for the upper left pixel are delivered in
this message.

Programming Notes:

• [ILK]: If sample_8x8 or deinterlace messages are used in a thread, software
must ensure that the same thread or other threads that can concurrently be
running do not use any other sampling engine messages.

Programming Notes:

• For surfaces of type SURFTYPE_CUBE, the sampling engine requires u, v, and r parameters that have already been
divided by the absolute value of the parameter (u, v, or r) with the largest absolute value.

4.11.1.5 Parameter Types

sample*, LOD, and gather4 messages

Doc Ref #: IHD_OS_V4Pt1_3_10 123

For all of the sample*, LOD, and gather4 message types, all parameters are 32-bit floating point, except the ‘mcs’, ‘offu’, and
‘offv’ parameters. Usage of the u, v, and r parameters is as follows based on Surface Type. Normalized values range from [0,1]
across the surface, with values outside the surface behaving as specified by the Address Control Mode in that dimension.
Unnormalized values range from [0,n-1] across the surface, where n is the size of the surface in that dimension, with values
outside the surface being clamped to the surface.

Surface Type u v r ai

SURFTYPE_1D normalized ‘x’
coordinate

unnormalized array
index

ignored ignore d

SURFTYPE_2D normalized ‘x’
coordinate

normalized ‘y’
coordinate

unnormalized array
index

ignored

SURFTYPE_3D normalized ‘x’
coordinate

normalized ‘y’
coordinate

normalized ‘z’
coordinate

ignored

SURFTYPE_CUBE normalized ‘x’
coordinate

normalized ‘y’
coordinate

normalized ‘z’
coordinate

unnormalized
array index

mcs parameter [DevILK+]

The ‘mcs’ parameter delivers the multisample control data. The format of this parameter is always a 32-bit unsigned integer.
Refer to the section titled “Multisampled Surface Behavior” for details on this parameter.

Ld* messages
For the ld message types, all parameters are 32-bit signed integers, except the ‘mcs’ parameter. Usage of the u, v, and r
parameters is as follows based on Surface Type. Unnormalized values range from [0,n-1] across the surface, where n is the size
of the surface in that dimension. Input of any value outside of the range returns zero.

Surface Type u v r

SURFTYPE_1D unnormalized ‘x’
coordinate

unnormalized array index ignored

SURFTYPE_2D unnormalized ‘x’
coordinate

unnormalized ‘y’
coordinate

unnormalized array
index

SURFTYPE_3D unnormalized ‘x’
coordinate

unnormalized ‘y’
coordinate

unnormalized ‘z’
coordinate

SURFTYPE_BUFFER unnormalized ‘x’
coordinate

ignored ignore d

4.11.1.6 SIMD16 Payload

The payload of a SIMD16 message provides addresses for the sampling engine to process 16 entities (examples of an entity are
vertex and pixel). The number of parameters required to sample the surface depends on the state that the sampler/surface is in.
Each parameter takes two message registers, with 8 entities, each a 32-bit floating point value, being placed in each register. Each
parameter always takes a consistent position in the input payload. The length field can be used to send a shorter message, but
intermediate parameters cannot be skipped as there is no way to signal this. For example, a 2D map using “sample_b” needs only
u, v, and bias, but must send the r parameter as well.

124 Doc Ref #: IHD_OS_V4Pt1_3_10

DWord Bit Description

M1.7 31:0 Subspan 1, Pixel 3 (lower right) Parameter 0

Specifies the value of the pixel’s parameter 0. The actual parameter that maps to
parameter 0 is given in the table in section 4.11.1.3.

Format = IEEE Float for all sample* message types, U32 for ld and resinfo message types.

M1.6 31:0 Subspan 1, Pixel 2 (lower left) Parameter 0

M1.5 31:0 Subspan 1, Pixel 1 (upper right) Parameter 0

M1.4 31:0 Subspan 1, Pixel 0 (upper left) Parameter 0

M1.3 31:0 Subspan 0, Pixel 3 (lower right) Parameter 0

M1.2 31:0 Subspan 0, Pixel 2 (lower left) Parameter 0

M1.1 31:0 Subspan 0, Pixel 1 (upper right) Parameter 0

M1.0 31:0 Subspan 0, Pixel 0 (upper left) Parameter 0

M2.7 31:0 Subspan 3, Pixel 3 (lower right) Parameter 0

M2.6 31:0 Subspan 3, Pixel 2 (lower left) Parameter 0

M2.5 31:0 Subspan 3, Pixel 1 (upper right) Parameter 0

M2.4 31:0 Subspan 3, Pixel 0 (upper left) Parameter 0

M2.3 31:0 Subspan 2, Pixel 3 (lower right) Parameter 0

M2.2 31:0 Subspan 2, Pixel 2 (lower left) Parameter 0

M2.1 31:0 Subspan 2, Pixel 1 (upper right) Parameter 0

M2.0 31:0 Subspan 2, Pixel 0 (upper left) Parameter 0

M3 – Mn Repeat packets 1 and 2 to cover all required parameters

4.11.1.7 SIMD8 Payload

This message is intended to be used in a SIMD8 thread, or in pairs from a SIMD16 thread. Each message contains sample
requests for just 8 pixels.

DWord Bit Description

M1.7 31:0 Subspan 1, Pixel 3 (lower right) Parameter 0

Specifies the value of the pixel’s parameter 0. The actual parameter that maps to
parameter 0 is given in the table in section 4.11.1.3.

Format = IEEE Float for all sample* message types, U32 for ld and resinfo message types.

M1.6 31:0 Subspan 1, Pixel 2 (lower left) Parameter 0

M1.5 31:0 Subspan 1, Pixel 1 (upper right) Parameter 0

M1.4 31:0 Subspan 1, Pixel 0 (upper left) Parameter 0

M1.3 31:0 Subspan 0, Pixel 3 (lower right) Parameter 0

M1.2 31:0 Subspan 0, Pixel 2 (lower left) Parameter 0

M1.1 31:0 Subspan 0, Pixel 1 (upper right) Parameter 0

Doc Ref #: IHD_OS_V4Pt1_3_10 125

DWord Bit Description

M1.0 31:0 Subspan 0, Pixel 0 (upper left) Parameter 0

M2 – Mn Repeat packet 1 to cover all required parameters

4.11.1.8 SIMD4x2 Payload

DWord Bit Description

M1.7 31:0 Sample 1 Parameter 3

Specifies the value of the pixel’s parameter 3. The actual parameter that maps to
parameter 3 is given in the table in section 4.11.1.3.

Format = IEEE Float for all sample* message types, U32 for ld and resinfo message types.

M1.6 31:0 Sample 1 Parameter 2

M1.5 31:0 Sample 1 Parameter 1

M1.4 31:0 Sample 1 Parameter 0

M1.3 31:0 Sample 0 Parameter 3

M1.2 31:0 Sample 0 Parameter 2

M1.1 31:0 Sample 0 Parameter 1

M1.0 31:0 Sample 0 Parameter 0

M2 Parameters 4-7 if present

M3 Parameters 8-11 if present

126 Doc Ref #: IHD_OS_V4Pt1_3_10

4.11.1.9 SIMD32/64 Payload

4.11.1.9.1 Pixel Shader [DevCTG+]

 [DevCTG+] only

This position of Delta U/V in the pixel shader payload layout is to allow the register delivered in the pixel shader dispatch
containing the coefficients for the texture coordinates to be left in their original position (Delta U = Cxs, Delta V = Cyt). The
values for U and V are computed in the pixel shader into the unused positions in this register.

DWord Bit Description

M1.7 31:0 Ignored

M1.6 31:0 Pixel 0 V Address

Format:

sample_unorm* and sample_8x8: IEEE_Float in normalized space

deinterlace: U32 (Range: [0,2046])

M1.5 31:0 Delta V: defines the difference in V for adjacent pixels in the Y direction.

Programming Notes:

• Delta V multiplied by Height in SURFACE_STATE must be less than or equal to 3
for sample_unorm* message types.

• Delta V multiplied by Height in SURFACE_STATE must be less than 16 for the
sample_8x8 message type.

• This field is ignored for the deinterlace message type.

Format = IEEE_Float in normalized space

M1.4 31:0 Ignored

M1.3 31:0 Ignored

M1.2 31:0 Pixel 0 U Address

Format:

sample_unorm* and sample_8x8: IEEE_Float in normalized space

deinterlace: U32 (Range: [0,4095])

M1.1 31:0 [DevILK+]: U 2nd Derivative

Defines the change in the delta U for adjacent pixels in the X direction.

Programming Notes:

• This field is ignored for messages other than sample_8x8.

Format = IEEE_Float in normalized space

[Pre-DevILK]: Ignored

Doc Ref #: IHD_OS_V4Pt1_3_10 127

DWord Bit Description

M1.0 31:0 Delta U: defines the difference in U for adjacent pixels in the X direction.

Programming Notes:

• Delta U multiplied by Width in SURFACE_STATE must be less than or equal to 3
for sample_unorm* message types.

• This field is ignored for the deinterlace message type.

Format = IEEE_Float in normalized space

4.11.1.9.2 Media [DevILK]

4.11.1.9.3 Media [DevILK]

 [ILK] only

The position of Delta U and U 2nd Derivative in the media payload layout is intended to make media kernels more efficient.
Sending a message using the media payload layout behaves identically to the pixel shader payload layout other than the position
of these two fields.

DWord Bit Description

M1.6 31:0 Pixel 0 V Address

Format:

sample_unorm* and sample_8x8: IEEE_Float in normalized space

deinterlace: U32 (Range: [0,2046])

M1.5 31:0 Delta V: defines the difference in V for adjacent pixels in the Y direction.

Programming Notes:

• Delta V multiplied by Height in SURFACE_STATE must be less than or equal to 3
for sample_unorm* message types.

• Delta V multiplied by Height in SURFACE_STATE must be less than 16 for the
sample_8x8 message type.

• This field is ignored for the deinterlace message type.

Format = IEEE_Float in normalized space

M1.2 31:0 Pixel 0 U Address

Format:

sample_unorm* and sample_8x8: IEEE_Float in normalized space

deinterlace: U32 (Range: [0,4095])

M1.1 31:0 Delta U: defines the difference in U for adjacent pixels in the X direction.

Programming Notes:

• Delta U multiplied by Width in SURFACE_STATE must be less than or equal to 3
for sample_unorm* message types.

• This field is ignored for the deinterlace message type.

Format = IEEE_Float in normalized space

128 Doc Ref #: IHD_OS_V4Pt1_3_10

DWord Bit Description

M1.0 31:0 U 2nd Derivative

Defines the change in the delta U for adjacent pixels in the X direction.

Programming Notes:

• This field is ignored for messages other than sample_8x8.

Format = IEEE_Float in normalized space

4.11.2 Writeback Message

Corresponding to the four input message definitions are four writeback messages. Each input message generates a corresponding
writeback message of the same type (SIMD16, SIMD8, SIMD4x2, or SIMD32/64).

4.11.2.1 SIMD16

A SIMD16 writeback message consists of up to 8 destination registers. Which registers are returned is determined by the write
channel mask received in the corresponding input message. Each asserted write channel mask results in both destination registers
of the corresponding channel being skipped in the writeback message, and all channels with higher numbered registers being
dropped down to fill in the space occupied by the masked channel. For example, if only red and alpha are enabled, red is sent to
regid+0 and regid+1, and alpha to regid+2 and regid+3. The pixels written within each destination register is determined by the
execution mask on the “send” instruction.

 DWord Bit Description

W0.7 31:0 Subspan 1, Pixel 3 (lower right) Red: Specifies the value of the pixel’s red channel.

Format = IEEE Float, S31 signed 2’s comp integer, or U32 unsigned integer. Format
depends on the Data Return Format programmed for the surface being sampled.

W0.6 31:0 Subspan 1, Pixel 2 (lower left) Red

W0.5 31:0 Subspan 1, Pixel 1 (upper right) Red

W0.4 31:0 Supspan 1, Pixel 0 (upper left) Red

W0.3 31:0 Subspan 0, Pixel 3 (lower right) Red

W0.2 31:0 Subspan 0, Pixel 2 (lower left) Red

W0.1 31:0 Subspan 0, Pixel 1 (upper right) Red

W0.0 31:0 Supspan 0, Pixel 0 (upper left) Red

W1.7 31:0 Subspan 3, Pixel 3 (lower right) Red

W1.6 31:0 Subspan 3, Pixel 2 (lower left) Red

W1.5 31:0 Subspan 3, Pixel 1 (upper right) Red

W1.4 31:0 Supspan 3, Pixel 0 (upper left) Red

W1.3 31:0 Subspan 2, Pixel 3 (lower right) Red

W1.2 31:0 Subspan 2, Pixel 2 (lower left) Red

W1.1 31:0 Subspan 2, Pixel 1 (upper right) Red

W1.0 31:0 Supspan 2, Pixel 0 (upper left) Red

Doc Ref #: IHD_OS_V4Pt1_3_10 129

 DWord Bit Description

W2 Subspans 1 and 0 of Green: See W0 definition for pixel locations

W3 Subspans 3 and 2 of Green: See W1 definition for pixel locations

W4 Subspans 1 and 0 of Blue: See W0 definition for pixel locations

W5 Subspans 3 and 2 of Blue: See W1 definition for pixel locations

W6 Subspans 1 and 0 of Alpha: See W0 definition for pixel locations

W7 Subspans 3 and 2 of Alpha: See W1 definition for pixel locations

4.11.2.2 SIMD8

This writeback message consists of four registers, or five in the case of sample+killpix. As opposed to the SIMD16 writeback
message, channels that are masked in the write channel mask are not skipped, all four channels are always returned. The masked
channels, however, are not overwritten in the destination register.

For the sample+killpix message types, an additional register (W4) is included after the last channel register.

DWord Bit Description

W0.7 31:0 Subspan 1, Pixel 3 (lower right) Red: Specifies the value of the pixel’s red channel.

Format = IEEE Float, S31 signed 2’s comp integer, or U32 unsigned integer. Format
depends on the Data Return Format programmed for the surface being sampled.

W0.6 31:0 Subspan 1, Pixel 2 (lower left) Red

W0.5 31:0 Subspan 1, Pixel 1 (upper right) Red

W0.4 31:0 Supspan 1, Pixel 0 (upper left) Red

W0.3 31:0 Subspan 0, Pixel 3 (lower right) Red

W0.2 31:0 Subspan 0, Pixel 2 (lower left) Red

W0.1 31:0 Subspan 0, Pixel 1 (upper right) Red

W0.0 31:0 Supspan 0, Pixel 0 (upper left) Red

W1 Subspans 1 and 0 of Green: See W0 definition for pixel locations

W2 Subspans 1 and 0 of Blue: See W0 definition for pixel locations

W3 Subspans 1 and 0 of Alpha: See W0 definition for pixel locations

W4.7:1 Reserved (not written) : W4 is only delivered for the sample+killpix message type

W4.0 31:16 Dispatch Pixel Mask: This field is always 0xffff to allow dword-based ANDing with the R0
header in the pixel shader thread.

 15:0 Active Pixel Mask: This field has the bit for all pixels set to 1 except those pixels that have
been killed as a result of chroma key with kill pixel mode. Since the SIMD8 message
applies to only 8 pixels, only the low 8 bits within this field are used. The high 8 bits are
always set to 1.

[DevBW, DevCL] Errata: Active Pixel Mask needs to be ORed with the inverse of the
EMask before it is ANDed with the DMask. Also if the sample instruction is within a
conditional then the active pixel mask will be overwritten with the partial mask on each
different sample instruction so this will have to be done for each instance of the sample
instruction not just as the end.

130 Doc Ref #: IHD_OS_V4Pt1_3_10

4.11.2.3 SIMD4x2

A SIMD4x2 writeback message always consists of a single message register containing all four channels of each of the two
“pixels” (called “samples” here, as they are not really pixels) of data. The write channel mask bits as well as the execution mask
on the “send” instruction are used to determine which of the channels in the destination register are overwritten. If any of the four
execution mask bits for a sample is asserted, that sample is considered to be active. The active channels in the write channel mask
will be written in the destination register for that sample. If the sample is inactive (all four execution mask bits deasserted), none
of the channels for that sample will be written in the destination register.

DWord Bit Description

W0.7 31:0 Sample 1 Alpha: Specifies the value of the pixel’s alpha channel.

Format = IEEE Float, S31 signed 2’s comp integer, or U32 unsigned integer. Format
depends on the Data Return Format programmed for the surface being sampled.

W0.6 31:0 Sample 1 Blue

W0.5 31:0 Sample 1 Green

W0.4 31:0 Sample 1 Red

W0.3 31:0 Sample 0 Alpha

W0.2 31:0 Sample 0 Blue

W0.1 31:0 Sample 0 Green

W0.0 31:0 Sample 0 Red

4.11.2.4 SIMD32/64

4.11.2.4.1 Sample_uno rm*

 [DevILK+] only

Pixels are numbered as follows:
0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

DWord Bit Description

W0.7 31:16 Pixel 15 Red

Format = 16-bit UNORM with an 8-bit range (the value FF00h maps to a real value of 1.0)

Range = [0000h:FF00h]

 15:0 Pixel 14 Red

W0.6 Pixel 13 & 12 Red

W0.5 Pixel 7 & 6 Red

Doc Ref #: IHD_OS_V4Pt1_3_10 131

DWord Bit Description

W0.4 Pixel 5 & 4 Red

W0.3 Pixel 11 & 10 Red

W0.2 Pixel 9 & 8 Red

W0.1 Pixel 3 & 2 Red

W0.0 Pixel 1 & 0 Red

W1.7 Pixel 31 & 30 Red

W1.6 Pixel 29 & 28 Red

W1.5 Pixel 23 & 22 Red

W1.4 Pixel 21 & 20 Red

W1.3 Pixel 27 & 26 Red

W1.2 Pixel 25 & 24 Red

W1.1 Pixel 19 & 18 Red

W1.0 Pixel 17 & 16 Red

W2.7:0 Pixels 15:0 Green

W3.7:0 Pixels 31:16 Green

W4.7:0 Pixels 15:0 Blue

W4-W7 are not sent for the _RG versions of the sample_unorm message

W5.7:0 Pixels 31:16 Blue

W4-W7 are not sent for the _RG versions of the sample_unorm message

W6.7:0 Pixels 15:0 Alpha

W2 and W3 are not sent for the _RG versions of the sample_unorm message

W7.7:0 Pixels 31:16 Alpha

W4-W7 are not sent for the _RG versions of the sample_unorm message

132 Doc Ref #: IHD_OS_V4Pt1_3_10

For the sample_unorm_RG+killpix and sample_unorm+killpix messages, an additional writeback phase is returned. For
sample_unorm_RG+killpix, “n” is equal to 4, for sample_unorm+killpix, “n” depends on which channels are enabled for return,
this register will immediately follow the first part of the writeback message.

DWord Bit Description

Wn.7:1 Reserved (not written)

Wn.0 31:0 Active Pixel Mask: This field has the bit for all pixels set to 1 except those pixels that have
been killed as a result of chroma key with kill pixel mode.
The bits in this mask correspond to the pixels as follows:

0 1 4 5 16 17 20 21
2 3 6 7 18 19 22 23
8 9 12 13 24 25 28 29

10 11 14 15 26 27 30 31

4.11.2.4.2 sample_8 x8

 [DevILK+] only

The writeback message for sample_8x8 consists of up to 16 destination registers. Which registers are returned is determined by
the write channel mask received in the corresponding input message. Each asserted write channel mask results in all four
destination registers of the corresponding channel being skipped in the writeback message, and all channels with higher numbered
registers being dropped down to fill in the space occupied by the masked channel.

Pixels are numbered as follows:
0 1 2 3 4 5 6 7
8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47
48 49 50 51 52 53 54 55
56 57 58 59 60 61 62 63

DWord Bit Description

W0.7 31:16 Pixel 15 Red

Format = 16-bit UNORM with an 8-bit range (the value FF00h maps to a real value of 1.0)

Range = [0000h:FF00h]

 15:0 Pixel 14 Red

W0.6 Pixel 13 & 12 Red

W0.5 Pixel 7 & 6 Red

W0.4 Pixel 5 & 4 Red

W0.3 Pixel 11 & 10 Red

W0.2 Pixel 9 & 8 Red

Doc Ref #: IHD_OS_V4Pt1_3_10 133

DWord Bit Description

W0.1 Pixel 3 & 2 Red

W0.0 Pixel 1 & 0 Red

W1.7 Pixel 31 & 30 Red

W1.6 Pixel 29 & 28 Red

W1.5 Pixel 23 & 22 Red

W1.4 Pixel 21 & 20 Red

W1.3 Pixel 27 & 26 Red

W1.2 Pixel 25 & 24 Red

W1.1 Pixel 19 & 18 Red

W1.0 Pixel 17 & 16 Red

W2.7:0 Pixels 15:0 Green

W3.7:0 Pixels 31:16 Green

W4.7:0 Pixels 15:0 Blue

W5.7:0 Pixels 31:16 Blue

W6.7:0 Pixels 15:0 Alpha

W7.7:0 Pixels 31:16 Alpha

W8.7:0 Pixels 47:32 Red

W9.7:0 Pixels 63:33 Red

W10.7:0 Pixels 47:32 Green

W11.7:0 Pixels 63:33 Green

W12.7:0 Pixels 47:32 Blue

W13.7:0 Pixels 63:33 Blue

W14.7:0 Pixels 47:32 Alpha

W15.7:0 Pixels 63:33 Alpha

STMM block definition:
DWord Bit Description

Wr.7 31:24 STMM (14,3)

Format = U8

 23:16 STMM (12,3)

 15:8 STMM (10,3)

 7:0 STMM (8,3)

Wr.6 31:0 STMM (6:0,3)

Wr.5 31:0 STMM (14:8,2)

Wr.4 31:0 STMM (6:0,2)

Wr.3 31:0 STMM (14:8,1)

134 Doc Ref #: IHD_OS_V4Pt1_3_10

DWord Bit Description

Wr.2 31:0 STMM (6:0,1)

Wr.1 31:0 STMM (14:8,0)

Wr.0 31:0 STMM (6:0,0)

Block Noise Estimate/Denoise History block definition: [prior to Gen6]
DWord Bit Description

Wq.7 31:0 Reserved : MBZ

Wq.6 31:0 Reserved : MBZ

Wq.5 31:0 Reserved : MBZ

Wq.4 31:0 Reserved : MBZ

Wq.3 31:0 Reserved : MBZ

Wq.2 31:0 Reserved : MBZ

Wq.1 31:8 Reserved : MBZ

Wq.1 7:0 Block Noise Estimate

Format = U8

Wq.0 31:24 Denoise History for 4x4 at Y = 15 to 12, X = 3 to 0

Format = U8

Wq.0 23:16 Denoise History for 4x4 at Y = 11 to 8, X = 3 to 0

Wq.0 15:8 Denoise History for 4x4 at Y = 7 to 4, X = 3 to 0

Wq.0 7:0 Denoise History for 4x4 at Y = 3 to 0, X = 3 to 0

Block Noise Estimate/Denoise History block definition: [Gen6 DI enabled]

DWord Bit Description

Wq.7 31:16 Y[15:0] – Location of 16x4

Wq.7 15:0 X[15:0] - Location of 16x4

Wq.6 31:24 STAD0 - Sum in time of absolute differences for 4x4

Format = U8 [STAD values are 0 if DN is disabled]

Wq.6 23:16 STAD1

Wq.6 15:8 STAD2

Wq.6 7:0 STAD3 (Ignore when both DN & DI are enabled)

Wq.5 31:24 SHCM0 - Sum horizontally of absolute differences for 4x4

 Format = U8 [SHCM values are 0 if DN is disabled]

Wq.5 23:16 SHCM1

Wq.5 15:8 SHCM2

Wq.5 7:0 SHCM3 (Ignore when both DN & DI are enabled)

Doc Ref #: IHD_OS_V4Pt1_3_10 135

DWord Bit Description

Wq.4 31:24 SVCM0 Sum Vertically of absolute differences for 4x4

Format = U8 [SVCM values are 0 if DN is disabled]

Wq.4 23:16 SVCM1

Wq.4 15:8 SVCM2

Wq.4 7:0 SVCM3 (Ignore when both DN & DI are enabled)

Wq.3 31:16 Diff_cTpT - difference in top fields of current and previous frame

Format = U16

Wq.3 15:0 Diff_cBpB - difference in bottom field of current and previous frame

Wq.2 31:16 Diff_cTcB - difference between top and bottom field in current frame.

Wq.2 15:0 Diff_cTpB - difference between current top and previous bottom

Wq.1 31:16 Diff_cBpT - difference between current bottom and previous top.

Wq.1 15:8 Motion_Count - number of pixels that are moving (different above a threshold)

Format = U8

Wq.1 7:0 Block Noise Estimate for 16x4 (Valid only if DN is enabled)

Wq.0 31:24 Denoise History for 4x4 at Y = 15 to 12, X = 3 to 0

Format = U8

Wq.0 23:16 Denoise History for 4x4 at Y = 11 to 8, X = 3 to 0

Wq.0 15:8 Denoise History for 4x4 at Y = 7 to 4, X = 3 to 0

Wq.0 7:0 Denoise History for 4x4 at Y = 3 to 0, X = 3 to 0

 Block Noise Estimate/Denoise History block definition: [Gen6 DI disabled]

DWord Bit Description

Wq.7 31:16 Y[15:0] – Location of 16x4

Wq.7 15:0 X[15:0] - Location of 16x4

Wq.6 31:24 STAD0 - Sum in time of absolute differences for 4x8
Format = U8

Wq.6 23:16 STAD1

Wq.6 15:8 STAD2

Wq.6 7:0 STAD3

Wq.5 31:24 SHCM0 - Sum horizontally of absolute difference for 4x8

Wq.5 23:16 SHCM1

Wq.5 15:8 SHCM2

Wq.5 7:0 SHCM3

136 Doc Ref #: IHD_OS_V4Pt1_3_10

DWord Bit Description

Wq.4 31:24 SVCM0 Sum Vertically of absolute difference for 4x8

Wq.4 23:16 SVCM1

Wq.4 15:8 SVCM2

Wq.4 7:0 SVCM3

Wq.3 31:16 Reserved

Wq.3 15:0 Reserved

Wq.2 31:8 Reserved

Wq.2 7:0 Block Noise Estimate for 16x8

Wq.1 31:24 Denoise History for 4x4 at X = 15 to 12, Y = 7 to 4

Format = U8

Wq.1 23:16 Denoise History for 4x4 at X = 11 to 8, Y = 7 to 4

Wq.1 15:8 Denoise History for 4x4 at X = 7 to 4, Y = 7 to 4

Wq.1 7:0 Denoise History for 4x4 at X = 15 to 12, Y = 3 to 0

Wq.0 31:24 Denoise History for 4x4 at Y = 15 to 12, X = 3 to 0

Format = U8

Wq.0 23:16 Denoise History for 4x4 at Y = 11 to 8, X = 3 to 0

Wq.0 15:8 Denoise History for 4x4 at Y = 7 to 4, X = 3 to 0

Wq.0 7:0 Denoise History for 4x4 at Y = 3 to 0, X = 3 to 0

 Block Noise Estimate/Denoise History block definition: [Gen7 +] DI Enabled
DWord Bit Description

Wq.7 31:16 Y[15:0]

Wq.7 15:0 X[15:0]

Wq.6 31:16 STAD - Sum in time of absolute differences for 16x4 – value is 0 if DN disabled.

Format = U16

Wq.6 15:0 SHCM - Sum horizontaly of absolute differences – value is 0 if DN is disabled.

Format = U16

Wq.5 31:16 SVCM - Sum vertically of absolute differences – value is 0 if DN is disabled..

Format = U16

Wq.5 15:0 Diff_cTpT - sum of differences in top fields of current and previous frame

Format = U16

Wq.4 31:16 Diff_cBpB - sum of differences in bottom field of current and previous frame

Format = U16

Doc Ref #: IHD_OS_V4Pt1_3_10 137

DWord Bit Description

Wq.4 15:0 Diff_cTcB -sum of differences between top and bottom field in current frame.

Format = U16

Wq.3 31:16 Diff_cTpB - sum of differences between current top and previous bottom

Format = U16

Wq.3 15:0 Diff_cBpT - sum of differences between current bottom and previous top.

Format = U16

Wq.2 31:0 Reserved

Wq.1 31:24 Tearing_Count - number of pixels that have (diff_cTcB > diff_cTcT + diff_cBcB)

Format = U8

Wq.1 23:16 Fitting_Count - number of pixels that have (diff_cTcB<=diff_cTcT + diff_cBcB)

Format = U8

Wq.1 15:8 Motion_Count - number of pixels that are moving (different above a threshold)

Format = U8

Wq.1 7:0 Block Noise Estimate

Format = U8

Wq.0 31:24 Denoise History for 4x4 at Y = 15 to 12, X = 3 to 0

Format = U8

Wq.0 23:16 Denoise History for 4x4 at Y = 11 to 8, X = 3 to 0

Wq.0 15:8 Denoise History for 4x4 at Y = 7 to 4, X = 3 to 0

Wq.0 7:0 Denoise History for 4x4 at Y = 3 to 0, X = 3 to 0

Block Noise Estimate/Denoise History block definition: [Gen7+] DI Disabled:

DWord Bit Description

Wq.7 31:16 Y[15:0]

Wq.7 15:0 X[15:0]

Wq.6 31:16 STAD - Sum in time of absolute differences for top 16x4

Format = U16

Wq.6 15:0 SHCM - Sum horizontaly of absolute differences for top 16x4

Format = U16

Wq.5 31:16 SVCM - Sum vertically of absolute differences for top 16x4

Format = U16

Wq.5 15:0 STAD - Sum in time of absolute differences for bottom 16x4

Format = U16

138 Doc Ref #: IHD_OS_V4Pt1_3_10

DWord Bit Description

Wq.4 31:16 SHCM - Sum horizontaly of absolute differences for bottom 16x4

Format = U16

Wq.4 15:0 SVCM - Sum vertically of absolute differences for bottom 16x4

Format = U16

Wq.3 31:0 Reserved

Wq.2 31:8 Reserved

Wq.2 7:0 Block Noise Estimate

Format = U8

Wq.1 31:24 Denoise History for 4x4 at X = 15 to 12, Y = 7 to 4

Format = U8

Wq.1 23:16 Denoise History for 4x4 at X = 11 to 8, Y = 7 to 4

Wq.1 15:8 Denoise History for 4x4 at X = 7 to 4, Y = 7 to 4

Wq.1 7:0 Denoise History for 4x4 at X = 3 to 0, Y = 7 to 4

Wq.0 31:24 Denoise History for 4x4 at X = 15 to 12, Y = 3 to 0

Format = U8

Wq.0 23:16 Denoise History for 4x4 at X = 11 to 8, Y = 3 to 0

Wq.0 15:8 Denoise History for 4x4 at X = 7 to 4, Y = 3 to 0

Wq.0 7:0 Denoise History for 4x4 at X = 3 to 0, Y = 3 to 0

DI Enabled (Only)

This writeback message is returned when the DI Enable field in SAMPLER_STATE is enabled. The response length possibilities
are:

• pre-Gen6 & DN Enabled: 12

• pre-Gen6 & DN Disabled: 9

• Gen6 & DN Enabled: 12

• Gen6 & DN Disabled: 10

• Gen7 & DN Enabled & surface_format == 4:2:2 packed: 12

• Gen7 & DN Enabled & surface_format != 4:2:2 packed: 11

• Gen7 & DN Disabled: 10

Doc Ref #: IHD_OS_V4Pt1_3_10 139

DWord Bit Description

W0 Previous 2nd Field Deinterlaced Luma for Y=0,1

Refer to Luma block above for definition.

W1 Previous 2nd Field Deinterlaced Luma for Y=2,3

W2 Previous 2nd Field Deinterlaced Chroma for Y=0,1

Refer to Chroma block above for definition.

W3 Previous 2nd Field Deinterlaced Chroma for Y=2,3

W4 Current 1st Field Deinterlaced Luma for Y=0,1

W5 Current 1st Field Deinterlaced Luma for Y=2,3

W6 Current 1st Field Deinterlaced Chroma for Y=0,1

W7 Current 1st Field Deinterlaced Chroma for Y=2,3

W8 STMM

Refer to STMM block above for definition.

W9 Block Noise Estimate/Denoise History

Refer to Block Noise Estimate/Denoise History block above for definition.

This register is only included if DN Enable is enabled for pre-Gen6. It is always included for
Gen6+.

W10 Current 2nd Field Luma for 16x2

This register is only included if DN Enable is enabled.

W11 Current 2nd Field Chroma

This register is only included if DN Enable is enabled.

The denoised luma for both the current 1st and 2nd field needs to be written out, but only the 2nd field has a dedicated location.
This is because the denoised data for the 1st field is in the deinterlaced output for the 1st field – Y=0 and Y=2 are the denoised
data, while Y=1 and Y=3 either the deinterlaced lines or copied from the previous or current frame if progressive.

140 Doc Ref #: IHD_OS_V4Pt1_3_10

DI Disabled

This writeback message is returned when the DI Enable field in SAMPLER_STATE is disabled. The DN with DI disabled
responses with a 16x8 block rather than a 16x4 with a response length of 9 for a 4:2:2 input format, or 5 for other formats. Two
denoised luma and chroma fields are combined into an interleaved top/bottom format.

DWord Bit Description

W0 Luma for Y=0 & 1

Refer to Luma block above for definition.

W1 Luma for Y=2 & 3

Refer to Luma block above for definition, but add 2 to Y to get location

W2 Luma for Y=4 & 5

W3 Luma for Y=6 & 7

W4 Block Noise Estimate/Denoise History

Refer to Block Noise Estimate/Denoise History block above for definition.

W5 Chroma for Y=0 & 1

Only sent if input surface format is 4:2:2

W6 Chroma for Y=2 & 3

Only sent if input surface format is 4:2:2

W7 Chroma for Y=4 & 5

Only sent if input surface format is 4:2:2

W8 Chroma for Y=6 & 7

Only sent if input surface format is 4:2:2

Doc Ref #: IHD_OS_V4Pt1_3_10 141

5. Data Port
The Data Port provides all memory accesses for the Gen4 subsystem other than those provided by the sampling engine. These
include render target writes, constant buffer reads, scratch space reads/writes, and media surface accesses.

[Pre-DevSNB]: The diagram below shows the two parts of the Data Port (Read and Write) and how they connect with the caches
and memory subsystem. The execution units and sampling engine are shown for clarity.

Read Data Port

Write Data Port

Sampler Cache

Data Cache

Render Cache

Sampling Engine

Execution
Units

Memory
Subsystem

The kernel programs running in the execution units communicate with the data port via messages, the same as for the other shared
function units. The read and write data ports are considered to be separate shared functions, each with its own shared function
identifier.

5.1 Cache Agents

The kernel programs running in the execution units communicate with the data port via messages, the same as for the other shared
function units. The three data ports are considered to be separate shared functions, each with its own shared function identifier.

5.2 Cache Agents

The data port allows access to memory via various caches. The choice of which cache to use for a given application is dictated by
its restrictions, coherency issues, and how heavily that cache is used for other purposes.

[Pre-DevSNB]: The cache to use is selected by the Target Cache field of the read data port message descriptor. The write data
port message descriptor does not have an equivalent field as it only supports writes to the render cache.

142 Doc Ref #: IHD_OS_V4Pt1_3_10

5.2.1 Render Cache

The render cache is the only cache that supports both reads and writes. All writes must use this cache. In addition, all reads to a
surface that is also being written should use this cache to avoid expensive flushing that would be required for coherency. The
render cache supports both linear and tiled memory.

The render cache is intended to be used for the following surfaces:
• 3D render target surfaces
• destination surfaces for media applications
• intermediate working surfaces for media applications
• scratch space buffers
• streamed vertex buffers

5.2.2 Data Cache

The data cache is a small, read-only cache that supports only linear memory. For 3D graphics, it is intended to be used only for
constant buffers. For media and other generic applications, it may be used to load kernel constants such as filter coefficients as
well as other linear data buffers such as compressed data buffer for HWMC.

In the hardware implementation on all of these devices, the data cache does not exist as a separate physical cache. It is mapped in
hardware to the sampler cache.

5.3 Surfaces

The data elements accessed by the data port are called “surfaces”. There are two models used by the data port to access these
surfaces: surface state model and stateless model.

5.3.1 Surface State Model

The data port uses the binding table to bind indices to surface state, using the same mechanism used by the sampling engine. The
surface state model is used when a Binding Table Index (specified in the message descriptor) of less than 255 is specified. In
this model, the Binding Table Index is used to index into the binding table, and the binding table entry contains a pointer to the
SURFACE_STATE. SURFACE_STATE contains the parameters defining the surface to be accessed, including its location,
format, and size.

This model is intended to be used for constant buffers, render target surfaces, and media surfaces.

5.3.2 Stateless Model

The stateless model is used when a Binding Table Index (specified in the message descriptor) of 255 is specified. In this model,
the binding table is not accessed, and the parameters that define the surface state are overloaded as follows:

Doc Ref #: IHD_OS_V4Pt1_3_10 143

• Surface Type = SURFTYPE_BUFFER
• Surface Format = R32G32B32A32_FLOAT
• Vertical Line Stride = 0
• Surface Base Address = General State Base Address + Immediate Base Address
• Buffer Size = checked only against General State Access Upper Bound
• Surface Pitch = 16 bytes
• Utilize Fence = false
• Tiled = false

This model is primarily intended to be used for scratch space buffers.

5.4 Read/Write Ordering

[Pre-DevSNB]: Hardware does not guarantee ordering between read and write messages issued to the data port, even between
messages issued by the same thread. If ordering is important, software must guarantee ordering. For a write followed by a read
to the same location, the write must use a write commit, and wait for the write commit to return before issuing the read message.
For a read followed by a write to the same location, software must wait for the read data to be returned before issuing the write
message.

144 Doc Ref #: IHD_OS_V4Pt1_3_10

5.5 Accessing Buffers

There are four data port messages used to access buffers. Three of these are used for both constant buffers and scratch space
buffers, the fourth is used by the geometry shader kernel to write to streamed vertex buffers. All of these messages support only
buffers, and can use the surface state model as well as the stateless model.

The following table indicates the intended applications of each of the buffer messages.

Message Applications

OWord Block Read/Write

• constant buffer reads of a single constant or multiple contiguous
constants

• scratch space reads/writes where the index for each pixel/vertex is the
same

• block constant reads, scratch memory reads/writes for media

OWord Dual Block Read/Write
• SIMD4x2 constant buffer reads where the indices of each vertex/pixel are

different (if there are two indices and they are the same, hardware will
optimize the cache accesses and do only one cache access)

• SIMD4x2 scratch space reads/writes where the indices are different.

DWord Scattered Read/Write

• SIMD8/16 constant buffer reads where the indices of each pixel are
different (read one channel per message)

• SIMD8/16 scratch space reads/writes where the indices are different
(read/write one channel per message)

• general purpose DWord scatter/gathering, used by media
Streamed Vertex Buffer Write • geometry shader streaming vertex data out

These messages generally ignore the surface format field of the state and perform no format conversion. The exception is the
Streamed Vertex Buffer Write, which uses the surface format field to determine only how many channels are to be written. The
data contained in each channel is still not converted in any way.

5.6 Accessing Media Surfaces

The Media Block Read/Write message is intended to be used to access 2D media surfaces. The message specifies an X/Y
coordinate into the 2D surface as input. Since this message only supports 2D surfaces, the stateless model cannot be used with
this message.

Doc Ref #: IHD_OS_V4Pt1_3_10 145

5.7 Accessing Render Targets

Render targets are the surfaces that the final results of pixel shaders are written to. The render targets support a large set of
surface formats (refer to surface formats table in Sampling Engine for details) with hardware conversion from the format
delivered by the thread. The render target message also causes numerous side effects, including potentially alpha test, depth test,
stencil test, alpha blend (which normally causes a read of the render target), and other functions. These functions are covered in
the Windower chapter as some of them (depth/stencil test) are also partially done in the Windower.

The render target write messages are specifically for the use of pixel shader threads that are spawned by the windower, and may
not be used by any other threads. This is due to the pixel scoreboard side-effects that sending of this message entails. The pixel
scoreboard ensures that incorrect ordering of reads and writes to the same pixel does not occur.

5.7.1 Single Source

The “normal” render target messages are single source. There are two forms, SIMD16 and SIMD8, intended for the equivalent-
sized pixel shader threads. A single color (4 channels) is delivered for each of the 16 or 8 pixels in the message payload.
Optional depth, stencil, and antialias alpha information can also be delivered with these messages.

The pixel scoreboard bits corresponding to the dispatched pixel mask (or half of the mask in the case of SIMD8 messages) are
cleared only if the Last Render Target Select bit is set in the message descriptor.

5.7.2 Dual Source [DevCL-B, DevCTG+]

Note: Dual Source messages are not supported in DevBW and DevCL-A devices.

The dual source render target messages only have SIMD8 forms due to maximum message length limitations. SIMD16 pixel
shaders must send two of these messages to cover all of the pixels. Each message contains two colors (4 channels each) for each
pixel in the message payload. In addition to the first source, the second source can be selected as a blend factor
(BLENDFACTOR_*_SRC1_* options in the blend factor fields of COLOR_CALC_STATE or BLEND_STATE). Optional
depth, stencil, and antialias alpha information can also be delivered with these messages.

Each dual source message delivered will clear the corresponding pixel scoreboard bits if the Last Render Target Select bit in the
message descriptor is set.

[Pre-DevSNB]: It is UNDEFINED to utilize a DualSource RT Write message when Color Buffer Blend Enable is DISABLED.

5.7.3 Replicate Data

The replicate data render target message is intended to be used for “fast clear” functionality in cases where the color data for each
pixel is identical. This message performs better than the other messages due to its smaller message length. This message does
not support depth, stencil, or antialias alpha data being sent with it. This message must target only tiled memory. Access of
linear memory using this message type is UNDEFINED. The depth buffer can be cleared through the “early depth” function in
conjunction with a pixel shader using this message. Refer to the Windower chapter for more details on the early depth function.

The pixel scoreboard bits corresponding to the dispatched pixel mask are cleared only if the Last Render Target Select bit is set
in the message descriptor.

146 Doc Ref #: IHD_OS_V4Pt1_3_10

5.7.4 Multiple Render Targets (MRT)

Multiple render targets are supported with the single source and replicate data messages. Each render target is accessed with a
separate Render Target Write message, each with a different surface indicated (different binding table index). The depth buffer is
written only by the message(s) to the last render target, indicated by the Last Render Target Select bit set to clear the pixel
scoreboard bits.

5.8 Flushing the Render Cache [Pre-DevSNB]

5.9 State

5.9.1 BINDI NG_TABLE_STATE

The data port uses the binding table to retrieve surface state. Refer to Sampling Engine for the definition of this state.

5.9.2 SURFACE_STATE

The data port uses the surface state for constant buffers, render targets, and media surfaces. Refer to Sampling Engine for the
definition of this state.

5.10 Messag es

5.10.1 Global Definitions

For data port messages, part of the message descriptor is used to determine the message type. This field is documented here. The
remainder of the message descriptor is defined differently depending on the message type, and is documented in the section for
the corresponding message.

[Pre-DevSNB]: The Data Port is actually two separate targets, Data Port Read and Data Port Write, each with its own target
unit ID. Each target has its own set of message type encodings as shown below.

Restrictions:
• [DevBW-A,B,C0, DevCL-A0] Errata: use of any Sampling Engine message in the same workload (between pipeline

flushes) with any Data Port read messages utilizing the Sampler Cache is not allowed.
• Data port messages may not have the End of Thread bit set in the message descriptor other than the following

exeptions:
o The Render Target Write message may have End of Thread set for pixel shader threads dispatched by the

windower in non-contiguous dispatch mode.
o The Render Target UNORM Write message may have End of Thread set for pixel shader threads dispatched

by the windower in contiguous dispatch mode.

Doc Ref #: IHD_OS_V4Pt1_3_10 147

5.10.2 Data Port Messages

Most of the messages have an existing definition that is not expected to change. There are several new messages that are
documented here.

Data Cache Data Port Message Summary
Message Type Header

Required
Shared Local

Memory
Support

Stateless
Support

Address Modes Vector
Width

OWord Block Read yes no yes global 1

OWord Block Write yes no yes global 1

Unaligned OWord Block Read yes no yes global 1

OWord Dual Block Read no no yes global + offset 2

OWord Dual Block Write no no yes global + offset 2

DWord Scattered Read no no yes global + offset 8, 16

DWord Scattered Write no no yes global + offset 8, 16

Byte Scattered Read no yes no global + offset 8, 16

Byte Scattered Write no yes no global + offset 8, 16

Untyped Surface Read no yes no 1D or 2D 2, 8, 16

Untyped Surface Write no yes no 1D or 2D 8, 16

Untyped Atomic Operation no yes no 1D or 2D 8, 16

Scratch Block Read yes no yes (only) Imm_Buf + offset

Scratch Block Write yes no yes (only) Imm_Buf + offset

Memory Fence yes N/A N/A N/A N/A

“global” is the Global Offset in the message header (if header is not present, Global Offset is zero).
“imm_buf” is the Immediate Buffer Base Address provided in message header register M0.5.
“offset” is in the message payload, and is per-slot.
“handle” is the handle address in the message header.
“URBoffset” is the Global Offset field in the URB message descriptor.
“1D” and “2D” are the address payload.

Render Cache Data Port Message Summary
Message Type Header

Required
Address Modes Vector

Width
Media Block Read yes 2D 1

Media Block Write yes 2D 1

Render Target Write no 2D + RTAI 8, 16

Typed Surface Read yes 1D, 2D, 3D, 4D 8

Typed Surface Write yes 1D, 2D, 3D, 4D 8

Typed Atomic Operation yes 1D, 2D, 3D, 4D 8

Memory Fence yes N/A N/A

“4D” address refers to U/V/R/LOD for mip-mapped surfaces
“2D + RTAI” address refers to a basic 2D address with render target array index for the third dimension

148 Doc Ref #: IHD_OS_V4Pt1_3_10

5.10.2.1 Message Descriptor

5.10.2.1.1 [DevBW] and [DevCL]

The following message descriptor definition applies to [DevBW] and [DevCL].
Bit De scription

DATA PORT READ TARGET DATA PORT WRITE TARGET

15:14 Target Cache

00: Data Cache

01: Render Cache

10: Sampler Cache

11: Reserved

15 Send Write Commit Message. Indicates that
a write commit message will be sent back to
the thread when the write has been
committed.

Format = Enable

13:12 Read Message Type

00: OWord Block Read

01: OWord Dual Block Read

10: Media Block Read

11: DWord Scattered Read

14:12 Write Message Type

000: OWord Block Write

001: OWord Dual Block Write

010: Media Block Write

011: DWord Scattered Write

100: Render Target Write

101: Streamed Vertex Buffer Write

111: Flush Render Cache

All other encodings are reserved.

11:8 Message Specific Control. Refer to the specific message section for the definition of these bits.

Doc Ref #: IHD_OS_V4Pt1_3_10 149

5.10.2.1.2 [Dev ILK]

The following message descriptor definition applies to [DevILK].
Bit De scription

19 Header Present
This bit must be set to one for all Data Port messages.

18:16 Ignored

DATA PORT READ TARGET DATA PORT WRITE TARGET

15:14 Target Cache

00: Data Cache

01: Render Cache

10: Sampler Cache

11: Sampler Cache Field Mode (This mode
indicates that the Sample Cache is
allocated with field cache lines. This mode
is only allowed if the resulting Vertical Line
Stride, from surface state or being
overridden by this message, is 1. Thus,
it can only be used for Media Block
Read message from Sampler Cache.)

15 Send Write Commit Message. Indicates that
a write commit message will be sent back to
the thread when the write has been
committed.

Format = Enable

13:11 Read Message Type

000: OWord Block Read

010: OWord Dual Block Read

100: Media Block Read

110: DWord Scattered Read

001: Render Target UNORM Read

011: AVC Loop Filter Read

All other encodings are reserved.

14:12 Write Message Type

000: OWord Block Write

001: OWord Dual Block Write

010: Media Block Write

011: DWord Scattered Write

100: Render Target Write

101: Streamed Vertex Buffer Write

110: Render Target UNORM Write

111: Flush Render Cache

10:8 Message Sp ecific Co ntrol. Refer to the
specific message section for the definition
of these bits.

11:8 Message Sp ecific Co ntrol. Refer to the
specific message section for the definition of
these bits.

7:0 Binding Table Index. Specifies the index into the binding table for the specified surface. A binding
table index of 255 indicates that a stateless model is to be used. Refer to section 5.3.2 for details on
the stateless model.

[ILK] BindingTableIndex[3:0] cannot be "0000" for any Data Port Transactions when GS
Enable bit is set in 3DSTATE_PIPELINED_POINTERS and GS Pass Through Enable in
GS_STATE is cleared.

Format = U8

Range = [0,255]

150 Doc Ref #: IHD_OS_V4Pt1_3_10

5.10.2.2 Message Header

This header applies to the following data port messages:
• OWord Block Read/Write
• Unaligned OWord Block Read
• OWord Dual Block Read/Write
• DWord Scattered Read/Write

The header definitions for the other data port messages is in the section for each message

Doc Ref #: IHD_OS_V4Pt1_3_10 151

DWord Bit Description

M0.5 31:10 Immediate Buffer Base Address. Specifies the surface base address for messages in
which the Binding Table Index is 255 (stateless model), otherwise this field is ignored. This
pointer is relative to the General State Base Address.

Format = GeneralStateOffset[31:10]

 9:8 Ignored

 7:0 Dispatch ID. This ID is assigned by the fixed function unit and is a unique identifier for the
thread. It is used to free up resources used by the thread upon thread completion.

M0.4 31:0 Ignored (reserved for hardware delivery of binding table pointer)

M0.3 31:0 Ignored

M0.2 31:0 Global Offset.

[Pre-DevSNB]:

Specifies the global byte offset into the buffer.

• For the OWord messages, this offset must be OWord aligned (bits 3:0 MBZ)

• For the DWord messages, this offset must be DWord aligned (bits 1:0 MBZ)

Format = U32

Range = [0,FFFFFFF0h] for OWord messages

Range = [0,FFFFFFFCh] for DWord messages

M0.1 31:0 Ignored

M0.0 31:0 Ignored

152 Doc Ref #: IHD_OS_V4Pt1_3_10

5.10.2.3 Write Commit Writeback Message

The writeback message is only sent on Data Port Write messages if the Send Write Commit Message bit in the message
descriptor is set. The destination register is not modified. Write messages without the Send Write Commit Message bit set will
not return anything to the thread (response length is 0 and destination register is null).

DWord Bit Description

W0.7:0 Reserved

5.10.3 OWord Block Read/Write

This message takes one offset (Global Offset), and reads or writes 1, 2, 4, or 8 contiguous OWords starting at that offset.

Restrictions:
• the only surface type allowed is SURFTYPE_BUFFER.
• the surface format is ignored, data is returned from the constant buffer to the GRF without format conversion.
• the surface pitch is ignored, the surface is treated as a 1-dimensional surface. An element size (pitch) of 16 bytes is used

to determine the size of the buffer for out-of-bounds checking if using the surface state model.
• the surface cannot be tiled
• the surface base address must be OWord aligned
• the Render Cache Read Write Mode field in SURFACE_STATE must be set to read/write mode when using this

message with the render cache in the surface state model
• the Stateless Render Cache Read-Write Mode field in the SVG_WORK_CTL register must be set to read/write mode

when using this message with the render cache in the stateless model

Applications:
• constant buffer reads of a single constant or multiple contiguous constants
• scratch space reads/writes where the index for each pixel/vertex is the same
• block constant reads, scratch memory reads/writes for media

Execution Mask. The low 8 bits of the execution mask are used to enable the 8 channels in the first and third GRF registers
returned (W0, W2) for read, or the first and third write registers sent (M1, M3). The high 8 bits are used similarly for the second
and fourth (W1, W3 or M2, M4). For reads, any mask bit asserted within a group of four will cause the entire OWord to be read
and returned to the destination GRF register. For writes, each mask bit is considered for its corresponding DWord written to the
destination surface.

For the 1-OWord messages, only the low 8 bits of the execution mask are used. Either the low 4 bits or the high 4 bits, depending
on the position of the OWord to be read or written, is used as the single group of four with behavior following that in the
preceding paragraph. [DevBW,DevCL] errata: Execution mask bits outside of those corresponding to the OWord being
read/written cannot be asserted.

The above behavior enables a SIMD16 thread to use the 8-OWord form of this message to access two channels (red and green) of
a single scratch register across 16 pixels. A second message would access the other two channels (blue and alpha). The
execution mask is used to ensure that data associated with inactive pixels are not overwritten.

Doc Ref #: IHD_OS_V4Pt1_3_10 153

Out-of-Bounds Accesses. Reads to areas outside of the surface return 0. Writes to areas outside of the surface are dropped and
will not modify memory contents.

5.10.3.1 Message Descriptor

Bit De scription

11 Ignored ([DevCTG]: this bit is part of the Read Message Type field for the read version of this
message)

10:8 Block Size. Specifies the number of contiguous OWords to be read or written

000: 1 OWord, read into or written from the low 128 bits of the destination register

001: 1 OWord, read into or written from the high 128 bits of the destination register

010: 2 OWords

011: 4 OWords

100: 8 OWords

all other encodings are reserved.

Programming Notes:

• The 6 OWord block size is valid only with Data Port Constant Cache.

154 Doc Ref #: IHD_OS_V4Pt1_3_10

5.10.3.2 Message Payload (Write)

For the write operation, the message payload consists of one, two, or four registers (not including the header) depending on the
Block Size specified in the message. For the one-constant case, data is taken from either the high or low half of the payload
register depending on the half selected in Block Size. In this case, the other half of the payload register is ignored.

The Offset referred to below is the Global Offset and is in units of OWords (discard low 4 bits). The OWord array index is also
in units of OWords.

DWord Bit Description

M1.7:4 127:0 OWord[Offset + 1]. If the block size is 1 OWord to be written from the high 128 bits of the
destination, OWord[Offset] will appear in this location

M1.3:0 127:0 OWord[Offset]

M2.7:4 127:0 OWord[Offset+3]

M2.3:0 127:0 OWord[Offset+2]

M3.7:4 127:0 OWord[Offset+5]

M3.3:0 127:0 OWord[Offset+4]

M4.7:4 127:0 OWord[Offset+7]

M4.3:0 127:0 OWord[Offset+6]

Doc Ref #: IHD_OS_V4Pt1_3_10 155

5.10.3.3 Writeback Message (Read)

For the read operation, the writeback message consists of one, two, three, or four registers depending on the Block Size specified
in the message. For the one-constant case, data is placed in either the high or low half of the returned register depending on the
half selected in Block Size. In this case, the other half of the register is not changed.

The Offset referred to below is the Global Offset and is in units of OWords (discard low 4 bits). The OWord array index is also
in units of OWords.

DWord Bit Description

W0.7:4 127:0 OWord[Offset + 1]. If the block size is 1 OWord to be loaded into the high 128 bits of the
destination, OWord[Offset] will appear in this location

W0.3:0 127:0 OWord[Offset]

W1.7:4 127:0 OWord[Offset+3]

W1.3:0 127:0 OWord[Offset+2]

W2.7:4 127:0 OWord[Offset+5]

W2.3:0 127:0 OWord[Offset+4]

W3.7:4 127:0 OWord[Offset+7]

W3.3:0 127:0 OWord[Offset+6]

of the surface return 0.

5.10.3.4 Message Descriptor

Bit De scription

12:11 Ignored

10:8 Block Size. Specifies the number of contiguous OWords to be read

000: 1 OWord, read into the low 128 bits of the destination register

001: 1 OWord, read into the high 128 bits of the destination register

010: 2 OWords

011: 4 OWords

100: 8 OWords

all other encodings are reserved.

156 Doc Ref #: IHD_OS_V4Pt1_3_10

5.10.3.5 Writeback Message (Read)

For the read operation, the writeback message consists of one, two, or four registers depending on the Block Size specified in the
message. For the one-constant case, data is placed in either the high or low half of the returned register depending on the half
selected in Block Size. In this case, the other half of the register is not changed.

The Global Offset is in units of Bytes, aligned to DWord (two LSBs set to zero). The OWordX array in units of OWord starts
at Global Offset.

DWord Bit Description

W0.7:4 127:0 OWord1 = *(&OWord0 + 1). If the block size is 1 OWord to be loaded into the high 128 bits
of the destination, OWord0 will appear in this location

W0.3:0 127:0 OWord0 = Buffer[Global Offset]

W1.7:4 127:0 OWord3 = *(&OWord2 + 1)

W1.3:0 127:0 OWord2 = *(&OWord1 + 1)

W2.7:4 127:0 OWord5= *(&OWord4 + 1)

W2.3:0 127:0 OWord4 = *(&OWord3 + 1)

W3.7:4 127:0 OWord7 = *(&OWord6 + 1)

W3.3:0 127:0 OWord6 = *(&OWord5 + 1)

5.10.4 OWord Dual Block Read/Write

This message takes two offsets, and reads or writes 1 or 4 contiguous OWords starting at each offset. The Global Offset is added
to each of the specific offsets.

Programming Restrictions: Writes to overlapping addresses will have undefined write ordering.

Restrictions:
• the only surface type allowed is SURFTYPE_BUFFER.
• the surface format is ignored, data is returned from the constant buffer to the GRF without format conversion.
• the surface pitch is ignored, the surface is treated as a 1-dimensional surface. An element size (pitch) of 16 bytes is used

to determine the size of the buffer for out-of-bounds checking if using the surface state model.
• the surface cannot be tiled
• the surface base address must be OWord aligned
• the Render Cache Read Write Mode field in SURFACE_STATE must be set to read/write mode when using this

message with the render cache in the surface state model
• the Stateless Render Cache Read-Write Mode field in the SVG_WORK_CTL register must be set to read/write mode

when using this message with the render cache in the stateless model
Applications:

• SIMD4x2 constant buffer reads where the indices of each vertex/pixel are different (if there are two indices and they are
the same, hardware will optimize the cache accesses and do only one cache access)

• SIMD4x2 scratch space reads/writes where the indices are different

Execution Mask. The low 8 bits of the execution mask are used to enable the 8 channels in the GRF registers returned for read,
or each of the write registers sent. For reads, any mask bit asserted within a group of four will cause the entire OWord to be read

Doc Ref #: IHD_OS_V4Pt1_3_10 157

and returned to the destination GRF register. For writes, each mask bit is considered for its corresponding DWord written to the
destination surface.

Out-of-Bounds Accesses. Reads to areas outside of the surface return 0. Writes to areas outside of the surface are dropped and
will not modify memory contents.

5.10.4.1 Message Descriptor

Bit De scription

11:10 Ignored ([DevCTG]: bit 11 is part of the Read Message Type field for the read version of this
message)

9:8 Block Size: Specifies the number of OWords in each block to be read or written

00: 1 OWord
10: 4 OWords

all other encodings are reserved.

5.10.4.2 Message Payload

DWord Bit Description

M1.7 31:0 Ignored
M1.6 31:0 Ignored
M1.5 31:0 Ignored
M1.4 31:0 Block Offset 1.

[Pre-DevSNB]:
Specifies the byte offset of OWord Block 1 into the surface. Must be OWord aligned (bits
3:0 MBZ).
Format = U32
Range = [0,FFFFFFF0h]

M1.3 31:0 Ignored
M1.2 31:0 Ignored
M1.1 31:0 Ignored
M1.0 31:0 Block Offset 0

158 Doc Ref #: IHD_OS_V4Pt1_3_10

5.10.4.3 Additional Message Payload (Write)

For the write operation, the message payload consists of one or four registers (not including the header or the first part of the
payload) depending on the Block Size specified in the message.

The Offset1/0 referred to below is the Global Offset added to the corresponding Block Offset 1/0 and is in units of OWords
(discard low 4 bits for [Pre-DevSNB]). The OWord array index is also in units of OWords.

DWord Bit Description

M2.7:4 127:0 OWord[Offset1]
M2.3:0 127:0 OWord[Offset0]
M3.7:4 127:0 OWord[Offset1+1]
M3.3:0 127:0 OWord[Offset0+1]
M4.7:4 127:0 OWord[Offset1+2]
M4.3:0 127:0 OWord[Offset0+2]
M4.7:4 127:0 OWord[Offset1+3]
M4.3:0 127:0 OWord[Offset0+3]

5.10.4.4 Writeback Message (Read)

For the read operation, the writeback message consists of one or four registers depending on the Block Size specified in the
message.

The Offset1/0 referred to below is the Global Offset added to the corresponding Block Offset 1/0 and is in units of OWords
(discard low 4 bits for [Pre-DevSNB]). The OWord array index is also in units of OWords.

DWord Bit Description

W0.7:4 127:0 OWord[Offset1]

W0.3:0 127:0 OWord[Offset0]

W1.7:4 127:0 OWord[Offset1+1]

W1.3:0 127:0 OWord[Offset0+1]

W2.7:4 127:0 OWord[Offset1+2]

W2.3:0 127:0 OWord[Offset0+2]

W3.7:4 127:0 OWord[Offset1+3]

W3.3:0 127:0 OWord[Offset0+3]

Doc Ref #: IHD_OS_V4Pt1_3_10 159

5.10.5 Media Block Read/Write

The read form of this message enables a rectangular block of data samples to be read from the source surface and written into the
GRF. The write form enables data from the GRF to be written to a rectangular block.

Restrictions:
• the only surface type allowed is non-arrayed, non-mipmapped SURFTYPE_2D. Because of this, the stateless surface

model is not supported with this message.
• the surface format is used to determine the pixel structure for boundary clamp, the raw data from the surface is returned

to the thread without any format conversion nor filtering operation
• the target cache cannot be the data cache
• the surface base address must be 32-byte aligned
• When a surface is XMajor tiled, (tile walk field in the surface state is set to TILEWALK_XMAJOR), a memory area

mapped through the Render Cache cannot be read and/or wrote in mixed frame and field modes. For example, if a
memory location is first written with a zero Vertical Line Stride (frame mode), and later on (without render cache flush)
read back using Vertical Line Stride of one (field mode), the read data stored in GRF are uncertain.

• The block width and offset should be aligned to the size of pixels stored in the surface. For a surface with 8bpp pixels for
example, the block width and offset can be byte aligned. For a surface with 16bpp pixels, it is word aligned.

o For YUV422 formats, the block width and offset must be pixel pair aligned (i.e. dword aligned).
• The write form of message has the additional restriction that both X Offset and Block Width must be DWord aligned.
• [DevBW, DevCL] The read form of message also has the additional restriction that both X Offset and Block Width

must be DWord aligned.
• [DevBW-A] Erratum BWT001: Surfaces being read with this message by the render cache must be tiled. Writes to

linear surfaces are allowed.
• [DevBW-A] Erratum: A memory area mapped through the Render Cache cannot be read and/or wrote in mixed frame

and field modes.
• When Color Processing is enabled for media write message. Render target must be tiled.

Applications:
• Block reads/writes for media

Execution Mask. The execution mask on the send instruction for this type of message is ignored. The data that is read or written
is determined completely by the block parameters.
Out-of-Bounds Accesses. Reads outside of the surface results in the address being clamped to the nearest edge of the surface and
the pixel in the position being returned. Writes outside of the surface are dropped and will not modify memory contents.

Determining the boundary pixel value depends on the surface format. Surface format definitions can be found in the Surface
Formats Section of the Sampling Engine Chapter.

• For a surface with 8bpp pixels, the boundary byte is replicated. For example, for a boundary dword B0B1B2B3, to
replicate the left boundary byte pixel, the out of bound dwords have the format of B0B0B0B0, and that for right
boundary is B3B3B3B3.

o This rule applies to all surface formats with BPE of 8. As the data port does not perform format conversion, the
most likely used surface formats are R8_UINT and R8_SINT.

• For any other surfaces with 16bpp pixels, boundary pixel replication is on words. For example, for a boundary dword
B0B1B2B3, to replicate the left boundary word pixel, the out of bound dwords have the format of B0B1B0B1, and that
for right boundary is B2B3B2B3.

160 Doc Ref #: IHD_OS_V4Pt1_3_10

o This rule applies to all surface formats with BPE of 16. As the data port does not perform format conversion,
only the formats with integer data types may be useful in practice.

• For special surfaces with 16bpp pixels YUV422 packed format, there are two basic cases depending on the Y location:
YUYV (surface format YCRCB_NORMAL) and UYVY (surface format YCRCB_SWAPY). Boundary handling for
YVYU (surface format YCRCB_SWAPUV) is the same as that for YUYV. Similarly, boundary handling for VYUY
(surface format YCRCB_SWAPUVY) is the same as that for UYVY. Note that these four surface formats have 16bpp
pixels, even though the BPE fields are set to zero according to the table in the Surface Formats Section.

o For a boundary dword Y0U0Y1V0, to replicate the left boundary, we get Y0U0Y0V0, and to replicate the right
boundary, we get Y1U0Y1V0.

o For a boundary dword U0Y0V0Y1, to replicate the left boundary, we get U0Y0V0Y0, and to replicate the right
boundary, we get U0Y1V0Y1.

• For a surface with 32bpp pixels, the boundary dword pixel is replicated.

o This rule applies to all surface formats with BPE of 32. As the data port does not perform format conversion,
some of the formats may not be useful in practice.

Hardware behavior for any other surface types is undefined.

When Color Processing Enable is set to 1 and the IECP output surface to be written is NV12 format (R16_UNORM
surface format 0x10A, should be used if the output surface is NV12 format).

1. NV12 surface state : The width of the surface should be always multiples of 4pixels. For 16bpp input message
(422 8-bit) the width will always need to be in multiples of 8bytes and for 32bpp input message (422 16-bit or
444 8-bit) the width should be in multiples of 16bytes. Height should be in multiples of 2pixel high. (presently
the MFX restriction is that width should be in multiples of 2pixels).

a. y-offset of the media block write from the EU should be always even

b. x-offset of the media block write from the EU should be in multiples of 4 pixel.

2. The media block dword write can have only the following combinations (for IECP when NV12 output format
is used):

a. 8pixel wide for 422 8-bit mode

b. 4pixel wide for 422 8-bit mode

c. 4pixel wide for 422 16-bit

d. 4pixel wide for 444 8-bit.

e. 444 16-bit input format cannot be supported when the output format is NV12 (s/w should not use this
combination).

f. It has to be in multiples of 2pixel high for all above modes.

3. If 444-format is used then we use only the pixel_0 UV values of the 2x2 pixel and the rest are dropped and in
case of 422-format the top UV values are used and the bottom UV values is dropped if the output format is
NV12 format.

4. Assuming IECP messages will always have vertical stride = 0. (since this is only for pre-processing before the
encoder).

Doc Ref #: IHD_OS_V4Pt1_3_10 161

5.10.5.1 Message Descriptor

Bit Description

13 Reserved: MBZ

12 Reserved : MBZ

 [Pre-DevSNB]: this bit is part of the Message Type fields

11 Reserved : MBZ

[DevCTG,ILK]: this bit is part of the Read Message Type field for the read version of this
message

10 Vertical Line Stride Override

Specifies whether the Vertical Line Stride and Vertical Line Stride Offset fields in the
surface state should be replaced by bits 9 and 8 below.

If this field is 1, Height in the surface state (see SURFACE_STATE section of Sampling Engine
chapter) is modified according the following rules:

Vertical Line
Stride

(in surface state)

Override
Vertical Line
Stride

Derived 1-based surface height

(As a function of the 0-based Height in surface
state)

0 0 Height + 1

(Normal)

0 1 (Height +1) / 2

Restriction: (Height + 1) must be an even
number.

1 0 (Height + 1) * 2

1 1 Height + 1

(Normal)

For example, for a 720x480 standard resolution video buffer, if Vertical Line Stride in surface
state is 0, i.e. a frame, Height (of the frame) should be 479. When accessing the bottom field of
this frame video buffer, both Override Vertical Line Stride and Override Vertical Line Stride
Offset will be set to 1, then the derived surface height (of the field) will be 240 ((Height + 1) / 2).
In contrary, if Vertical Line Stride in surface state is 1 and Vertical Line Stride Offset in surface
state is 0, the surface state represents the top field of the video buffer. In this case, Height (of
the top field) should be programmed as 239. Accessing the bottom video field will use the same
surface height of 240. Accessing the video frame (with Override Vertical Line Stride and
Override Vertical Line Stride Offset set to 0) will result in a derived surface height of 480
((Height + 1) * 2).

0 -- Use parameters in the surface state and ignore bits 9:8

1 -- Use bits 9:8 to provide the Vertical Line Stride and Vertical Line Stride Offset

[DevBW-A] Erratum: This field is ignored by hardware.

9 Override Vertical Line Stride

Specifies number of lines (0 or 1) to skip between logically adjacent lines – provides support of
interleaved (field) surfaces as textures.

Format = U1 in lines to skip between logically adjacent lines

[DevBW-A] Erratum: This field is ignored by hardware.

162 Doc Ref #: IHD_OS_V4Pt1_3_10

Bit Description

13 Reserved: MBZ

8 Override Vertical Line Stride Offset

Specifies the offset of the initial line from the beginning of the buffer. Ignored when Override
Vertical Line Stride is 0.

Format = U1 in lines of initial offset (when Vertical Line Stride == 1)

[DevBW-A] Erratum: This field is ignored by hardware.

Doc Ref #: IHD_OS_V4Pt1_3_10 163

5.10.5.2 Message Header

DWord Bit Description

M0.5 31:8 Ignored

 7:0 FFTID. This ID is assigned by the fixed function unit and is a unique identifier for the
thread. It is used to free up resources used by the thread upon thread completion.

M0.4 31:0 Ignored (reserved for hardware delivery of binding table pointer)

The following M0.2 definition applies only if the Message Mode field is set to NORMAL:

M0.2 31:22 Ignored

 21:16 Block Height. Height in rows of block being accessed.

Programming Notes:

• The Block Height is restricted to the following maximum values depending on the
Block Width:

Block Width (bytes) Maximum Block Height (rows)

1-4 64

5-8 32

9-16 16

17-32 8

Format = U6

Range = [0,63] representing 1 to 64 rows

 15:5 Ignored

 4:0 Block Width. Width in bytes of the block being accessed.

Programming Notes:

• Must be DWord aligned for the write form of the message.

• [DevBW, DevCL] This field must also be DWord aligned for the read form of the
message.

Format = U5

Range = [0,31] representing 1 to 32 Bytes

M0.1 31:0 Y offset. The Y offset of the upper left corner of the block into the surface.

Format = S31

Programming Notes:

If Message Mode is set to PIXEL_MASK, this field must be a multiple of 4

164 Doc Ref #: IHD_OS_V4Pt1_3_10

DWord Bit Description

M0.0 31:0 X offset. The X offset of the upper left corner of the block into the surface.

Must be DWord aligned (Bits 1:0 MBZ) for the write form of the message.

The X offset field defines the offset in the input message block. This may differ from the
offset in the surface if Color Processing is enabled due to format conversion.

[DevBW, DevCL] This field must also be DWord aligned for the read form of the message.

Format = S31

Programming Notes:

If Message Mode is set to PIXEL_MASK, this field must be a multiple of 32

5.10.5.3 Message Payload (Write)

DWord Bit Description

M1:n Write Data. The format of the write data depends on the Block Height and Block Width.
The data is aligned to the least significant bits of the first register, and the register pitch is
equal to the next power-of-2 that is greater than or equal to the Block Width.

If Color Processing Enable is enabled, the write data is divided into pixels according to the Message Format field. The fields
within each pixel are defined below. For the 4:2:2 modes, each pixel position includes channels for two pixels.

Message Format 31:24 23:16 15:8 7:0

YUV 4:2:2, 8 bits per channel Cr (V) right pixel lum (Y1) Cb (U) left pixel lum (Y0)

YUV 4:4:4, 8 bits per channel alpha (A) luminance (Y) Cb (U) Cr (V)

 63:48 47:32 31:16 15:0

YUV 4:2:2, 16 bits per channel Cr (V) right pixel lum (Y1) Cb (U) left pixel lum (Y0)

YUV 4:4:4, 16 bits per channel alpha (A) Cr (V) luminance (Y) Cb (U)

5.10.5.4 Writeback Message (Read)

DWord Bit Description

W0:n Read Data. The format of the read data depends on the Block Height and Block Width.
The data is aligned to the least significant bits of the first register, and the register pitch is
equal to the next power-of-2 that is greater than or equal to the Block Width.

Doc Ref #: IHD_OS_V4Pt1_3_10 165

5.10.6 DWord Scattered Read/Write

This message takes a set of offsets, and reads or writes 8 or 16 scattered DWords starting at each offset. The Global Offset is
added to each of the specific offsets.

Programming Restrictions: Writes to overlapping addresses will have undefined write ordering.

For read messages with X/Y offsets that are outside the bounds of the surface, the address is clamped to the nearest edge of the
surface. For write messages with X/Y offsets that are outside the bounds of the surface, the behavior is undefined.

Restrictions:
• the only surface type allowed is SURFTYPE_BUFFER.
• the surface format is ignored, data is returned from the constant buffer to the GRF without format conversion.
• the surface pitch is ignored, the surface is treated as a 1-dimensional surface. An element size (pitch) of 16 bytes is used

to determine the size of the buffer for out-of-bounds checking if using the surface state model.
• the surface cannot be tiled
• the surface base address must be DWord aligned
• the Render Cache Read Write Mode field in SURFACE_STATE must be set to read/write mode when using this

message with the render cache in the surface state model
• the Stateless Render Cache Read-Write Mode field in the SVG_WORK_CTL register must be set to read/write mode

when using this message with the render cache in the stateless model
Applications:

• SIMD8/16 constant buffer reads where the indices of each pixel are different (read one channel per message)
• SIMD8/16 scratch space reads/writes where the indices are different (read/write one channel per message)
• general purpose DWord scatter/gathering, used by media

Execution Mask. Depending on the block size, either the low 8 bits or all 16 bits of the execution mask are used to determine
which DWords are read into the destination GRF register (for read), or which DWords are written to the surface (for write).

Out-of-Bounds Accesses. Reads to areas outside of the surface return 0. Writes to areas outside of the surface are dropped and
will not modify memory contents.

5.10.6.1 Message Descriptor

Bit De scription

13 Invalidate After Read Enable

Enabling this field is intended for scratch and spill/fill, where the memory is used only by a single
thread and thus does not need to be maintained after the thread completes.

Format = Enable

11:10 Ignored ([DevCTG]: bit 11 is part of the Read Message Type field for the read version of this
message)

166 Doc Ref #: IHD_OS_V4Pt1_3_10

Bit De scription

13 Invalidate After Read Enable

Enabling this field is intended for scratch and spill/fill, where the memory is used only by a single
thread and thus does not need to be maintained after the thread completes.

Format = Enable

9:8 Block Size. Specifies the number of DWords to be read or written

10: 8 DWords

11: 16 DWords

All other encodings are reserved.

5.10.6.2 Message Payload

DWord Bit Description

M1.7 31:0 Offset 7.

[Pre-DevSNB]:

Specifies the byte offset of DWord 7 into the surface. Must be DWord aligned (bits 1:0
MBZ).

Format = U32

Range = [0,FFFFFFFCh]

M1.6 31:0 Offset 6

M1.5 31:0 Offset 5

M1.4 31:0 Offset 4

M1.3 31:0 Offset 3

M1.2 31:0 Offset 2

M1.1 31:0 Offset 1

M1.0 31:0 Offset 0

M2.7 31:0 Offset 15. This message register is included only if the block size is 16 DWords.

M2.6 31:0 Offset 14

M2.5 31:0 Offset 13

M2.4 31:0 Offset 12

M2.3 31:0 Offset 11

M2.2 31:0 Offset 10

M2.1 31:0 Offset 9

M2.0 31:0 Offset 8

Doc Ref #: IHD_OS_V4Pt1_3_10 167

5.10.6.3 Additional Message Payload (Write)

For the write operation, either one or two additional registers (depending on the block size) of payload contain the data to be
written.

The Offsetn referred to below is the Global Offset added to the corresponding Offset n and is in units of DWords (discard low 2
bits for [Pre-DevSNB]). The DWord array index is also in units of DWords.

DWord Bit Description

M3.7 31:0 DWord[Offset7]

M3.6 31:0 DWord[Offset6]

M3.5 31:0 DWord[Offset5]

M3.4 31:0 DWord[Offset4]

M3.3 31:0 DWord[Offset3]

M3.2 31:0 DWord[Offset2]

M3.1 31:0 DWord[Offset1]

M3.0 31:0 DWord[Offset0]

M4.7 31:0 DWord[Offset15]. This message register is included only if the block size is 16 DWords

M4.6 31:0 DWord[Offset14]

M4.5 31:0 DWord[Offset13]

M4.4 31:0 DWord[Offset12]

M4.3 31:0 DWord[Offset11]

M4.2 31:0 DWord[Offset10]

M4.1 31:0 DWord[Offset9]

M4.0 31:0 DWord[Offset8]

168 Doc Ref #: IHD_OS_V4Pt1_3_10

5.10.6.4 Writeback Message (Read)

For the read operation, the writeback message consists of either one or two registers depending on the block size.

The Offsetn referred to below is the Global Offset added to the corresponding Offset n and is in units of DWords (discard low 2
bits for [Pre-DevSNB]). The DWord array index is also in units of DWords.

DWord Bit Description

W0.7 31:0 DWord[Offset7]

W0.6 31:0 DWord[Offset6]

W0.5 31:0 DWord[Offset5]

W0.4 31:0 DWord[Offset4]

W0.3 31:0 DWord[Offset3]

W0.2 31:0 DWord[Offset2]

W0.1 31:0 DWord[Offset1]

W0.0 31:0 DWord[Offset0]

W1.7 31:0 DWord[Offset15]. This writeback message register is included only if the block size is 16
DWords.

W1.6 31:0 DWord[Offset14]

W1.5 31:0 DWord[Offset13]

W1.4 31:0 DWord[Offset12]

W1.3 31:0 DWord[Offset11]

W1.2 31:0 DWord[Offset10]

W1.1 31:0 DWord[Offset9]

W1.0 31:0 DWord[Offset8]

Doc Ref #: IHD_OS_V4Pt1_3_10 169

5.10.7 Render Target Write

This message takes four subspans of pixels for write to a render target. Depending on parameters contained in the message and
state, it may also perform a depth and stencil buffer write and/or a render target read for a color blend operation. Additional
operations enabled in the Color Calculator state will also be initiated as a result of issuing this message (depth test, alpha test,
logic ops, etc.). This message is intended only for use by pixel shader kernels for writing results to render targets.

Restrictions:
• All surface types are allowed.
• Dual Source messages are not supported on DevBW and DevCL-A
• For SURFTYPE_BUFFER and SURFTYPE_1D surfaces, only the X coordinate is used to index into the surface. The Y

coordinate must be zero.
• For SURFTYPE_1D, 2D, 3D, and CUBE surfaces, a Render Target Array Index is included in the input message to

provide an additional coordinate. The Render Target Array Index must be zero for SURFTYPE_BUFFER.
• The surface format is restricted to the set supported as render target. If source/dest color blend is enabled, the surface

format is further restricted to the set supported as alpha blend render target.
• Only one pair of dual source messages is allowed per thread, as these messages implicitly clear the pixel scoreboard. In

addition, a thread sending dual source messages is not allowed to send any other render target write messages.
• The last message sent to the render target by a thread must have the End Of Thread bit set in the message descriptor and

the dispatch mask set correctly in the message header to enable correct clearing of the pixel scoreboard.
• The stateless model cannot be used with this message (Binding Table Index cannot be 255).
• This message can only be issued from a kernel specified in WM_STATE or 3DSTATE_WM (pixel shader kernel),

dispatched in non-contiguous mode. Any other kernel issuing this message will cause undefined behavior.
• [Pre-DevCTG-B]: The dual source message cannot be used if the Antialias Alpha Present to Render Target bit in the

message header is enabled.
• [Pre-DevCTG-B]: The dual source message cannot be used if the Alpha Test Enable bit in COLOR_CALC_STATE is

enabled.
• [DevCTG+]: The dual source message cannot be used if the Render Target Rotation field in SURFACE_STATE is set

to anything other than RTROTATE_0DEG.
• This message cannot be used on a surface in field mode (Vertical Line Stride = 1)

Execution Mask. The execution mask for render target messages is ignored. Control of which pixels are active is controlled by
the Pixel/Sample Enables fields in the message header.

Out-of-Bounds Accesses. Accesses to pixels outside of the surface are dropped and will not modify memory contents.
However, if the Render Target Array Index is out of bounds, it is set to zero and the surface write is not surpressed.

5.10.7.1 Subspan/Pixel to Slot Mapping

The following table indicates the mapping of subspans, pixels, and samples to slots in the pixel shader dispatch depending on the
number of samples and message size. This table applies to all devices. Pixels are numbered as follows within a subspan:

0 = upper left

170 Doc Ref #: IHD_OS_V4Pt1_3_10

1 = upper right

2 = lower left

3 = lower right

sspi = Starting Sample Pair Index (from the message header)

Message

Size
Num

Samples
Slot Mapping

1X Slot[3:0] = Subspan[0].Pixel[3:0].Sample[0]

Slot[7:4] = Subspan[1].Pixel[3:0].Sample[0]

Slot[11:8] = Subspan[2].Pixel[3:0].Sample[0]

Slot[15:12] = Subspan[3].Pixel[3:0].Sample[0]

4X Slot[3:0] = Subspan[0].Pixel[3:0].Sample[0]

Slot[7:4] = Subspan[0].Pixel[3:0].Sample[1]

Slot[11:8] = Subspan[0].Pixel[3:0].Sample[2]

Slot[15:12] = Subspan[0].Pixel[3:0].Sample[3]

SIMD16

8X Slot[3:0] = Subspan[0].Pixel[3:0].Sample[2*sspi+0]

Slot[7:4] = Subspan[0].Pixel[3:0].Sample[2*sspi+1]

Slot[11:8] = Subspan[0].Pixel[3:0].Sample[2*sspi+2]

Slot[15:12] = Subspan[0].Pixel[3:0].Sample[2*sspi+3]

1X Slot[3:0] = Subspan[0].Pixel[3:0].Sample[0]

Slot[7:4] = Subspan[1].Pixel[3:0].Sample[0]

4X Slot[3:0] = Subspan[0].Pixel[3:0].Sample[2*sspi+0]

Slot[7:4] = Subspan[0].Pixel[3:0].Sample[2*sspi+1]

SIMD8

8X Slot[3:0] = Subspan[0].Pixel[3:0].Sample[2*sspi+0]

Slot[7:4] = Subspan[0].Pixel[3:0].Sample[2*sspi+1]

Doc Ref #: IHD_OS_V4Pt1_3_10 171

5.10.7.2 Message Descriptor

Bit De scription

11 Last Render Target Select. This bit must be set on the last render target write message sent for each
group of pixels. For single render target pixel shaders, this bit is set on all render target write
messages. For multiple render target pixel shaders, this bit is set only on messages sent to the last
render target.

10:8 Message Type. This field specifies the type of render target message.

For the dual source messages, the low bit indicates which subspan channels to use for the X/Y
addresses, stencil, and antialias alpha data.

Programming Notes:

• Replicated data (Message Type = 001) is only supported when accessing tiled memory.
Using this Message Type to access linear (untiled) memory is UNDEFINED.

• [DevBW, DevCL-A] Errata: Dual Source messages are not supported

• [DevCL-B]: The SIMD8 dual source message using subspan 2 & 3 slots (encoding 011) is not
supported

000: SIMD16 single source message

001: SIMD16 single source message with replicated data

010: SIMD8 dual source message, use subspan 0 & 1 slots

011: SIMD8 dual source message, use subspan 2 & 3 slots

100: SIMD8 single source message, use subspan 0 & 1 slots

101-111: Reserved

5.10.7.3 Message Header

The render target write message has a two-register message header.

5.10.7.3.1 [Pre-Dev SNB]

DWord Bit Description

M0.5 31:8 Ignored

 7:0 FFTID. The Fixed Function Thread ID is assigned by the fixed function unit and is a unique
identifier for the thread. It is used to free up resources used by the thread upon thread
completion.

M0.4 31:0 Ignored (reserved for hardware delivery of binding table pointer)

M0.3 31:0 Ignored

M0.2 31:0 Ignored

M0.1 31:6 Color Calculator State Pointer. Specifies the 64-byte aligned pointer to the color
calculator state. This pointer is relative to the General State Base Address.

Format = GeneralStateOffset[31:6]

 5:0 Ignored

172 Doc Ref #: IHD_OS_V4Pt1_3_10

DWord Bit Description

M0.0 31:16 Dispatched Pixel Enables. One bit per pixel indicating which pixels were originally
enabled when the thread was dispatched. This field is only required for the end-of-thread
message and on all dual-source messages.

The Dispatched Pixel Enables must be unmodified from the ones sent when the pixel
shader thread was initiated. If the Dispatched Pixel Enables are modified, behavior is
undefined.

 15:0 Pixel Enables. One bit per pixel indicating which pixels are still lit based on kill instruction
activity in the pixel shader. This mask is used to control actual writes to the color buffer.

M1.7 31 Ignored

 30:27 Viewport Index. Specifies the index of the viewport currently being used.

Format = U4

Range = [0,15]

 26:16 Render Target Array Index. Specifies the array index to be used for the following surface
types:

SURFTYPE_1D: specifies the array index. Range = [0,511]

SURFTYPE_2D: specifies the array index. Range = [0,511]

SURFTYPE_3D: specifies the “z” or “r” coordinate. Range = [0,2047]

SURFTYPE_CUBE: specifies the face identifier. Range = [0,5]

SURFTYPE_BUFFER: must be zero.

face Render Target Array Index

+x 0

-x 1

+y 2

-y 3

+z 4

-z 5

Format = U11

The Render Target Array Index used by hardware for access to the Render Target is
overridden with the Minimum Array Element defined in SURFACE_STATE if it is out of
the range between Minimum Array Element and Depth. For cube surfaces, a depth value
of 5 is used for this determination.

 15:0 [DevCTG-B+]: Clipped Out Mask. One bit per pixel indicating which pixels were
discarded due to the kernel’s Clip Distance test. For each bit set in this mask, the
PS_INVOCATIONS statistics counter register will be decremented by one..

[Pre-DevCTG-B]: Ignored

M1.6 31 Front/Back Facing Polygon. Determines whether the polygon is front or back facing.
Used by the render cache to determine which stencil test state to use.

0: Front Facing

1: Back Facing

 30 Ignored

Doc Ref #: IHD_OS_V4Pt1_3_10 173

DWord Bit Description

 29 Source Depth Present to Render Target. Indicates that source depth is included in the
message. If Destination Depth Present is also set, the depth test and conditional write of
the depth buffer must be performed. If Destination Depth Present is not set, no depth test
is performed but the source depth value is conditionally written to the depth buffer.

[ILK] Errata: This bit must be set if stencil test or write is enabled without any depth test or
depth write (based on CC state) and if kill-pix (based on WM state) is enabled.

 28 Destination Depth Present to Render Target. Indicates that destination depth is included
in the message, and that the depth test and conditional write of the depth buffer must be
performed. It is not valid to have Destination Depth Present without Source Depth
Present.

 27 Destination Stencil Present to Render Target. Indicates that destination stencil is
included in the message, and that the stencil test and conditional write of the stencil buffer
must be performed.

 26 Antialias Alpha Present to Render Target. Indicates that antialias alpha is included in the
message, and that the antialias function must be performed.

 25:0 Ignored

M1.5 31:16 Y3. Y coordinate for upper-left pixel of subspan 3

Format = U16

 15:0 X3. X coordinate for upper-left pixel of subspan 3

Format = U16

M1.4 31:16 Y2

 15:0 X2

M1.3 31:16 Y1

 15:0 X1

M1.2 31:16 Y0

 15:0 X0

M1.1 31:0 Ignored

M1.0 31:0 Ignored

174 Doc Ref #: IHD_OS_V4Pt1_3_10

5.10.7.4 Stencil and Antialias Alpha Payload ([Pre-DevSNB] only)
The stencil and antialias alpha registers, if included, appears as message register 2 (M2), immediately following the header.

Note that the Antialias Alpha values are U0.4 for [DevBW,DevCL] and U0.8 for [DevCTG].

DWord Bit Description

 [DevCTG+]
M2.7 31:24 Antialias Alpha for Subspan 3, Pixel 3 (lower right)

Format = U0.8
This register is only included if the Antialias Alpha Present or Destination Stencil
Present bit is set.

 23:16 Antialias Alpha for Subspan 3, Pixel 2 (lower left)
 15:8 Antialias Alpha for Subspan 3, Pixel 1 (upper right)
 7:0 Antialias Alpha for Subspan 3, Pixel 0 (upper left)

M2.6 31:24 Antialias Alpha for Subspan 2, Pixel 3 (lower right)
 23:16 Antialias Alpha for Subspan 2, Pixel 2 (lower left)
 15:8 Antialias Alpha for Subspan 2, Pixel 1 (upper right)
 7:0 Antialias Alpha for Subspan 2, Pixel 0 (upper left)

M2.5 31:24 Antialias Alpha for Subspan 1, Pixel 3 (lower right)
 23:16 Antialias Alpha for Subspan 1, Pixel 2 (lower left)
 15:8 Antialias Alpha for Subspan 1, Pixel 1 (upper right)
 7:0 Antialias Alpha for Subspan 1, Pixel 0 (upper left)

M2.4 31:24 Antialias Alpha for Subspan 0, Pixel 3 (lower right)
 23:16 Antialias Alpha for Subspan 0, Pixel 2 (lower left)
 15:8 Antialias Alpha for Subspan 0, Pixel 1 (upper right)
 7:0 Antialias Alpha for Subspan 0, Pixel 0 (upper left)
 [DevBW,DevCL]

M2.7 31:28 Antialias Alpha for Subspan 3, Pixel 3 (lower right)
Format = U0.4
This register is only included if the Antialias Alpha Present or Destination Stencil
Present bit is set.

 27:24 Antialias Alpha for Subspan 3, Pixel 2 (lower left)
 23:20 Antialias Alpha for Subspan 3, Pixel 1 (upper right)
 19:16 Antialias Alpha for Subspan 3, Pixel 0 (upper left)
 15:12 Antialias Alpha for Subspan 2, Pixel 3 (lower right)
 11:8 Antialias Alpha for Subspan 2, Pixel 2 (lower left)
 7:4 Antialias Alpha for Subspan 2, Pixel 1 (upper right)
 3:0 Antialias Alpha for Subspan 2, Pixel 0 (upper left)

M2.6 31:28 Antialias Alpha for Subspan 1, Pixel 3 (lower right)
 27:24 Antialias Alpha for Subspan 1, Pixel 2 (lower left)
 23:20 Antialias Alpha for Subspan 1, Pixel 1 (upper right)
 19:16 Antialias Alpha for Subspan 1, Pixel 0 (upper left)
 15:12 Antialias Alpha for Subspan 0, Pixel 3 (lower right)
 11:8 Antialias Alpha for Subspan 0, Pixel 2 (lower left)

Doc Ref #: IHD_OS_V4Pt1_3_10 175

DWord Bit Description

 7:4 Antialias Alpha for Subspan 0, Pixel 1 (upper right)
 3:0 Antialias Alpha for Subspan 0, Pixel 0 (upper left)

M2.5:4 Reserved

M2.3 31:24 Destination Stencil for Subspan 3, Pixel 3 (lower right)
Format = U8

 23:16 Destination Stencil for Subspan 3, Pixel 2 (lower left)
 15:8 Destination Stencil for Subspan 3, Pixel 1 (upper right)
 7:0 Destination Stencil for Subspan 3, Pixel 0 (upper left)

M2.2 31:24 Destination Stencil for Subspan 2, Pixel 3 (lower right)
 23:16 Destination Stencil for Subspan 2, Pixel 2 (lower left)
 15:8 Destination Stencil for Subspan 2, Pixel 1 (upper right)
 7:0 Destination Stencil for Subspan 2, Pixel 0 (upper left)

M2.1 31:24 Destination Stencil for Subspan 1, Pixel 3 (lower right)
 23:16 Destination Stencil for Subspan 1, Pixel 2 (lower left)
 15:8 Destination Stencil for Subspan 1, Pixel 1 (upper right)
 7:0 Destination Stencil for Subspan 1, Pixel 0 (upper left)

M2.0 31:24 Destination Stencil for Subspan 0, Pixel 3 (lower right)
 23:16 Destination Stencil for Subspan 0, Pixel 2 (lower left)
 15:8 Destination Stencil for Subspan 0, Pixel 1 (upper right)
 7:0 Destination Stencil for Subspan 0, Pixel 0 (upper left)

176 Doc Ref #: IHD_OS_V4Pt1_3_10

5.10.7.5 Color Payload: SIMD16 Single Source

This payload is included if the Message Type is SIMD16 single source. The value of ‘m’ here is equal to 2 if both stencil and
antialias alpha are not present, otherwise it is equal to 3.

DWord Bit Description

Mm.7 31:0 Subspan 1, Pixel 3 (lower right) Red. Specifies the value of the pixel’s red channel.

Format = IEEE Float, S31, or U32 depending on the Surface Format of the surface being
accessed. SINT formats use S31, UINT formats use U32, and all other formats use Float.

Mm.6 31:0 Subspan 1, Pixel 2 (lower left) Red

Mm.5 31:0 Subspan 1, Pixel 1 (upper right) Red

Mm.4 31:0 Supspan 1, Pixel 0 (upper left) Red

Mm.3 31:0 Subspan 0, Pixel 3 (lower right) Red

Mm.2 31:0 Subspan 0, Pixel 2 (lower left) Red

Mm.1 31:0 Subspan 0, Pixel 1 (upper right) Red

Mm.0 31:0 Supspan 0, Pixel 0 (upper left) Red

M(m+1) Subspans 1 and 0 of Green. See Mm definition for pixel locations

M(m+2) Subspans 1 and 0 of Blue. See Mm definition for pixel locations

M(m+3) Subspans 1 and 0 of Alpha

See Mm definition for pixel locations

M(m+4).7 31:0 Subspan 3, Pixel 3 (lower right) Red

M(m+4).6 31:0 Subspan 3, Pixel 2 (lower left) Red

M(m+4).5 31:0 Subspan 3, Pixel 1 (upper right) Red

M(m+4).4 31:0 Supspan 3, Pixel 0 (upper left) Red

M(m+4).3 31:0 Subspan 2, Pixel 3 (lower right) Red

M(m+4).2 31:0 Subspan 2, Pixel 2 (lower left) Red

M(m+4).1 31:0 Subspan 2, Pixel 1 (upper right) Red

M(m+4).0 31:0 Supspan 2, Pixel 0 (upper left) Red

M(m+5) Subspans 3 and 2 of Green. See M3 definition for pixel locations

M(m+6) Subspans 3 and 2 of Blue. See M3 definition for pixel locations

M(m+7) Subspans 3 and 2 of Alpha. See M3 definition for pixel locations

Doc Ref #: IHD_OS_V4Pt1_3_10 177

DWord Bit Description

Mm.7 31:0 Slot 7 Red. Specifies the value of the slot’s red component.

Format = IEEE Float, S31, or U32 depending on the Surface Format of the surface being
accessed. SINT formats use S31, UINT formats use U32, and all other formats use Float.

Mm.6 31:0 Slot 6 Red

Mm.5 31:0 Slot 5 Red

Mm.4 31:0 Slot 4 Red

Mm.3 31:0 Slot 3 Red

Mm.2 31:0 Slot 2 Red

Mm.1 31:0 Slot 1 Red

Mm.0 31:0 Slot 0 Red

M(m+1).7 31:0 Slot 15 Red

M(m+1).6 31:0 Slot 14 Red

M(m+1).5 31:0 Slot 13 Red

M(m+1).4 31:0 Slot 12 Red

M(m+1).3 31:0 Slot 11 Red

M(m+1).2 31:0 Slot 10 Red

M(m+1).1 31:0 Slot 9 Red

M(m+1).0 31:0 Slot 8 Red

M(m+2) Slot[7:0] Green. See Mm definition for slot locations

M(m+3) Slot[15:8] Green. See M(m+1) definition for slot locations

M(m+4) Slot[7:0] Blue. See Mm definition for slot locations

M(m+5) Slot[15:8] Blue. See M(m+1) definition for slot locations

M(m+6) Slot[7:0] Alpha. See Mm definition for slot locations

M(m+7) Slot[15:8] Alpha. See M(m+1) definition for slot locations

178 Doc Ref #: IHD_OS_V4Pt1_3_10

5.10.7.6 Color Payload: SIMD8 Single Source

This payload is included if the Message Type is SIMD8 single source or SIMD8 Image Write. For [Pre-DevSNB], the value of
‘m’ here is equal to 2 if both stencil and antialias alpha are not present, otherwise it is equal to 3. .

DWord Bit Description

Mm.7 31:0 Slot 7 Red. Specifies the value of the slot’s red component.

Format = IEEE Float, S31, or U32 depending on the Surface Format of the surface being
accessed. SINT formats use S31, UINT formats use U32, and all other formats use Float.

Mm.6 31:0 Slot 6 Red

Mm.5 31:0 Slot 5 Red

Mm.4 31:0 Slot 4 Red

Mm.3 31:0 Slot 3 Red

Mm.2 31:0 Slot 2 Red

Mm.1 31:0 Slot 1 Red

Mm.0 31:0 Slot 0 Red

M(m+1) Slot[7:0] Green. See Mm definition for slot locations

M(m+2) Slot[7:0] Blue. See Mm definition for slot locations

M(m+3) Slot[7:0] Alpha. See Mm definition for slot locations

5.10.7.7 Color Payload: SIMD16 Replicated Data

This payload is included if the Message Type specifies single source message with replicated data. One set of R/G/B/A data is
included in the message, and this data is replicated to all 16 pixels.

This message is legal with color data only. The registers for depth, stencil, and antialias alpha data cannot be included with this
message, and the corresponding bits in the message header must indicate that these registers are not present.

For [Pre-DevSNB], the value of ‘m’ here is equal to 2.

Programming Notes:

o This message is allowed only on tiled surfaces
DWord Bit Description

Mm.7:4 31:0 Reserved

Mm.3 31:0 Alpha. Specifies the value of all slots’ alpha channel.

Format = IEEE Float, S31, or U32 depending on the Surface Format of the surface being
accessed. SINT formats use S31, UINT formats use U32, and all other formats use Float.

Mm.2 31:0 Blue

Mm.1 31:0 Green

Mm.0 31:0 Red

Doc Ref #: IHD_OS_V4Pt1_3_10 179

5.10.7.8 Color Payload: SIMD8 Dual Source [DevCL-B], [DevCTG+]

This payload is included if the Message Type specifies dual source message. For [Pre-DevSNB], the value of ‘m’ here is equal
to 2 if both tencil and antialias alpha are not present, otherwise it is equal to 3. The dual source message contains only 2 subspans
(8 pixels) due to limitations in message length.

DWord Bit Description

Mm.7 31:0 Slot 7 Source 0 Red. Specifies the value of the slot’s red component.

Format = IEEE Float, S31, or U32 depending on the Surface Format of the surface being
accessed. SINT formats use S31, UINT formats use U32, and all other formats use Float.

Mm.6 31:0 Slot 6 Source 0 Red

Mm.5 31:0 Slot 5 Source 0 Red

Mm.4 31:0 Slot 4 Source 0 Red

Mm.3 31:0 Slot 3 Source 0 Red

Mm.2 31:0 Slot 2 Source 0 Red

Mm.1 31:0 Slot 1 Source 0 Red

Mm.0 31:0 Slot 0 Source 0 Red

M(m+1) Slot[7:0] Source 0 Green. See Mm definition for slot locations

M(m+2) Slot[7:0] Source 0 Blue. See Mm definition for slot locations

M(m+3) Slot[7:0] Source 0 Alpha. See Mm definition for slot locations

M(m+4) Slot[7:0] Source 1 Red. See Mm definition for slot locations

M(m+5) Slot[7:0] Source 1 Green. See Mm definition for slot locations

M(m+6) Slot[7:0] Source 1 Blue. See Mm definition for slot locations

M(m+7) Slot[7:0] Source 1 Alpha. See Mm definition for slot locations

5.10.7.9 Depth Payload

The depth registers, if included, appear immediately following the color payload.

For the SIMD8 messages, only slot 7:0 data is sent, or only slot 15:8 depending on the Message Type encoding. Any complete
message register containing ignored data cannot be delivered. Destination Depth is only supported for [Pre-DevSNB].

DWord Bit Description

Mn.7 31:0 Source Depth for Slot 7

Format = IEEE_Float

This and the next register is only included if Source Depth Present bit is set.

Mn.6 31:0 Source Depth for Slot 6

Mn.5 31:0 Source Depth for Slot 5

Mn.4 31:0 Source Depth for Slot 4

Mn.3 31:0 Source Depth for Slot 3

180 Doc Ref #: IHD_OS_V4Pt1_3_10

DWord Bit Description

Mn.2 31:0 Source Depth for Slot 2

Mn.1 31:0 Source Depth for Slot 1

Mn.0 31:0 Source Depth for Slot 0

M(n+1).7 31:0 Source Depth for Slot 15

M(n+1).6 31:0 Source Depth for Slot 14

M(n+1).5 31:0 Source Depth for Slot 13

M(n+1).4 31:0 Source Depth for Slot 12

M(n+1).3 31:0 Source Depth for Slot 11

M(n+1).2 31:0 Source Depth for Slot 10

M(n+1).1 31:0 Source Depth for Slot 9

M(n+1).0 31:0 Source Depth for Slot 8

Mk.7 31:0 Destination Depth for Slot 7

Format depends on depth buffer surface format. Software should not modify the
destination depth fields from what was delivered in the thread payload.

This and the next register is only included if Destination Depth Present bit is set.

Mk.6 31:0 Destination Depth for Slot 6

Mk.5 31:0 Destination Depth for Slot 5

Mk.4 31:0 Destination Depth for Slot 4

Mk.3 31:0 Destination Depth for Slot 3

Mk.2 31:0 Destination Depth for Slot 2

Mk.1 31:0 Destination Depth for Slot 1

Mk.0 31:0 Destination Depth for Slot 0

M(k+1).7 31:0 Destination Depth for Slot 15

M(k+1).6 31:0 Destination Depth for Slot 14

M(k+1).5 31:0 Destination Depth for Slot 13

M(k+1).4 31:0 Destination Depth for Slot 12

M(k+1).3 31:0 Destination Depth for Slot 11

M(k+1).2 31:0 Destination Depth for Slot 10

M(k+1).1 31:0 Destination Depth for Slot 9

M(k+1).0 31:0 Destination Depth for Slot 8

Doc Ref #: IHD_OS_V4Pt1_3_10 181

5.10.7.10 Message Sequencing Summary

5.10.7.10.1 [Pre-Dev SNB]

This section summarizes the sequencing that occurs for each legal render target write message. All messages have the M0 and
M1 header registers, thus they are not shown in the table. All cases not shown in this table are illegal.
Key:
s0, s1 = source 0, source 1
1/0 = subspan 1 & 0
3/2 = subspan 3 & 2
sZ = source depth
dZ = destination depth
sten = stencil & antialias alpha

M
es

sa
ge

 T
yp

e

S
ou

rc
e

D
ep

th
 P

re
se

nt

D
es

t S
te

nc
il

P
re

se
nt

 o
r A

A
 A

lp
ha

D
es

t D
ep

th
 P

re
se

nt

M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14
000 0 0 0 1/0R 1/0G 1/0B 1/0A 3/2R 3/2G 3/2B 3/2A
001 0 0 0 RGBA
010 0 0 0 1/0s0R 1/0s0G 1/0s0B 1/0s0A 1/0s1R 1/0s1G 1/0s1B 1/0s1A
011 0 0 0 3/2s0R 3/2s0G 3/2s0B 3/2s0A 3/2s1R 3/2s1G 3/2s1B 3/2s1A
100 0 0 0 R G B A
000 1 0 0 1/0R 1/0G 1/0B 1/0A 3/2R 3/2G 3/2B 3/2A 1/0sZ 3/2sZ
010 1 0 0 1/0s0R 1/0s0G 1/0s0B 1/0s0A 1/0s1R 1/0s1G 1/0s1B 1/0s1A 1/0sZ
011 1 0 0 3/2s0R 3/2s0G 3/2s0B 3/2s0A 3/2s1R 3/2s1G 3/2s1B 3/2s1A 3/2sZ
100 1 0 0 R G B A sZ
000 1 0 1 1/0R 1/0G 1/0B 1/0A 3/2R 3/2G 3/2B 3/2A 1/0sZ 3/2sZ 1/0dZ 3/2dZ
010 1 0 1 1/0s0R 1/0s0G 1/0s0B 1/0s0A 1/0s1R 1/0s1G 1/0s1B 1/0s1A 1/0sZ 1/0dZ
011 1 0 1 3/2s0R 3/2s0G 3/2s0B 3/2s0A 3/2s1R 3/2s1G 3/2s1B 3/2s1A 3/2sZ 3/2dZ
100 1 0 1 R G B A sZ dZ
000 1 1 0 sten 1/0R 1/0G 1/0B 1/0A 3/2R 3/2G 3/2B 3/2A 1/0sZ 3/2sZ
010 1 1 0 sten 1/0s0R 1/0s0G 1/0s0B 1/0s0A 1/0s1R 1/0s1G 1/0s1B 1/0s1A 1/0sZ
011 1 1 0 sten 3/2s0R 3/2s0G 3/2s0B 3/2s0A 3/2s1R 3/2s1G 3/2s1B 3/2s1A 3/2sZ
100 1 1 0 sten R G B A sZ
000 1 1 1 sten 1/0R 1/0G 1/0B 1/0A 3/2R 3/2G 3/2B 3/2A 1/0sZ 3/2sZ 1/0dZ 3/2dZ
100 1 1 1 sten R G B A sZ dZ

182 Doc Ref #: IHD_OS_V4Pt1_3_10

5.10.8 Render Target UNORM Read/Write [DevCTG] to [DevILK]]

This message is supported on [DevCTG] to [DevILK] only.

This message reads from or writes to an 8x4 rectangular block of pixels in the render target.

Restrictions:
• the only Surface Type allowed is SURFTYPE_2D. Because of this, the stateless surface model is not supported with

this message.
• the Surface Format must be R8G8B8A8_UNORM, B8G8R8A8_UNORM, R8G8B8X8_UNORM, or

B8G8R8X8_UNORM. This is used to determine the pixel structure for boundary clamp, the raw data from the surface is
returned to the thread without any format conversion nor filtering operation

• the Surface Base Address must be 32-byte aligned
• When a surface is XMajor tiled, (Tile Walk field in the surface state is set to TILEWALK_XMAJOR), a memory area

mapped through the Render Cache cannot be read and/or written in mixed frame and field modes. For example, if a
memory location is first written with a zero Vertical Line Stride (frame mode), and later on (without render cache flush)
read back using Vertical Line Stride of one (field mode), the read data stored in GRF are uncertain.

• Unlike the normal “Render Target Write” message, no operations enabled by COLOR_CALC_STATE are supported
(alpha blend, alpha test, depth test, stencil, test, logic ops, etc.). Depth buffer operations are still possible if under
conditions of “promoted depth” as described in the Windower chapter. Non-promoted and computed depth cases are not
supported with this message.

• The Target Cache for the read message must be the Render Cache.
• If this message is issued from a windower dispatched thread, only one Render Target UNORM Write message is allowed

in each 32-pixel dispatch thread, two are required in each 64-pixel dispatch thread. This is because the scoreboard is
cleared whenever this message is issued.

Execution Mask. The execution mask on the send instruction for this type of message is ignored. The data that is written is
determined by the Pixel Mask.

Out-of-Bounds Accesses. Writes outside of the surface result are dropped and do not modify memory contents. Reads outside
of the surface return zero.

Doc Ref #: IHD_OS_V4Pt1_3_10 183

5.10.8.1 Message Descriptor

Bit De scription

11 Ignored ([DevCTG]: this bit is part of the Read Message Type field for the read version of this
message)

10 Vertical Line Stride Override

Specifies whether the Vertical Line Stride and Vertical Line Stride Offset fields in the
surface state should be replaced by bits 9 and 8 below.

If this field is 1, Height in the surface state (see SURFACE_STATE section of Sampling Engine
chapter) is modified according the following rules:

Vertical Line
Stride

(in surface state)

Override
Vertical Line

Stride

Derived 1-based surface height

(As a function of the 0-based Height in surface
state)

0 0 Height + 1

(Normal)

0 1 (Height +1) / 2

Restriction: (Height + 1) must be an even
number.

1 0 (Height + 1) * 2

1 1 Height + 1

(Normal)

For example, for a 720x480 standard resolution video buffer, if Vertical Line Stride in surface
state is 0, i.e. a frame, Height (of the frame) should be 479. When accessing the bottom field of
this frame video buffer, both Override Vertical Line Stride and Override Vertical Line Stride
Offset will be set to 1, then the derived surface height (of the field) will be 240 ((Height + 1) / 2).
In contrary, if Vertical Line Stride in surface state is 1 and Vertical Line Stride Offset in surface
state is 0, the surface state represents the top field of the video buffer. In this case, Height (of
the top field) should be programmed as 239. Accessing the bottom video field will use the same
surface height of 240. Accessing the video frame (with Override Vertical Line Stride and
Override Vertical Line Stride Offset set to 0) will result in a derived surface height of 480
((Height + 1) * 2).

0 -- Use parameters in the surface state and ignore bits 9:8

1 -- Use bits 9:8 to provide the Vertical Line Stride and Vertical Line Stride Offset

9 Override Vertical Line Stride

Specifies number of lines (0 or 1) to skip between logically adjacent lines – provides support of
interleaved (field) surfaces as textures.

Format = U1 in lines to skip between logically adjacent lines

8 Override Vertical Line Stride Offset

Specifies the offset of the initial line from the beginning of the buffer. Ignored when Override
Vertical Line Stride is 0.

Format = U1 in lines of initial offset (when Vertical Line Stride == 1)

184 Doc Ref #: IHD_OS_V4Pt1_3_10

5.10.8.2 Message Header

DWord Bit Description

M0.5 31:8 Ignored

 7:0 Dispatch ID. This ID is assigned by the fixed function unit and is a unique identifier for the
thread. It is used to free up resources used by the thread upon thread completion.

M0.4 31:0 Ignored (reserved for hardware delivery of binding table pointer)

M0.3 31:0 Ignored

M0.2 31:0 Pixel Mask. One bit per pixel indicating which pixels are lit, possibly impacted by kill
instruction activity in the pixel shader. This mask is used to control actual writes to the
color buffer. This field is ignored by the read message, all pixels are always returned.
The bits in this mask correspond to the pixels as follows:

0 1 4 5 1
6

1
7

2
0

2
1

2 3 6 7 1
8

1
9

2
2

2
3

8 9 1
2

1
3

2
4

2
5

2
8

2
9

1
0

1
1

1
4

1
5

2
6

2
7

3
0

3
1

M0.1 31:0 Y offset. The Y offset of the upper left corner of the block into the surface. Must be 4-row
aligned (Bits 1:0 MBZ).

Format = S31

M0.0 31:0 X offset. The X offset of the upper left corner of the block into the surface. This is a pixel
offset assuming a 32-bit pixel. Must be 8-pixel aligned (Bits 2:0 MBZ).

Format = S31

5.10.8.3 Message Payload (Write Message only)

The channels are defined as follows depending on surface format:

Channel R8G8 B8A8_UNORM
R8G8B8X8_UNORM

B8G8R8A8_UNORM
B8G8R8X8_UNORM

Channel 0 Red Blue
Channel 1 Green Green
Channel 2 Blue Red
Channel 3 Alpha Alpha

Pixels are numbered as follows:
0 1 2 3 4 5 6 7
8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31

Doc Ref #: IHD_OS_V4Pt1_3_10 185

DWord Bit Description

M1.7 31:24 Pixel 15 Channel 1

Format = 8-bit UNORM

 23:16 Pixel 15 Channel 0

 15:8 Pixel 14 Channel 1

 7:0 Pixel 14 Channel 0

M1.6 Pixel 13 & 12 Channel 1/0

M1.5 Pixel 7 & 6 Channel 1/0

M1.4 Pixel 5 & 4 Channel 1/0

M1.3 Pixel 11 & 10 Channel 1/0

M1.2 Pixel 9 & 8 Channel 1/0

M1.1 Pixel 3 & 2 Channel 1/0

M1.0 Pixel 1 & 0 Channel 1/0

M2.7 Pixel 31 & 30 Channel 1/0

M2.6 Pixel 29 & 28 Channel 1/0

M2.5 Pixel 23 & 22 Channel 1/0

M2.4 Pixel 21 & 20 Channel 1/0

M2.3 Pixel 27 & 26 Channel 1/0

M2.2 Pixel 25 & 24 Channel 1/0

M2.1 Pixel 19 & 18 Channel 1/0

M2.0 Pixel 17 & 16 Channel 1/0

M3.7:0 Pixels 15:0 Channel 3/2

M4.7:0 Pixels 31:16 Channel 3/2

186 Doc Ref #: IHD_OS_V4Pt1_3_10

5.10.8.4 Writeback Message (Read Message only)

DWord Bit Description

W0.7 31:24 Pixel 15 Channel 1

Format = 8-bit UNORM

 23:16 Pixel 15 Channel 0

 15:8 Pixel 14 Channel 1

 7:0 Pixel 14 Channel 0

W0.6 Pixel 13 & 12 Channel 1/0

W0.5 Pixel 7 & 6 Channel 1/0

W0.4 Pixel 5 & 4 Channel 1/0

W0.3 Pixel 11 & 10 Channel 1/0

W0.2 Pixel 9 & 8 Channel 1/0

W0.1 Pixel 3 & 2 Channel 1/0

W0.0 Pixel 1 & 0 Channel 1/0

W1.7 Pixel 31 & 30 Channel 1/0

W1.6 Pixel 29 & 28 Channel 1/0

W1.5 Pixel 23 & 22 Channel 1/0

W1.4 Pixel 21 & 20 Channel 1/0

W1.3 Pixel 27 & 26 Channel 1/0

W1.2 Pixel 25 & 24 Channel 1/0

W1.1 Pixel 19 & 18 Channel 1/0

W1.0 Pixel 17 & 16 Channel 1/0

W2.7:0 Pixels 15:0 Channel 3/2

W3.7:0 Pixels 31:16 Channel 3/2

Doc Ref #: IHD_OS_V4Pt1_3_10 187

5.10.9 Streamed Vertex Buffer Write

This message writes a single 4-tuple of data to a buffer, at a destination index specified in the message header.

Restrictions:
• surface types allowed are SURFTYPE_BUFFER and SURFTYPE_NULL
• surface formats allowed are indicated in the “Streamed Output Vertex Buffers” column of the Surface Formats table in

the Sampling Engine chapter
• the surface cannot be tiled
• use of this message with the End Of Thread bit set in the message descriptor is not allowed as the Dispatch ID is not

included in the message payload.
• the stateless model cannot be used with this message (Binding Table Index cannot be 255).
• Both the surface base address and surface pitch must be DWord aligned.

Execution Mask. The low 4 bits of the execution mask are used to enable the 4 channels of the write to the destination surface.

Out-of-Bounds Accesses. Writes to areas outside of the surface are dropped and will not modify memory contents.

5.10.9.1 Message Descriptor

Bit De scription

11 Ignored

10 [DevCTG]: Increment SVBIs. If set, increment Streamed Vertex Buffer Index 0-3

[DevBW,DevCL,ILK]: Ignored

9 [DevCTG]: Increment Num Prims Written. If set, increment SO_NUM_PRIMS_WRITTEN statistics
counter

[DevBW,DevCL,ILK]: Ignored

8 [DevCTG]: Increment Prim Storage Needed. If set, increment SO_PRIM_STORAGE_NEEDED
statistics counter

 [DevBW,DevCL,ILK]: Ignored

5.10.9.2 Message Payload

DWord Bit Description

M0.5 31:0 Destination Index. Specifies the index into the destination array where the data will be
written

Format = U32

Range = [0,227-1]

M0.4 31:0 Ignored (reserved for hardware delivery of binding table pointer)

M0.3 31:0 A Data. Data for the A channel of the destination

Format = IEEE_Float, U32, or S31 matching the surface format of the target surface (no
format conversion is performed by hardware)

188 Doc Ref #: IHD_OS_V4Pt1_3_10

DWord Bit Description

M0.2 31:0 B Data. Data for the B channel of the destination

Format = IEEE_Float, U32, or S31 matching the surface format of the target surface (no
format conversion is performed by hardware)

M0.1 31:0 G Data. Data for the G channel of the destination

Format = IEEE_Float, U32, or S31 matching the surface format of the target surface (no
format conversion is performed by hardware)

M0.0 31:0 R Data. Data for the R channel of the destination

Format = IEEE_Float, U32, or S31 matching the surface format of the target surface (no
format conversion is performed by hardware)

5.10.10 AVC Loop Filter Read [DevCTG] to [Devilk]

This message enables a specially formed AVC Loop Filter control data block to read from the source surface, converted via table-
look-up and expanded before being written into the GRF.

Restrictions:
• the only surface type allowed is SURFTYPE_BUFFER.
• the surface base address must be dword aligned
• [DevBW, DevCL] This message is not supported.

Applications:
• Specifically for AVC Loop Filter

Execution Mask. The execution mask on the send instruction for this type of message is ignored. The data that is read is
determined completely by the message parameters.

Out-of-Bounds Accesses. Read outside of the surface returns zero.

The source surface contains an array of AVC-LF data structure, each corresponds to a macroblock. The AVC-LF data structure
contains 16 dwords as shown in the following table.

DWord Bit Description

0 31:24 Reserved : MBZ

 23 FilterTopMbEdgeFlag

 22 FilterLeftMbEdgeFlag

 21 FilterInternal4x4EdgesFlag

 20 FilterInternal8x8EdgesFlag

 19 FieldModeAboveMbFlag

 18 FieldModeLeftMbFlag

 17 FieldModeCurrentMbFlag

Doc Ref #: IHD_OS_V4Pt1_3_10 189

DWord Bit Description

 16 MbaffFrameFlag

 15:8 VertOrigin

 7:0 HorzOrigin

1 31:30 bS_h13

 29:28 bS_h12

 27:26 bS_h11

 25:24 bS_h10

 23:22 bS_v33

 21:20 bS_v23

 19:18 bS_v13

 17:16 bS_v03

 15:14 bS_v32

 13:12 bS_v22

 11:10 bS_v12

 9:8 bS_v02

 7:6 bS_v31

 5:4 bS_v21

 3:2 bS_v11

 1:0 bS_v01

2 31:28 bS_v30_0

 17:24 bS_v20_0

 23:20 bS_v10_0

 19:16 bS_v00_0

 15:14 bS_h33

 13:12 bS_h32

 11:10 bS_h31

 9:8 bS_h30

 7:6 bS_h23

 5:4 bS_h22

 3:2 bS_h21

 1:0 bS_h20

3 31:28 bS_h03_0

 27:24 bS_h02_0

 23:20 bS_h01_0

 19:16 bS_h00_0

 15:12 bS_v03

190 Doc Ref #: IHD_OS_V4Pt1_3_10

DWord Bit Description

 11:8 bS_v02

 7:4 bS_v01

 3:0 bS_v00

4 31:24 bIndexBinternal_Y

Internal index B for Y

 23:16 bIndexBinternal_Y

Internal index A for Y

 15:12 bS_h03_1

 11:8 bS_h02_1

 7:4 bS_h01_1

 3:0 bS_h00_1

5 31:24 bIndexBleft1_Y

 23:16 bIndexAleft1_Y

 15:8 bIndexBleft0_Y

 7:0 bIndexAleft0_Y

6 31:24 bIndexBtop1_Y

 23:16 bIndexAtop1_Y

 15:8 bIndexBtop0_Y

 7:0 bIndexAtop0_Y

7 31:24 bIndexBleft0_Cb

 23:16 bIndexAleft0_Cb

 15:8 bIndexBinternal_Cb

 7:0 bIndexAinternal_Cb

8 31:24 bIndexBtop0_Cb

 23:16 bIndexAtop0_Cb

 15:8 bIndexBleft1_Cb

 7:0 bIndexAleft1_Cb

9 31:24 bIndexBinternal_Cr

 23:16 bIndexAinternal_Cr

 15:8 bIndexBtop1_Cb

 7:0 bIndexAtop1_Cb

10 31:24 bIndexBleft1_Cr

 23:16 bIndexAleft1_Cr

 15:8 bIndexBleft0_Cr

 7:0 bIndexAleft0_Cr

11 31:24 bIndexBtop1_Cr

Doc Ref #: IHD_OS_V4Pt1_3_10 191

DWord Bit Description

 23:16 bIndexAtop1_Cr

 15:8 bIndexBtop0_Cr

 7:0 bIndexAtop0_Cr

12 31:2 Reserved : MBZ

 1:0 DisableDeblockingFilterIdc

This is the slice level signal provided as a hint for kernel performance tuning. It is supplied
for cases where some slices in a frame have ILDB and some others don’t have. In this case,
ILDB kernel will be called for all macroblocks in a frame including the ones in the slice
that disables ILDB. Setting this bit correctly will ensure that ILDB is not performed on
MBs belonging to the slice which has disable deblocking set to 1. For example, kernel may
check bit 0, if it is set to 1, no ILDB is performed on the macroblock.

00 - filterInternalEdgesFlag is set equal to 1

01 – disable all deblocking operation, no deblocking parameter syntax element is read;
filterInternalEdgesFlag is set equal to 0

10 - macroblocks in different slices are considered not available; filterInternalEdgesFlag is set
equal to 1

11 – Reserved (not defined in AVC)

13 31:0 Reserved : MBZ

14 31:0 Reserved : MBZ

15 31:0 Reserved : MBZ

5.10.10.1 Message Descriptor

Bit De scription

12:11 Ignored ([DevCTG]: these bits are part of the Read Message Type field)

10:8 Ignored

192 Doc Ref #: IHD_OS_V4Pt1_3_10

5.10.10.2 Message Header

DWord Bit Description

M0.5 31:8 Ignored

 7:0 Dispatch ID. This ID is assigned by the fixed function unit and is a unique identifier for the
thread. It is used to free up resources used by the thread upon thread completion.

M0.4 31:0 Ignored (reserved for hardware delivery of binding table pointer)

M0.3 31:0 Ignored

M0.2 31:0 Global Offset. Specifies the global byte offset into the buffer.

• This offset must be OWord aligned (bits 3:0 MBZ)

Format = U32

Range = [0,FFFFFFF0h]

M0.1 31:0 Ignored

M0.0 31:0 Ignored

5.10.10.3 Writeback Message

The writeback message is formed by the data port using the information from the stored surface and integrated lookup tables
defining alpha, beta, tc0, and the edge control map.

Many of the fields are passed directly from the stored surface to the writeback message.

IndexA and IndexB index the following tables to populate the alpha and beta values. These tables are used for Y, Cr, and Cb.
IndexTop0 values derive AlphaTop0 and BetaTop0, IndexTop1 values derive AlphaTop1 and BetaTop1, and likewise for the Left
values.

Table 5-1.Derivation of offset dependent threshold variables α and β from indexA and indexB

 indexA (for α) or indexB (for β)

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

α 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 5 6 7 8 9 10 12 13

β 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 3 3 3 3 4 4 4

Table 2-1. (Concluded) – Derivation of indexA and indexB from offset dependent threshold variables α and β

 indexA (for α) or indexB (for β)

 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

α 15 17 20 22 25 28 32 36 40 45 50 56 63 71 80 90 101 113 127 144 162 182 203 226 255 255

β 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 16 16 17 17 18 18

Doc Ref #: IHD_OS_V4Pt1_3_10 193

For each block boundary, the data port must use the boundary strength values to derive tc0 and an edge control map. The
following shows the layout of the boundary values in a Y block. Cr and Cb layout follows suit.

Figure 5-1. Boundary Values Layout in a Y Block

h00 h01 h02 h03

h10 h11 h12 h13

h20 h21 h22 h23

h30 h31 h32 h33

v0
0

v1
0

v2
0

v3
0

v0
1

v0
2

v0
3

v1
1

v1
2

v1
3

v2
1

v2
2

v2
3

v3
1

v3
2

v3
3

The boundary strengths are used in conjunction with indexA to derive tc0 values. The tables below show tc0 output as a function
of the boundary strength (bS) and indexA. On external edges, the boundary strength may be 4. Under this condition, hardware
should set the value of tc0 to 0.

For determination of tc0, use IndexA0 and external top and left boundary strength (0) values to derive bTc0 values with an index
of _0_. During Mbaff mode, use IndexA1 and external top and left boundary strength (1) to derive bTc0 values with an index of
1. The layout of the tc0 values in the macroblocks corresponds to Figure 5-1 in the same manner as the boundary strengths.

194 Doc Ref #: IHD_OS_V4Pt1_3_10

Table 5-2. Value of variable tC0 as a function of indexA and bS

 indexA

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

bS = 1 0 1 1 1

bS = 2 0 1 1 1 1 1

bS = 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1

bS = 4 tc0 set to 0

Table 2-2 (concluded) – Value of variable tC0 as a function of indexA and bS

 indexA

 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

bS = 1 1 1 1 1 1 1 1 2 2 2 2 3 3 3 4 4 4 5 6 6 7 8 9 10 11 13

bS = 2 1 1 1 1 1 2 2 2 2 3 3 3 4 4 5 5 6 7 8 8 10 11 12 13 15 17

bS = 3 1 2 2 2 2 3 3 3 4 4 4 5 6 6 7 8 9 10 11 13 14 16 18 20 23 25

bS = 4 tc0 set to 0

The boundary strengths also create the edge control maps in the writeback message. The internal boundaries require one control
map set according to the boundary strength to drive the deblocking functionality. The external boundaries require two control
maps set according to the boundary strength to enable deblocking and choose the deblocking algorithm. These control maps are
shown in the tables below. Each edge’s boundary strength has a corresponding edge control map (e.g. bS_v01 corresponds to
EdgeCntlMap_v01).

Table 5-3. Boundary Strength Mapping to Edge Control Map: Internal Boundaries

bS
Internal boundary
Edge Control Map Description

00 0000 bS = 0, no de-blocking

01 1111 Perform de-blocking using bS < 4 algorithm

10 1111 Perform de-blocking using bS < 4 algorithm

11 1111 Perform de-blocking using bS < 4 algorithm

Table 5-4. Boundary Strength Mapping to Edge Control Map A: External Boundaries, Deblocking Enable

bS
External boundary

Edge Control Map A Description

0000 0000 bS = 0, no de-blocking

Doc Ref #: IHD_OS_V4Pt1_3_10 195

0001 1111 bS > 0, de-blocking the segment

0010 1111 bS > 0, de-blocking the segment

0011 1111 bS > 0, de-blocking the segment

0100 1111 bS > 0, de-blocking the segment

Table 5-5. Boundary Strength Mapping to Edge Control Map B: External Boundaries, Deblocking Algorithm

bS
External boundary

Edge Control Map B Description

0000 0000 (No deblocking, set algorithm to 0)

0001 0000 Perform de-blocking using bS < 4 algorithm

0010 0000 Perform de-blocking using bS < 4 algorithm

0011 0000 Perform de-blocking using bS < 4 algorithm

0100 1111 Perform de-blocking using bS = 4 algorithm

The following is the layout of the combined writeback message.
DWord Bit Description

W0.7 31:24 bIndexBleft0_Cb

 23:16 bIndexAleft0_Cb

 15:8 bIndexBinternal_Cb

 7:0 bIndexAinternal_Cb

W0.6 31:24 bIndexBtop1_Y

 23:16 bIndexAtop1_Y

 15:8 bIndexBtop0_Y

 7:0 bIndexAtop0_Y

W0.5 31:24 bIndexBleft1_Y

 23:16 bIndexAleft1_Y

 15:8 bIndexBleft0_Y

 7:0 bIndexAleft0_Y

W0.4 31:24 bIndexBinternal_Y

Internal index B for Y

 23:16 bIndexAinternal_Y

Internal index A for Y

 15:12 bS_h03_1

 11:8 bS_h02_1

 7:4 bS_h01_1

 3:0 bS_h00_1

196 Doc Ref #: IHD_OS_V4Pt1_3_10

DWord Bit Description

W0.3 31:28 bS_h03_0

 27:24 bS_h02_0

 23:20 bS_h01_0

 19:16 bS_h00_0

 15:12 bS_v30_1

 11:8 bS_v20_1

 7:4 bS_v10_1

 3:0 bS_v00_1

W0.2 31:28 bS_v30_0

 27:24 bS_v20_0

 23:20 bS_v10_0

 19:16 bS_v00_0

 15:8 bbSinternalBotHorz

 7:0 bbSinternalMidHorz

W0.1 31:30 bS_h13

 29:28 bS_h12

 27:26 bS_h11

 25:24 bS_h10

 23:22 bS_v33

 21:20 bS_v23

 19:18 bS_v13

 17:16 bS_v03

 15:14 bS_v32

 13:12 bS_v22

 11:10 bS_v12

 9:8 bS_v02

 7:6 bS_v31

 5:4 bS_v21

 3:2 bS_v11

 1:0 bS_v01

W0.0 31:24 Reserved : MBZ

 23 FilterTopMbEdgeFlag

 22 FilterLeftMbEdgeFlag

 21 FilterInternal4x4EdgesFlag

 20 FilterInternal8x8EdgesFlag

 19 FieldModeAboveMbFlag

Doc Ref #: IHD_OS_V4Pt1_3_10 197

DWord Bit Description

 18 FieldModeLeftMbFlag

 17 FieldModeCurrentMbFlag

 16 MbaffFrameFlag

 15:8 VertOrigin

 7:0 HorzOrigin

W1.7 31:0 Reserved : MBZ

W1.6 31:0 Reserved : MBZ

W1.5 31:0 Reserved : MBZ

W1.4 31:0 Reserved : MBZ

W1.3 31:24 bIndexBtop1_Cr

 23:16 bIndexAtop1_Cr

 15:8 bIndexBtop0_Cr

 7:0 bIndexAtop0_Cr

W1.2 31:24 bIndexBleft1_Cr

 23:16 bIndexAleft1_Cr

 15:8 bIndexBleft0_Cr

 7:0 bIndexAleft0_Cr

W1.1 31:24 bIndexBinternal_Cr

 23:16 bIndexAinternal_Cr

 15:8 bIndexBtop1_Cb

 7:0 bIndexAtop1_Cb

W1.0 31:24 bIndexBtop0_Cb

 23:16 bIndexAtop0_Cb

 15:8 bIndexBleft1_Cb

 7:0 bIndexAleft1_Cb

W2.7 31:28 EdgeCntlMapB_h03_1

Used in Mbaff mode only

 27:24 EdgeCntlMapB_h02_1

Used in Mbaff mode only

 23:20 EdgeCntlMapB_h01_1

Used in Mbaff mode only

 19:16 EdgeCntlMapB_h00_1

Used in Mbaff mode only

 15:12 EdgeCntlMapA_h03_1

Used in Mbaff mode only

198 Doc Ref #: IHD_OS_V4Pt1_3_10

DWord Bit Description

 11:8 EdgeCntlMapA_h02_1

Used in Mbaff mode only

 7:4 EdgeCntlMapA_h01_1

Used in Mbaff mode only

 3:0 EdgeCntlMapA_h00_1

Used in Mbaff mode only

W2.6 31:28 EdgeCntlMapB_v30_1

Used in Mbaff mode only

 27:24 EdgeCntlMapB_v20_1

Used in Mbaff mode only

 23:20 EdgeCntlMapB_v01_1

Used in Mbaff mode only

 19:16 EdgeCntlMapB_v00_1

Used in Mbaff mode only

 15:12 EdgeCntlMapA_v30_1

Used in Mbaff mode only

 11:8 EdgeCntlMapA_v20_1

Used in Mbaff mode only

 7:4 EdgeCntlMapA_v10_1

Used in Mbaff mode only

 3:0 EdgeCntlMapA_v00_1

Used in Mbaff mode only

W2.5 31:28 EdgeCntlMapB_h03_0

 27:24 EdgeCntlMapB_h02_0

 23:20 EdgeCntlMapB_h01_0

 19:16 EdgeCntlMapB_h00_0

 15:12 EdgeCntlMapA_h03_0

 11:8 EdgeCntlMapA_h02_0

 7:4 EdgeCntlMapA_h01_0

 3:0 EdgeCntlMapA_h00_0

W2.4 31:28 EdgeCntlMapB_v30_0

 27:24 EdgeCntlMapB_v20_0

 23:20 EdgeCntlMapB_v10_0

 19:16 EdgeCntlMapB_v00_0

 15:12 EdgeCntlMapA_v30_0

 11:8 EdgeCntlMapA_v20_0

Doc Ref #: IHD_OS_V4Pt1_3_10 199

DWord Bit Description

 7:4 EdgeCntlMapA_v10_0

 3:0 EdgeCntlMapA_v00_0

W2.3 31:0 Reserved : MBZ

W2.2 31:28 EdgeCntlMap_h33

 27:24 EdgeCntlMap_h32

 23:20 EdgeCntlMap_h31

 19:16 EdgeCntlMap_h30

 15:12 EdgeCntlMap_h23

 11:8 EdgeCntlMap_h22

 7:4 EdgeCntlMap_h21

 3:0 EdgeCntlMap_h20

W2.1 31:28 EdgeCntlMap_h13

 27:24 EdgeCntlMap_h12

 23:20 EdgeCntlMap_h11

 19:16 EdgeCntlMap_h10

 15:12 EdgeCntlMap_v33

 11:8 EdgeCntlMap_v23

 7:4 EdgeCntlMap_v13

 3:0 EdgeCntlMap_v03

W2.0 31:28 EdgeCntlMap_v32

 27:24 EdgeCntlMap_v22

 23:20 EdgeCntlMap_v12

 19:16 EdgeCntlMap_v02

 15:12 EdgeCntlMap_v31

 11:8 EdgeCntlMap_v21

 7:4 EdgeCntlMap_v11

 3:0 EdgeCntlMap_v01

W3.7 31:24 bTc0_h33_0_Y

 23:16 bTc0_h32_0_Y

 15:8 bTc0_h31_0_Y

 7:0 bTc0_h30_0_Y

W3.6 31:24 bTc0_h23_0_Y

 23:16 bTc0_h22_0_Y

 15:8 bTc0_h21_0_Y

 7:0 bTc0_h20_0_Y

W3.5 31:24 bTc0_h13_0_Y

200 Doc Ref #: IHD_OS_V4Pt1_3_10

DWord Bit Description

 23:16 bTc0_h12_0_Y

 15:8 bTc0_h11_0_Y

 7:0 bTc0_h10_0_Y

W3.4 31:24 bTc0_h03_0_Y

 23:16 bTc0_h02_0_Y

 15:8 bTc0_h01_0_Y

 7:0 bTc0_h00_0_Y

W3.3 31:24 bTc0_v33_Y

 23:16 bTc0_v23_Y

 15:8 bTc0_v13_Y

 7:0 bTc0_v03_Y

W3.2 31:24 bTc0_v32_Y

 23:16 bTc0_v22_Y

 15:8 bTc0_v12_Y

 7:0 bTc0_v02_Y

W3.1 31:24 bTc0_v31_Y

 23:16 bTc0_v21_Y

 15:8 bTc0_v11_Y

 7:0 bTc0_v01_Y

W3.0 31:24 bTc0_v30_0_Y

 23:16 bTc0_v20_0_Y

 15:8 bTc0_v10_0_Y

 7:0 bTc0_v00_0_Y

W4.7 31:24 bTc0_h03_1_Y

Used in Mbaff mode only

 23:16 bTc0_h02_1_Y

Used in Mbaff mode only

 15:8 bTc0_h01_1_Y

Used in Mbaff mode only

 7:0 bTc0_h00_1_Y

Used in Mbaff mode only

W4.6 31:24 bTc0_v30_1_Y

Used in Mbaff mode only

 23:16 bTc0_v20_1_Y

Used in Mbaff mode only

Doc Ref #: IHD_OS_V4Pt1_3_10 201

DWord Bit Description

 15:8 bTc0_v10_1_Y

Used in Mbaff mode only

 7:0 bTc0_v00_1_Y

Used in Mbaff mode only

W4.5 31:0 MBZ

W4.4 31:24 bBetaTop1_Y

 23:16 bAlphaTop1_Y

 15:8 bBetaLeft1_Y

 7:0 bAlphaLeft1_Y

W4.3 31:0 MBZ

W4.2 31:0 MBZ

W4.1 31:16 MBZ

 15:8 bBetaInternal_Y

 7:0 bAlphaInternal_Y

W4.0 31:24 bBetaTop0_Y

 23:16 bAlphaTop0_Y

 15:8 bBetaLeft0_Y

 7:0 bAlphaLeft0_Y

W5.7 31:24 bTc0_h23_Cr

 23:16 bTc0_h22_Cr

 15:8 bTc0_h21_Cr

 7:0 bTc0_h20_Cr

W5.6 31:24 bTc0_h03_0_Cr

 23:16 bTc0_h02_0_Cr

 15:8 bTc0_h01_0_Cr

 7:0 bTc0_h00_0_Cr

W5.5 31:24 bTc0_v32_Cr

 23:16 bTc0_v22_Cr

 15:8 bTc0_v12_Cr

 7:0 bTc0_v02_Cr

W5.4 31:24 bTc0_v30_0_Cr

 23:16 bTc0_v20_0_Cr

 15:8 bTc0_v10_0_Cr

 7:0 bTc0_v00_0_Cr

W5.3 31:24 bTc0_h23_Cb

 23:16 bTc0_h22_Cb

202 Doc Ref #: IHD_OS_V4Pt1_3_10

DWord Bit Description

 15:8 bTc0_h21_Cb

 7:0 bTc0_h20_Cb

W5.2 31:24 bTc0_h03_0_Cb

 23:16 bTc0_h02_0_Cb

 15:8 bTc0_h01_0_Cb

 7:0 bTc0_h00_0_Cb

W5.1 31:24 bTc0_v32_Cb

 23:16 bTc0_v22_Cb

 15:8 bTc0_v12_Cb

 7:0 bTc0_v02_Cb

W5.0 31:24 bTc0_v30_0_Cb

 23:16 bTc0_v20_0_Cb

 15:8 bTc0_v10_0_Cb

 7:0 bTc0_v00_0_Cb

W6.7 31:0 MBZ

W6.6 31:0 MBZ

W6.5 31:0 MBZ

W6.4 31:0 MBZ

W6.3 31:16 MBZ

 15:8 bBetaInternal_Cr

 7:0 bAlphaInternal_Cr

W6.2 31:24 bBetaTop0_Cr

 23:16 bAlphaTop0_Cr

 15:8 bBetaLeft0_Cr

 7:0 bAlphaLeft0_Cr

W6.1 31:16 MBZ

 15:8 bBetaInternal_Cb

 7:0 bAlphaInternal_Cb

W6.0 31:24 bBetaTop0_Cb

 23:16 bAlphaTop0_Cb

 15:8 bBetaLeft0_Cb

 7:0 bAlphaLeft0_Cb

W7.7 31:24 bTc0_h03_1_Cr

 23:16 bTc0_h02_1_Cr

 15:8 bTc0_h01_1_Cr

 7:0 bTc0_h00_1_Cr

Doc Ref #: IHD_OS_V4Pt1_3_10 203

DWord Bit Description

W7.6 31:24 bTc0_v30_1_Cr

 23:16 bTc0_v20_1_Cr

 15:8 bTc0_v10_1_Cr

 7:0 bTc0_v00_1_Cr

W7.5 31:0 MBZ

W7.4 31:24 bBetaTop1_Cr

 23:16 bAlphaTop1_Cr

 15:8 bBetaLeft1_Cr

 7:0 bAlphaLeft1_Cr

W7.3 31:24 bTc0_h03_1_Cb

 23:16 bTc0_h02_1_Cb

 15:8 bTc0_h01_1_Cb

 7:0 bTc0_h00_1_Cb

W7.2 31:24 bTc0_v30_1_Cb

 23:16 bTc0_v20_1_Cb

 15:8 bTc0_v10_1_Cb

 7:0 bTc0_v00_1_Cb

W7.1 31:0 MBZ

W7.0 31:24 bBetaTop1_Cb

 23:16 bAlphaTop1_Cb

 15:8 bBetaLeft1_Cb

 7:0 bAlphaLeft1_Cb

204 Doc Ref #: IHD_OS_V4Pt1_3_10

5.10.11 Flush Render Cache [Pre-DevSNB]

This message causes a flush of the render cache. The flush occurs in-order relative to message arrival at the write data port. It is
not synchronized with messages to the read data port.

If the Send Write Commit Message bit in the message descriptor is set for this message, the writeback message is delivered after
the cache flush has been completed.

5.10.11.1 Message Descriptor

Bit De scription

11:8 Ignored

5.10.11.2 Message Payload

DWord Bit Description

M0.5:0 31:0 Ignored

Doc Ref #: IHD_OS_V4Pt1_3_10 205

6. Extended Math

6.1 Messag es

Restrictions:
• Use of any message to the Extended Math with the End of Thread bit set in the message descriptor is not allowed.
• The Extended Math supports vector operations up to 8 channels. It only looks at the lower 8 channel enables (execution

mask bits), and ignores the higher 8.

6.1.1 Initiating Message

6.1.1.1 Message Descriptor

Bit De scription

19 [DevILK]: Header Present
This bit must be set to zero for all Extended Math messages.
[Pre-DevILK]: this bit is not part of the shared function specific message descriptor.

18:9 Reserved : MBZ
[Pre- DevILK]: Bits 18:16 are not part of the shared function specific message descriptor.

7 Source Structure. This bit indicates whether the operation is based on vector inputs or scalar
inputs. If this bit is not set, the Extended Math performs the indicated math function on a
channel by channel basis. For an enabled channel, EM takes the input data from the
corresponding channel and outputs the result in the same position. If this bit is set, EM
performs the math function on a 4-channel group basis. If any of the 4 channels within a group
is enabled, the data on the first channel (channel 0) is used as the input. The result is
broadcasted to all enabled channels within the group.
See section 6.1.1.2 below for more details.
0: vector structure
1: scalar structure

6 Saturate Control
0: no saturate
1: saturate result to [0,1] range (allowed only on floating point math functions)

5 Precision. This bit provides a hint whether the indicated math function is performed in full
precision or partial precision. It is only valid for floating point math functions when the floating
point mode is in alternative mode. It is ignored if the floating point mode is in IEEE754 mode.
Floating point mode is selected via the Floating Point Mode bit in CR0. This bit is also ignored
for integer math functions.
See section � for more details.
0: use full precision
1: use partial precision

206 Doc Ref #: IHD_OS_V4Pt1_3_10

Bit De scription

4 Integer Type. Determines the data type for both source and destination operands of the INT
DIV functions. Ignored for other functions.
0: unsigned integer
1: signed integer

3:0 Math Function. For floating point math functions (1h to Ah), the floating point mode signal in
the request message (originated from the Floating Point Mode bit in CR0) determines whether
the operation is in IEEE754 floating point mode or in alternative floating point mode.
Functions LOG and EXP are base 2. SIN, COS, SINCOS take inputs in radians.
0h: Reserved
1h: INV (reciprocal)
2h: LOG
3h: EXP
4h: SQRT
5h: RSQ
6h: SIN
7h: COS
8h: SINCOS
9h: Reserved
Ah: POW
Bh: INT DIV – return quotient and remainder
Ch: INT DIV – return quotient only
Dh: INT DIV – return remainder only
Eh: Reserved
Fh: Reserved

6.1.1.2 Scalar and Vector Mode

For a given request message, the Extended Math examines the 8-bit channel enable field and the Source Structure field in the
message descriptor to determine which dwords contain valid inputs. There are two general cases that EM sees.

• Vector mode: The first case is when the Source Structure is a vector structure. In this vector mode, 8 input data
channels contain 8 unique input values. The channel enable bits in the sideband determine which one of the 8 input
values are valid and therefore need to be computed and outputted. It is possible that none of the channels are enabled, or
all 8 channels are enabled, or anything in between. EM only sends the valid input values into the compute pipeline to
achieve higher throughput. As the channel enable field is forwarded to the writeback message bus, only the resulting
values with channel enable bit on are written back to the requesting thread’s GRF register.

• Scalar mode: The second case is when the Source Structure is a scalar structure. In this scalar mode, there may be up to
2 unique input values present, one for each group of 4 channels. The 2 unique input values reside in the first channel of
each group of 4, channel 0 and channel 4, specifically. The computed results of the two scalar inputs are replicated to the
corresponding 4 channels. The sideband channel enable field determines which channels are enabled at the final output.
It is obvious that as long as any bit out of a group of four channel-enable bits are set, the corresponding scalar data must
be computed. Inversely, if all four channel enable bits in a group are zero, computation of the corresponding scalar is
skipped.

A subset of the scalar mode is when there is only one valid input. In this case the channel enable field will show that one of the
two groups of four does not contain valid data. These three cases are illustrated below:

Doc Ref #: IHD_OS_V4Pt1_3_10 207

B6884-01

8 unique, valid,
inputs (vector)

A

Channel #

0

B

C

D

E

F

G

H

1

2

3

4

5

6

7

2 unique, valid,
inputs (scalar)

A

Channel #

0

A

A

A

B

B

B

B

1

2

3

4

5

6

7

1 unique, valid,
inputs (scalar)

A

Channel #

0

-

-

-

-

-

-

-

1

2

3

4

5

6

7

Inputs to be sent down pipeline

208 Doc Ref #: IHD_OS_V4Pt1_3_10

6.1.1.3 Message Payload

8 channel message:

All incoming messages are comprised of a single message register except the POW function and INT DIV, which consist of two
message registers. The higher 8 bits are ignored by hardware. The lower 8 bits of the channel enables (execution mask) are used
as the (dword) channel enables for the math function operation.

[DevCTG+] 16 channel message:

In additional to the 8 channel message type described above, 16 channel message type is also supported for all functions except
POW and INT DIV which require two operands. A 16 channel message consists of two message registers. In this case, all 16 bits
of channel enables are used, with the higher 8 bits as the enables for the corresponding operands (from 8 to 15).

Message registers for 8-channel message:
DWord Bit Description

M0.7 31:0 Operand0[7]. The value of Operand0 for element 7

For the POW function, this operand is the base

For the INT DIV functions, this operand is the denominator

For all other functions, this operand is the single input operand

Format = S31 or U32 depending on Integer Type for INT DIV functions

Format = IEEE Float or Alternative Float depending on floating point mode signal for all
other functions

M0.6 31:0 Operand0[6]. Refer to Operand0[7] above for the function of this operand.

M0.5 31:0 Operand0[5]. Refer to Operand0[7] above for the function of this operand.

M0.4 31:0 Operand0[4]. Refer to Operand0[7] above for the function of this operand.

M0.3 31:0 Operand0[3]. Refer to Operand0[7] above for the function of this operand.

M0.2 31:0 Operand0[2]. Refer to Operand0[7] above for the function of this operand.

M0.1 31:0 Operand0[1]. Refer to Operand0[7] above for the function of this operand.

M0.0 31:0 Operand0[0]. Refer to Operand0[7] above for the function of this operand.

M1.7 31:0 Operand1[7]. The value of Operand1 for element 7

For the POW function, this operand is the power

For the INT DIV functions, this operand is the numerator

For all other functions, this data phase of the message is not present

Format = S31 or U32 depending on Integer Type for INT DIV functions

Format = IEEE Float or Alternative Float depending on floating point mode signal for all
other functions

M1.6 31:0 Operand1[6]. Refer to Operand1[7] above for the function of this operand.

M1.5 31:0 Operand1[5]. Refer to Operand1[7] above for the function of this operand.

M1.4 31:0 Operand1[4]. Refer to Operand1[7] above for the function of this operand.

M1.3 31:0 Operand1[3]. Refer to Operand1[7] above for the function of this operand.

M1.2 31:0 Operand1[2]. Refer to Operand1[7] above for the function of this operand.

Doc Ref #: IHD_OS_V4Pt1_3_10 209

DWord Bit Description

M1.1 31:0 Operand1[1]. Refer to Operand1[7] above for the function of this operand.

M1.0 31:0 Operand1[0]. Refer to Operand1[7] above for the function of this operand.

[DevCTG+] Message registers for 16-channel message, which is not valid for POW and INT DIV:

DWord Bit Description

M0.7 31:0 Operand0[7]. The value of Operand0 for element 7

This operand is the single input operand

Format = IEEE Float or Alternative Float depending on floating point mode signal

M0.6 31:0 Operand0[6]. Refer to Operand0[7] above for the function of this operand.

M0.5 31:0 Operand0[5]. Refer to Operand0[7] above for the function of this operand.

M0.4 31:0 Operand0[4]. Refer to Operand0[7] above for the function of this operand.

M0.3 31:0 Operand0[3]. Refer to Operand0[7] above for the function of this operand.

M0.2 31:0 Operand0[2]. Refer to Operand0[7] above for the function of this operand.

M0.1 31:0 Operand0[1]. Refer to Operand0[7] above for the function of this operand.

M0.0 31:0 Operand0[0]. Refer to Operand0[7] above for the function of this operand.

M1.7 31:0 Operand1[15]. Refer to Operand0[7] above for the function of this operand.

M1.6 31:0 Operand1[14]. Refer to Operand0[7] above for the function of this operand.

M1.5 31:0 Operand1[13]. Refer to Operand0[7] above for the function of this operand.

M1.4 31:0 Operand1[12]. Refer to Operand0[7] above for the function of this operand.

M1.3 31:0 Operand1[11]. Refer to Operand0[7] above for the function of this operand.

M1.2 31:0 Operand1[10]. Refer to Operand0[7] above for the function of this operand.

M1.1 31:0 Operand1[9]. Refer to Operand0[7] above for the function of this operand.

M1.0 31:0 Operand1[8]. Refer to Operand0[7] above for the function of this operand.

210 Doc Ref #: IHD_OS_V4Pt1_3_10

6.1.2 Writeback Message

Writeback messages for most EM functions contain a single GRF register. The exceptions to this rule are SINCOS and INT DIV.
SINCOS returns two GRF registers, the first register contains the computed Sine of the inputs, and the second contains the
computed Cosine values. INT DIV returns the quotient in the first GRF register and the remainder in the second GRF register.
The two GRF registers are adjacent.

The lower 8 bits of the channel enables (execution mask) of the writeback bus are the same 8 (dword) channel enables of the
request message. Because EM supports vector operations with a maximum of 8 channels, the higher 8 bits of the channel enables
are set to 0. The same 16-bit channel enables are repeated for the second GRF register write, if present.

DWord Bit Description

W0.7 31:0 Result0[7]. The value of Result0 for element 7

For the SINCOS function, this result is the sine

For the INT DIV (return quotient and remainder) functions, this result is the quotient

For all other functions, this result is the single output result

Format = S31 or U32 depending on Integer Type for INT DIV functions

Format = IEEE Float or Alternative Float depending on floating point mode signal for all other
functions

W0.6 31:0 Result0[6]

W0.5 31:0 Result0[5]

W0.4 31:0 Result0[4]

W0.3 31:0 Result0[3]

W0.2 31:0 Result0[2]

W0.1 31:0 Result0[1]

W0.0 31:0 Result0[0]

W1.7 31:0 Result1[7]. The value of Result1 for element 7

For the SINCOS function, this result is the cosine

For the INT DIV (return quotient and remainder) functions, this result is the remainder

For all other functions, this data phase of the message is not present

Format = S31 or U32 depending on Integer Type for INT DIV functions

Format = IEEE Float or Alternative Float depending on floating point mode signal for all other
functions

W1.6 31:0 Result1[6]

W1.5 31:0 Result1[5]

W1.4 31:0 Result1[4]

W1.3 31:0 Result1[3]

W1.2 31:0 Result1[2]

W1.1 31:0 Result1[1]

W1.0 31:0 Result1[0]

Doc Ref #: IHD_OS_V4Pt1_3_10 211

6.2 Performance

The Extended Math shared function unit supports extended math functions with up to 8 data channels per request. Computations
for a vector request are performed channel by channel on a serial execution pipeline. Most functions require iterative
computations. For example, SQRT takes three rounds of computation in the serial execution pipeline. The latency for each round
is about 22 clocks. Trigonometric functions may take variable number of rounds depending on the input data. For certain math
functions, the throughput with partial precision computation in alternative floating point mode is higher than the full precision
computation. After computations for all channels of a request are completed, data vectors (of one or two phases) are assembled
before the writeback message is sent back to the requesting thread.

The following table shows the number of rounds per element for each function type. The table may be used to estimate the
utilization of the extended math unit and the minimal latency of the message.

Function Throu ghput

(rounds/element)
Note

INV 1

LOG Partial: 2

Full: 3

Computes Log base 2

SQRT 3 Implemented as: √x = x * 1/√x

RSQ 2

EXP Full: 4

Partial: 3
Both partial and full precision versions have the same throughput.

Computes 2x (anti-log)
POW 8

SIN Min: 5

Max: 12

Typical: 6

Trigonometric functions are the only ones with variable throughput.
Throughput depends on the input data range.

Input is in radians

COS Same as SIN Input is in radians

SINCOS See SIN The two-output-phase SINCOS function is implemented as back to back
SIN and COS functions.

Input is in radians

INT DIV Quotient: 3

Remainder: 4

To best utilize the extended math shared function, programmers should consider the following characteristics of the shared
function:

• In vector mode, only the enabled channels consume computation rounds, while the disabled channels do not.

• In scalar mode, one data element is computed for a group of 4 channels if any of the 4 channels is enabled. If all 4
channels are disabled, no compute cycle is wasted for the group.

212 Doc Ref #: IHD_OS_V4Pt1_3_10

6.3 Function Reference

A math function may take one request message register (src0) or two request message registers (src0 and src1), and may output
one writeback message register (dst0) or two writeback message registers (dst0 and dst1).

Vector mode or scalar mode is determined by the Source Structure field of message descriptor.

The operations is based on the channel enables as noted by EMask.

6.3.1 INV
Description Computes reciprocal of src0 (32-bit float format) and stores computed result in dest as a 32-bit float

Format: INV <dst0> <src0>

Pseudocode: for (n = 0; n < 8; n++) {
 int srcCh = (vector mode) ? n : ((n < 4) ? 0 : 4)
 if (EMask.channel[n] == 1) {

 dst0.channel[n] = 1 / src0.channel[srcCh]
 }
 }
Precision: 1 ULP

Src-> +inf +0 / +Denorm - 0 / -Denorm -inf NaN

Dest – IEEE mode +0 +inf -inf -0 NaN

Dest – ALT mode +FLT_MAX -FLT_MAX NaN

Doc Ref #: IHD_OS_V4Pt1_3_10 213

6.3.2 LOG
Description: Computes Log2 of Src0 and stores computed result in Dest. Both src0 and dest are 32-bit FP values

Format: LOG <dst0> <src0>

Pseudocode: for (n = 0; n < 8; n++) {
 int srcCh = (vector mode) ? n : ((n < 4) ? 0 : 4)
 if (EMask.channel[n] == 1) {

 dst0.channel[n] = Log2(src0.channel[srcCh])
 }
 }

Precision: +/- 2-21 max relative error – Full precision
 + / - 2-10 max relative error- partial precision

Notes: In ALT mode log is computed as Log2 (abs (src0))

Src-> +inf +0 / +Denorm -0 / -Denorm -inf -F NaN

Dest – IEEE mode +inf -inf -inf NaN NaN NaN

Dest – ALT mode -FLT_ MAX -FLT_MAX +F NaN

6.3.3 EXP
Description: Computes 2src0 and stores computed result in Dest. Both src0 and dest are 32-bit FP values

Format: EXP <dst0> <src0>

Pseudocode: for (n = 0; n < 8; n++) {
 int srcCh = (vector mode) ? n : ((n < 4) ? 0 : 4)
 if (EMask.channel[n] == 1) {

 dst0.channel[n] = 2src0.channel[srcCh]
 }
 }

Precision: + / - 2-21 max relative error – full precision
 +/- 2-10 max relative error – partial precision

Src-> +inf +0 / +Denorm -0 / -Denorm -inf -F NaN

Dest – IEEE mode +inf 1 1 0 +F NaN

Dest – ALT mode 1 1 +F NaN

214 Doc Ref #: IHD_OS_V4Pt1_3_10

6.3.4 SQRT
Description: Computes square-root of src0 and stores computed result in dest. Both src0 and dest are 32-bit FP

values

Format: SQRT <dst0> <src0>

Pseudocode: for (n = 0; n < 8; n++) {
 int srcCh = (vector mode) ? n : ((n < 4) ? 0 : 4)
 if (EMask.channel[n] == 1) {

 dst0.channel[n] = rcCh].channel[s0SRC

 }
 }

Precision: 1 ULP
Notes: In ALT mode SQRT is computed as SQRT(abs (src0))

Src-> +inf +0 / +Denorm -0 / -Denorm -inf -F NaN

Dest – IEEE mode +inf 0 -0 NaN NaN NaN

Dest – ALT mode 0 0 +F NaN

6.3.5 RSQ
Description: Computes reciprocal square-root of src0 and stores computed result in dest. Both src0 and dest are

32-bit FP values
Format: RSQ <dst0> <src0>
Pseudocode: for (n = 0; n < 8; n++) {
 int srcCh = (vector mode) ? n : ((n < 4) ? 0 : 4)
 if (EMask.channel[n] == 1) {

 dst.channel[n] =].channel[n01 SRC

 }
 }
Precision: 1 ULP
Notes: In ALT mode RSQ is computed as RSQ(abs (src0))

Src-> +inf +0 / +Denorm -0 / -Denorm -inf -F NaN

Dest – IEEE mode +0 +inf -inf NaN NaN NaN

Dest – ALT mode +FL T_MAX +FLT_MAX +F NaN

Doc Ref #: IHD_OS_V4Pt1_3_10 215

6.3.6 POW
Description: Computes abs(src0) raised to the src1 power and stores computed result in dst0. Src0, src1, and dst0 are 32-bit

FP values. Src1 is always scalar value.

Format: POW <dst0> <src0> <src1>

Pseudocode: for (n = 0; n < 8; n++) {
 int srcCh = (vector mode) ? n : ((n < 4) ? 0 : 4)
 if (EMask.channel[n] == 1) {

 dst0.channel[n] =))rcCh].channel[s0((log1 22 srcabssrc ⋅

 }
 }

Precision: 2^-15 relative error

IEEE Mode:
Src0->

Src1 abs(F > 1) abs(F < 1) abs(+F = = 1) +inf +0 / +Denorm -Denorm / -0 -inf NaN

+inf +inf 0 NaN +inf 0 0 +inf NaN

+0 / Denorm 1 1 1 NaN NaN NaN NaN NaN

-0 / Denorm 1 1 1 NaN NaN NaN NaN NaN

-inf 0 +inf NaN 0 +inf +inf 0 NaN

-F +F +F +F 0 +inf +inf 0 NaN

NaN NaN NaN NaN NaN NaN NaN NaN NaN

+F +F +inf 0 0 NaN NaN

ALT Mode:

Src0->

Src1 +F +inf +0 / +Denorm -0 / -Denorm -inf -F NaN

+inf

+0 / Denorm 1 1 1 1 NaN

-0 / Denorm 1 1 1 1 NaN

-inf

-F +F +FLT_MAX +FLT_MAX +F NaN

NaN NaN NaN NaN NaN

+F +F 0 0 +F NaN

6.3.7 SIN
Description: Computes the sine of src0 (in radians) and stores computed result in dst0. Src0 and dst0 are 32-bit FP values.

216 Doc Ref #: IHD_OS_V4Pt1_3_10

Format: SIN <dst0> <src0>

Pseudocode: for (n = 0; n < 8; n++) {
 int srcCh = (vector mode) ? n : ((n < 4) ? 0 : 4)
 if (EMask.channel[n] == 1) {

 dst.channel[n] = Sin(src0.channel[srcCh])

 }
 }

Precision: Max absolute error of 0.0008 for the range of +/- 100 * pi

Outside of the above range the function will remain periodic, producing values between -1 and 1. However, the
period of SIN is determined by the internal representation of Pi, meaning that as the magnitude of input
increases the absolute error will, in general, also increase.

Src-> +inf +0 / +Denorm -0 / -Denorm -inf -F NaN

Dest – IEEE mode NaN +0 -0 NaN -1 to 1 NaN

Dest – ALT mode +0 -0 -1 to 1 NaN

6.3.8 COS
Description: Computes the cosine of src0 (in radians) and stores computed result in dst0. Src0 and dst0 are 32-bit FP values.

Format: SIN <dst0> <src0>

Pseudocode: for (n = 0; n < 8; n++) {
 int srcCh = (vector mode) ? n : ((n < 4) ? 0 : 4)
 if (EMask.channel[n] == 1) {

 dst.channel[n] = Cos(src0.channel[srcCh])

 }
 }

Precision: Max absolute error of 0.0008 for the range of +/- 100 * pi
Outside of the above range the function will remain periodic, producing values between -1 and 1. However, the
period of COS is determined by the internal representation of Pi, meaning that as the magnitude of input
increases the absolute error will, in general, also increase.

Src-> +inf +0 / +Denorm -0 / -Denorm -inf -F NaN

Dest – IEEE mode NaN +0 -0 NaN -1 to 1 NaN

Dest – ALT mode +1 +1 -1 to 1 NaN

Doc Ref #: IHD_OS_V4Pt1_3_10 217

6.3.9 SINCOS
Description: Computes the sine of src0 (in radians) and stores computed result in dst0. Computes the cosine of src0 (in

radians) and returns the result to dst1. Src0, dst0 and dst1 are 32-bit FP values.

Format: SINCOS <dst0> <dst1> <src0>

Pseudocode: for (n = 0; n < 8; n++) {
 int srcCh = (vector mode) ? n : ((n < 4) ? 0 : 4)
 if (EMask.channel[n] == 1) {
 if(dst0 != NULL){

 dst0.channel[n] = Sin(src0.channel[srcCh])
 }
 if(dst1 != NULL){
 dst1.channel[n] = Cos(src0.channel[srcCh])
 }

 }
 }

Precision: Max absolute error of 0.0008 for the range of +/- 100 * pi.

Outside of the above range the function will remain periodic, producing values between -1 and 1. However, the
period of SINCOS is determined by the internal representation of Pi, meaning that as the magnitude of input
increases the absolute error will, in general, also increase.

Notes: See individual Sin and Cos tables for error handling

218 Doc Ref #: IHD_OS_V4Pt1_3_10

6.3.10 INT DIV
Description: Computes src0 divided by src1 and returns an integer result to dst0. Src0, src1 and dst0 are 32-bit integers.

Format: INTDIV <dst0> <dst1> <src0> <src1>

Pseudocode: for (n = 0; n < 8; n++) {
 int srcCh = (vector mode) ? n : ((n < 4) ? 0 : 4)
 if (EMask.channel[n] == 1) {
 if(dst0 != NULL){

 dst0.channel[n] = quotient (src0.channel[srcCh] / src1.channel[srcCh])
 }
 if(dst1 != NULL){

dst1.channel[n] = remainder (src0.channel[srcCh] / src1.channel[srcCh])
}

 }
 }
Precision: 32-bit integer

For signed inputs, INT DIV behavior is illustrated by the table below:
Inputs: Numerator + + - -

 Denominator + - + -
Outputs: Quotient + - - +

 Remainder + + - -

Doc Ref #: IHD_OS_V4Pt1_3_10 219

IDIV SRC0

SRC1 + INT - INT 0

+ INT +INT -INT 0

- INT -INT +INT 0

0 Q:0x7FFF FFFF Q: 0x8000 0000 Q:0x7FFF FFFF

 R:0x7FFF FFFF R: 0x8000 0000 R:0x7FFF FFFF

UDIV SRC0

SRC1 <> 0 0

<>0 UINT 0

0 Q: 0xFFFF FFFF Q: 0xFFFF FFFF

 R: 0xFFFF FFFF R: 0xFFFF FFFF

