

Intel® Iris® Plus Graphics and UHD Graphics Open

Source

Programmer's Reference Manual

For the 2019 10th Generation Intel Core™ Processors

based on the "Ice Lake" Platform

Volume 7: Memory Cache

January 2020, Revision 1.0

ii Doc Ref # IHD-OS-ICLLP-Vol 7-1.20

Creative Commons License

You are free to Share - to copy, distribute, display, and perform the work under the following

conditions:

• Attribution. You must attribute the work in the manner specified by the author or licensor (but

not in any way that suggests that they endorse you or your use of the work).

• No Derivative Works. You may not alter, transform, or build upon this work.

Notices and Disclaimers

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO

LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS

IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE

FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY

EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING

LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR

INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result,

directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS

FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS

SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES

OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE

ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY,

PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION,

WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE,

OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers

must not rely on the absence or characteristics of any features or instructions marked "reserved" or

"undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for

conflicts or incompatibilities arising from future changes to them. The information here is subject to

change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which

may cause the product to deviate from published specifications. Current characterized errata are

available on request.

Implementations of the I2C bus/protocol may require licenses from various entities, including Philips

Electronics N.V. and North American Philips Corporation.

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

* Other names and brands may be claimed as the property of others.

Copyright © 2020, Intel Corporation. All rights reserved.

Doc Ref # IHD-OS-ICLLP-Vol 7-1.20 iii

Table of Contents

Memory Cache ... 1

L3 Cache ... 1

Overview ... 1

Bandwidth and Throughput Capability .. 2

L3 Bank Configuration .. 2

Size of L3 Bank and Allocations .. 3

L3 Cache Theory of Operation ... 5

L3 Ordering Restrictions... 5

Basic Ordering Requirements .. 6

L3 Cache Allocation Policy .. 6

Cache replacement algorithms.. 6

Memory Object Control State on Cacheability ... 7

L3 Coherency ... 7

Thread Level Coherency ... 7

Thread Group Coherency .. 7

GPUIA Level Coherency .. 8

Coherency Usage Models .. 8

Fixed Func Producing (URB) ... 8

Fixed Func Producing (Push Constants) .. 9

EUs Producing via HDC .. 9

Invalidation and Flushes ... 9

Command Streamer Invalidation Flows ... 10

Non-IA Coherent Flows ... 10

Top of the Pipe Invalidations .. 10

Pipeline Flush .. 10

IA-Coherent Flows ... 10

EUThread Flows ... 11

Global Invalidation ... 11

Power Management Invalidation ... 11

L3 Cache Error Protection .. 11

L3 Cache and URB ... 12

iv Doc Ref # IHD-OS-ICLLP-Vol 7-1.20

Doc Ref # IHD-OS-ICLLP-Vol 7-1.20 1

Memory Cache

This section describes the GFX L3 Cache, which is a large storage that backs up various L1 and L2 caches

inside the design. It supports a simple, way-based partitioning for segregating the cache among groups

of clients. It also has a provision to dedicate a (programmable) section of the storage for the GFX Unified

Return Buffer.

L3 Cache

This is the PRM volume describing the L3/URB/SLM for Gen11. Much of the design is similar to prior

generations, with important changes to enhance performance.

Overview

In order to cater to the bandwidth demands, the L3 cache is organized as multiple independent banks

which can be accessed concurrently. The cache arrays are clocked at 2X the base clock to achieve the

bandwidth.

The L3 cache and URB data form a single contiguous memory space across all the banks and sub banks

in the design. The vision is to build a compute scalable cache where with each additional compute block,

both the size and bandwidth of L3 Cache are scaled while maintaining the monolithic cache concept.

Each added bank becomes a part of a unified cache rather than an independent localized segment. The

concept is to be able to keep a single copy of a line and service all requesters via distributing their

accesses over many physical cache banks. The L3 cache can operate concurrently in the non-IA-coherent

GFX virtual address space as well as the IA-coherent address space.

• Each logical bank consists of:

o The Data Array - This array stores the actual data

o The Tag Array - This array stores the tags for the cachelines above

o The LRU Array - This array stores information that helps determining the cache line that will

be evicted when a fill arrives for a set

o The State Array - This array stores the cache state information (MESI States of the cache lines

and some additional internal information)

o The SuperQ Buffer - This array stores data temporarily on the way in or out of the data array

for each access that is in progress

o the Atomic Processing Units - This unit houses the ALU and associated logic to perform

atomic operations on the data

• The rest of the support logic around L3 consists of:

• The SuperQ: This is the main scheduler of the micro-sequences to be followed for each

access to the cache

• Ingress/Egress queues: These queues buffer incoming accesses and outgoing data on their

way into or out of the cache

2 Doc Ref # IHD-OS-ICLLP-Vol 7-1.20

• CAM structures: These structures are used to maintain coherency in cases of proximal

accesses to the same address

• Crossbars: These are used for routing the data to and from the various sub-banks/arrays

Note: A portion of the L3 cache can be allocated as a Unified Return Buffer (URB) region

Bandwidth and Throughput Capability

ICLLP Bandwidth and throughput

The table below shows the throughput capability for the L3/URB per bank. Note that L3$ and URB share

the same pipelines, so the throughput for L3$ and URB is shared as well. Total system throughput is

derived by multiplying the throughput numbers below by the total number of L3 Banks supported by a

product. There is an additional limitation on throughput based the source of the transactions. A single

client (e.g. an HDC or sub-slice) can only issue one 64-byte read or write per clock.

Memory

Type

Read Throughput

(Bytes/Clock)

Write Throughput

(Bytes/Clock)

Atomic Throughput (32b

Ops/Clock)

L3$ or URB 2*64 1*64 10

L3 Bank Configuration

Each L3 bank is configured as described below.

• Each bank consists of a 384KB data-array organized as 96 logical ways

• Up to 80 ways representing 320KB, tagged for L3$, remaining ways treated as dedicated URB.

• The minimum URB size per L3 Bank is 64KB, but this can be programmed upto 128KB.

• 64B Cacheline storage per cell.

• 64B@2x clock interface Data Buffer for the fill/write path and 64B@2x clock Read/Evict path to

Data Buffer.

o The total Array bandwidth is 128B for each core cycle. This bandwidth can be utilized as:

▪ Two independent 64B read per cycle

▪ One 64B read and one 64B write per cycle

▪ One 64B write per cycle

• Data protection via ECC.

• 39b physical addressing and 48b virtual addressing support in TAG.

• 1b LRU implementation for selecting the line to be replaced.

Doc Ref # IHD-OS-ICLLP-Vol 7-1.20 3

Size of L3 Bank and Allocations

General notes

The ICLLP L3 Cache has been divided into following client pools:

• URB: Local memory space

• DC: Data Cluster Data type

• Color: Color cache allocation

• Z: Depth cache allocation

In addition to these sub-groups, a collection of groups are generated to bundle multiple clients under

the same allocation set:

• Read-Only (RO) Clients: Inst/State, Constants & Textures (I/S/C/T)

• All L3 Clients (a.k.a "Rest of L3"): DC, Inst/State, Constants & Textures

• Unified Tile Cache: Color/Z combined

Multi-Bank Allocation Options with Tile Cache and Command buffer support

Starting Gen11, the L3 does not support the highly banked SLM mode of operations. Out of the total L3

space per bank, a minimum of 64Kbytes will be earmarked for URB storage. The rest can be used as

tagged L3 cache. L3 Cache allocation is done on a per way basis. The Bank programming options allow a

varied set of configurations to be programmed in the L3. Broadly, the number of ways allocated to the

various sections (URB, DC, RO, Z, C and the command buffer) is selectable. Each of these sections can be

allocated any number of ways out of the total ways. Apart from that, in lieu of the DC and RO sections a

single unified “Rest of L3” section can be used. Similarly, in lieu of separate Z and C partitions in the L3, a

single Unified Tile Cache programming allows all Z and C streams to share a common section of the L3.

L3 Space allocation can only be changed when the GPU pipeline is completely flushed. To guarantee that

following two events need to be executed prior to the inline register updates to L3 allocation registers:

1. PIPECONTROL FLUSH, CS Stall set, with HDC Flush set, RO cache invalidation set if required (This

flush command ensures the workload is completely drained, Datapipe is completely flushed

followed by initiation of RO cache invalidation. Doesn’t ensure RO cache invalidation is complete)

2. PIPECONTROL FLUSH, CS Stall set, With HDC flush. (This flush ensures any prior RO cache

invalidation in progress to be complete before processing flush for this command, this will avoid

RO cache invalidation colliding with the command to change the allocations.)

4 Doc Ref # IHD-OS-ICLLP-Vol 7-1.20

ICL Configuration

The following table reflects the programmability of the configuration in ICL.

L3 Allocation programming (KBytes per bank)

URB Rest

(DC+RO)

DC RO

(I/S/C/T)

Z Color Unified

Tile Cache

Command

Buffer

Sum

64 to 128

in increments

of 4KB

0 to 320

in

increments

of 4KB

0 to 320

in increments

of 4KB

0 to 320

in increments

of 4KB

0 to 320

in increments

of 4KB

0 to 320

in increments

of 4KB

0 to 320

in increments

of 4KB

0 to 320

in increments

of 4KB

384

However, several restrictions apply. It is not allowed to allocate the entire cache to DC (Data space) with

0KB for reads. However, it is allowed for entire cache to be programmed as RO or Rest. If a cycle is

received by L3 when the allocation is 0 for its section, it will convert it into an un-cacheable. cycle. The

register programming section details all the requirements from the hardware angle. Also, though the

underlying hardware supports varied programming options, only the following configurations are

recommended & validated.

L3 Allocation programming (KBytes per bank)

Config URB

Rest

(DC+RO) DC

RO

(I/S/C/T) Z Color

Unified

Tile Cache

Command

Buffer Sum

0 (def) 128 128 0 0 0 0 0 0 256

1 128 112 0 0 64 64 0 16 384

2 96 0 32 112 64 64 0 16 384

3 64 0 0 176 32 96 0 16 384

4 64 48 0 0 128 128 0 16 384

5 64 0 0 48 0 0 256 16 384

6 64 320 0 0 0 0 0 0 384

7 64 192 0 0 0 0 128 0 384

8 64 176 0 0 0 0 128 16 384

9 128 256 0 0 0 0 0 0 384

Programming Notes:

• Config#0 is retained to allow a compatible driver mode for ICLLP/HP as well as to Gen10

• Config#8 is recommended when PTBR is enabled

• Config#7 is recommended when Caching of C/Z is enabled but PTBR is NOT enabled

• Config#6 is recommended when neither Caching of C/Z nor PTBR is enabled

• Additionally, if the command buffer section is not allocated, then the state cache redirection to the

command buffer section is not allowed.

Doc Ref # IHD-OS-ICLLP-Vol 7-1.20 5

Note: The number of L3 Banks will vary for different products and SKUs. The number of banks supported for

each product is defined in the Configurations section of the PRM. The total amount of L3$ and URB supported

by a product can be calculated by multiplying the number of banks by the values in the above tables.

L3 Cache Theory of Operation

Following are the L3/URB clients:

L3 Cache Clients RW/RO

Data Cluster (i.e., spill/fills,

load/stores, Global memory

accesses)

RW

Sampler (L2$) RO

IME (Motion Estimation) RO

Instruction Cache (I$) RO

State Arbiter RO

Constant Cache RO

URB Clients RW/RO

Local Thread Dispatcher RO

SF Backend RO

Stream Out RO

Clipper RO

Geometry shader RO

Tesselator RO

VF RW

Data Cluster RW

The L3 and the URB are separate address spaces with clients capable of accessing only one or the other

with the exception of the data port. L3 access/cacheability is determined via a parameter, part of the

surface state or base address programming of L3 clients and is communicated to L3 cache along with the

request packet.

L3 Ordering Restrictions

The Super Q will enforce specific ordering requirements on the accesses to the L3/URB but will still allow

out-of-order accesses where possible.

6 Doc Ref # IHD-OS-ICLLP-Vol 7-1.20

Basic Ordering Requirements

Requirements:

1. The primary purpose of ordering transactions is to ensure coherency and causality for software

accesses to memory. For example, if a thread writes to a memory address, it can expect that any

subsequent read issued by the same thread to the same address should read back what it wrote.

Conversely, if the read is before the write, it shall read back the value prior to the write.

2. Transactions which have hardware constraints must be ordered to avoid conflicts. For example,

two FP-Atomic Add operations must be ordered to avoid conflict on a single FP Adder.

L3 Cache Allocation Policy

The L3 cache allocation policy is "Allocate on fill". i.e., a line in the cache storage is allocated only upon

receipt of the data from the external memory and not at the time that the cache detects a miss. The

"Allocate on Fill" policy eliminates many boundary cases by regulating the entry invalidation at the last

phase of the data servicing.

If the data already residing in the allocated entry is not modified, then the incoming FILL will overwrite

the location and pipeline moves on. If the allocated entry carries a dirty data, then an eviction is

generated, and the dirty data will be moved to the super queue for writing out to memory.

Cache replacement algorithms

The L3 Cache has a selectable algorithm for line replacement. The default algorithm is the 1b LRU

scheme. The older pLRU scheme is available only as a potential debug aid.

The pLRU algorithm uses a binary decision tree with (N-1) nodes. Each node is controlled by a single bit.

When a way is filled, all the nodes in the tree to reach that way are flipped to point to another way which

is essentially as far away as you can get. The new cache-line is guaranteed to be retained for N-2

additional fills to the set. The LRU bits are only updated on Fills.

Programming Note

If pLRU is used, the best performance can be attained via assigning a power-of-2 number of ways to each section.

This is to ensure pLRU to distribute the ways w/o hot spotting within that client’s group.

An N-way 1b LRU has an N-bit vector for each set. The vector is initialized to all 0’s. As each Fill request

arrives, the first bit in the vector with a 0 is selected, that way is replaced, and the bit is flipped. Each

subsequent fill will search for the first 0 and replace that line and flip it’s bit. Eventually, when all N bits

are 1 and there are no candidates, all bits are cleared, and the first way is selected. Post this, any access

to the cacheline that results in a hit will cause the bit to be set. This will deselect that way from getting

re-allocated until all the other ways are also accessed.

Doc Ref # IHD-OS-ICLLP-Vol 7-1.20 7

Memory Object Control State on Cacheability

This 7-bit field is used in various state commands and indirect state objects to define L3/LLC/eDRAM

cacheability, memory type, and graphics data type for memory objects.

Note that memory type information from state is used for non-IA compatible paging structures (legacy

context). For new context definition where IA compatible (IA32e) paging structures are used, memory

typing follows the IOMMU defined structures.

 MOCS[6:1] in L3 is used as an index to a set of programmable tables starting with address xB020h. GFX

Software can set up the tables as part of the h/w context, and program various index values in surfaces

to point to a table that best suits for that particular surface.

L3 Coherency

Coherency is one of the crucial topics within the L3 cache. There are multiple levels of coherency that are

checked and ensured via L3. Though the list of domains and flows is dependent on the usage models,

the premise is always the same.

The coherency levels:

1. Thread Level Coherency within a Thread Group

2. Thread Group Coherency between multiple domains

3. GPU/IA level coherency

Besides these special domains, some basic producer/consumer models are followed which are listed as:

1. Fixed function as a producer

2. Data Port as a producer

Thread Level Coherency

A given thread group is contained within a sub-slice, where its writes and reads target the L3 for global

memory and SLM for shared local memory. Given the shared local memory view is the same for all sub-

slice accesses, coherency or data sharing is guaranteed within the thread group. Local syncs are executed

up to Data Port boundary and not exposed to L3.

Thread Group Coherency

Thread groups can be distributed to multiple sub-slices that are physically far from each other. The

coherency between thread groups can only be maintained for their global memory accesses. There are

two implications of this coherency depending on the mode we are operating at:

1. Non IA-Coherent L3 mode: This is the same methodology that was introduced on Gen7.5 with the

addition of GT4 support. The cross thread group coherency is maintained via Sync Global which is

8 Doc Ref # IHD-OS-ICLLP-Vol 7-1.20

processed by L3 as well as introducing a WT mode to be able to update global memory with latest

data. This mechanism is supported on Gen9, but not expected to be used.

2. IA-Coherent L3 mode: For the new mode of operation, there is no need to have WT behavior. The

data in L3 is already visible to all consumers (i.e. other thread groups of GPU or IA cores). Sync

Global has no effect given the data in L3 is already globally visible to all consumers.

GPUIA Level Coherency

In the non-coherent L3 cache mode (i.e. gen7.5 behavior), data sharing between GPU and IA happens via

a s/w controlled flow which requires the internal GPU caches to be flushed in order to make the data

visible. Similarly, these caches need to be invalidated when IA produces data. This mode of operation will

still be available for gen9. Within the L3 cache, non-coherent accesses use “virtual” addresses and are

tagged in the L3 Tag array as "Virtual addresses."

Starting in Gen9, coherent memory access is supported where the L3 cache's contents are visible to IA via

snoops. This allows certain streams (i.e. data port) to be GO (Globally Observable) for IA once posted to

L3, allowing shorter loop for completions and eliminating the need to do an entire pipeline flush over L3

to get it sync’ed to IA coherent domain. Coherency enhances the general programmability of GPU when

cooperating with IA. Within the L3, coherent accesses use a full 48-bit physical address and are tagged in

the L3 Tag array as "Physical addresses."

Any context can have both coherent and non-coherent L3 entries. Hence L3 has no register bit that says

it is running in coherent vs non-coherent mode. In the operation time, both modes will co-exist

simultaneously where some lines in the cache are following a coherent protocol (i.e. physical address)

and remaining lines are following non-coherent protocol (i.e. virtual address).

Coherency Usage Models

This section is to give some examples of usage models and high-level handling within the L3 cache. This

is specific to L3 cache flows and is not meant to represent the coherency usage models at the system

level.

Fixed Func Producing (URB)

Fixed function (FF) clients producing data and slice clients consuming that data is a very common usage

model for URB based data sharing. In this mode, FF sends writes to URB and shifts to the next task in

their pipeline, rest of the pipeline clients including slice clients will read their content from URB.

Coherency is achieved via delivery of URB write completions from the GO (“Globally observable”) point in

the L3 cache fabric. Once the fabric consumes the write and schedules it towards the L3 cache bank, a

completion is returned back to producer which enables the consumer. When the consumers start, the

data is already at the point of GO where the L3 bank superQ will ensure the ordering of the incoming

reads with prior writes.

Doc Ref # IHD-OS-ICLLP-Vol 7-1.20 9

Fixed Func Producing (Push Constants)

Push constants are also similarly processed; in fact, the target is the same: URB. However, the hardware

mechanism of fetching the push constants involves two addresses -- that of the virtual memory pointer

to the buffer in memory and a URB offset. This causes the GO point to be pushed later in the cycle to

ensure that there are no race conditions and is internally handled by the hardware.

There are additional constraints independent of L3 handling of push constants which are defined as part

of the Global Arbitration fabric.

EUs Producing via HDC

Data port is the producer for Global and Shared Local memory data types. The shared local memory is

specific to a data port and is confined to the sub-slice. Hence the L3 cache is not involved in the SLM

coherency.

For the global memory, coherency is maintained via combination of mechanisms.

1. Completion tracking: Each Data Port tracks its writes towards L3 and waits for them to reach to GO.

GO message is given by L3

a. For Non-coherent/virtual addressed Write: Once the ingress queue retires the write in the

corresponding node to targeted bank.

b. For Coherent/physical addressed Write: Once the ownership is obtained for the write (i.e. read-for-

ownership or invalid-to-modified) which means write is GO with respect to IA cores.

The GO information is used within data port to make sure handle releases are gated until the producers

updates are globally visible.

2. Thread Level Flush: EU threads have the capability to push globally tagged data from L3 to next

level caches. It is supported, but the usage is not recommended.

Invalidation and Flushes

There are two different sources to initiate flushes and invalidations:

• Command Streamer initiated

• EU/thread initiated

Both cases have two modes of operation

• Non-IA coherent L3

• IA coherent L3

In addition, there are side flows that back up the various flows and they do require invalidation/flush

sequences to be executed for their purpose. Their behavior has no impact between two modes of L3

operation.

10 Doc Ref # IHD-OS-ICLLP-Vol 7-1.20

• Global Invalidation

• Power Management Invalidation

Command Streamer Invalidation Flows

The Command streamer can initiate the following flush/invalidation flows.

1. Top of the pipe invalidations: These are direct, asynchronous commands from the command

streamer unit to L3 in respective slices.

2. Pipeline flush: These commands flow through the pipe and are issued through the data port to

the L3 cache in each slice.

Non-IA Coherent Flows

This is the traditional flow where the content of L3 needs to be invalidated or flushed similar to gen7.5

flows.

Top of the Pipe Invalidations

For this case, the invalidation causes the cache to drain all FIFOs and pipelines, and the node performs all

invalidations. Only after completion in all slices will new transactions be sent to the L3.

The Top of the Pipe invalidation is intended for cases where invalidation and completion need to be

coordinated between slices. Therefore, each slice performs invalidation, but will not proceed until all

slices have completed the invalidation.

Nodes are responsible to serialize the invalidation and use double buffering for each event.

Pipeline Flush

Pipeline invalidation is much simpler and optimized for performance. In this case there is no need to

coordinate between slices and the operation is more like a “sync” point. Transactions arriving after the

invalidation request will still be queued in the SQ but will only be processed after the invalidation of all

candidate lines in the cache is complete. The invalidation acts like a fence.

Nodes are responsible to serialize the invalidation and use double buffering for each event.

IA-Coherent Flows

In principle IA-coherent flow is same from node perspective, the only difference is within the banks given

the data that we are trying to flush or invalidate is already coherent with IA. Such case eliminates the

need to push any bank content explicitly out to LLC.

All that is needed from the bank is to make sure LSQC content is posted into the bank where it is IA

visible for a bank to return flush/invalidation completion status to the node.

Doc Ref # IHD-OS-ICLLP-Vol 7-1.20 11

EUThread Flows

As part of gen9, we continue to support the capability for EUs to be able to perform flush/invalidation

events that are not coordinated between other EUs. HDC will relate the request to corresponding L3 and

require the entire content of this buffer to be invalidated or flushed to relative coherency domain.

Similar to pipeline flush and top of the pipe invalidations, each node receiving this event will have to

communicate with other nodes and make the corresponding traffic un-cacheable before returning the

response back to corresponding HDC, allowing progress. The actual invalidation/flush will be deferred

and performed once all nodes agree on what needs to be done.

The IA-coherent vs non-IA coherent treatment is same as command streamer flows and still applicable

for EU/Thread Flows for invalidation/flush.

Global Invalidation

As part of a mitigation plan to plug holes, a global invalidation flow is introduced where each L3 will get

the request from their SARB (or config agent) and again coordinate between the nodes. Once

invalidation/flush is performed, completion will be returned back to config agent to clear the flags

allowing s/w to observe the end of the global invalidation. Only lines which are tagged as “global” will be

flushed in this manner.

Global invalidation will invalidate/flush every line which has its global bit set regardless of whether the

line is tagged as virtual or physical (non-coherent or coherent).

Programming Note

Context: Global Invalidation

Global invalidation is supported, but there is no known usage case. It is strongly recommended that Global

Invalidation using the global bit in the cache not be used. To achieve coherence between slices, coherent memory

is the better choice.

Power Management Invalidation

In the IA-coherent mode, a standard pipeline flush does not push the modified lines to outside of GT to

allow deferred invalidations. Consequently, the L3 content is cleared and deferred events are completed

through an interaction with the power management (PM) subsystem.

The PM will message the L3 config agent to request a flush when needed. The main usage mode is prior

to entering RC6. The rest of the treatment in the nodes is the same. Once flush/invalidate event is

complete, message(s) will be sent back to PM with the completion status.

L3 Cache Error Protection

L3 cache error protection is covered via ECC (SECDED). All accesses are subject to ECC protection where

single bit errors are fixed silently. Double bit errors are reported via a register structure and

12 Doc Ref # IHD-OS-ICLLP-Vol 7-1.20

communicated by an interrupt to GFX driver. L3 cache HW is additionally capable of stalling execution

upon a double bit error.

L3 Cache and URB

These are the Gen10 registers for L3/URB/SLM. Some of the content is identical to Gen9, but there are

important changes to enhance performance.

LBCF Registers

Registers

L3 SQC registers 1

LNCF Registers

Registers

Tile Cache Control Register

