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Memory Cache  

This section describes the GFX L3 Cache, which is a large storage that backs up various L1 and L2 caches 

inside the design. It supports a simple, way-based partitioning for segregating the cache among groups 

of clients. It also has a provision to dedicate a (programmable) section of the storage for the GFX Unified 

Return Buffer. 

L3 Cache  

This is the PRM volume describing the L3/URB/SLM for Gen11. Much of the design is similar to prior 

generations, with important changes to enhance performance. 

Overview  

In order to cater to the bandwidth demands, the L3 cache is organized as multiple independent banks 

which can be accessed concurrently. The cache arrays are clocked at 2X the base clock to achieve the 

bandwidth. 

The L3 cache and URB data form a single contiguous memory space across all the banks and sub banks 

in the design. The vision is to build a compute scalable cache where with each additional compute block, 

both the size and bandwidth of L3 Cache are scaled while maintaining the monolithic cache concept. 

Each added bank becomes a part of a unified cache rather than an independent localized segment. The 

concept is to be able to keep a single copy of a line and service all requesters via distributing their 

accesses over many physical cache banks. The L3 cache can operate concurrently in the non-IA-coherent 

GFX virtual address space as well as the IA-coherent address space. 

• Each logical bank consists of:  

o The Data Array - This array stores the actual data 

o The Tag Array - This array stores the tags for the cachelines above 

o The LRU Array - This array stores information that helps determining the cache line that will 

be evicted when a fill arrives for a set 

o The State Array - This array stores the cache state information (MESI States of the cache lines 

and some additional internal information) 

o The SuperQ Buffer - This array stores data temporarily on the way in or out of the data array 

for each access that is in progress 

o the Atomic Processing Units - This unit houses the ALU and associated logic to perform 

atomic operations on the data 

• The rest of the support logic around L3 consists of:  

• The SuperQ: This is the main scheduler of the micro-sequences to be followed for each 

access to the cache 

• Ingress/Egress queues: These queues buffer incoming accesses and outgoing data on their 

way into or out of the cache 
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• CAM structures: These structures are used to maintain coherency in cases of proximal 

accesses to the same address 

• Crossbars: These are used for routing the data to and from the various sub-banks/arrays 

Note: A portion of the L3 cache can be allocated as a Unified Return Buffer (URB) region 

Bandwidth and Throughput Capability  

ICLLP Bandwidth and throughput  

The table below shows the throughput capability for the L3/URB per bank. Note that L3$ and URB share 

the same pipelines, so the throughput for L3$ and URB is shared as well. Total system throughput is 

derived by multiplying the throughput numbers below by the total number of L3 Banks supported by a 

product. There is an additional limitation on throughput based the source of the transactions. A single 

client (e.g. an HDC or sub-slice) can only issue one 64-byte read or write per clock. 

Memory 

Type 

Read Throughput 

(Bytes/Clock) 

Write Throughput 

(Bytes/Clock) 

Atomic Throughput (32b 

Ops/Clock) 

L3$ or URB 2*64 1*64 10 

L3 Bank Configuration 

Each L3 bank is configured as described below.  

• Each bank consists of a 384KB data-array organized as 96 logical ways 

• Up to 80 ways representing 320KB, tagged for L3$, remaining ways treated as dedicated URB. 

• The minimum URB size per L3 Bank is 64KB, but this can be programmed upto 128KB. 

• 64B Cacheline storage per cell. 

• 64B@2x clock interface Data Buffer for the fill/write path and  64B@2x clock Read/Evict path to 

Data Buffer.   

o The total Array bandwidth is 128B for each core cycle. This bandwidth can be utilized as:  

▪ Two independent 64B read per cycle 

▪ One 64B read and one 64B write per cycle  

▪ One 64B write per cycle 

• Data protection via ECC. 

• 39b physical addressing and 48b virtual addressing support in TAG. 

• 1b LRU implementation for selecting the line to be replaced. 
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Size of L3 Bank and Allocations  

General notes 

The ICLLP L3 Cache has been divided into following client pools: 

• URB: Local memory space 

• DC: Data Cluster Data type 

• Color: Color cache allocation 

• Z: Depth cache allocation 

In addition to these sub-groups, a collection of groups are generated to bundle multiple clients under 

the same allocation set: 

• Read-Only (RO) Clients: Inst/State, Constants & Textures (I/S/C/T) 

• All L3 Clients (a.k.a "Rest of L3"): DC, Inst/State, Constants & Textures 

• Unified Tile Cache: Color/Z combined 

Multi-Bank Allocation Options with Tile Cache and Command buffer support 

Starting Gen11, the L3 does not support the highly banked SLM mode of operations. Out of the total L3 

space per bank, a minimum of 64Kbytes will be earmarked for URB storage. The rest can be used as 

tagged L3 cache. L3 Cache allocation is done on a per way basis. The Bank programming options allow a 

varied set of configurations to be programmed in the L3. Broadly, the number of ways allocated to the 

various sections (URB, DC, RO, Z, C and the command buffer) is selectable. Each of these sections can be 

allocated any number of ways out of the total ways. Apart from that, in lieu of the DC and RO sections a 

single unified “Rest of L3” section can be used. Similarly, in lieu of separate Z and C partitions in the L3, a 

single Unified Tile Cache programming allows all Z and C streams to share a common section of the L3. 

L3 Space allocation can only be changed when the GPU pipeline is completely flushed. To guarantee that 

following two events need to be executed prior to the inline register updates to L3 allocation registers:  

1. PIPECONTROL FLUSH, CS Stall set, with HDC Flush set, RO cache invalidation set if required (This 

flush command ensures the workload is completely drained, Datapipe is completely flushed 

followed by initiation of RO cache invalidation. Doesn’t ensure RO cache invalidation is complete) 

2. PIPECONTROL FLUSH, CS Stall set, With HDC flush. (This flush ensures any prior RO cache 

invalidation in progress to be complete before processing flush for this command, this will avoid 

RO cache invalidation colliding with the command to change the allocations.) 



 

    

4   Doc Ref # IHD-OS-ICLLP-Vol 7-1.20 

ICL Configuration 

The following table reflects the programmability of the configuration in ICL. 

L3 Allocation programming (KBytes per bank) 

URB Rest 

(DC+RO) 

DC RO 

(I/S/C/T) 

Z Color Unified 

Tile Cache 

Command 

Buffer 

Sum 

64 to 128 

in increments 

of 4KB 

0 to 320 

in 

increments 

of 4KB 

0 to 320 

in increments 

of 4KB 

0 to 320 

in increments 

of 4KB 

0 to 320 

in increments 

of 4KB 

0 to 320 

in increments 

of 4KB 

0 to 320 

in increments 

of 4KB 

0 to 320 

in increments 

of 4KB 

384 

However, several restrictions apply. It is not allowed to allocate the entire cache to DC (Data space) with 

0KB for reads. However, it is allowed for entire cache to be programmed as RO or Rest. If a cycle is 

received by L3 when the allocation is 0 for its section, it will convert it into an un-cacheable. cycle. The 

register programming section details all the requirements from the hardware angle. Also, though the 

underlying hardware supports varied programming options, only the following configurations are 

recommended & validated. 

L3 Allocation programming (KBytes per bank) 

Config URB 

Rest 

(DC+RO) DC 

RO 

(I/S/C/T) Z Color 

Unified 

Tile Cache 

Command 

Buffer Sum 

0 (def) 128 128 0 0 0 0 0 0 256 

1 128 112 0 0 64 64 0 16 384 

2 96 0 32 112 64 64 0 16 384 

3 64 0 0 176 32 96 0 16 384 

4 64 48 0 0 128 128 0 16 384 

5 64 0 0 48 0 0 256 16 384 

6 64 320 0 0 0 0 0 0 384 

7 64 192 0 0 0 0 128 0 384 

8 64 176 0 0 0 0 128 16 384 

9 128 256 0 0 0 0 0 0 384 

 

Programming Notes:  

 

• Config#0 is retained to allow a compatible driver mode for ICLLP/HP as well as to Gen10 

• Config#8 is recommended when PTBR is enabled 

• Config#7 is recommended when Caching of C/Z is enabled but PTBR is NOT enabled 

• Config#6 is recommended when neither Caching of C/Z nor PTBR is enabled 

• Additionally, if the command buffer section is not allocated, then the state cache redirection to the 

command buffer section is not allowed. 
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Note: The number of L3 Banks will vary for different products and SKUs. The number of banks supported for 

each product is defined in the Configurations section of the PRM. The total amount of L3$ and URB supported 

by a product can be calculated by multiplying the number of banks by the values in the above tables. 

L3 Cache Theory of Operation  

Following are the L3/URB clients: 

L3 Cache Clients RW/RO 

Data Cluster (i.e., spill/fills, 

load/stores, Global memory 

accesses) 

RW 

Sampler (L2$) RO 

IME (Motion Estimation) RO 

Instruction Cache (I$) RO 

State Arbiter RO 

Constant Cache RO 

 

URB Clients RW/RO 

Local Thread Dispatcher RO 

SF Backend RO 

Stream Out RO 

Clipper RO 

Geometry shader RO 

Tesselator RO 

VF RW 

Data Cluster RW 

The L3 and the URB are separate address spaces with clients capable of accessing only one or the other 

with the exception of the data port. L3 access/cacheability is determined via a parameter, part of the 

surface state or base address programming of L3 clients and is communicated to L3 cache along with the 

request packet. 

L3 Ordering Restrictions  

The Super Q will enforce specific ordering requirements on the accesses to the L3/URB but will still allow 

out-of-order accesses where possible. 
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Basic Ordering Requirements  

Requirements: 

1. The primary purpose of ordering transactions is to ensure coherency and causality for software 

accesses to memory. For example, if a thread writes to a memory address, it can expect that any 

subsequent read issued by the same thread to the same address should read back what it wrote. 

Conversely, if the read is before the write, it shall read back the value prior to the write. 

2. Transactions which have hardware constraints must be ordered to avoid conflicts.  For example, 

two FP-Atomic Add operations must be ordered to avoid conflict on a single FP Adder. 

L3 Cache Allocation Policy  

The L3 cache allocation policy is "Allocate on fill". i.e., a line in the cache storage is allocated only upon 

receipt of the data from the external memory and not at the time that the cache detects a miss. The 

"Allocate on Fill" policy eliminates many boundary cases by regulating the entry invalidation at the last 

phase of the data servicing. 

If the data already residing in the allocated entry is not modified, then the incoming FILL will overwrite 

the location and pipeline moves on. If the allocated entry carries a dirty data, then an eviction is 

generated, and the dirty data will be moved to the super queue for writing out to memory. 

Cache replacement algorithms 

The L3 Cache has a selectable algorithm for line replacement. The default algorithm is the 1b LRU 

scheme. The older pLRU scheme is available only as a potential debug aid. 

The pLRU algorithm uses a binary decision tree with (N-1) nodes. Each node is controlled by a single bit. 

When a way is filled, all the nodes in the tree to reach that way are flipped to point to another way which 

is essentially as far away as you can get. The new cache-line is guaranteed to be retained for N-2 

additional fills to the set. The LRU bits are only updated on Fills. 

Programming Note 

If pLRU is used, the best performance can be attained via assigning a power-of-2 number of ways to each section. 

This is to ensure pLRU to distribute the ways w/o hot spotting within that client’s group. 

An N-way 1b LRU has an N-bit vector for each set. The vector is initialized to all 0’s. As each Fill request 

arrives, the first bit in the vector with a 0 is selected, that way is replaced, and the bit is flipped. Each 

subsequent fill will search for the first 0 and replace that line and flip it’s bit. Eventually, when all N bits 

are 1 and there are no candidates, all bits are cleared, and the first way is selected. Post this, any access 

to the cacheline that results in a hit will cause the bit to be set. This will deselect that way from getting 

re-allocated until all the other ways are also accessed. 
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Memory Object Control State on Cacheability  

This 7-bit field is used in various state commands and indirect state objects to define L3/LLC/eDRAM 

cacheability, memory type, and graphics data type for memory objects. 

Note that memory type information from state is used for non-IA compatible paging structures (legacy 

context). For new context definition where IA compatible (IA32e) paging structures are used, memory 

typing follows the IOMMU defined structures. 

 MOCS[6:1] in L3 is used as an index to a set of programmable tables starting with address xB020h. GFX 

Software can set up the tables as part of the h/w context, and program various index values in surfaces 

to point to a table that best suits for that particular surface.  

L3 Coherency  

Coherency is one of the crucial topics within the L3 cache. There are multiple levels of coherency that are 

checked and ensured via L3. Though the list of domains and flows is dependent on the usage models, 

the premise is always the same. 

The coherency levels: 

1. Thread Level Coherency within a Thread Group 

2. Thread Group Coherency between multiple domains 

3. GPU/IA level coherency 

Besides these special domains, some basic producer/consumer models are followed which are listed as: 

1. Fixed function as a producer 

2. Data Port as a producer 

Thread Level Coherency  

A given thread group is contained within a sub-slice, where its writes and reads target the L3 for global 

memory and SLM for shared local memory. Given the shared local memory view is the same for all sub-

slice accesses, coherency or data sharing is guaranteed within the thread group. Local syncs are executed 

up to Data Port boundary and not exposed to L3. 

Thread Group Coherency  

Thread groups can be distributed to multiple sub-slices that are physically far from each other. The 

coherency between thread groups can only be maintained for their global memory accesses. There are 

two implications of this coherency depending on the mode we are operating at: 

1. Non IA-Coherent L3 mode: This is the same methodology that was introduced on Gen7.5 with the 

addition of GT4 support. The cross thread group coherency is maintained via Sync Global which is 
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processed by L3 as well as introducing a WT mode to be able to update global memory with latest 

data. This mechanism is supported on Gen9, but not expected to be used.  

2. IA-Coherent L3 mode: For the new mode of operation, there is no need to have WT behavior. The 

data in L3 is already visible to all consumers (i.e. other thread groups of GPU or IA cores). Sync 

Global has no effect given the data in L3 is already globally visible to all consumers. 

GPUIA Level Coherency  

In the non-coherent L3 cache mode (i.e. gen7.5 behavior), data sharing between GPU and IA happens via 

a s/w controlled flow which requires the internal GPU caches to be flushed in order to make the data 

visible. Similarly, these caches need to be invalidated when IA produces data. This mode of operation will 

still be available for gen9. Within the L3 cache, non-coherent accesses use “virtual” addresses and are 

tagged in the L3 Tag array as "Virtual addresses." 

Starting in Gen9, coherent memory access is supported where the L3 cache's contents are visible to IA via 

snoops. This allows certain streams (i.e. data port) to be GO (Globally Observable) for IA once posted to 

L3, allowing shorter loop for completions and eliminating the need to do an entire pipeline flush over L3 

to get it sync’ed to IA coherent domain. Coherency enhances the general programmability of GPU when 

cooperating with IA. Within the L3, coherent accesses use a full 48-bit physical address and are tagged in 

the L3 Tag array as "Physical addresses." 

Any context can have both coherent and non-coherent L3 entries. Hence L3 has no register bit that says 

it is running in coherent vs non-coherent mode. In the operation time, both modes will co-exist 

simultaneously where some lines in the cache are following a coherent protocol (i.e. physical address) 

and remaining lines are following non-coherent protocol (i.e. virtual address). 

Coherency Usage Models  

This section is to give some examples of usage models and high-level handling within the L3 cache. This 

is specific to L3 cache flows and is not meant to represent the coherency usage models at the system 

level. 

Fixed Func Producing (URB)  

Fixed function (FF) clients producing data and slice clients consuming that data is a very common usage 

model for URB based data sharing. In this mode, FF sends writes to URB and shifts to the next task in 

their pipeline, rest of the pipeline clients including slice clients will read their content from URB. 

Coherency is achieved via delivery of URB write completions from the GO (“Globally observable”) point in 

the L3 cache fabric. Once the fabric consumes the write and schedules it towards the L3 cache bank, a 

completion is returned back to producer which enables the consumer. When the consumers start, the 

data is already at the point of GO where the L3 bank superQ will ensure the ordering of the incoming 

reads with prior writes. 
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Fixed Func Producing (Push Constants)  

Push constants are also similarly processed; in fact, the target is the same: URB. However, the hardware 

mechanism of fetching the push constants involves two addresses -- that of the virtual memory pointer 

to the buffer in memory and a URB offset. This causes the GO point to be pushed later in the cycle to 

ensure that there are no race conditions and is internally handled by the hardware. 

There are additional constraints independent of L3 handling of push constants which are defined as part 

of the Global Arbitration fabric. 

EUs Producing via HDC  

Data port is the producer for Global and Shared Local memory data types. The shared local memory is 

specific to a data port and is confined to the sub-slice. Hence the L3 cache is not involved in the SLM 

coherency. 

For the global memory, coherency is maintained via combination of mechanisms. 

1. Completion tracking: Each Data Port tracks its writes towards L3 and waits for them to reach to GO. 

GO message is given by L3 

a. For Non-coherent/virtual addressed Write: Once the ingress queue retires the write in the 

corresponding node to targeted bank. 

b. For Coherent/physical addressed Write:  Once the ownership is obtained for the write (i.e. read-for-

ownership or invalid-to-modified) which means write is GO with respect to IA cores. 

The GO information is used within data port to make sure handle releases are gated until the producers 

updates are globally visible. 

2. Thread Level Flush: EU threads have the capability to push globally tagged data from L3 to next 

level caches. It is supported, but the usage is not recommended. 

Invalidation and Flushes  

There are two different sources to initiate flushes and invalidations: 

• Command Streamer initiated 

• EU/thread initiated 

Both cases have two modes of operation 

• Non-IA coherent L3 

• IA coherent L3 

In addition, there are side flows that back up the various flows and they do require invalidation/flush 

sequences to be executed for their purpose. Their behavior has no impact between two modes of L3 

operation. 
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• Global Invalidation 

• Power Management Invalidation 

Command Streamer Invalidation Flows  

The Command streamer can initiate the following flush/invalidation flows. 

1. Top of the pipe invalidations: These are direct, asynchronous commands from the command 

streamer unit to L3 in respective slices. 

2. Pipeline flush: These commands flow through the pipe and are issued through the data port to 

the L3 cache in each slice. 

Non-IA Coherent Flows  

This is the traditional flow where the content of L3 needs to be invalidated or flushed similar to gen7.5 

flows. 

Top of the Pipe Invalidations  

For this case, the invalidation causes the cache to drain all FIFOs and pipelines, and the node performs all 

invalidations. Only after completion in all slices will new transactions be sent to the L3. 

The Top of the Pipe invalidation is intended for cases where invalidation and completion need to be 

coordinated between slices. Therefore, each slice performs invalidation, but will not proceed until all 

slices have completed the invalidation. 

Nodes are responsible to serialize the invalidation and use double buffering for each event. 

Pipeline Flush  

Pipeline invalidation is much simpler and optimized for performance. In this case there is no need to 

coordinate between slices and the operation is more like a “sync” point. Transactions arriving after the 

invalidation request will still be queued in the SQ but will only be processed after the invalidation of all 

candidate lines in the cache is complete. The invalidation acts like a fence. 

Nodes are responsible to serialize the invalidation and use double buffering for each event. 

IA-Coherent Flows  

In principle IA-coherent flow is same from node perspective, the only difference is within the banks given 

the data that we are trying to flush or invalidate is already coherent with IA. Such case eliminates the 

need to push any bank content explicitly out to LLC. 

All that is needed from the bank is to make sure LSQC content is posted into the bank where it is IA 

visible for a bank to return flush/invalidation completion status to the node. 
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EUThread Flows  

As part of gen9, we continue to support the capability for EUs to be able to perform flush/invalidation 

events that are not coordinated between other EUs. HDC will relate the request to corresponding L3 and 

require the entire content of this buffer to be invalidated or flushed to relative coherency domain. 

Similar to pipeline flush and top of the pipe invalidations, each node receiving this event will have to 

communicate with other nodes and make the corresponding traffic un-cacheable before returning the 

response back to corresponding HDC, allowing progress. The actual invalidation/flush will be deferred 

and performed once all nodes agree on what needs to be done. 

The IA-coherent vs non-IA coherent treatment is same as command streamer flows and still applicable 

for EU/Thread Flows for invalidation/flush. 

Global Invalidation  

As part of a mitigation plan to plug holes, a global invalidation flow is introduced where each L3 will get 

the request from their SARB (or config agent) and again coordinate between the nodes. Once 

invalidation/flush is performed, completion will be returned back to config agent to clear the flags 

allowing s/w to observe the end of the global invalidation. Only lines which are tagged as “global” will be 

flushed in this manner. 

Global invalidation will invalidate/flush every line which has its global bit set regardless of whether the 

line is tagged as virtual or physical (non-coherent or coherent). 

 

Programming Note 

Context: Global Invalidation 

Global invalidation is supported, but there is no known usage case. It is strongly recommended that Global 

Invalidation using the global bit in the cache not be used. To achieve coherence between slices, coherent memory 

is the better choice. 

Power Management Invalidation  

In the IA-coherent mode, a standard pipeline flush does not push the modified lines to outside of GT to 

allow deferred invalidations. Consequently, the L3 content is cleared and deferred events are completed 

through an interaction with the power management (PM) subsystem. 

The PM will message the L3 config agent to request a flush when needed. The main usage mode is prior 

to entering RC6. The rest of the treatment in the nodes is the same. Once flush/invalidate event is 

complete, message(s) will be sent back to PM with the completion status. 

L3 Cache Error Protection  

L3 cache error protection is covered via ECC (SECDED). All accesses are subject to ECC protection where 

single bit errors are fixed silently. Double bit errors are reported via a register structure and 
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communicated by an interrupt to GFX driver. L3 cache HW is additionally capable of stalling execution 

upon a double bit error. 

L3 Cache and URB  

These are the Gen10 registers for L3/URB/SLM. Some of the content is identical to Gen9, but there are 

important changes to enhance performance. 

LBCF Registers 

Registers 

L3 SQC registers 1 

LNCF Registers 

Registers 

Tile Cache Control Register 

 


