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Introduction
The hardware supports three engines:

9 The Rerder command streamer interfaces to 3D/IE and display streams.
I The Media command streamer interfaces to the fixed function media.
I The Blitter command streamer interfaces to the blit commands.

Software interfaces of all three engines are very similar and shaild only differ on engine -specific
functionality.

Memory Views Glossary

Term Definition
IOMMU 1/0 Memory Mapping unit
SVM Shared Virtual Memory, implies the same virtual memory view between the IA cores and
processor graphics.
SKL SkyLake CPU/GFX platfom. 9th generation processor graphics (Gen9)
Page Walker GFX page walker which handles page level translations between GFX virtual memory to physical
(GAM) memory domain.

GPU Memory Interface
GPU memory interface functions are divided into 4 different major sections:

9 Global Arbitration
1 Memory Interface Functions
1 Page Translations (GFX Page Walker)
1 Ring Interface Functions (GTI)
GT Interface functions are covered at a different chapter/HAS and not part of this documentation. The

following documentation is meant for GFX arbitration paths in accessing to memory/cache interfaces and
page translations and page walker functions.
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Global Arbitration

The global memory arbitration fabric is meant to be a hierarchal memory fabric where memory accesses
from different st ages of the pipeline are consolidated
CPUBds ring interface.

The arbitration on the fabric is programmable via a simple per pipeline stage priority levels.

Programming Note

Context: Global Memory Arbitration

Gen9 arbitration allows 4 levels of arbitration where each pipeline level can be put into these 4 levels. Each
consolidation stage simply follows the 4-level arbitration with grace periods to allow ahead of the pipeline to get a
higher share of the memory bandwidth.

The final arbitration takes places in GAM between parallel compute engines. Each engine (in some cases
major pipeline stages are also separated, i.e. Z vs Color vs L3 vs Fixed Functions) gets a count in a grace
period where its accesses ae counted against a global pool. If a particular engine (or pipeline stage)
exhausts its max allowed, it is dropped to a lower priority and goes to fixed pipeline based prioritization.
Once all counts are expired, the grace period completes and resets.

The count values are programmable via MMIO (i.e. *_ MAX_REQ_COUNT) registers with defaults favoring
the pipeline order.

GFX MMIO 8 MCHBAR Aperture

Address: 140000h 8 147FFFh
Default Value: Same as MCHBAR
Access: Aligned Word, Dword, or Qword Read/Write

This range defined in the graphics MMIO range is an alias with which graphics driver can read and write
registers defined in the MCHBAR MMIO space claimed through Device #0. Attributes for registers
defined within the MCHBAR space are preserved when the sameegisters are accessed via this space.
Registers that the graphics driver requires access to are Rank Throttling, GMCH Throttling, Thermal
Sensor, etc.

The Alias functions work for MMIO access from the CPU only. A command stream load register
immediate will drop the data, and the store register immediate will return all Zeroes.

Graphics MMIO registers can be accessed through MMIO BARs in function #0 and function #1 in Device
#2. The aliasing mechanism is turned off if memory access to the corresponding furction is turned off via
software or in certain power states.
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Graphics Memory Interface Functions

The major role of an integrated graphics deviceds
client functions access tmcomgandspsurfaces and otherimomaptioru s e d
used by the graphics device. This chapter describes the basic mechanisms and paths by which graphics
memory is accessed.

Information not presented in this chapter includes:

1 Microarchitectural and implementation -dependent features (e.g., internal buffering, caching, and
arbitration policies).

1 Ml functions and paths specific to the operation of external (discrete) devices attached via external
connections.

1 Ml functions essentially unrelated to the operation of the internal graphics devices, .e.g., traditional
ochipset functionsod

1 GFX Page Walker and GT interface functions are covered in different chapters.

Graphics Memory Clients

The MI function provides memory access functionality to a number of external and inter nal graphics
memory clients, as described in the table below.

Graphics Memory Clients

Ml Client Access Modes

Host Processor Read/Write of Graphics Operands located in Main Memory. Graphics Memory is accessed
using Device 2 Graphics Memory Range Addresses

External PEG Graphics| Write -Only of Graphics Operands located in Main Memory via the Graphics Aperture. (This|
Device client is not described in this chapter).

Peer PCI Device Write -Only of Graphics Operands located in Main Memory. Graphics Memory is accased
using Device 2 Graphics Memory Range Addresses (i.e., mapped by G).TNote that DMI
access to Graphics registers is not supported.

Coherent Read/Write | Internally-generated snooped reads/writes.

(internal)

Command Stream DMA Read of graphics commands and related graphics data.

(internal)

Vertex Stream DMA Read of indexed vertex data from Vertex Buffers by the 3D Vertex Fetch (VF) Fixed
(internal) Function.

Instruction/State Read of pipelined 3D rendering state used by the 3D/Media Functions and instructions
Cache (internal) executed by the EUSs.

Render Cache Read/Write of graphics data operated upon by the graphics rendering engines (Blt, 3D,
(internal) MPEG, etc.) Read of render surface state.

Sampler Cache Read of texture (and other sampled surface) data stored in graphics memory.

(internal)
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MI Client Access Modes
Display/Overlay Read of display, overlay, cursor and VGA data.
Engines (internal)
Media Engines Read and write of media content and media processing.
uController Read/Write (DMA) functions for u-controller and scheduler.

Graphics Memory Addressing Overview

The Memory Interface function provides access to graphics memory (GM) clients. It accepts memory
addresses of various types, performs a number of optional operations along address paths and
eventually performs reads and writes of graphics memory data using the resultant addresses. The
remainder of this subsection will provide an overview of the graphics memory clients and address
operations.

Graphics Address Path

Graphics Address Patlshows the internal graphics memory address path, connection points, and optional
operations performed on addresses. Externallysupplied addresses are normalized to zero-based
Graphics Memory(GM) addressegGM_Address). If the GM address is determined to be a tiled address
(based on inclusion in a fenced region or via explicit surface parameters),address tilingis performed. At
this point the address is considered a Logical Memory addressand is translated into a Physical Memory
addressvia the GTT and associated TLBs. Thghysical memory location is then accessed.

CPU accesses to graphics memory are sent back on the ring to snoop. Hence pages that are mapped
cacheable in the GTT will be coherent with the CPU cache if accessed through graphics memory aperture.
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The remainder of this chapter describes the basic features of the graphics memory address pipeline,
namely Address Tiling, Logical Address Mapping, and Physical Memory types and allocation

considerations.
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Graphics Memory Address Spaces

The Graphics Memory Address Spacesble lists the five supported Graphics Memory Address Spaces.
Note that the Graphics Memory Range Removal function is automatically performed to transform system
addresses to internal, zero-based Graphics Addresses.

Graphics Mem ory Address Types

Address
Type Description Range Gen9 (BXT)
GMADR |Address range allocated via the Device 2 (integrated graphics |This is a 4 GB BAR |128 MB, 256
device) GMADR register. The processor and other peer (DMI) |above physical MB, 512 MB,
devices utilize this address space to read/write graphics data memory. 1GB, 2GB, 4GB
that resides in Main Memory. This address is internally
converted to a GM_Address.
GTTMMADR The combined Graphics Translation Table Modification Range This s a 16MB BAR 16 MB
. above physical

and Memory Mapped Range. Therange requires 16 MB
combined for MMIO and Global GTT aperture, with 8MB of that memory. éZMMBBrZIs'\éI:\?e;
used by MMIO and 8MB used by GTT. GTTADR will begin at +8MB GGTT)
GTTMMADR 8MB while the MMIO base address will be the
same as GTTMMADR.
For the Global GTT, this range is defined as a mmmory BAR in
graphics device config space. It is an alias into which software is
required to write Page Table Entry values PTEs. Software may
read PTE values from the global Graphics Translation Table GT]
PTEs cannot be written directly into the global GTT memory
area.

GSM GTT Stolen Memory. It is an 8 MB (max) region taken out of Th|_5 'S an 8 M.B 1 MB, 2 MB, 4

. . region in physical |MB, 8 MB
physical memory to store the Global GTT entries for page o
. o . memory not visible

translations specific to GFX driver use. {0 OS
It is accessible via GTTMMADR from the CPU path however
GPU/DE can access the same region directly.

DSM Data stolen memory, the size is determined with GMS filed (8 This is a max O.f 4 |0MB, 32 MB,
bits) with MAX size of 4 GB. GB stolen phydcal |64 MB, 96 MB,

memory for GFX ...4096MB

This is a stolen memory which can be accessed via GMADR for
CPU and directly for GPU/DE.

Size is programmable with 32 MB multiplier.

First 4KB of DSM has to be reserved for GFX hardware use.

data structures.

Next level breakdown for GTTMMADR is given below.

Software is allowed to use range x17_0000 to x17_FFFF as the Null range.
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Address Tiling Function Introduction

When dealing with memory operands (e.g., graphics surfaces) that are inherently rectangular in nature,
certain functions within the graphics device support the storage/access of the operands using alternative
(tiled) memory formats to increase performance. This section descrbes these memory storage formats,
why and when they should be used, and the behavioral mechanisms within the device to support them.

Legacy Tiling Modes:
9 TileY: Used for most tiled surfaces whenTR_MODETR_NONE.

9 TileX : Used primarily for display surfaces.
1 TileW: Used for Stencil surfaces.

Programming Note

Context: Address Tiling Function

Tiled Resource Tiling Modes

91 TileYF: 4KB tiling mode based on TileY
1 TileYS: 64KB tiling mode based on TileY

These modes are based on 4KB and 64KB tiles. The 64KB tileisade up of a 4x4 matrix of 4KB tiles. The 4KB tiles in
general have a different layout as compared to the legacy modes, with the sub-mode defining the layout within the
4KB tile. The submodes are determined by the bits per element of the surface format. The Tiled Resource Mode
field in SURFACE_STATE is used to select the new modes.

Tiled surface base addresses must be tile aligned (64KB aligned for TileYS, 4KB aligned for all other tile modes). Fo
1D surfaces, the base address must be 64KB aligned iTiled Resource Mode is TRMODE_64KB, and 4KB aligned

if Tiled Resource Mode is TRMODE_4KB. An exception to this tile alignment is when a SURFACE_STATE describe
single MIP within the MIP Tail of another surface, using a 64 bit or 128-bit Surface Format fi then Surface Base
Address can refer directly to the given MIP (e.g. to write to a non-renderable Surface Format by re-describing as
an alternative surface).

Doc Ref # IHD-OS-SKL:-Vol 5-05.16 7
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Linear vs Tiled Storage

Regardless of the memory storage f or mgetificwidhaadk t angul
height, and are considered as residing within an enclosing rectangular region whose width is considered

the pitch of the region and surfaces contained within. Surfaces stored within an enclosing region must

have widths less than or equalto the region pitch (indeed the enclosing region may coincide exactly with

the surface).Rectangular Memory Operand Parametershows these parameters.

Rectangular Memory Operand Parameters

Fegion Start )
Address la Pitch ol
[~ l
K »
Enclosing Region
! v A
Surface Start
Address =
Surface =4
=
+
Width

LS

¥

B&E30-01

The simplest storage format is the linear format (see Linear Surfice Layou), where each row of the

operand is stored in sequentially increasing memory locations. If the surface width is less than the
enclosing regionds pitch, there wild]l be additional
regi onds |ch df thehencloSirty eegign determines the distance (in the memory address space)
between vertically-adjacent operand elements (e.g., pixels, texels).
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Linear Surface Layout
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The linear format is best suited for 1-dimensional row-sequential access patterns(e.g., a display surface
where each scanline is read sequentially). Here the fact that one object element may reside in a different
memory page than its vertically-adjacent neighbors is not significant; all that matters is that horizontally -
adjacent elements are stored contiguously. However, when a device function needs to access a 2D
subregion within an operand (e.g., a read or write of a 4x4 pixel span by the 3D renderer, a read of a 2x2
texel block for bilinear filtering), having vertically -adjacent elements fall within different memory pages is
to be avoided, as the page crossings required to complete the access typically incur increased memory
latencies (and therefore lower performance).

One solution to this problem is to divide the enclosing region in to an array of smaller rectangular
regions, called memory tiles. Surface elements falling within a given tile will all be stored in the same
physical memory page, thus eliminating page-crossing penalties for 2D subregion accesses within a tile
and thereby increasing performance.

Tiles have a fixed 4KB size and are aligned to physical DRAM page boundaries. They are either 8 rows
high by 512 bytes wide or 32 rows high by 128 bytes wide (see Memory Tile Dimensiong. Note that the
dimensions of tiles are irrespective of the data contained within d e.g., a tile can hold twice as many 16
bit pixels (256 pixels/row x 8 rows = 2K pixels) than 32 bit pixels (128 pixels/row x 8 rows = 1K pixels).
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Memory Tile Dimensions

X Tile Dimensions Y Tile Dimensions

Tile = 4K Bytes

Tile = 4K Bytes

MO 3
SMOY oE——————

e S1oBytes 4

Lli 128 E-'g.-'tES—I-l

BE&SZ-01

The pitch of a tiled enclosing region must be a integral number of tile widths. The 4KB tiles within a tiled
region are stored sequentially in memory in row-major order.

The Tiled Surface Layoufigure shows an example of a tiled surface located within a tiled region with a
pitch of 8 tile widths (512 bytes * 8 = 4KB). Note that it is the enclosing regionthat is divided into tiles d
the surface is not necessarily aligned or dimensioned to tile boundaries.

Tiled Surface Layout

Tiled Region
-t Fitch = 8 tiles = 8% 512B = 4 KB }i

S| Tilz 0 Tile 1 Tile 2 Tile 3 Tile 4 Tile & Tile & Tile 7

Tile & Tiles | Tiledd | Tile11l | Tile 12 | Tile 13 Tile|14 Tile 15

Tile 16 | Tile 17 | Tile 18 | Tile 19 | Tile 20 | Tile 21 | Tile 22 [ Tile 23

Tile 24 | Tile 25 | Tile 26 | Tile 27 | Tile 28 | Tile 29 | Tile™30 | Tile 31

Tile 32 | Tile 33 Y Tile 34 [ Tile 35 | Tile 36 | Tile 37 | TileBg | Tile 39

Tiledd | Tiledl | Tile 42 | Tile 43 | Tile 44 | Tile 45 | Tilepe | Tile 47

Tile 4d | Tiled9 | Tile 50 | Tile 51 | Tile 52 | Tile 53 TiIﬂSS Tile 55
=

Tile 56 | Tile 5 Tile 58 | Tile 59 | Tile 60 | Tile 61 | Tile 62 | Tile 63

Tiled Surface —
BEES3-01
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Auxiliary Surfaces for Sampled Tiled Resources

For surfaces which are deined as Tiled Resources (TileYs or TileYf format), there may be auxiliary surfaces
which are associated with the surface (e.g. HiZ, CCS or MCS)hese auxiliary surfaces, while actually not
defined as TileYs or TileYf will behave like tiled resources fronthe hardware perspective. It is possible

for software to map and unmap tiles of auxiliary surfaces as tiles of the associated surface are mapped

and unmapped. Below is a description how sampling to the mapped/unmapped tile resources is

handled for the associated auxiliary surface. Normally, sampling unmapped tiles will return a NULL
response to the requesting agen.

HiZ
A tile of HiZ data must be mapped to memory whenever any depth surface (Z) pixels associated with the
HiZ tile are mapped. When all Z pixels associated with a HiZ tile are unmapped, the HiZ tile may be

mapped or unmapped. Below is a table showing the responses for sampling to mapped and unmapped
depth surfaces.

Responses for Sampling to a Depth -Surface Tiled Resource

Depth Surface Mapping [HiZ Surface Mapping Sample Response
Mapped Mapped Normal Sample Response|
Mapped Unmapped Undefined

Unmapped Mapped NULL Response
Unmapped Unmapped NULL Response

A "NULL Response" means that the sample returned will be all 0's and theNull Pixel Mask (if requested)
will indicate the depth pixel is Null.

CCS

A tile of CCS (Color Control Surface) must be mapped to memory whenever color surface pixels
associated with the CCS tile are mapped. When all color pixels associated with a CCS tile are unmapped,
the CCS may be mapped or unmapped. CCS is used to indicate that the color surface is losslessly
compressed. Below is a table showing the responses for sampling to mapped and unmapped.

Responses for Sampling to a Losslessly Compressed Color Surface Thatisa Tiled Resource

Color Surface Mapping [CCS Surface Mapping | Sample Response
Mapped Mapped Normal Response
Mapped Unmapped Undefined
Unmapped Mapped NULL Response
Unmapped Unmapped NULL Response

A "NULL Response" means that the sample returned will be all0's and the Null Pixel Mask (if requested)
will indicate the depth pixel is Null.
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A tile of MCS (Multi-Sample Control Surface) must be mapped to memory whenever MSAA surface pixels
associated with the CCS tile are mapped. When all MSAA pixels associat with a MCS tile are

unmapped, the MCS may be mapped or unmapped. Below is a table showing the responses for sampling
to mapped and unmapped.

Responses for Sampling to MSAA Tiled Resources

MSAA Surface Mapping [MCS Mapping | Sample Response
Mapped Mapped Normal Response
Mapped Unmapped Undefined Response
Unmapped Mapped NULL Response
Unmapped Unmapped NULL Response

A "NULL Response" means that the sample returned will be all 0's and theNull Pixel Mask (if requested)
will indicate the depth pixel is Nul I.

Tile Formats

Multiple tile formats are supported by the Gen Core. The following sections define and describe these
formats.

Tiling formats are controlled by programming the fields Tile_Mode and Tiled_Resource_Mode in the
RENDER_SURFACE_STATE.

Tile-X Legacy Format

The legacy format Tile-X is aX-Major (row-major) storage of tile data units, as shown in the following
figure. It is a 4KB tile which is subdivided into an 8 high by 32-wide array of 16-byte OWords. The
selection of tile direction only impact s the internal organization of tile data, and does not affect how
surfaces map onto tiles. Note that an X-major tiled region with a tile pitch of 1 tile is actually stored in a
linear fashion.

Tile-X format is selected for a surface by programming the Tiled_Mode field in RENDER_SURFACE_STATE
to XMAJOR.

For 3D sampling operation, a surface using Tile X layout is generally lower performance the organization
of texels in memory.
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Tile X-Tile (X-Major) Layout

(lntel) ) e

what's inside’

¥-Major Tile
i: 32 168 OWord Columns }.:i
2 2y iy iy 1yl iy
o 1 2 29 a0 31
oW | oW | O . oW | Ow | Ow
32 33 34 Gl oe a3
(un}
A
% [ ] |
| | | |
[ ] |
oW | oW [ ow .u ow | ow | ow
224 225 226 253 254 235

Tile-Y Legacy Format

BEe&a4-01

The device supports TileY legacy format which is Y-Major (column major) storage of tile data units, as
shown in the following figure. A 4KB tile is subdivided 32-high by 8-wide array of OWords. The selection
of tile direction only impacts the internal organization of tile data, and do es not affect how surfaces map

onto tiles.

Tile-Y surface format is selected by programming the Tile_Mode field in RENDER_SURFACE_STATE to

YMAJOR.

Note that 3D sampling of a surface in Tile-Y format is usually has higher performance due to the layout

of pixels.
Y-Major Tile Layout

Y-Major Tile
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W-Major Tile Format

The device supports additional format W-Major storage of tile data units, as shown in the following
figures. A 4KB tile is subdivided into 8-high by 8-wide array of Blocks for W-Major Tiles (W Tiles). Each
Block is 8 rows by 8 bytes. The selection of tile direction only impacts the internal organization of tile
data, and does not affect how surfaces map onto tiles. W-Major Tile Format is used for separate stencil.

Tile-W surface format is selected by programming the Tile_Mode field in the RENDER_SURFACE_STATE to
WMAJOR.

W-Major Tile Layout

< 8 8B Blocks >
BIk0 | Blk8 Blk48 | Blk56
000
Blk1 | BIk9 Blk49 | BIk57
[ ) [
8 8Row Blocks ° )
[ 0
000
v Blk7 | Blk15 BIk55 | Blk63
W-Major Block Layout
< 8B Block >

80 | 81 [ B4 [ B85 | Bt6 ] Bt7] B20 ] B2
B2 | 83 [ B [ B7 [ 18] Bt ] B22] B23
B3 | B9 [ 812 [ 813 B24] B25] B28 ] B9
srowBiock | B10 | B11 | Bt4 | Bt5 | B26 | B27 | B30 | B3f
832 | B33 | B3 [ B37 [ B48 [ B4g | BE2 | B3
834 | B3 [ B3 [ B39 [ Ba0 | B51 | B34 | B5
B40 | B4t | B4 [ B45 | a6 | o7 | 6o | B
| [B42] B43 ] Ba6 | Ba7 | B | 859 [ 62 [ Be3
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Tile-Yf is a 4kByte tile format (similar to Tile-Y), but organized in a different manner. Tile-Yf is selected

by programming the Tile_Mode field in the RENDER_SURFACE_STATE to YMAJOR and the

Tiled_Resource_Mode to TILEYHRhe diagram below shows how pixels are mapped into the TileYf format
for 2D surfaces, and it uses 32Bpp (bits per pixel) surface format as an example on a 2D surfacerhich is
N tiles wide and m tiles high. The exact aspect ratio will be dependent on the Bpp of the surface. Note
that the TileYf format is identical to the TileYs up to the 4K-Byte tile size.

2D Tile Layout for TileYf

32 bpp example

3,0 l 2,0 1,0 0,0 The 64 Byte block

is always 4-high
~~| Width (in pixels) is
defined by bpp
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The 256-Byte Block &, 32 and 128 bpp cases
is always end of up being 1:1, 16
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| /
| /
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| /
| /
/
| /
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Tile-Ys Format

TileYs is a 64KByte tile size. It is enabled by programming the Tile_Mode field (in
RENDER_SURFACE_STATE) to YMAJOR, and programming the Tiled_Resource_Mode to TILHY'S.
organized as shown below, and is composed of 4KByte blocks which have identical layout to the TileYf
format. The diagram below shows how pixels are mapped into the TileYs format, and it uses 32Bpp (bits
per pixel) surface format as an example on a 2D surface which is N tiles wide and m tiles high.The exact
aspect ratio will be dependent on the Bpp of the surface.

Tile-Ys Layout

32 bpp example

3.0 2.0 1.0 .0 The 64 Byte block
is always 4-high
3,1 21 11 | 0a S
e v . v —1 width (in pixels) is
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| Byte blocks
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" /
|} /
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| ’
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¥
: /
/
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o 2 8 10 always axa (16 square, the others end up
256-byte blocks) being 4:1 or 16:1 apsect
4K-Byte Tile Actual aspect ratio  ratios.
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a4 6 12 14 Itis 2:1 for 16 and
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r T
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S 7 13 | 15 -
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/
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The surface is
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- — e e IN-1 i mXN array of 64K
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arranged In X
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-
-
-
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Tiling Algorithm

The following pseudo-code describes the algorithm for translating a tiled memory surface in graphics
memory to an address in logical space.

The following new modes are supported for Tiled Resources TR_MODE!= TR_NONE) defined to enable
tiled resources.

For more details about Mip Tails, seeSurface Layout and Tilingin the Common Surface Formats section.

9 TileYF: 4KB tiling mode based on TileY
1 TileYS: 64KB tiling mode based on TileY

Inputs:
LinearAddress(  offset into regular or LT aperture in terms of bytes),
Pitch(in terms of tiles),
WalkY (1 for Y and 0 for X)
WalkW (1 for W and 0 for the rest)

Static Parameters:
TileH (Height of tile, 8 for X, 32 for Y and 64 for W),
TileW (Width of Tile in bytes, 512 for X, 128 for Y and 64 for W)
TileSize = TileH * TileW,;
RowsSize = Pitch * TileSize;

If (Fenced) {
LinearAddress = LinearAddress I FenceBaseAddress
LinearAddrinTileW = LinearAddress div TileW;
Xoffset_inTile =L inearAddress mod TileW;

Y = LinearAddrInTileW div Pitch;
X = LinearAddrInTileW mod Pitch + Xoffset_inTile;

}

Il Internal graphics clients that access tiled memory already have the X, Y
/I coordinates and can start here

YOff_Within_Tile =Y mod TileH;

XOff_Within_Tile = X mod TileW,

TileNumber_InY =Y div TileH;

TileNumber_InX = X div TileW,

TiledOffsetY = RowSize * TileNumber_InY + TileSize * TileNumber_InX +
TileH * 16 * (XOff_Within_Tile div 16) +
YOff_Within_Tile * 16 +
(XOff_ Within_Tile mod 16);

TiledOffsetW = RowSize * TileNumber_InY +
TileSize * TileNumber_InX +
TileH * 8 * (XOff_Within_Tile div 8) +
64 * (YOff_Within_Tile div 8) +
32 * ((YOff_Within_Tile div 4) mod 2) +
16 * ((XOff_Within_Tile div 4 ) mod 2) +
8 * ((YOff_Within_Tile div 2) mod 2) +
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4 * ((XOff_Within_Tile div 2) mod 2) +
2 * (YOff_Within_Tile mod 2) +
(XOff_Within_Tile mod 2);

TiledOffsetX = RowSize * TileNumber_InY + TileSize * TileNumber_InX +
Tilew * YOff _Within_Tile + XOff_Within_Tile;

TiledOffset = WalkW? TiledOffsetW : (WalkY? TiledOffsetY :
TiledOffsetX);

TiledAddress = Tiled? (BaseAddress + TiledOffset): (BaseAddress +

Y*LinearPitch + X);TiledAddress = (Tiled &&

(Address Swizzling fo r Tiled - Surfaces ==01)) ?

(WalkWw || WalkY) ?

(TiledAddress div 128) * 128 +

(((TiledAddress div 64) mod 2) »

((TiledAddress div 512) mod 2)) +

(TiledAddress mod 32)

(TiledAddress div 128) * 128 +
(((TiledAddress div 64) mod 2) »
((TiledAddress div 512) mod 2)
((TiledAddress Div 1024) mod2) +
(TiledAddress mod 32)

:I'iledAddress;

Address Swizzling for Tiled Surfaces is no longer used because the main memory controller has a more
effective address swizzling agorithm.

For Address Swizzling for Tiled Surfaces see ARB_MOD& Arbiter Mode Control register, ARB_CTA
Display Arbitration Control 1 and TILECTL: Tile Control register

The Y-Major tile formats have the characteristic that a surface element in an even rowis located in the
same aligned 64-byte cacheline as the surface element immediately below it (in the odd row). This spatial
locality can be exploited to increase performance when reading 2x2 texel squares for bilinear texture
filtering, or reading and wri ting aligned 4x4 pixel spans from the 3D Render pipeline.

On the other hand, the X-Major tile format has the characteristic that horizontally -adjacent elements are

stored in sequential memory addresses. This spatial locality is advantageous when the surfae is scanned

in row-major order for operations like display refresh. For this reason, the Display and Overlay memory

streams only support linear or X-Major tiled surfaces (Y-Major tiling is not supported by these functions).

This has the side effect that 2D- or 3D-rendered surfaces must be stored in linear or X Major tiled

formats if they are to be displayed. Non-di spl ayed surfaces, e.g., Orender
in Y-Major order.
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The following Psuedo Code Describes the algorithm for mapping TileYs and TileYf Tile Address to Byte
Offset within a Tile. It describes the support for 2D for both TileYs and TileYf as well as MSAA 2D For
TileYs.

/****************************************************************************

*k% \

BitMask
Used for  masking single bits of X, y, z, ss# when _pdep32 instruction

not available

\ kkkkkkkkkkkkkhkkkkkkkkkhkkkkkkkhkkhkkkkkkhkhkkhkkkkkkkkhkhkkkkkhkhkkhkkkkkkhkhkkkkkkkkkkkkk

***/

enum BitMask

{
BITO=1,
BIT1=(1«1),
BIT2 = (1 « 2),
BIT3=(1 « 3),
BIT4 = (1 « 4),
BIT5 = (1 « 5),
BIT6 = (1 « 6),
BIT7 = (1 «7),
BIT8 = (1 « 8),
BIT9 = (1 « 9),
BIT10 = (1 « 10),
BIT11 = (1 « 11),
BIT12 = (1 « 12),
BIT13 = (1 « 13),
BIT14 = (1 « 14),
BIT15=(1«15)

8

/****************************************************************************

*k%k \

TileYS/TileYF constant swizzle masks w/o _pdep32 instruction

Used to mask contiguous x/y/z/sample bit groupings before being shifted
into
t heir final swizzled bit positions

\ kkkkkkkkkkkkkhkkhkkkkkkkhkhkhkhkkkkhkkhkhkkkkkkhkkhkkkkkkkhkhkkkkrkkhkkhkhkkkkkkhkkhkkkrkkkhkhkkk

***/

/I used for fallback 'manual’ bit shifting

static const UINT16 xMaskBits5 4 = 0x0030;

static const UINT16 xMaskBits3 0 = 0x000F;

stat ic const UINT16 yMaskBits4_0 = 0x001F;

static const UINT16 yMaskBits3_0 = 0x000F;

static const UINT16 yMaskBits2_0 = 0x0007;

static const UINT16 yMaskBits1 0 = 0x0003;

static const UINT16 SampleMask3_0 = 0x000F;

static const UINT16 SampleMask2_0 = 0x0007;
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static const UINT16 SampleMaskl 0 = 0x0003;
static const UINT16 SampleMaskO = 0x0001;

/****************************************************************************

*k% \
TileYS 2D Tile address swizzling functions w/o _pdep32

\ *kkkkkkkkk kkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkhkkkkkhkhkkhkkkkkkkkkkkkkkkkkkk

*k% /

/*

_| Num | Bits per element | Tiled element offset bits
I

| Samples | [15]14]13|12|11|10] 9| 8| 7] 6] 5| 4] 3| 2|
1| O]

| 1x | 64&128
[X9]y5|x8|y4|x7|y3|x6]y2|x5|x4|y1|y0|x3|x2|x1|xO|
16 & 32
[x8|y6|x7|y5|x6|y4|x5|y3|x4|y2|y1|yO|x3|x2|x1|x0|
8

|
Ix7/|y7|><6Iy6|x5|y5|x4ly4ly3ly2ly1|y0|x3lx2|x1|x0|

UINT16 TileYS2dElementOffset64 128bpe(UINT16 x, UINT16 y)
{

UINT16 xSwizzle;

UINT16 ySwizzle;

/I shift bits in x and y to their respective TileYS swizzled bit
locations

xSwizzle = ((BIT9 & X) « 6) |
((BIT8 & x) « 5) |
((BIT7 & x) « 4) |
((BIT6 & x) « 3) |
((xMaskBits5_4 & x) « 2) | / / shift to bit positions 7..6
(xMaskBits3_0 & x);

ySwizzle = ((BIT5 &y) « 9) |
((BIT4 & y) « 8) |
((BIT3&Y) «7)]|
((BIT2 &y) « 6) |
((yMaskBits1_0 &y) « 4); /l's hift to bit positions 5..4

/I OR the swizzled bit positions for final offset within a tile
return xSwizzle | ySwizzle;
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UINT16 TileYS2dElementOffsetl6 32bpe(UINT16 x, UINT16 y)

UINT16 xSwizzle;
UINT16 ySwizzle;

/1 shift bits in x and y to their respective TileYS swizzled bit
locations
XSwizzle = ((BIT8 & x) « 7) |
((BIT7 & x) « 6) |
((BIT6 & x) « 5) |
((BIT5 & x) « 4) |
((BIT4 & x) « 3) |
(xMaskBits3_0 & x);

ySwizzle = ((BIT6 & y) « 8) |
((BIT5 &y) « 7) |
((BIT4 &y) «6) |
((BIT3&Yy) «5) |
((yMaskBits2_0 & y) « 4); // shift to bit positions 6..4

/l OR the sw izzled bit positions for final offset within a tile
return xSwizzle | ySwizzle;

}
UINT16 TileYS2dElementOffset8bpe(UINT16 x, UINT16 y)
{
UINT16 xSwizzle;
UINT16 ySwizzle;
/I shift bits in x and y to their respective TileYS swizzl ed bit
locations
xSwizzle = ((BIT7 & X) « 8) |
((BIT6 & x) « 7) |
((BIT5 & x) « 6) |
((BIT4 & x) «5) |
(xMaskBits3_0 & x);
ySwizzle = ((BIT7 &y) « 7) |
(BIT6 &Y )«6)]|
((BIT5 &y) « 5) |
((yMaskBits4 0 & y) « 4); // shift to bit positions 8..4
/I OR the swizzled bit positions for final offset within a tile
return xSwizzle | ySwizzle;
}
/**************************** kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
*k% \

TileYS 2D MSAA Tile address swizzling functions w/o _pdep32

\ kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkhkhkkkkkkkkkhkkkkkkhkkhkkkkkkkkkkkkkkkkkk
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***/

/*

| Num | Bits per element | Tiled element offset bits
I

| Samples | |15 |14]13]|12|11|10] 9| 8| 7] 6] 5| 4] 3] 2|
1| 0]

||
| 2x | 64&128

|ssO)y5|x8|y4|x7|y3|x6]y2|x5|x4|y1|y0|x3|x2|x1|x0|
| | 16 & 32
|ssOly6|x7|y5|x6]|y4|x5]y3|x4|y2|y1|y0|x3|x2|x1|xO|

| | 8

|ssOly7|x6]y6]x5|yS[x4|y4ly3|y2ly1 [yO[x3[|x2[x1[xO
*/

UINT16 TileYS2xMsaaElementOffset64_128bpe(UINT16 x, UINT16 y, UINT16 sample)

UINT16 xSwizzle;
UINT16 ySwizzle;
UINT16 SampleSwizzle;

I/ shift bits in x, y, and sample to their respective TileYS MSAA
swizzled b it locations

xSwizzle = ((BIT8 & X) « 5) | /I shift to bit position 13
((BIT7 & x) « 4) | /I shift to bit position 11
((BIT6 & x) « 3) | /I shift to bit position 9
((x MaskBits5_4 & x) « 2)| // shift to bit positions 7..6
(xMaskBits3_0 & x); /Il leave in bits 3..0
ySwizzle = ((BIT5 &y) « 9) | /1 shift to bit position 14
((BIT4 &y) « 8) | Il's hift to bit position 12
((BIT3&Y) «7)| /I shift to bit position 10
((BIT2 &y) « 6) | /I shift to bit position 8

((yMaskBits1l 0 & y) « 4); /I shift to bit positions 5..4
SampleSwizzle = (sample && SampleMaskO0) « 15;// shift to bit position 15

/I OR the swizzled bit positions for final offset within a tile
return SampleSwizzle | xSwizzle | ySwizzle;

}

UINT16 TileYS2xMsaaElementOffsetl6_32bpe(UINT16 x, UINT 16y, UINT16 sample)

{
UINT16 xSwizzle;

UINT16 ySwizzle;
UINT16 SampleSwizzle;

I/ shift bits in x, y, and sample to their respective TileYS MSAA

22 Doc Ref # IHD-OS-SKI-Vol 5-05.16



Memory Views ‘ lntel) )
experience

what'’s inside’
swizzled bit locations
xSwizzle = ((BIT7 & X) « 6) | I/ shift to bit p osition 13
((BIT6 & X) « 7) | /I shift to bit position 11
((BIT5 & x) « 6) | /I shift to bit position 9
((BIT4 & x) «5) | // shift to bit position 7
(xMaskBits3_0 & x); // leave in bits 3..0
ySwizzle = ((BIT6 & y) « 8) | /I shift to bit position 14
((BIT5 &y) «7) | /I shift to bit position 12
((BIT4 &y) « 6) | 1l shift to bit position 10
((BIT3 &Yy) «5) | /I shift to bit position 8

((yMaskBits2_0 & y) « 4); /I shift to bit positions 6..4
SampleSwizzle = (sample && SampleMaskO0) « 15;// shift to bit position 1

/I OR the swizzled bit positions for final offset within a tile
return SampleSwizzle | xSwizzle | ySwizzle;

}

UINT16 TileYS2xMsaaElementOffset8bpe(UINT16 x, UINT16 y, UINT16 sample)
{

UINT16 xSwizzle;

UINT16 ySwizzle;

UINT 16 SampleSwizzle;

I/ shift bits in x, y, and sample to their respective TileYS MSAA
swizzled bit locations

xSwizzle = ((BIT6 & X) « 7) | /1 shift to bit position 13
((BIT5 & x) « 6) | /I shift to bit po sition 11
((BIT4 & x) «5) | // shift to bit position 9
(xMaskBits3_0 & x); /[ leave in bits 3..0
ySwizzle = (BIT7 &y) « 7) | /I shift to bit position 14
(BIT6 &Yy)«6)]| /1 shift to bit position 12
((BIT5 &y) «5) | /I shift to bit position 10

((yMaskBits4 0 & y) « 4); /I shift to bit positions 8..4
SampleSwizzle = (sample && SampleMask0) « 15;// shift to bit position 15

/I OR the swizzled bit positions for final offset within a tile
return SampleSwizzle | xSwizzle | ySwizzle;

/*

|  Num | Bits per element | Tiled element offset bits

I
| Samples | |15 |14 |13|12|11]10] 9| 8| 7| 6] 5| 4| 3| 2|
1] 0|
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|
|  4x | 64 & 128
[ss1|ssO|x8|y4|x7|y3|x6|y2|x5|x4]|y1|y0|x3|x2|x1|x0|
| 16 & 32

|ss1|ssO|x7]y5|x6]y4[x5|y3|x4|y2]y1|y0|x3|x2|x1|xO|
| | 8

|ss1|ssO|x6]y6|x5]y5|x4|y4|y3|y2|y1|y0|x3|x2|x1|xO|
*/

UINT16 TileYS4xM saaElementOffset64 _128bpe(UINT16 x, UINT16 y, UINT16 sample)

{
UINT16 xSwizzle;

UINT16 ySwizzle;
UINT16 SampleSwizzle;

I/ shift bits in x, y, and sample to their respective TileYS MSAA
swizzled bit locations

xSwizzle = ((BIT8 & X) « 5) | /I shift to bit position 13
((BIT7 & x) « 4) | /1 shift to bit position 11
((BIT6 & x) « 3) | /I shift to bit position 9
((xMaskBits5_4 & x) «2) | /I shiftt 0 bit positions 7..6
(xMaskBits3_0 & x); /Il leave in bits 3..0
ySwizzle = ((BIT4 & y) « 8) | /I shift to bit position 12
((BIT3&Y) «7)| /I shift to bit position 10
((BIT2 &y) « 6) | /I shift to bit position 8

((yMaskBitsl 0 & y) « 4); /I shift to bit positions 5..4

SampleSwizzle = (sample && SampleMask1_0) « 14;// shift to bit positions
15..14

/l OR the swizzled bit p ositions for final offset within a tile
return SampleSwizzle | xSwizzle | ySwizzle;

}

UINT16 TileYS4xMsaaElementOffsetl6 32bpe(UINT16 x, UINT16 y, UINT16 sample)
{

UINT16 xSwizzle;

UINT16 ySwizzle;

UINT16 SampleSwizzle;

/[ s hift bits in X, y, and sample to their respective TileYS MSAA
swizzled bit locations

xSwizzle = ((BIT7 & X) « 6) | /I shift to bit position 13
((BIT6 & x) « 7) | /I shift to bit position 11
(BIT 5&X)«6)| /I shift to bit position 9
((BIT4 & x) « 5) | /I shift to bit position 7
(xMaskBits3_0 & x); /l leave in bits 3..0
ySwizzle = ((BIT5 & y) « 7) | /I shift to bit position 12
((BIT4 &y) «6) | /[ shift to bit position 10
((BIT3&Yy) «5) | /[ shift to bit position 8
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((yMaskBits2_0 & y) « 4); /I shift to bit positions 6..4

Sampl eSwizzle = (sample && SampleMaskl 0) « 14;// shift to bit positions
15..14

/I OR the swizzled bit positions for final offset within a tile
return SampleSwizzle | xSwizzle | ySwizzle;

}

UINT16 TileYS4xMsaaElementOffset8bpe(UINT16 x, UINT16 y , UINT16 sample)
{

UINT16 xSwizzle;

UINT16 ySwizzle;

UINT16 SampleSwizzle;

I/ shift bits in x, y, and sample to their respective TileYS MSAA
swizzled bit locations

xSwizzle = ((BIT6 & X) « 7) | /I shift to bit positi on 13
((BIT5 & x) « 6) | /1 shift to bit position 11
((BIT4 & x) « 5) | /I shift to bit position 9
(xMaskBits3_0 & x); I/ leave in bits 3..0
ySwizzle = ((BIT6 & y) « 6) | /1 shift to bit position 12
((BIT5 &y) «5) | /I shift to bit position 10

((yMaskBits4 0 & y) « 4); /I shift to bit positions 8..4

SampleSwizzle = (sample && SampleMaskl 0) « 14;// s hift to bit positions
15..14

/I OR the swizzled bit positions for final offset within a tile
return SampleSwizzle | xSwizzle | ySwizzle;

| Num | Bits per element | Tiled element offset bits
I

| Samples | [15 |14 113 |12|11|10] 9] 8| 7] 6] 5| 4| 3|
2|1/ 0|

| 8x | 64 & 128
|ss2|ss1|ssO|y4|x7]y3|x6]y2|x5|x4|y1|y0|x3|x2|x1|xO0|
| | 16 & 32
[ss2|ss1|ssO|y5|x6|y4|x5]y3|x4|y2|y1|y0|x3|x2|x1|xO|
| 8

|
[ss2|ss1|ssO|y6|x5]y5|x4|y4|y3|y2|y1|y0|x3|x2|x1|xO|
*/
UINT16 Tile YS8xMsaaElementOffset64 128bpe(UINT16 x, UINT16 y, UINT16 sample)
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UINT16 xSwizzle;
UINT16 ySwizzle;
UINT16 SampleSwizzle;

/I shift bits in X, y, and sample to their respective TileYS MSAA
swizzled bit locations

xSwizzle = ((BI T7 & X) « 4) | /1 shift to bit position 11
((BIT6 & x) « 3) | /I shift to bit position 9
((xMaskBits5_4 & x) « 2) | /I shift to bit positions 7..6
(xMaskBits3_0 & x); I leave in bits 3..0
ySwizzle = ((BIT4 & y) « 8) | /I shift to bit position 12
(BIT3&Y) «7) | /I shift to bit position 10
((BIT2 &y) « 6) | /I shift to bit position 8

((yMaskBitsl 0 & y) « 4); /I shift to bit positions 5..4

SampleSwizzle = (sample && SampleMask2_0) « 13;// shift to bit positions
15..13

/I OR the swizzled bit positions for final offset within a tile
return SampleSwizzle | xS wizzle | ySwizzle;

}

UINT16 TileYS8xMsaaElementOffsetl6 32bpe(UINT16 x, UINT16 y, UINT16 sample)
{

UINT16 xSwizzle;

UINT16 ySwizzle;

UINT16 SampleSwizzle;

/I shift bits in x, y, and sample to their respective TileYS MSAA
swizzled  bit locations

xSwizzle = ((BIT6 & X) « 7) | // shift to bit position 11
((BIT5 & x) « 6) | /I shift to bit position 9
((BIT4 & x) « 5) | /I shift to bit position 7
(x MaskBits3 0 & Xx); I/l leave in bits 3..0
ySwizzle = (BIT5 & y) « 7) | /I shift to bit position 12
((BIT4 &y) «6) | /I shift to bit position 10
((BIT3&Y) «5) | /I sh ift to bit position 8

((yMaskBits2_0 & y) « 4); /I shift to bit positions 6..4

SampleSwizzle = (sample && SampleMask2_0) « 13;// shift to bit positions
15..13

/l OR the swizzled bit positions for final offset within a til e
return SampleSwizzle | xSwizzle | ySwizzle;

}

UINT16 TileYS8xMsaaElementOffset8bpe(UINT16 x, UINT16 y, UINT16 sample)

UINT16 xSwizzle;
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UINT16 ySwizzle;
UINT16 SampleSwizzle;

/I shift bits in x, y, and sample to their res pective TileYS MSAA
swizzled bit locations
xSwizzle = ((BIT5 & x) « 6) | /I shift to bit position 11
((BIT4 & x) «5) | // shift to bit position 9
(xMaskBits3_0 & x); /Il leave in bits 3.0
ySwizzle = ((BIT6 & y) « 6) | /I shift to bit position 12
((BIT5 &y) «5) | /I shift to bit position 10

((yMaskBits4 0 & y) « 4); /I shift to bit positions 8..4

SampleSwizzle = (sample && SampleMask2_0) « 13;// shift to bit positions
15..13

/I OR the swizzled bit positions for final offset within a tile
return SampleSwizzle | xSwizzle | ySwizzle;

}

/*

| Num | Bits per element | Tiled element offset bits
I

| Samples | [15 |14 113 |12 |11|10] 9] 8] 7| 6] 5] 4| 3|
2|1/ 0|

I
||
| 16x | 64&128

|ss3|ss2|ss1|ssO|x7]|y3|x6]y2|x5|x4|y1|y0[x3|x2|x1|x0|
| | 16 & 32
|ss3|ss2|ss1|ssO|x6]y4|x5]y3|x4|y2|y1|y0[x3|x2|x1|x0]
| 8

|
|ss3|ss2|ss1|ssO|x5]y5|x4 ly4|y3|y2|y1]y0|x3|x2|x1|x0|
*/

UINT16 TileYS16xMsaaElementOffset64 128bpe(UINT16 x, UINT16 y, UINT16
sample)

UINT16 xSwizzle;
UINT16 ySwizzle;
UINT16 SampleSwizzle;

/I shift bits in x, y, and sample to their respective TileYS MS AA
swizzled bit locations
xSwizzle = ((BIT7 & X) « 4) | /I shift to bit position 11
((BIT6 & x) « 3) | /[ shift to bit position 9
((xMaskBits5_4 & x) « 2) |  // shift to bit positions 7..6
(xMaskBits3_0 & x); /l leave in bits 3..0
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ySwizzle = ((BIT3 & y) « 7) | /I shift to bit position 10
((BIT2 &y) « 6) | /I shift to bit position 8
((yMaskBitsl 0 & y) « 4); /I shift to bit positions 5..4

SampleSwizzle = (sample && SampleMask3_0) « 12;// shift to bit positions
15..12

/I OR the swizzled bit positions for final offset within a tile
return SampleSwizzle | xSwizzle | ySwizzle;

}

UINT16 TileYS16xMsaaElementOffsetl6 32bpe(UINT16 x, UINT16 y, UINT16 sample)
{

UINT16 xSwizzle;

UINT16 ySwizzle;

UINT16 SampleSwizzle;

/I shift bits in x, y, and sample to their respective TileYS MSAA
swizzled bit locations

xSwizzl e =((BIT6 &x) « 7) | /I shift to bit position 11
((BIT5 & x) « 6) | /I shift to bit position 9
((BIT4 & x) « 5) | /I shift to bit position 7
(xMaskBits3_0 & x); /Il leave in bits 3..0
ySwizzle = ((BIT4 & y) « 6) | /I shift to bit position 10
((BIT3&Yy) «5)| /I shift to bit position 8

((yMaskBits2_0 & y) « 4); /I shift to bit positions 6..4

SampleSwizzle = (sample && SampleMask3_0) « 12;// shift to bit positions
15..12

/I OR the swizzled bit positions for final offset within a tile
return SampleSwizzle | xSwizzle | ySwizzle;

}

UINT16 TileYS16xMsaaElementOffset8bpe(UINT16 X, UINT16 y, UINT16 sample)
{

UINT16 xSwizzle;

UINT16 ySwizzle;

UINT16 SampleSwizzle;

/I shift bits in x, y, and sample to their respective TileYS MSAA
swizzled bit locations

xSwizzle = ((BIT5 & x) « 6) | /I shift to bit position 11
((BIT4 & x) «5) | // shift to bit position 9
(xMaskBits3_0 & x); /l leave in bits 3..0

ySwizzle = ((BIT5 & y) « 5) | /I shift to bit position 10

(( yMaskBits4_0 & y) « 4); [/ shift to bit positions 8..4

SampleSwizzle = (sample && SampleMask3_0) « 12;// shift to bit positions
15..12
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/I OR the swizzled bit positions for final offset within a tile
return SampleSwizzle | xSwizzle | ySwizzle;

/****************************************************************************

*k% \

TileYF 2D Tile address swizzling functions w/o _pdep32

\ kkkkkkkkkkkkkhkkkkkkkkkhkkkkkkkhkkhkkkkkkhkhkkkkkkkkkhkkkkkhkhkkhkkkkkkkhkhkkkkkkkkkkkkk

***/
/*
| Num | Bits per element | Tiled element offset bits
|
| Samples | |15|14|13]|12|11|10| 9| 8| 7| 6| 5| 4] 3| 2|
1] 0
I N Y O )
_
| 1x | 64&128 ||| |
[X7|y3|x6]y2|x5|x4|y1|y0|x3|x2|x1|xO|

16 & 32

[x6|y4|x5]y3|x4|y2|y1|y0|x3|x2|x1|xO|
8

| [ 111
Ixf;Iy5|x4ly4ly3Iy2Iy1Iy0Ix3I><2I><1|x0I

UINT16 TileYF2dElementOffset64_128bpe(UINT16 x, UINT16 y)

{
UINT16 xSwizzle;

UINT16 ySwizzle;

I/ shift bits in x and y to their respective TileYF swizzled bit
locations
xSwizz le = ((BIT7 & x) « 4) |
((BIT6 & x) « 3) |
((xMaskBits5_4 & x) « 2) | // shift to bit positions 7..6
(xMaskBits3_0 & x);

ySwizzle = (BIT3 &y) « 7) |
((BIT2 &y) « 6) |
((yMaskBits1_0 & y) « 4); // shift to bit positions 5..4

/I OR the swizzled bit positions for final offset within a tile
return xSwizzle | ySwizzle;

}

UINT16 TileYF2dElementOffset16_32bpe(UINT16 x, UINT16 y)
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UINT16 xSwizzle;
UINT16 ySwizzle;

/I shift bits in x and y to their respective TileYF swizzled bit
locations
XxSwizzle = ((BIT6 & x) « 5) |
((BITS & x) « 4) |
((BIT4 & x) « 3) |
(xMaskBits3_0 & x);

ySwizzle = ((BIT4 &y) «6) |
((BIT3 &Yy) «5) |
((yMaskBits2_0 & y) « 4); // shift to bit positions 6..4

/I OR the swizzled bit positions for final offset within a tile
return xSwizzle | ySwizzle;

}
UINT16 TileYF2dE lementOffset8bpe(UINT16 x, UINT16 y)

UINT16 xSwizzle;
UINT16 ySwizzle;

I/ shift bits in x and y to their respective TileYF swizzled bit
locations
xSwizzle = ((BIT5 & X) « 6) |
((BIT4 & x) « 5) |
(xMa skBits3_0 & X);

ySwizzle = ((BIT5 & y) « 5) |
((yMaskBits4_0 & y) « 4); // shift to bit positions 8..4

/I OR the swizzled bit positions for final offset within a tile
return xSwizzle | ySwizzle;
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Tiled Channel Sele ct Decision

Before Gen8, there was a historical configuration control field to swizzle address bit[6] for in X/Y tiling
modes. This was set in three different places: TILECTL[1:0], ARB_MODE[5:4], and DISP_ARB_CTL[14:13].

For Gen8 and subsequent generatiors, the swizzle fields are all reserved, and the CPU's memory
controller performs all address swizzling modifications.

Tiling Support

The rearrangement of the surface elements in memory must be accounted for in device functions
operating upon tiled surface s. (Note that not all device functions that access memory support tiled
formats). This requires either the modification of an element's linear memory address or an alternate
formula to convert an element's X,Y coordinates into a tiled memory address.

However, before tiled-address generation can take place, some mechanism must be used to determine
whether the surface elements accessed fall in a linear or tiled region of memory, and if tiled, what the tile
region pitch is, and whether the tiled region uses X-Major or Y-Major format. There are two mechanisms
by which this detection takes place: (a) an implicit method by detecting that the pre -tiled (linear) address
falls within a "fenced" tiled region, or (b) by an explicit specification of tiling parameters fo r surface
operands (i.e., parameters included in surfacedefining instructions).

The following table identifies the tiling -detection mechanisms that are supported by the various memory
streams.

Access Path Tiling -Detection Mechanisms Supported

Processor acess through the Graphics Memory Aperture | Fenced Regions

3D Render (Color/Depth Buffer access) Explicit Surface Parameters
Sampled Surfaces Explicit Surface Parameters
Blt operands Explicit Surface Parameters
Display and Overlay Surfaces Explicit Surface Parameters

Tiled (Fenced) Regions

The only mechanism to support the access of surfaces in tiled format by the host or external graphics

client is to place them within o60fencedd tiled regio
of Graphics Memory specified using one of the sixteen FENCE device registers. (Sddemory Interface

Registersfor details). Surfaces contained within a fenced region are considered tiled from an external

access point of view. Note that fences cannot be used to untile surfaces in the PGM_Address space since

external devices cannot access PGM_Address space. Even if these surfaces (or any surfaces accessed by

an internal graphics client) fall within a region covered by an enabled fence register, that enable will be

effectively masked during the internal graphics client access. Only the explicit surface parameters

described in the next section can be used to tile surfaces being accessed by the internal graphics clients.
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Tiled Surface Parameters

Internal device functions require explicit specification of surface tiling parameters via information passed
in commands and state. This capability is provided to limit the reliance on the fixed number of fence
regions.

The following table lists the surface tiling parameters that can be specified for 3D Render surfaces (Color
Buffer, Depth Buffer, Textures, etc.) via SURFACE_STATE.

Surface
Parameter Description
Tiled Surface If ENABLED, the surface is stored in a tiled format. If DISABLED, the surface is stored in a linear
format.
Tile Walk If Tiled Surface is ENABLED, this parameter specifies whether the tiled surface is stored in-Y

Major or X-Major tile format.

Base Address Additional restrictions apply to the base address of a Tiled Surface vs. that of a linear surface.

Pitch Pitch of the surface. Note that, if the surface is tiled, this pitch must be a multiple of the tile
width.

Tiled Surface Restrictions

Additional restrictions apply to the Base Address and Pitch of a surface that is tiled. In addition,
restrictions for tiling via SURFACE_STATE are subtly different from those for tiling via fence regions. The
most restricted surfaces are those that will be accessed both by the host (via fence) and by internal
device functions. An example of such a surface is a tiled textue that is initialized by the CPU and then
sampled by the device.

The tiling algorithm for internal device functions is different from that of fence regions. Internal device
functions always specify tiling in terms of a surface. The surface must have a basaddress, and this base
addressis not subject to the tiling algorithm . Only offsetsfrom the base address (as calculated by X, Y
addressing within the surface) are transformed through tiling. The base address of the surface must
therefore be 4KB-aligned. This forces the 4KB tiles of the tiling algorithm to exactly align with 4KB device
pages once the tiling algorithm has been applied to the offset. The width of a surface must be less than
or equal to the surface pitch. There are additional considerations for surfaces that are also accessed by
the host (via a fence region).

Fence regions have no base address per se. Host linear addresses that fall in a fence region are translated
in their entirety by the tiling algorithm. It is as if the surface being tiled by the fence region has a base
address in graphics memory equal to the fence base address, and all accesses of the surfaces are

(possibly quite | arge) offsets from the fence base
withthe fencebase address, and a o0right edged6 that results
edged. Surfaces in the fence region must not stradd
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Base addresses of surfaces that are to be accessed both by an internal graphics client and by the hst
have the tightest restrictions. In order for the surface to be accessed without GTT remapping, the

surf ace base

addr ess

(as

set i n

SURFACE_STATE)

address in each tile row of the fence region is a Tie Row Start Address. The first TRSA is the fence base
address. Each TRSA can be generated by adding an integral multiple of the row size to the fence base
address. The row size is simply the fence pitch in tiles multiplied by 4KB (the size of a tile.)

Tiled Surface Placement

Fence Region “Right Edge” —

Surface base Address =
Tile Start Address
2B SW =
Fence Base Linzar (pre-tiled) Addressas Increase 2 1BB OWs
Address \. » * ¥
surface Base b= nr= 1 1=
Address = ol I I
Tile Sow 3
Start Address Directly N
oozl e by F = Ban i C
Haxt and Gfx I 11 1
[if Surface
Pite h=Fernca
Pitch}
e —
NIE= =
11 I
Foeatjui oy
résfhap ping far
Access By Hemt
Thlt= = and G,
1] I
L1
|
Fence Region J‘ Ritch >
“Left Edge”
Besoe-01

The pitch in SURFACE_STATE must be set equal to the pitch of the fence that will be used by the host to
access the surface if the same GTT mapping will be used for each access. If the pitches differ, a different

GTT mapping must be use d

t o

el

mi

nat e

t he

oextrad

ti

es

(4KB

rows at the right side of the larger pitch. Obviously no part of the surface that will be accessed can lie in
pages that exist only in one mapping but not the other. The new GTT mapping can be done manually by
SW between the time the host writes the surface and the device reads it, or it can be accomplished by
arranging for the client to use a different GTT than the host (the PPGTT-- see Logical Memory Mapping

below).
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The width of the surface (as set in SURFACE_STATE) must be less than or equal to both the surface pitch
and the fence pitch in any scenario where a surface will be accessed by both the host and an internal
graphics client. Changing the GTT mapping will not help if this restriction is violated.

Surface Access

Base Address

Pitch

Width

Til e oWal

Host only No restriction Integral multiple of tile size | Must be <= Fence |No restriction
<= 256KB Pitch
Client only 4KB-aligned Integral multiple of tile size [Must be <=

<= 256KB

Surface Pitch

Restrictions imposed by
the client (see Per Stream
Tile Format Support)

Host and Client, |Must be TRSA Fence Pitch = Surface Pitch | Width <= Pitch Surface Walk must meet
No GTT = integral multiple of tile client restriction, Fence
Remapping size <= 256KB Walk = Surface Walk

Host and Client, [4KB-aligned for Both must be Integral Width <= SurfaceWalk must meet

GTT Remapping

client (will be tile-
aligned for host)

multiple of tile size
<=128KB, but not
necessarily the same

Min(Surface Pitch,
Fence Pitch)

client restriction, Fence
Walk = Surface Walk

Per-Stream Tile Format Support

MI Client Tile Formats Supported
CPU Read/Write| All
Display/Overlay | Y-Major not supported
X-Major required for Async Flips
Blt Linear and X Major only
No Y-Major support
3D Sampler All Combinations of TileY, TileX and Linear are supported. TileY is the fastest, Linear is the slowe

3D Color,Depth

Rendering Mode

Color-vs-Depth bpp |Buffer Tiling Supported

Classical Both Linear

Same Bpp Both TileX
Both TileY
Linear & TileX
Linear & TileY
TileX & TileY

Classical Both Linear

Mixed Bpp Both TileX
Both TileY
Linear & TileX
Linear & TileY
TileX & TileY

34
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Main Memory

The integrated graphics device is capable of using 4KB pages of physical main (systm) memory for
graphics functions. Some of this main memory can be
initialization (e.g., for a VGA buffer). However, most graphics operands are dynamically allocated to

satisfy application demands. To this endthe graphics driver will frequently need to allocate locked -down

(i.e., nonswappable) physical system memory pagesd typically from a cacheable non-paged pool. The

locked pages required to back large surfaces are typically noncontiguous. Therefore a means to support

Ol ogicoanltliyyuousdé surfaces backed by discontiguous pt
Translation Table (GTT) that was described in previous sections provides the means.

Optimizing Main Memory Allocation

This section includes information for software developers on how to allocate SDRAM Main Memory (SM)
for optimal performance in certain configurations. The general idea is that these memories are divided
into some number of page types, and careful arrangement of page types both withi n and between
surfaces (e.g., between color and depth surfaces) will result in fewer page crossings and therefore yield
somewhat higher performance.

The algorithm for allocating physical SDRAM Main Memory pages to logical graphics surfaces is
somewhat complicated by (1) permutations of memory device technologies (which determine page sizes
and therefore the number of pages per device row), (2) memory device row population options, and (3)
limitations on the allocation of physical memory (as imposed by the O S).

However, the theory to optimize allocation by limiting page crossing penalties is simple: (a) switching
between open pages is optimal (again, the pages do not need to be sequential), (b) switching between
memory device rows does not in itself incur a penalty, and (c) switching between pages within a
particular bank of a row incurs a page miss and should therefore be avoided.
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Application of the Theory (Page Coloring)

This section provides some scenarios for how Main Memory page allocation can be optimized.

3D Color and Depth Buffers

Here we want to minimize the impact of page crossings (a) between corresponding pages (1-4 tiles) in

the Color and Depth buffers, and (b) when moving from a page to a neighboring page within a Color or

Depth buffer. Therefore corresponding pages in the Color and Depth Buffers, and adjacent pages within

a Color or Depth Buffer should be mapped to differe
refers to the row and bank itds in).

Memory Pages Backing Color and Depth Buff ers

Color Buffer

Page Page Page Page
Type 0| Type 1| Type 0 | Type 1

FPage FPage FPage Page
Type 2| Type 3| Type 2 | Type 3

FPage FPage FPage Page
Type 0] Type 1| Type 0] Type 1

Fage Fage Fage Page
Type 2| Type 3| Type 2 | Type 3

Depth Buffer

FPage FPage FPage Page
Type 3| Type 2| Type 3| Type 2

Page Page Page Page
Typel| Type 0| Type 1 | Type O

Page Page Page Page
Type 3| Type 2| Type 3 | Type 2

Page Page Page Page
Typel| Type 0| Type 1 | Type O

Be701-01

For higher performance, the Color and Depth Buffers could be allocated from different memory device
rows.
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Media/Video

The Y surfaces can be allocated using 4 page types in a similar fashion to the Color Buffer diagram. The U
and V surfaces would splt the same 4 page types as used in the Y surface.

Physical Graphics Address Types

The Physical Memory Address Types table lists the variouphysical address types supported by the
integrated graphics device. Physical Graphics Addresses are either generateby Logical Memory
mappings or are directly specified by graphics device functions. These physical addresses are not subject
to tiling or GTT re-mappings.

Physical Memory Address Types

Address
Type Description Range
MM_Address | Main Memory Address. Offset into physical, unsnoopedMain Memory. [0,TopOfMemory-1]

SM_Address | System Memory Address. Accesses are snooped in processor cache, allowing [0,512GB]
shared graphics/ processor access to (locked) cacheable memory data.

Graphics Translation Tables

The Graphics Translation Tables GTT (Graphics Translation Table, sometimes known as the global GTT)

and PPGTT (PeProcess Graphics Translation Table) are memoryesident page tables containing an

array of DWord Page Translation Entries (PTEs) used in mapping fzical Graphics Memory addresses to
physical memory addresses, and someti mes snooped sy

The base address (MM offset) of the GTT and the PPGTT are programmed via the PGTBL_CTL and
PGTBL_CTL2 Ml registers, respectively. The tranttm table base addresses must be 4KB aligned. The

GTT size can be either 128KB, 256KB, or 512KB (mapping to 128MB, 256MB, and 512MB aperture sizes
respectively) and is physically contiguous. The global GTT should only be programmed via the range

defined by GTTMMADR. The PPGTT is programmed directly in memory. The pgsrocess GTT (PPGTT)

size is controlled by the PGTBL_CTL2 register. The PPGTT can, in addition to the above sizes, also be 64KB
in size (corresponding to a 64MB aperture). Refer to the GTT Rang chapter for a bit definition of the PTE
entries.
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Virtual Memory

GT supports standard virtual memory model s as def.

describes the different paging models, their behaviors, and the page table formats.
GFX PageTables

GPU supports three page table mechanisms

1 [1A32e compatible GTT
1 PPGTTO private per process GTT (private GFX)
1T GGTT - global GTT

All page tables use the same 64bit PTE format. Differences are in how various bit fields applies (vs
reserved) under various usage models.

Gen9 follows the same principles that gen8 set it up for improved page tables and compatibility of OS
managed page table formats.

Tiled Resources Translation Tables

Sparse Tiled Resources can be thought of as a kind of applicatim-controlled virtual memory scheme. The
application allocates a resource in a virtual address space. Then the application tells the driver to map
specified 64KB tiles within the surface to memory, within resources called Tile Pools. Tiles that are not
mapped to a Tile Pool are null tiles.

Tiled Resource Translation Table (TRTT) is constructed as a 3 level tile Table. Each tile is 64KB is size which
leaves behind 44-16=28 address bits. 28bits are partitioned as 9+9+10 which corresponds to TRVATT L3,

L2 and L1 respectively. This is where TRVATT L3 has 512 entries, L2 has 512 entries and L1 has 1024
entries where each level is contained within a 4KB page hence L3 and L2 is composed of 64b entries and

L1 is composed of 32b entries.

BEE FAERESE 3[3[31312]2 T[T AEI[II [ 2]a]a]- T ] Y o
312|1 g|8|7is6] 3|2]|1lala|s 3?6343!:103" ZENEERE
NI TRVATT-L3
Ignored Address of the TRVATTL2 Ignored un
‘ entry
v
i TRVATT-L2
Ignored Address of the TRVATT11 Ignored un
entry
v
Tile Virtual Address R
entry
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The contents of the TRVATT &bles are as listed above where L3 and L2 points to the address of the next
level which is a 4KB page and L1 contains the 32b VA address pointer needed to map the TR tile to
virtual address space.

L1 Entry:

Bits Field

Description

31:0| ADDR: Addresq GFX vitual address of 64KB tile is referenced by this entry.

This field is treated as GFX Virtual Address (GPA) when translated and maps to 47:1

L2 Entry:
Bits Field Description
63:48| Ignored Ignored (h/w does not care about values behind ignored registejs
47:12| ADDR: GFX virtual address or Guest Physical Address of 4KB base address pointing to FIRT L1.
Address TRTT table entries for L2 and L3 can be in GFX virtual address mode or Guest Physical addres
mode chosen by GFX software.
11:2 [Ignored Ignored (h/w does not care about values behind ignored registers)
1 |Null Null Tile where reads to this tile returns zero with a Null indicator and writes are dropped.
0 [Invalid Invalid Tile where reads to this tile returns zero and writes are dropped. Additional interrupt is
generated to GFX software when an invalid tile is accessed.
L3 Entry:
Bits Field Description
63:48| Ignored Ignored (h/w does not care about values behind ignored registers)
47:12| ADDR: GFX virtual address or Guest Physical Addresof 4KB base address pointing to TRTT L2.
Address TRTT table entries for L2 and L3 can be in GFX virtual address mode or Guest Physical addres
mode chosen by GFX software.
11:2 |Ignored Ignored (h/w does not care about values behind ignored registers)
1 ([Null Null Tile where reads to this tile returns zero with a Null indicator and writes are dropped.
0 |Invalid Invalid Tile where reads to this tile returns zero and writes are dropped. Additional interrupt is
generated to GFX software when an invalid tile is accessed.
Programming Note
Context: Tiled ResourceTranslation Tables in Gfx Page Tables

GFX Driver has to disable the TRTT bypass mode before using tiled resourcestranslation tables. Details of the
registers are given in "registers for TRTT managemernt.”

Programming Note

Context: | Tiled ResourceTranslation Tables in Gfx Page Tables

GFX Driver is not allowed to put TRTT entries into TRVA space.
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Programming Note

Context: ITiIed ResourceTranslation Tables in Gfx Page Tables

Usage model for TR translations are restricted to GFX Render Engine

Programming Note

Context:

|Ti|ed ResourceTranslation Tables in Gfx Page Tables

TRTT is only for PPGTT64 (Advanced or Legacy PPGTT64). Enabling TRTT in Legacy PPGTT32 context or GGTT
context is considered as invalid programming.

Registers for TR -TT Management

Following register is a global mechanism to disable the bypass mode which is considered to be default
for h/w. GFX driver has to set this bit to disable bypass mode before using TRTTs.

Following registers shall be part of the h/w context.

Tiled Resources VA Translation Table L3 Pointer

Register Space: MMIO: 0/2/0
DWord | Bit Description
1 63:48 Reserved
Access: RO |
Reserved.
4132 Tiled Resource & VA translation Table L3 Pointer (Upper Address)

Default Value: 0000h
Access: R/W

Upper address bits for tiled resource VA to virtual address translation L3 table.

For physical memory option, address bits [47:39] has to be programmed to "0" as it is defined the
limit of physical memory allocation.

0 3l:16 Tiled Resource & VA translation Table L3 Pointer (Lower Address)

Default Value: 0000h
Access: R/W
Lower address bits for tiled resource VA to virtual address translation L3 table.

1o Reserved
Access: RO
Reserved.
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Tiled Resources Null Tile De tection Register

Register Space: MMIO: 0/2/0
DWord | Bit Description
310 Null Tile Detection Value
Default Value: 00000000h
Access: R/W

A 32bit value programmed to enable h/w to perform a match of TR -VA TT entries to detect Null
Tiles. Hardware willflag each entry and space behind it as Null Tile for matched entries.

Tiled Resources Invalid Tile Detection Register

Register Space: MMIO: 0/2/0
DWord | Bit Description
310 Invalid Tile Detection Value
Default Value: 00000000h
Access: R/W

A 32bit value programmed to enable h/w to perform a match of TR -VA TT entries to detect Invalid
Tiles. Hardware will flag each entry and space behind it as Invalid Tile for matched entries.

Tiled Resources Virtual Address Detection Registers (TRVADR)

Register Space: MMIO: 0/2/0
DWord | Bit Description
0 318 Reserved
Access: RO
Reserved.
74

TRVA Mask Value (TRVAMV)

Default Value: 0000b

Access: R/W

4bit MASK value that is mapped to incoming address bits[47:44]. MASK bits are used to identify

whichaddress bits need to be considered for compar

bit needs to be compared to DATA value provid

makes it dondt tchairse ffioagl & odmepfasabid ddtectiofo 0000006

t

Note that h/w supports two possible values for MASK: "0000" which is disabled case and "1111" wher

44 bit TR VA space is carved out.
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Tiled Resources Virtual Address Detection Registers (TRVADR)

30 | TRVA Data Value (TRVADV)

Default Value: Ob
Access: R/W

4bit DATA value that is mapped to incoming address bits[47:44]. Data bits are used to compare
address values that are not filtered by the TRVAMYV for match.

Tiled Resources Translation Table Control Register (TRTTE)

Register Space: MMIO: 0/2/0

DWord | Bit Description

0 <ilz Reserved

Access: RO

Reserved.

TR-VA Translation Table Memory Location

Default Value: Ob
Access: R/W

This fields specifies whether the translation tables for TRVA to VA are in virtual address space vs
physical (GPA) address space.

0: Tables are in Physical (GPA) $ge

1: Tables are in Virtual Address Space

TR-TT Enable

Default Value: Ob
Access: R/W

TR translation tables are disabled as default. This field needs to be enabled via s/w to get TR
translation active.

Detection and Treatment of Null and Invalid Til es

Two types of definition that need to be extracted from TR -VA walk in addition to reaching the GFX virtual
address.

1. Null Tiles : Null tiles provide the applications of capability to preventing OS mapping the entire
surface. When a memory access hitsa Nl t i | e, the access is terminat
the originator of the memory access for loads along with a null indicator and for stores the access
is dropped at the page walker level.
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2. Invalid Tiles : This is the case where GFX software did noupdate the value of the mapping
properly for hardware to separate resident vs null tiles. The Invalid Tile treatment is exactly same
however additionally a unique interrupt is generated in h/w

Both detections are done by GPU:

9 For L2/L3 entries, Null and hvalid tile information is already embedded in the TR-TT entries

1 For L1 entries, the contents (32bits) are compared in hardware to pre programmed values by GFX
software (values are provided in GFX MMIO spageFor the match values, two separate 32b registes
are defined, one for Null Tile detection and one for Invalid Tile detection.

Hardware walking matching the value or detecting L2/L3 would terminate the walk (i.e. rest of the tables
are not valid) and define the access as either Null or Invalid.

Program ming Note

Context: |Detection and treatment of null and invalid tiles.

The software is not allowed to program both Null and Invalid values to be the same.

Programming Note

Context: |TiIeX Surfaces and Null Tiles

NULL orInvalid Tiles are not supported on TileX surfaces

GPU implements a counter mechanism to rollup the Null tile accesses detected. The counter value is
exposed to GFX software via GFX MMIO.

In Gen9implementation, when the TR translation tables are in Gfx virtual address domain, the pagefaults
encountered while walking the I1A32e pages are not reported back to the TR walkers or TLBEhese faults
are handled as fault & halt, making these faults transparent to the TR walkersHowever, when such a fault
is not fixed (unsuccessful fault@sponse) or when a norrecoverable fault encountered, main page walker
HW convertsthe cycle to an invalid cycle. Thus, in this case, TR walker or TR TLBs will get incorrect read
return data without any notification of the non -recoverable fault condition. Thus TR walker/TLBs will
continue with the TRwalk with incorrect data. This can lead to spurious cycles being generateddowever,
a Gfx reset/FLR is expected as a result of the nerecoverable fault.

TR-TT Modes

The L3 table pointer along with TRTTL3éTRTTL2e is projected to support two modes of address space.
Original intent was to have the contents to be in Virtual Address space (OS managed) and have them to
be translated to GPA to HPA before getting accessed. Such mechanism will incur high latency pnalties
due to nested page translations. GPU shall have an additional mode where tiled resources translation
tables are in physical address space (GPA) and eliminate the need to have nested translations to reduce
the potentially high miss latencies.

TR TTwalker shall have both modes supported. The Mode bit will be part of the same Register that
provides TRVA TT L3 pointer.
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Virtual Addressed TR Translation Tables

Having sparse tiled resource translation tables in GFX virtual space requires the h/w TRI'T walker to walk
thru the 1+t level tile tables for table accesses to reach to Physical address at the L1 TR translation tables.

The following diagrams provide the view of the walk TR-VA translation tables are in physical memory and
no 2™ Level (VTd) transldions enabled.

1A32e Page Table
Pointer from PASID
ble 13 | 521
TR-VATa | PageMapld Page Directory | : | Trandation)
Painter Entry " Pointer Table Entry _" Page Dveciory Eniry, R BageTaoie Enty Tables,
¥
g Page Map L4 Page Directory ‘ Tm;::ﬁ
Transtation . ! i ?
b TR-VA Table L3 entry Entry ™ Pointer Table E i —a‘ Page Directory Entry — Page Table Entry Tobled
| |
: 777? Map L4 Page D | T
age Map age Directory | g Trandation
g — :
TR-VA Table L2 entry Entry ™™ Pointer Table £ i —u‘ Page Directory Entry Page Table Entry Tables
J
A
TR-VA Table L1 entry
Virtual Address
|A32e Page Table
Pointer from PASID
132 | -
Translation Page Map L4
Tables Entry
Page Directory
Pointer Table Entry
Page Directory Entry
Page Table Entry
Final Page Frame
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Once 2 |evel translations are enabled each level of * |level walk needs to be further walked through
VTd page tables.

The level of nested walks does not change the structure of the TRVA walker; it just defines the recursive
nature of the translations.

TR-TT Page Walk

Sparse Tiled Resources translation tables are separated into 3evels. The pointer to L3 table is going to
be set up in GFX MMIO space as part of the context, this pointer be would be available to page walker
ahead of any TR-VA memory accesses.

TRTT L3 walk will be consistent of calculating the 64b of interest based on the L3 table pointer and

using the 9 bit index (address bits[43:35]). L2 will use TRTT L3 entry as the table pointer and use the next
set of 9 address bits ([34:26]) to locate the L2 entry which is a pointer to L1 table. Final L1 table is located
with L2 entry and indexed by remaining 10 address bits (25:16) to index where 32b virtual address is
extracted.

Post TRTT walk 32b entry from L1 is mapped to final virtual address 47:16 and remaining 15:0 is passed
from the original TR-VA access as is given all tiles in TR/A space are 64KB in size.

Doc Ref # IHD-OS-SKI-Vol 5-05.16 45



experience
what's inside”

T4e[a)a 3[3 712 121

ds]s]n al ls 41 ls sl 165 [0
Unused TR-VATT L3 Index TR-VATT L2 Index TR-VATT L1 Index Offset inside Tile
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2
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TR-VATT 5
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» TRTTL2e
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3
» TRTTL3e

TR-VA Translation Table
L3 Pointer
(from Register Space)
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Gen9 Page Table Modes

GFX Aperture and Display accesses are mapped thru Global GTT to keep the walk simple (i.e:l&vel) and
latency sensitive. GPU accesses to memory can be mapped via Global GTT and/or ppGTT with various
addressing modes.

Supported walk modes are listed as following:

1. Global GTT with 32b virtual addressing : Global GTT usage is similar to previous geneations with
extended capability of increasing virtual address (VA) up to 4GB (from 2GB) and use a standard
64b PTE format. The breakdown of the PTE for global GTT is given in later sections and allows-1
level page walk where the 20b index is used to selectthe 64b PTE from memory.

2. Legacy 32b VA with ppGTT : This is a mode where ppGTT page tables are considered private and
managed via GFX sotfware (driver) where context is tagged as Legacy 32b VA. Each page walk is
managed via 9b of the virtual address and 20b index to address 4GB memory space is broken into
3 parts. In order to optimize the walks and make it look like previous generations, GFX sotfware
provides 4 pointers to page tables (called 4 PDP entries) all guest physical address. GPU uses the
four pointers and fetches the 4x4KB into h/w (for render and media) before the context execution
starts. The optimization limits the dynamic (on demand) page walks to 1-level only.

3. Legacy 48b VA with ppGTT : GFX address expansion beyond 4GB is added to address 48hbinual
address space. 48b VA requires 36b indexing (4x9bjranslating into 4-levels of page walk. To
reduce the overhead of 4 level walk, GPU will cache the entire content of PML4 (4kB) to limit the
on-demand walks to 3 levels. The caching happens as parbf the initial demand where no further
replacements required.

4. Advanced 48b VA with IA32e support via IOMMU  : 48b addressing in advanced mode is
managed via IOMMU settings where the base of the page table shall be found after the root /
context tables using bus/device/function values. PASID# is used as an index in PASID table to find
page table pointer to start the 4 -level page walk. Rest of the mechanism is similar to Legacy 48b
VA mode, GPU has the capability to cache entire content of PML4 and try to limitthe dynamic
page walks to 3-level.

Gen9 Per Process GTT

Gen9 per process GTT mechanism has multiple hooks and mechanisms for s/w to prepare the page walks
on hardware. The listed mechanisms here are selectable percontext and descriptors are delivered to
hardware as part of context descriptor.

The entry contents are also modified to match the same format as IA32e page tables allowing future
expansion for sharable page tables as well as higher order virtual addressing.

Page Tables Entry (PTE) Formats

Page Table Entry (PTE) formats follow the 1A32e layout shown below. Note that the Hardware Address
Width (HAW) is determined by Uncore: typically 39 for client products and 46 for server products.
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Each table entry is further broken down along with the requir ed functions. GFX has a 4level page table
which is pointed out by context descriptor starting with the 4th level of PML4. The next levels have
slightly different formats depending on the size of the page supported. 1GB and 2MB page formats are
required for support.

Page walk in advanced mode with 48b VA requires 4 levels. The walk will start with a PML4 table pointer
extracted from PASID entry and uses the 48b VA as index to consecutive levels of page tables.

The following diagram shows the page walk that is needed for a 4KB page:
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A 64 bit (48b canonical) address requires 4 levels of page table format where the context carries a
pointer to highest level page table (PML4 pointer) via PASID. The rest of the walk is normal page walk
thru various levels.

To repurpose the caches the following mechanism is used:

i1 3D: 4KB to store PML4, 4KB as PDP cache, 2x4PD cache.
1 Media: 4KB to store PML4, 4KB as PDP cache, 2x4PD cache.
1 VEBOX, Blitter: each with 4KB acting as PML4, PDP, PD cache.

The design sections the 512 enties within 4KB into separate areas for PML4, PDP, and PD.
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The 64KB Page size has a slightly different usage for how PTEs are selected for the corresponding 64KB
page. In a page table every 16th entry (PTE#0, PTE#16, PTE#32, ... PTE#496) should be usephttex. This

is calculated using address[20:16] & 000006. Note 't
any other PTEs.

4 |3E |33
7 9|8 0|3

22
il

PML4 Index L5 D"T;?;C;;V b Page Directory Index Page Table Index Offset inside Page
Final Page
— Phy Mem
Page Table
—  PTE
PD Table
> PDE
PDP Table
PDPE_ —
PML4
Table
» PMLAE ——
PML4 pointer from
PASID Entry
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With the 2MB Page walk, the last level of the page walk is skipped where the PD entry points to the final

page.
1 3 312 212
7 8l ID 9| 1 Ol UJ
PML4 Index e D"T:;Z;v SORr Page Directory Index Offset inside Page J
Final Page
> Phy Mem |
PD Table
» PDE
PDP Table |
. » PDPE —
PMLY |
Table
» PMLE —
PML4 pointer from
PASID Entry
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3

For the support for 1GB page size, the following mechanism is needed.
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Memory Views

Pointer to PML4 Table

Page table pointer is the starting address where the PML4 table starts. The contents of pointer will be
provided by PASID table entry in case of advanced context, else iwill be provided by software as part of
the legacy context with 48b addressing.

Details of PASID entry is given in later sections.

PMLA4E: Pointer to PDP Table

PML4 is used to locate the page directory pointer tables distributed in physical memory. For gen8/9,
PML4 will be used for advanced GPGPU context scheduled via PASID table as well as legacy context with

48b VA.
6|6|6]6 5/5|5]5/5/5|5/5]5 o [3]3] T0 7 ) Y
3@11'03%?55423%2*1 ‘H"" HAW-L] | |ilolalslzls 1;03" bJJ““JI
i 1 f; 1| lplplulr
| Ignored Rsvd. Address of page-directory-pointer-table gl len| |gAC ﬁ/ /Pl | PMLEE
D| A v
[ n n DT|SW
| d
Bits Field Description
63 XD: Execute If NXE=1 in the relevant extended-context-entry, execute permission is not granted
Disable for requests to the memory region controlled by this entry when XD=1.
Not support in gen9
62:52 |Ignored Ignored (h/w does not care about values behind ignored registers)
51:HAW?* | Reserved Reserved (must return 08s)
(HAW- | ADDR: Address Physical address of 4KByte aligned page-directory-pointer table referenced by this
1):12 entry.
This field is treated as Guest Physical Address (GPA) when Nested translations are
enabled (NESTE=1) in the relevant extendedcontext entry.
11 Ignored Ignored (h/w does not care aboutvalues behind ignored registers)
10 EA: Extended Extended Access bit is added for devices to separate accesses from IA cores. If
Access EAFE=1 in the relevant PASIBentry, this bit indicates whether this entry has been
used for address translation by device. It is the devices responsibility to set this bit.
If EAFE=0 in the relevant PASIBentry, this bit is ignored.
This bit applies to GPU Only.
9:8 Ignored Ignored (h/w does not care about values behind ignored registers)
Reserved Reserved (mustretun 03 s )
Ignored Ignored (h/w does not care about values behind ignored registers)

5 A: Accessed A-bit needs to be managed as the table entry being accessed. Hardware needs to
set this bit for the first access to the region defined with this page table e ntry. See
later sections for A/D-bit management.

4 PCD: Page level For devices operating in the processor coherency domain, this field indirectly

cache disable

determines the memory type used to access the page directory-pointer table
referenced by this entry.
GPU does not support any memory type but WB when accessing paging structures.
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3 PWT: Page level For devices operating in the processor coherency domain, this field indirectly
Write-through determines the memory type used to access the page directory- pointer table
referenced by this entry.
GPU does not support any memory type but WB when accessing paging structures.

2 U/S: User vs supervisor access rights. If 0, requests with uselevel privilege are not

User/Supervisor allowed to the memory region controlled by this entry. See section for access
rights.
GPU does not support Supervisor mode contexts.

1 R/W: Read/Write | Write permission rights. If O, write permission not granted for requests with user -
level privilege (and requests with supervisoilevel privilege, if WPE=1 in the relevant
extended context-entry) to the memory region controlled by this entry. See a later
section for access rights.

GPU does not support Supervisor mode contexts.
0 P: Present PML4 Entry i s pr esen to.apdgéedirentorg gointeréabled 1 6

* HAW = 39 for client, and 46 for server.

PDPE: Pointer to PD Table

PDP entry is used to locate the base of the PD table:

6|6|6|615|5[5|5{5]5|5]|5]S o AP alzlglce A A
5:{1'035i"654i3121_ HaW |HAwW-1 3{8|7|615f4(3(2{1i0
g = I |PIPUR PDPE

| Ignored Rswd. Address of page-directony-table gl len|0|jg AC|W/ [/ P| Page
D A -

| n| n D{T/SW Directory

Bits Field Description

63 XD: Execute Disable | If NXE=1 in the relevant extended-context-entry, execute permission is not

granted for requests to the memory region controlled by this entry when XD=1.
Not support in gen9

62:52 |Ignored Ignored (h/w does not care about values behind ignored registers)
51:HAW* | Reserved Reserved (must return 008s)
(HAW- |ADDR: Address Physical address of 4KByte aligned page-directory-pointer table referenced by
1):12 this entry.
This field is treated as Guest Physical Address (GPA) when Nested translations ar
enabled (NESTE=1) in the relevant extendedcontext entry.
11 Ignored/Reserved Ignored/not used by hardware
10 EA: Extended Accesq Extended Access bit is added for devices to separate accesses from IA cores. If
EAFE=1 in the relevant PASIEentry, this bit indicates whether this entry has been
used for address translation by device. It is the devices responsibility to set this
bit. If EAFE=0 in the relevant PASIBentry, this bit is ignored.
This bit applies to GPU Only.
9:8 Ignored Ignored (h/w does not care about values behind ignored registers)
7 Reserved Reseved (must return 08s)
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6 Ignored Ignored (h/w does not care about values behind ignored registers)

5 A: Accessed A-bit needs to be managed as the table entry being accessed. Hardware needs to
set this bit for the first access to the region defined with th is page table entry. See
later sections for A/D-bit management.

4 PCD: Page level For devices operating in the processor coherency domain, this field indirectly

cache disable determines the memory type used to access the page directory-pointer table
referenced by this entry.
GPU does not support any memory type but WB when accessing paging structures

3 PWT: Page level For devices operating in the processor coherency domain, this field indirectly

Write-through determines the memory type used to access the page directory- pointer table
referenced by this entry.
GPU does not support any memory type but WB when accessing paging structures

2 U/S: User/Supervisor| User vs supervisor access rights. If 0, requests with uselevel privilege are not
allowed to the memory region controlled by this entry. See section for access
rights.

GPU does not support Supervisor mode contexts.

1 R/W: Read/Write Write permission rights. If 0, write permission not granted for requests with user -
level privilege (and requests withsupervisorlevel privilege, if WPE=1 in the relevant
extended context-entry) to the memory region controlled by this entry. See a later
section for access rights.

GPU does not support Supervisor mode contexts.
0 P: Present PDP Entryis present. ltmuste 016 to point to a pags
PDP entry for 1 GB Page
E[6[6]6]5]5[5]5|515]5]5]5 e ) [3]3]2 (Lfrjr il ool a5 2 e g
5:21103‘55"6541312]- FEW. vt 1lo]s lal7lslslals]2 1503“ ZEHEEBE
Pli|_1 PIPIUR

X Address of the | ‘ |E | PDPE

| Ignored Rsvd. ‘ Reserved Algl g/G1DACW/ [/ P|
D| 1GB page ‘ ‘T nlA ol DITls w {1GB Page)

Bits Field Description

63 XD: Execute Disable [ If NXE=1 in the relevant extended-context-entry, execute permission is not
granted for requests to the memory region controlled by th is entry when XD=1.
Not support in gen9

62:52 |Ignored Ignored (h/w does not care about values behind ignored registers)
51:HAW* | Reserved Reserved (must return 08s)
(HAW- |ADDR: Address Physical address of 1GB memory page referenced by this entry.
1):30 This field is treated as Guest Physical Address (GPA) when Nested translations ar
enabled (NESTE=1) in the relevant extendedcontext entry.
29:13 |Reserved Reserved (must return 008s)

12 PAT: Page Attribute |For devices operating in the processor coherencydomain, this field indirectly
determines the memory type used to access the page directory-pointer table
referenced by this entry.

11 Ignored/Reserved Ignored/not used by hardware
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