Intel® OpenSource HD Graphics
Programmer 0s Reference

Volume 1 Part 4: Graphics CoreE i Blitter
Engine
(lvy Bridge)

For the 2012 Intel® CoreE Processor Family

May 2012

Revision 1.0

NOTICE:

This document contains information on products in the design phase of development, and Intel
reserves the right to add or remove product features at any time, with or without changes to this
open source documentation.

Doc Ref#:IHD -OS-V1Pt4 70512

contents

1. BLT ENQINE oo
11 INEFOTUCTION ..o
1.2 Classical BLT Engine Functional Description..............

1.2.1 Basic BLT Functional Considerations..................
1.2.2 Basic Graphics Data Considerations...................
1.2.3 BLT Programming Examplescccccovvvvrennee.
1.3 BLT INStruction OVEIVIEWcccceeviieeeiiiiienieee e
1.4 BLT ENGINE STALEevvveiiiiieiiece e
15 Cacheable Memory SUPPOIT........ccvveerieeeiiiieee e

1.6 Device Cache Coherency: Render & Texture Caches

1.7 BLT ENgine INStruCtionScccvvveiiieeeiiiiee e
1.7.1 BLT Programming Restrictions............cccoccvveennee.
1.8 Fill/MoVe INStrUCHIONS.........vvveeiiiiirieeeeeiiee e
181 COLOR_BLT (Fill) civoveovreieeeeeeieseseeeeeeeeeeeneen
182 SRC_COPY_BLT (MOVE)coosvrvrrererrresrernenes
1.9 2D (X,Y) BLT INSrUCHONS......oveieiiiieeiiieee e
19.1 XY_SETUP_BLT ccoiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeveeeeees
1.9.2 XY_SETUP_MONO_PATTERN_SL BLT...........
193 XY_SETUP_CLIP_BLT .cooioiieeeeeeeeeeeeeeeneen
194 XY _PIXEL_BLT .ottt
195 XY_SCANLINES BLT...cotiiiiiiiiiiiiiiiieieiiirieeeennnenns
196 XY_TEXT BLT oiiiiieieieeeeeeeeeseeeeeeeeee s
1.9.7 XY_TEXT_IMMEDIATE_BLT ..coeviiiiiiiiiiiiiiiiiiiiees
1.9.8 XY_COLOR_BLT oottt
1.9.9 XY _PAT BLT coiiiiiieeeieeeeeeee e
1.9.10 XY_PAT_CHROMA BLT .ovovviveieeeeeeeeeeennen
1.9.11 XY_PAT_BLT_IMMEDIATEovvviiiiiiiiiiiiiiniiienns
1.9.12 XY_PAT_CHROMA_BLT_IMMEDIATE
1.9.13 XY_MONO_PAT BLT ..coiiiiiiieeereeeeeeeeeeenenen
1.9.14 XY_SRC_COPY BLT .oooivireeieeeeereereeseneen.
1.9.15 XY_SRC_COPY_CHROMA BLTcccccoevrrrner.
1.9.16 XY_MONO_SRC_COPY BLT ...ccccecevverrerrrnenn.
1.9.17 XY_MONO_SRC_COPY_ IMMEDIATE_BLT
1.9.18 XY_FULL BLT oo,
1.9.19 XY_FULL_IMMEDIATE_PATTERN_BLT............

Doc Ref#:IHD -OS-V1Pt4 7 0512 5/31/2012

@Eﬁl

1.9.20 XY_FULL_MONO_SRC_BLT ..oiuieoteieeeeeeeee oo 74
1.9.21 XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT ...cottiiiiiiiiiiiiiiiieeeeeeeeeeeees 77
1.9.22 XY_FULL_MONO_PATTERN_BLT ..cotiiiiiiiiiiiiiiieieieieeeieeeieeeeeeeeeeeeeee e eeeeeeeeeeeeeeeees 79
1.9.23 XY_FULL_MONO_PATTERN_MONO_SRC_BLTcccecvvmurreeireeeseseersnnienens 82

1.10 BLT Engine Instruction Field Definitions............ccccoiiiiiiiiiiiceic e 84
1.10.1 BRO0O BLT OpcOde & CONIOl.....c.eviiiiiiieeiitiie et 85
1.10.2 BR018 Setup BLT Raster OP, Control, and Destination Offsetcccccuveeeee. 87
1.10.3 BRO053 Setup Expansion Background Color...........ccocveeeiiiiieinieieeiiee e 89
1.10.4 BRO060 Setup Expansion FOreground CoOIOr........cccceiriiieiiiiiieinieee e 90
1.10.5 BRO78 Setup Blit Color Pattern AdAdreSscocccvviririeeiiiiieeieee e 920
1.10.6 BRO093 DeStination AGAIESS.coiiuviieiiiieeiiiie et 91
1.10.7 BR110 BLT Source Pitch (OffSEt)ccueeeiiiiiiiiiiiiiiiiec e 91
1.10.8 BR123 SOUICE AUQAIESS ...oeeeiiiriieiiiiii ettt ettt 92
1.10.9 BR136 BLT Raster OP, Control, and Destination PitChcooovvviiiiiiiiiiiiinnnn. 92
1.10.10 BR1406 Destination Width & Height..........cooooiiiiiiiiiecece e 94
1.10.11 BR1503 Color Pattern AdAreSs........cocveeeiiiiieiiieie et 94
1.10.12 BR1606 Pattern Expansion Background & Solid Pattern Colorcccconeee. 95
1.10.13 BR1708 Pattern Expansion Foreground Color............ccoovviviiniiieiniieeeiieee e 95
1.10.14 BR1808 Source Expansion Background, and Destination Color 95
1.10.15 BR198 Source Expansion Foreground CoIOr..........c.eeeviviieinieeeiiiieee e 96
Blitter (BIt) Engine Command StrEamMETccoouiiiiiiiieeiiiee et 97

2.1 Registers for Blitter ENQINE..........oooiiiiieiiiie et 97
211 INEFOTUCTION ...ttt e s e as 97
2.1.2 GAB PWR CTX STORAGE REGISTERS ... 97
213 GFX TLB In Use Virtual Address ReQISterS.cuueveiiiiieiiiiiieiieee e 98
214 GFX Pending TLB cycles information registers.cccovvvveinieie e 102
215 GAB Error Reporting REJISIENcieiuieieiiiiie et 105
216 Virtual Memory CONLIOL........coiuiiiiiiiiie e 106
2.1.7 Mode and MISC Ctrl REQISIEIScoiiiiiiiiiiiie et 108
218 BCS_EXCC 8 BCS Execute Condition Code RegiSterccceeevvveeeriivieennnnee. 112
219 BCS_RINGBUF& Ring Buffer REQIStErScccviviiiiiieiiiiiee e 115
2.1.10 Interrupt CONtrol REGISIEIScoviiiiiiiiie ettt 122
2.1.11 Logical CONEXE SUPPOIT......etiiiiiieeiitie e ettt eite et e e snnee s 127
2.1.12 Software Control Bit DefiNItioNS..........cooiiiiiiiiiieei e 133

2.2 Memory Interface Commands for Blitter ENgiNe...........cccceeviiiieiiiiee e 134
221 INEFOTUCTION <.t 134
2.2.2 MI_ARB_CHECK ..o n e en s eneeee s een s 135

5/29/2012 Doc Ref#:IHD -OS-V1Pt4

T 0512

223
224
225
2.2.6
2.2.7
228
229
2.2.10
2211
2.2.12
2.2.13
2.2.14
2.2.15
2.2.16
2.2.17
2.2.18

Doc Ref #: IHD

|_BATCH_BUFFER_ENDoooiuiueteieieieeeeeeceeeete et esesesesaeae et tes s s s sesesanans 135
MI_BATCH_BUFFER_START w..cootitititeieeeeeeceetetetes et eseeesee et sesen s sssae s sesesenans 136
MI_FLUSH DW.....ooiiieiteieieiee ettt ee ettt es s et en s e s s s s s 137
MI_LOAD_REGISTER_IMMoruiuiueieiieeeeeceeieieiesesesenseee e sesesessssasaesesesenanans 140
MI_NOOP ...t en s aennanses 141
MI_REPORT _HEADcoovimieeceeeeeeeeeeeeeee e eeeeeeeeee s ene e enes s aen s 142
MI_SEMAPHORE_MBOX........cocoeueteuerereeeeereraeeesesesesesessesesesssesesessssssssssesesanans 142
MI_STORE_REGISTER_MEMcocuiviuiieeeeeeeeeieieseseeeeeeeie et seseses st sesenanans 144
MI_STORE_DATA _IMM ...oviieeeieeieieieieeeeeeeeeeete et es sttt s s s s en s 146
MI_STORE_DATA _INDEXcocvurueueuereeeeeeeeeeeetesesesesessaeseseiesesesesssssssssssesesanans 147
MI_SUSPEND_FLUSH ...cocvviiiecteeieie e ettt eneseeae et en s ses s s 149
MI_UPDATE G T oottt ettt ee ettt et s s ettt en s s ssasaeassesesenans 149
MI_USER_INTERRUPTcoooitiiititetetetetee e ettt ie s s sttt en s e ses s s 150
MI_WAIT_FOR_EVENT ..oovititcectetete et eeeeeeeete et et esenesae et sensenenesaeassesesenans 151
MI_LOAD_REGISTER_MEMceitiuiieieeeceeeeieieiesesesesseeeeiesesesesssassesssesesenans 153
MI_DISPLAY _FLIP....ouititetetet et et e e etee e sttt es sttt s s s e ssastess s s e 155
-0S-V1Pt4 70512 5/31/2012

1. BLT Engine

1.1 Introduction

2D Rendering can be divided into 2 categories: classical BLTs, described here, and 3D BLTs. 3D BLTs
are operations which can take advantage of the 3D dr awi

Functions such as Alpha BLTs, arithmetic (bilinear) stretch BLTS, rotations, transposing pixel maps, color
space conversion, and DIBs are all considered 3D BLTs and are covered in the 3D rendering section.
DIBs can be thought of as an indexed texture which uses the texture palette for performing the data
translation. All drawing engines have swappable context. The same hardware can be used by multiple
driver threads where the current state of the hardware is saved to memory and the appropriate state is
loaded from memory on thread switches.

All operands for both 3D and classical BLTs can be in graphics aperture or cacheable system memory.
Some operands can be immediates which are sent through the command stream. Immediate operands
are: patterns, monochrome sources, DIB palettes, and DIB source operands. All non-monochrome
operands which are not tiled have a stride granularity of a double-word (4 bytes).

The classical BLT commands support both linear addressing and X, Y coordinates with and without
clipping. All X1 and Y1 destination and clipping coordinates are inclusive, while X2 and Y2 are exclusive.
Currently, only destination coordinates can be negative. The source and clipping coordinates must be
positive. If clipping is disabled, but a negative destination coordinate is specified, the negative coordinate
is clipped to 0. Linear address BLT commands must supply a non-zero height and width. If either height
or width = 0, then no accesses occur.

1.2 Classical BLT Engine Functional Description

The graphics controller provides a hardware-based BLT engine to off load the work of moving blocks of
graphics data from the host CPU. Although the BLT engine is often used simply to copy a block of
graphics data from the source to the destination, it also has the ability to perform more complex functions.
The BLT engine is capable of receiving three different blocks of graphics data as input as shown in the
figure below. The source data may exist in the frame buffer or the Graphics aperture. The pattern data
always represents an 8x8 block of pixels that can be located in the frame buffer, Graphics aperture, or
passed through a command packet. The pattern data must be located in linear memory. The data already
residing at the destination may also be used as an input. The destination data can also be located in the
frame buffer or graphics aperture.

6 5/29/2012 Doc Ref#:IHD -OS-V1Pt4 7T 0512

Almador Family
Classical BLT

Q"_ti'

Src/Dst (C/2)
Data Path ¥ ! Render Cache
128 bit Reg 128 bit Reg
Color o
Color Pattemns Source v v Deslu_nabon
Pass thru Registers = 128 bitReg 128 bit Reg Registers
Expansion Logic
v v
Mono SRC 128 bit Reg 128 bit Reg
Texture L2 Cache(128 bits) & Pattem
Expansion
Mono Source: memory based & Logic Y T
Immediate (512 byte Max) Mux
Color Patterns: memory based & ! L
Immediate (256 byte Max = 32
. e) Color Sources, 128 bit Reg 128 bit Reg
Color Patterns, J
Mono Sources and Expanded
Mono Pattems are Mono Sources and 128 to 128 bit
expandeq to a bit per byte Mono Patterns Byte Srsnulamy
depending on DST bpp are rotated through shared ofedor
and rotated to the DST Rotation Logic y v
alignment for transparency to the Dst alignment 128 bit Reg 128 bit Reg
A4
Color Pattern
Scan Line Storage
32 bytes = 4 QWs
v v v v v
128 bit ROP Src or Dst
(8 to 1 Mux) Transparency
Range
4 Comparison
128 bit Reg
, Src/Dst (C/Z)
Render Cache

Block Diagram and Data Paths of the BLT Engine

The BLT engine may use any combination of these three different blocks of graphics data as operands, in

both bit-wise logical operations to generate the actual data to be written to the destination, and in per-

pixel write-masking to control the writing of data to the destination. It is intended that the BLT engine will

perform these bit-wise and per-pixel operations on color graphics data that is at the same color depth that

the rest of the graphics system has been set. However, if either the source or pattern data is

monochrome, the BLT engine has the ability to put either block of graphics data through a process called

fcol or expansiond that converts monochrome graphics
location in the on-screen portion of the frame buffer, it is assumed that any data already at the destination

will be of the appropriate color depth.

daf

1.2.1 Basic BLT Functional Considerations

1211

The graphics system and BLT engine can be configured for color depths of 8, 16, and 32 bits per pixel.

Color Depth Configuration and Color Expansion

The configuration of the BLT engine for a given color depth dictates the number of bytes of graphics data
that the BLT engine will read and write for each pixel while performing a BLT operation. It is assumed that
any graphics data already residing at the destination which is used as an input is already at the color
depth to which the BLT engine is configured. Similarly, it is assumed that any source or pattern data used
as an input has this same color depth, unless one or both is monochrome. If either the source or pattern

Doc Ref#:IHD -OS-V1Pt4 7 0512 5/31/2012 7

@Eﬁl

data is monochrome, the BLT engine performs a process |
monochrome data to color at the color depth to which the BLT engine has been set.

During ficolor expansiono the individual bits of monochi
individual pixels are converted into 1, 2, or 4 bytes (which ever is appropriate for the color depth to which

the BLT engine has been set). If a given bit of monochrome source or pattern data carries a value of 1,

then the byte(s) of color data resulting from the conversion process are set to carry the value of a

specified foreground color. If a given bit of monochrome source or pattern data carries a value of 0, the

resulting byte(s) are set to the value of a specified background color or not written if transparency is

selected.

The BLT engine is set to a default configuration color depth of 8, 16, or 32 bits per pixel through BLT
command packets. Whether the source and pattern data are color or monochrome must be specified
using command packets. Foreground and background colors for the color expansion of both monochrome
source and pattern data are also specified through the command packets. The source foreground and
background colors used in the color expansion of monochrome source data are specified independently
of those used for the color expansion of monochrome pattern data.

1.21.2 Graphics Data Size Limitations

The BLT engine is capable of transferring very large quantities of graphics data. Any graphics data read

from and written to the destination is permitted to represent a number of pixels that occupies up to 65,536

scan lines and up to 32,768 bytes per scan line at the destination. The maximum number of pixels that

may be represented per scan | inebs worth of graphics d.

Any source data used as an input must represent the same number of pixels as is represented by any
data read from or written to the destination, and it must be organized so as to occupy the same number of
scan lines and pixels per scan line.

The actual number of scan lines and bytes per scan line required to accommodate data read from or
written to the destination are set in the destination width & height registers or using X and Y coordinates
within the command packets. These two values are essential in the programming of the BLT engine,
because the engine uses these two values to determine when a given BLT operation has been
completed.

1.2.1.3 Bit-Wise Operations

The BLT engine can perform any one of 256 possible bit-wise operations using various combinations of
the three previously described blocks of graphics data that the BLT engine can receive as input.

The choice of bit-wise operation selects which of the three inputs will be used, as well as the particular
logical operation to be performed on corresponding bits from each of the selected inputs. The BLT engine
automatically foregoes reading any form of graphics data that has not been specified as an input by the
choice of bit-wise operation. An 8-bit code written to the raster operation field of the command packets
chooses the bit-wise operation. The following table lists the available bit-wise operations and their
corresponding 8-bit codes.

Bit-Wise Operations and 8-Bit Codes (00-3F)

Value Written to Bits at Value Written to Bits at
Code Destination Code Destination
00 writes al.l 06s 20 D and (P and (notS))
01 not(D or (P or S))) 21 not(S or(D xor P))
02 D and (not(Por S)) 22 D and (notS)

8 5/29/2012 Doc Ref#:IHD -OS-V1Pt4 7T 0512

Value Written to Bits at

Value Written to Bits at

Code Destination Code Destination
03 not(PorS) 23 not(S or (P and (notD)))
04 S and (not(D or P)) 24 (SxorP)and (DxorS)
05 not(Dor P) 25 not(P xor (D and (not(S and P))))
06 not(P or (not(D xor S))) 26 Sxor (Dor(PandS))
07 not(Por(DandS)) 27 S xor (D or (not(P xor S)))
08 S and (D and (notP)) 28 D and (P xor S)
09 not(P or (D xor S)) 29 not(P xor (S xor (D or (P and S))))
0A D and (notP) 2A D and (not(P and S))
0B not(P or (S and (notD))) 2B not(S xor ((S xor P) and (P xor D

)

0C S and (notP) 2C S xor (P and (Dor S))
0D not(P or (D and (notS))) 2D P xor (S or (notD))
OE not(P or (not(D or S))) 2E P xor (S or (D xor P))
OF notP 2F not(P and ('S or (notD)))
10 P and (not(Dor S)) 30 P and (notS)
11 not(DorS) 31 not(S or (D and (notP)))
12 not(S or (not(D xor P))) 32 Sxor(Dor(PorS))
13 not(Sor (D andP)) 33 notS
14 not(D or (not(P xor S))) 34 S xor (Por(DandS))
15 not(Dor (PandS)) 35 S xor (P or (not(D xor S)))
16 P xor (S xor (D and (not(P and S))))[36 S xor (DorP)
17 not(S xor ((S xor P) and (D xor S)))|37 not(S and (D or P))
18 (S xorP)and (P xorD) 38 P xor (Sand (DorP))
19 not(S xor (D and (not(P and S)))) [39 S xor (P or (notD))
1A P xor (Dor(SandP)) BA S xor (P or (D xor S))
1B not(S xor (D and (P xor S))) 3B not(S and (P or (notD)))
1C P xor (Sor(DandP)) 3C P xor S
1D not(D xor (S and (P xor D))) 3D S xor (P or (not(D or S)))
1E P xor(DorS) 3E S xor (P or (D and (notS)))
1F not(P and (D or S)) 3F not(P and S)
Notes:

S = Source Data
P = Pattern Data
D = Data Already Existing at the Destination

Bit-Wise Operations and 8-bit Codes (40 - 7F)

Value Written to Bits at

Code Destination Code| Value Written to Bits at Destination
40 P and (S and (notD)) 60 P and (D xor S)
41 not(D or (P xor S)) 61 not(D xor (S xor (P or (D and S))))
42 (SxorD)and (P xorD) 62 D xor (Sand (PorD))
43 not(S xor (P and (not(D and S)))) |63 S xor (D or (notP))
44 S and (notD) 64 S xor (Dand (PorS))
45 not(D or (P and (notS))) 65 D xor (S or (notP))
46 D xor(Sor(PandD)) 66 D xor S
47 not(P xor (S and (D xor P))) 67 S xor (D or (not(P or S)))
48 S and (D xor P) 68 not(D xor (S xor (P or(not(DorS

Doc Ref #: IHD

-OS-V1Pt4 TO0512

5/31/2012

@Eﬁl

Code

Value Written to Bits at
Destination

Value Written to Bits at Destination

)

49

not(P xor (D xor (S or (P and D))))

not(P xor (D xor S))

4A D xor(Pand (SorD)) 6A D xor (Pand S)

4B P xor (D or (notS)) 6B not(P xor (S xor (D and (P or S))))
4C S and (not(D and P)) 6C S xor (D and P)

4D not(S xor ((S xor P) or (D xor S))) 6D not(P xor (D xor (S and (P or D))))
AE P xor (D or (S xor P)) 6E S xor (D and (P or (notS)))

AF not(P and (D or (notS))) 6F not(P and (not(D xor S)))

50 P and (notD) 70 P and (not(D and S))

51 not(D or (S and (notP))) 71 not(S xor ((S xor D) and (P xor D)))
52 D xor (P or (S and D)) 72 S xor (D or (P xor S))

53 not(S xor (P and (D xor S))) 73 not(S and (D or (notP)))

54 not(D or (not(P or S))) 74 D xor (S or (P xorD))

55 notD 75 not(D and (S or (notP)))

56 D xor (PorS) 76 S xor (D or (P and (notS)))

57 not(Dand (PorS)) 77 not(Dand S)

58 P xor (Dand (SorP)) 78 P xor (Dand S)

59 D xor (P or (notS)) 79 not(D xor (S xor (P and (D or S))))
5A D xor P 7A D xor (P and (S or (notD)))

5B D xor (P or (not(SorD))) 7B not(S and (not(D xor P)))

5C D xor (P or (S xor D)) 7C S xor (P and (D or (notS)))

5D not(D and (P or (notS))) 7D not(D and (not(P xor S)))

5E D xor (P or (S and (notD))) 7E (SxorP)or(DxorS)

5F not(D and P) 7F not(D and (P and S))

Notes:

S = Source Data
P = Pattern Data
D = Data Already Existing at the Destination

Bit-Wise Operations and 8-bit Codes (80 - BF)

Value Written to Bits at

Value Written to Bits at

Code Destination Code Destination
80 Dand (PandS) IAO D and P
81 not((S xor P) or (D xor S)) AL not(P xor (D or (S and (notP))))
82 D and (not(P xor S)) A2 D and (P or (notS))
83 not(S xor (P and (D or (notS)))) [A3 not(D xor (P or (S xor D)))
84 S and ((not(D xor P)) A4 not(P xor (D or (not(S or P))))
85 not(P xor (D and (S or (notP)))) [A5 not(P xor D)

86 D xor (S xor (P and (DorS))) A6 D xor ('S and (notP))

87 not(P xor (D and S)) A7 not(P xor (D and (S orP)))

38 D and S A8 Dand (PorS)

89 not(S xor (D or (P and (notS)))) [A9 not(D xor (P or S))

BA D and (S or (notP)) AA D

3B not(D xor (S or (P xor D))) AB D or (not(P or S))

8C S and (D or (notP)) AC |Sxor (P and (D xor S))

8D not(S xor (D or (P xor S))) IAD not(D xor (P or (SandD)))

SE S xor ((S xor D) and (P xor D)) AE D or (S and (notP))

10 5/29/2012 Doc Ref #: IHD

-0OS-V1Pt4

T 0512

Value Written to Bits at

Value Written to Bits at

Code Destination Code Destination
8F not(P and (not(D and S))) IAF D or (notP)
90 P and (not(D xor S)) BO P and (D or (notS))
91 not(S xor (D and (P or (notS))) [B1 not(P xor (D or (S xor P)))
92 D xor (P xor (S and (D or P))) B2 S xor ((S xor P) or (D xor S))
93 not(S xor (P and D)) B3 not(S and (not(D and P)))
94 P xor (S xor (D and (P or S))) B4 P xor (S and (notD))
95 not(D xor (P and S)) B5 not(D xor (P and (S or D)))
96 D xor (P xor S) B6 D xor (P xor (S or (D and P)))
97 P xor (S xor (D or (not(Por S)))) |B7 not(S and (D xor P))
98 not(S xor (D or (not(P or S)))) B8 P xor (S and (D xor P))
99 not(D xor S) B9 not(D xor (S or (P and D)))
9A D xor (P and (notS)) BA D or (P and (notS))
9B not(S xor (Dand (P or S))) BB D or (notS)
9C S xor (P and (notD)) BC [Sxor (P and(not(DandS)))
9D not(D xor (Sand (P orD))) BD |not((S xor D) and (P xor D))
9E D xor (S xor (P or (D and S))) BE Dor (PxorS)
9F not(P and (D xor S)) BF D or (not(P and S))
Notes:

S = Source Data
P = Pattern Data
D = Data Already Existing at the Destination

Bit-Wise Operations and 8-bit Codes (CO - FF)

Code Value Written to Bits at Destination Code Value Written to Bits at Destination
CO PandS EO Pand(DorS)
C1l not(S xor (P or (D and (notS)))) E1l not(P xor (D or S))

C2 not(S xor (P or (not(D or S)))) E2 D xor (S and (P xor D))

C3 not(P xor S) E3 not(P xor (S or (D and P)))
C4 S and (P or (notD)) E4 S xor (D and (P xor S))

C5 not(S xor (P or (D xor S))) E5 not(P xor (D or (S and P)))
C6 S xor (D and (notP)) E6 S xor (D and (not(P and S)))
C7 not(P xor (S and (D or P))) E7 not((S xor P) and (P xor D))
C8 Sand (DorP) E8 S xor ((S xor P) and (D xor S))
C9 not(S xor (P or D)) E9 not(D xor (S xor (P and (not(D and S)))))
CA [Dxor(Pand(SxorD)) EA Dor(PandS)

CB not(S xor (P or (D and S))) EB D or (not(P xor S))

CC s EC Sor(DandP)

CD [Sor(not(DorP)) ED S or (not(D xor P))

CE |[Sor(Dand(notP)) EE DorS

CF S or (notP) EF S or (D or (notP))

DO P and (S or (notD)) FO P

D1 not(P xor (S or (D xor P))) F1 P or (not(DorS))

D2 P xor (D and (notS)) F2 P or (D and (notS))

D3 not(S xor (P and (D or S))) F3 P or (notS)

D4 S xor ((S xor P) and (P xor D)) F4 P or (S and (notD))

D5 not(D and (not(P and S))) F5 P or (notD)

D6 P xor (S xor (Dor(PandS)) F6 P or (D xorS)

Doc Ref #: IHD

-OS-V1Pt4 TO0512

5/31/2012

11

@Eﬁl

Code Value Written to Bits at Destination Code Value Written to Bits at Destination
D7 not(D and (P xor S)) F7 P or (not(D and S))
D8 P xor (D and (S xor P)) F8 Por(DandS)
D9 not(S xor (D or (P and S))) F9 P or (not(D xor S))
DA |D xor (P and (not(S and D))) FA D or P
DB not((S xor P) and (D xor S)) FB D or (P or (notS))
DC |Sor (P and(notD)) FC PorS
DD |Sor(notD) FD P or (S or (notD))
DE |Sor(DxorP) FE Dor(PorS)
DF S or (not(D and P)) FF writes all 16s
Notes:

S = Source Data
P = Pattern Data
D = Data Already Existing at the Destination

1214 Per-Pixel Write-Masking Operations

The BLT engine is able to perform per-pixel write-masking with various data sources used as pixel masks
to constrain which pixels at the destination are to be written to by the BLT engine. As shown in the figure
below, either monochrome source or monochrome pattern data may be used as pixel masks. Color
pattern data cannot be used. Another available pixel mask is derived by comparing a particular color
range per color channel to either the color already specified for a given pixel at the destination or source.

12 5/29/2012 Doc Ref#:IHD -OS-V1Pt4 7T 0512

Almador Family
Classical BLT

Q"_ti'

Src/Dst (C/Z)
Data Path L . Render Cache
128 bit Reg 128 bit Reg
Color . 5
Color Patterns Source v v Destination
Pass thru Registers 128 bit Reg 128 bit Reg Registers
Expansion Logic
v v
Mono SRC 128 bit Reg 128 bit Reg
Texture L2 Cache(128 bits) & P
Expansion
Mono Source: memory based & Logic Vevtzior
Immediate (512 byte Max) ™ M
Color Patterns:memory based &
Immediate (256 byte Max = 32bpp) Y S
Color Sources, 128 bit Reg 128 bit Reg
Color Patterns,
Mono Sources and Expanded X
Mono Pattems are Mono Sources and 1281012508
expanded to a bit per byte Mono Patterns Byte S”’"“'a"‘y
depending on DST bpp are rotated through shared o
and rotated to the DST Rotation Logic v v
Slignment for transparency to the Dst alignment 128 bit Reg 128 bit Reg
v
Color Pattern
Scan Line Storage
32 bytes =4 QWs
v v v v v
128 bit ROP Src or Dst
(8 to 1 Mux) Transparency
Range
v Comparison
128 bit Reg

, SrciDst (C/Z)
Render Cache

Block Diagram and Data Paths of the BLT Engine

The command packets can specify the monochrome source or the monochrome pattern data as a pixel
mask. When this feature is used, the bits that carry a value of O cause the bytes of the corresponding
pixel at the destination to not be written to by the BLT engine, thereby preserving whatever data was
originally carried within those bytes. This feature can be used in writing characters to the display, while
also preserving the pre-existing backgrounds behind those characters. When both operands are in the
transparent mode, the logical AND of the 2 operands are used for the write enables per pixel.

The 3-bit field, destination transparency mode, within the command packets can select per-pixel write-
masking with a mask based on the results of color comparisons. The monochrome source background
and foreground are range compared with either the bytes for the pixels at the destination or the source
operand. This operation is described in the BLT command packet and register descriptions.

1.2.1.5

It is possible to have BLT operations in which the locations of the source and destination data overlap.
This frequently occurs in BLT operations where a user is shifting the position of a graphical item on the
display by only a few pixels. In these situations, the BLT engine must be programmed so that destination
data is not written into destination locations that overlap with source locations before the source data at
those locations has been read. Otherwise, the source data will become corrupted. The XY commands
determine whether there is an overlap and perform the accesses in the proper direction to avoid data
corruption.

When the Source and Destination Locations Overlap

Doc Ref#:IHD -OS-V1Pt4 7 0512

5/31/2012 13

@Eﬁl

The following figure shows how the source data can be corrupted when a rectangular block is copied from
a source location to an overlapping destination location. The BLT engine typically reads from the source
location and writes to the destination location starting with the left-most pixel in the top-most line of both,
as shown in step (a). As shown in step (b), corruption of the source data has already started with the
copying of the top-most line in step (a) & part of the source that originally contained lighter-colored pixels
has now been overwritten with darker-colored pixels. More source data corruption occurs as steps (b)
through (d) are performed. At step (e), another line of the source data is read, but the two right-most
pixels of this line are in the region where the source and destination locations overlap, and where the
source has already been overwritten as a result of the copying of the top-most line in step (a). Starting in
step (f), darker-colored pixels can be seen in the destination where lighter-colored pixels should be. This
errant effect occurs repeatedly throughout the remaining steps in this BLT operation. As more lines are
copied from the source location to the destination location, it becomes clear that the end result is not what
was originally intended.

14 5/29/2012 Doc Ref#:IHD -OS-V1Pt4 7T 0512

Squice

[a)

[we=linalan

LT

I_:

| o=

(o)

Source Corruption in BLT with Overlapping Source and Destination Locations

The BLT engine can alter the order in which source data is read and destination data is written when
necessary to avoid source data corruption problems when the source and destination locations overlap.

s ~
Sauce
[*) [e=linalan
L o
B&TSE-01

The command packets provide the ability to change the point at which the BLT engine begins reading and

Doc Ref #: IHD

-0OS-V1Pt4

T 0512

5/31/2012

15

@Eﬁl

writing data from the upper left-hand corner (the usual starting point) to one of the other three corners.

The BLT engine may be set to read data from the source and write it to the destination starting at any of
the four corners of the panel.

The XY command packets perform the necessary comparisons and start at the proper corner of each
operand which avoids data corruption.

16 5/29/2012 Doc Ref#:IHD -OS-V1Pt4 7T 0512

[*) [e=linalan

|'r.] \ .

Correctly Performed BLT with Overlapping Source and Destination Locations

The following figure illustrates how this feature of the BLT engine can be used to perform the same BLT
operation as was illustrated in the figure above, while avoiding the corruption of source data. As shown in
the figure below, the BLT engine reads the source data and writes the data to the destination starting with

Doc Ref#:IHD -OS-V1Pt4 7 0512 5/31/2012 17

the right-most pixel of the bottom-most line. By doing this, no pixel existing where the source and
destination locations overlap will ever be written to before it is read from by the BLT engine. By the time
the BLT operation has reached step (e) where two pixels existing where the source and destination
locations overlap are about to be over written, the source data for those two pixels has already been read.

De stination Drestination D stination Crestination
oI | L SSSES=sEE
=2
Source Source Source Source
Drastination Source Source Drastination
R
Dre stination Source Source Destination
Source Source Source Source
Crestination Dvestin ation Dwe stination Crestination

B&755-01

Suggested Starting Points for Possible Source and Destination Overlap Situations

The figure above shows the recommended lines and pixels to be used as starting points in each of 8
possible ways in which the source and destination locations may overlap. In general, the starting point
should be within the area in which the source and destination overlap.

18 5/29/2012 Doc Ref#:IHD -OS-V1Pt4 7T 0512

Q"_ti'

1.2.2 Basic Graphics Data Considerations

1.2.2.1 Contiguous vs. Discontinuous Graphics Data

Graphics data stored in memory, particularly in the frame buffer of a graphics system, has organizational
characteristics that often distinguish it from other varieties of data. The main distinctive feature is the
tendency for graphics data to be organized in a discontinuous block of graphics data made up of multiple
sub-blocks of bytes, instead of a single contiguous block of bytes.

Representation of On-Screen Single 6-Pixel Line in the Frame Buffer

o, 0 (615, D) 3

G2 T Il 1

270FEn
2E1D00n
2E1DEN

256, 156 — 261, 25E

. m.are £1%, 47%)

B&TEL-01

The figure above shows an example of contiguous graphics data & a horizontal line made up of six

adjacent pixels within a single scan line on a display with a resolution of 640x480. Presuming that the

graphics system driving this display has been set to 8 bits per pixel and thatthef r ame buf f er é6s st ar
address of Oh corresponds to the upper left-most pixel of this display, then the six pixels that make this

horizontal line starting at coordinates (256, 256) occupies the six bytes starting at frame buffer address

28100h, and ending at address 28105h.

I n this case, there is only one scan | inebs worth of gi
of graphics data for all six of these pixels exists as a single, contiguous block comprised of only these six

bytes. The starting address and the number of bytes are the only pieces of information that a BLT engine

would require to read this block of data.

The simplicity of the above example of a single horizontal line contrasts sharply to the example of
discontinuous graphics data depicted in the figure below. The simple six-pixel line of the figure above is
now accompanied by three more six-pixel lines placed on subsequent scan lines, resulting in the 6x4
block of pixels shown.

Doc Ref#:IHD -OS-V1Pt4 7 0512 5/31/2012 19

@Eﬁl

Representation of On-Screen 6x4 Array of Pixels in the Frame Buffer

o,) (6%, O)

ITOFED
2E1DDn
2E1DEn
LR, 2EE 261, 2EE
I - — 27DFEN
e -
TEELh Goan Line EEREE W
2ETih Scanm Lin= —— ———— T
JEELN Gean Line -
2EIn Scanm Leine — —
270FEn
T 25100
25E, 253 261, 253 L [&51D&n
e —— =
= = 270FEn
T T 251000
' r i 2E1DEN
wote rawing 12 ndt o 2Cale = p—
(0,473 £1%, 47%) /

B&TEZ-01

Since there are other pixels on each of the scan lines on which this 6x4 block exists that are not part of
this 6x4 block, what appears to be a single 6x4 block of pixels on the display must be represented by a
discontinuous block of graphics data made up of 4 separate sub-blocks of six bytes apiece in the frame
buffer at addresses 28100h, 28380h, 28600h, and 28880h. This situation makes the task of reading what
appears to be a simple 6x4 block of pixels more complex. However, there are two characteristics of this
6x4 block of pixels that help simplify the task of specifying the locations of all 24 bytes of this
discontinuous block of graphics data: all four of the sub-blocks are of the same length, and the four sub-
blocks are separated from each other at equal intervals.

The BLT engine is designed to make use of these characteristics of graphics data to simplify the
programming required to handle discontinuous blocks of graphics data. For such a situation, the BLT
engine requires only four pieces of information: the starting address of the first sub-block, the length of a
sub-block, the offset (in bytes), pitch, of the starting address of each subsequent sub-block, and the
guantity of sub-blocks.

1.2.2.2 Source Data

The source data may exist in the frame buffer or elsewhere in the graphics aperture where the BLT
engine may read it directly, or it may be provided to the BLT engine by the host CPU through the
command packets. The block of source graphics data may be either contiguous or discontinuous, and
may be either in color (with a color depth that matches that to which the BLT engine has been set) or
monochrome.

The source select bit in the command packets specifies whether the source data exists in the frame buffer
or is provided through the command packets. Monochrome source data is always specified as being
supplied through an immediate command packet.

20 5/29/2012 Doc Ref#:IHD -OS-V1Pt4 7T 0512

Q"_ti'

If the color source data resides within the frame buffer or elsewhere in the graphics aperture, then the
Source Address Register, specified in the command packets is used to specify the address of the source.

In cases where the host CPU provides the source data, it does so by writing the source data to ring buffer
directly after the BLT command that requires the data or uses an IMMEDIATE_INDIRECT_BLT command
packet which has a size and pointer to the operand in Graphics aperture.

The block of bytes sent by the host CPU through the command packets must be quadword-aligned and
the source data contained within the block of bytes must also be aligned.

To accommodate discontinuous source data, the source and destination pitch registers can be used to

specify the offset in bytes from the beginning of one
if the source data is contiguous, thenanof f set equal to the |l ength of a scan
should be specified.

1.2.2.3 Monochrome Source Data

The opcode of the command packet specifies whether the source data is color or monochrome. Since
monochrome graphics data only uses one bit per pixel, each byte of monochrome source data typically
carries data for 8 pixels which hinders the use of byte-oriented parameters when specifying the location
and size of valid source data. Some additional parameters must be specified to ensure the proper reading
and use of monochrome source data by the BLT engine. The BLT engine also provides additional options
for the manipulation of monochrome source data versus color source data.

The various bit-wise logical operations and per-pixel write-masking operations were designed to work with
color data. In order to use monochrome data, the BLT engine converts it into color through a process
called color expansion, which takes place as a BLT operation is performed. In color expansion the single
bits of monochrome source data are converted into one, two, or four bytes (depending on the color depth)
of color data that are set to carry value corresponding to either the foreground or background color that
have been specified for use in this conversion process. If a given bit of monochrome source data carries
a value of 1, then the byte(s) of color data resulting from the conversion process will be set to carry the
value of the foreground color. If a given bit of monochrome source data carries a value of 0, then the
resulting byte(s) will be set to the value of the background color. The foreground and background colors
used in the color expansion of monochrome source data can be set in the source expansion foreground
color register and the source expansion background color register.

The BLT Engine requires that the bit alignment of each
speci fied. Each scan Iinebés worth of monochrome source
any bit boundary of the first byte. Monochrome text is special cased and it is bit or byte packed, where in

bit packed there are no invalid pixels (bits) between scan lines. There is a 3 bit field which indicates the

starting pixel position within the first byte for each scan line, Mono Source Start.

The BLT engine also provides various clipping options for use with specific BLT commands (BLT_TEXT)
with a monochrome source. Clipping is supported through: Clip rectangle Y addresses or coordinates and
X coordinates along with scan line starting and ending addresses (with Y addresses) along with X starting
and ending coordinates.

The maximum immediate source size is 128 bytes.

1.2.2.4 Pattern Data

The color pattern data must exist within the frame buffer or Graphics aperture where the BLT engine may
read it directly or it can be sent through the command stream. The pattern data must be located in linear
memory.

Doc Ref#:IHD -OS-V1Pt4 7 0512 5/31/2012 21

i

Monochrome pattern data is supplied by the command packet when it is to be used. As shown in figure
below, the block of pattern graphics data always represents a block of 8x8 pixels. The bits or bytes of a
block of pattern data may be organized in the frame buffer memory in only one of three ways, depending
upon its color depth which may be 8, 16, or 32 bits per pixel (whichever matches the color depth to which
the BLT engine has been set), or monochrome.

The maximum color pattern size is 256 bytes.

Pattern Data -- Always an 8x8 Array of Pixels

Fizel (D, D) —— —— Pua=l [T, D)
Feael [D, 7] Fuael [T, T)
53 R 1 ag o al 3d Il e 22 i 15 =27 [
—— I R B
rd ‘-h-"‘-- ""'#F- ™
& JL""‘-\-‘ I,-l-""'l'-'. ht
4 —— - hY

The Pattern Address Register is used to specify the address of the color pattern data at which the block
of pattern data begins. The three least significant bits of the address written to this register are ignored,
because the address must be in terms of quadwords. This is because the pattern must always be located
on an address boundary equal to its size. Monochrome patterns take up 8 bytes, or a single quadword of
space, and are loaded through the command packet that uses it. Similarly, color patterns with color
depths of 8, 16, and 32 bits per pixel must start on 64-byte, 128-byte and 256-byte boundaries,
respectively. The next 3 figures show how monochrome, 8bpp, 16bpp, and 32bpp pattern data ,
respectively, is organized in memory.

8bpp Pattern Data -- Occupies 64 Bytes (8 quadwords)

£l 37 5B 45 47 0 1'% 12 11 4 Z1 16 1% E 7]

Pixel 10 7) Pisel (0 0) | DOn
LEn
10m
180
A0n
AEn
10m

Pixel (7, 7 Pisel (7, 0] | 180

B&7E4=-01

22 5/29/2012 Doc Ref#:IHD -OS-V1Pt4 7T 0512

16bpp Pattern Data -- Occupies 128 Bytes (16 quadwords)

£ 18 47 12 11 16 15 D

Fizel (0, 0 Bomn
Fixel (7, O} D&
‘'_'_'_,_ﬂ__-_'_'_ﬂ___\-_‘_______h_ _‘_'_'___a——'_'_'_
T "
—m— "—~—~—.___ —~—~—._H___'_'__,——'—" e
— T EEm
Thm
Pixel (7, 7) Przel (0, 7) 78R
BE765-01
32bpp Pattern Data -- Occupies 256 Bytes (32 quadwords)
] i3 47 2 16 15 0
Frxel (0, O [
Fixel (3, 0] ud}
p—'_—_‘—‘—____ 1 . .
E— —L]
[——_—____ ____“_ —____\x_____'_'_'_____,_o—'— _J__'_'_'__'_'_'__,——
— &)
Fizel (4, 7 04
Fixel (7,7 EL
BET56-01

The opcode of the command packet specifies whether the pattern data is color or monochrome. The
various bit-wise logical operations and per-pixel write-masking operations were designed to work with
color data. In order to use monochrome pattern data, the BLT engine is designed to convert it into color
through a process called Acolor expansionodo which takes
expansion, the single bits of monochrome pattern data are converted into one, two, or four bytes
(depending on the color depth) of color data that are set to carry values corresponding to either the
foreground or background color that have been specified for use in this process. The foreground color is
used for pixels corresponding to a bit of monochrome pattern data that carry the value of 1, while the
background color is used where the corresponding bit of monochrome pattern data carries the value of 0.
The foreground and background colors used in the color expansion of monochrome pattern data can be
set in the Pattern Expansion Foreground Color Register and Pattern Expansion Background Color
Reqgister.

1.2.25 Destination Data

There are actually two different types of fdestination
location that is designated as the destination, and the data that is to be written into that very same
location as a result of a BLT operation.

The location designated as the destination must be within the frame buffer or Graphics aperture where

the BLT engine can read from it and write to it directly. The blocks of destination data to be read from and
written to the destination may be either contiguous or discontinuous. All data written to the destination will
have the color depth to which the BLT engine has been set. It is presumed that any data already existing

Doc Ref#:IHD -OS-V1Pt4 7 0512 5/31/2012 23

@Eﬁl

at the destination which will be read by the BLT engine will also be of this same color depth 8 the BLT
engine neither reads nor writes monochrome destination data.

The Destination Address Register is used to specify the address of the destination.

To accommodate discontinuous destination data, the Source and Destination Pitch Registers can be

used to specify the offset in bytes from the °inning
next. Otherwise, if the destination data is contiguous.
worth of destination data should be specified.

1.2.3 BLT Programming Examples

1.23.1 Pattern Fill 8 A Very Simple BLT

In this example, a rectangular area on the screen is to be filled with a color pattern stored as pattern data
in off-screen memory. The screen has a resolution of 1024x768 and the graphics system has been set to
a color depth of 8 bits per pixel.

On-Screen Destination for Example Pattern Fill BLT

El 1
' D. D) (1021, b) N ———— ‘-\I—~|

200EDN
2DDEEN \

x
-
rd
m
[
P
m

n

131, 12
Lin

/ y el

00800/ Sean
Reclargula ZD0sEn Line

hisa 13 2O0EDn

L= Fell=a Szan Lines 128 Thoawgn 131 .
[r=lmalan . 2DDEEn J
L [—— _—

— (121, 12E)

— 12E, 128 '— 181, 12E "

— —

1

! O

R A B
2RCADn f Scan

ZFCAEN J Lirve

Mote: Drawing is not to scale

N (D0 7&7 (1023, 767) J IFCBEN

Li—— A

(151, 151)

As shown in the figure above, the rectangular area to be filled has its upper left-hand corner at

coordinates (128, 128) and its lower right-hand corner at coordinates (191, 191). These coordinates

define a rectangle covering 64 scan lines, eachscanlineds worth of whi cld inother64 pi xe
words, an array of 64x64 pixels. Presuming that the pixel at coordinates (0, 0) corresponds to the byte at

24 5/29/2012 Doc Ref#:IHD -OS-V1Pt4 7T 0512

Q"_ti'

address 00h in the frame buffer memory, the pixel at (128, 128) corresponds to the byte at address
20080h.

Pattern Data for Example Pattern Fill BLT

) . ~ L0,
FPattem Dats 52 — =

(0, o) —] (7, O % Al 100000k
1000020
100010k
100015h
100020k
D002Sh
100T50h
D0IE5h

LY

(o, T

BETEE-01

(g

As shown in figure above, the pattern data occupies 64 bytes starting at address 100000h. As always, the
pattern data represents an 8x8 array of pixels.

The BLT command packet is used to select the features to be used in this BLT operation, and must be
programmed carefully. The vertical alignment field should be set to 0 to select the top-most horizontal row
of the pattern as the starting row used in drawing the pattern starting with the top-most scan line covered
by the destination. The pattern data is in color with a color depth of 8 bits per pixel, so the dynamic color
enable should be asserted with the dynamic color depth field should be set to 0. Since this BLT operation
does not use per-pixel write-masking (destination transparency mode), this field should be set to 0.
Finally, the raster operation field should be programmed with the 8-bit value of FOh to select the bit-wise
logical operation in which a simple copy of the pattern data to the destination takes place. Selecting this
bit-wise operation in which no source data is used as an input causes the BLT engine to automatically
forego either reading source data from the frame buffer.

The Destination Pitch Register must be programmed with number of bytes in the interval from the start of

one scan | inebds worth of destination data to the next.
horizontal resolution of the display is 1024, the value to be programmed into these bits is 400h, which is

equal to the decimal value of 1024.

Bits [31:3] of the Pattern Address Register must be programmed with the address of the pattern data.

Similarly, bits [31:0] of the Destination Address Register must be programmed with the byte address at
the destination that will be written to first. In this case, the address is 20080h, which corresponds to the
byte representing the pixel at coordinates (128, 128).

This BLT operation does not use the values in the Source Address Register or the Source Expansion
Background or Foreground Color Registers.

The Destination Width and Height Registers (or the Destination X and Y Coordinates) must be

programmed with values that describe to the BLT engine the 64x64 pixel size of the destination location.

The height should be set to carry the value of 40h, indicating that the destination location covers 64 scan

lines. The width should be set to carry the value of 4
destination data occupies 64 bytes. All of this information is written to the ring buffer using the PAT_BLT

(or XY_PAT_BLT) command packet.

Doc Ref#:IHD -OS-V1Pt4 7 0512 5/31/2012 25

Results of Example Pattern Fill BLT

(f.' B, £}

(1023, I

~— 128, 11k — 191, 128
-rl' I-I
5
F Y
Scan Linex 118 Thiawgh 131
¥
"\. LY
N 128, 131 191,19

Mote: Drawing is not to scale

\u D, 7E7)

(1021, ?Em/

200a0h

20022k

200%0h

2009k

20045h

Z00R0h

200REN J_-I

5

i —
L b=
“181, 12E)

(128, 191) -

;t_

Ml 2FCE0h Y

2FCEsh

2FCR0h

2FCAh

2FCah

2FCROh

2FCBEh

.-_"|_|_||‘.-1|_I'I (’5':!""

2FCeh ||.

| in
L 12sm

Line

in
131

_.
=
=_4an

BE&7ES-01

The figure above shows the end result of performing this BLT operation. The 8x8 pattern has been

repeatedly

1.2.3.2

I n this

copi ed

exampl e

(At i | ewthe destinationo

operation, a |

t he

ent i

Drawing Characters Using a Font Stored in System Memory

BLT owercase |

re 64x64

etter

background. The resolution of the display is 1024x768, and the graphics system has been set to a color
depth of 8 bits per pixel.

26

5/29/2012

Doc Ref #: IHD

-0OS-V1Pt4

T 0512

ar ea

ifo

On-Screen Destination for Example Character Drawing BLT

I/I_I.] |:.'-.'._|_|_‘\".

Mokar Drawing is not ©o scale 123,128

Scas Lines 118
Thsaugs 115

20 DAT
Jrl.-\. Lisg)

— 12K, 128
DA BDn v

\ / [—I—I—rl—n—l—‘ o »
[:l:l:l:l:l:l:l:fr

/-113.118 . . 1704k Scan Limg)
L0CBOA

| — 111te Sean Ling)
3 21 BAD

——— 112a0 Szae Line

Diestinaton |'| [TTILI |_1un

1300 Togn Lisme) — 128, 191

—— 1140k Zoan Lea)
] sicepn
S 135, 135 -)

I‘_u‘ TET [LBLD, TET _..-"'I e
The figure above shows the display on which this | ette
entire display has been filled withagray col or. The Il etter AfO0O is to be draw

display with the upper left-hand corner at the coordinates (128, 128).

Source Data in System Memory for Example Character Drawing BLT

Source Data
Fooml D, 0= — Paxe| (¥, D]
L T— S

&3 5756 agay aq 33 3231 223 1515 g7 a

lZI:III:I).l:I}JIII L II:I:I[:I 3313300 F:I:IJ..--I..IZI}.I.‘FJJ.II :Il.'ll):ll. 200003000 1 -CICI}.I.‘P:I]J:I ule

i, n o177 ECTEIN,
Fooaml |, '_—-'II I"— Fizsl [7, .'-'_I
6771-01
The figure above shows both the 8x8 pattern makingupthe | et ter #Af o0 and how it is r
somewher e in the h odsthefastualsagdsessénmystene memoryis not important. The
l etter fAfo is represented in system memory by a block

Eachbytecarr i es t he 8 bits needed to represent the 8 pixels
data. This type of pattern is often used to store character fonts in system memory.

During this BLT operation, the host CPU will read this representation of thelett er fAf 06 from system
and write it to the BLT engine by performing memory writes to the ring buffer as an immediate

monochrome BLT operand following the BLT_TEXT command. The BLT engine will receive this data

through the command stream and use it as the source data for this BLT operation. The BLT engine will be

set to the same color depth as the graphics system & 8 bits per pixel, in this case. Since the source data

in this BLT operation is monochrome, color expansion must be used to convert it to an 8 bpp color depth.

To ensure that the gray backgr ounpxelbvétdnmaskohg willlbe s | et t er |
performed, using the monochrome source data as the pixel mask.

Doc Ref#:IHD -OS-V1Pt4 7 0512 5/31/2012 27

@Eﬁl

The BLT Setup and Text_immediate command packets are used to select the features to be used in this
BLT operation. Only the fields required by these two command packets must be programmed carefully.
The BLT engine ignores all other registers and fields. The source select field in the Text_immediate
command must be set to 1, to indicate that the source data is provided by the host CPU through the
command packet. Finally, the raster operation field should be programmed with the 8-bit value CCh to
select the bit-wise logical operation that simply copies the source data to the destination. Selecting this
bit-wise operation in which no pattern data is used as an input, causes the BLT engine to automatically
forego reading pattern data from the frame buffer.

The Setup Pattern/Source Expansion Foreground Color Register to specify the color with which the letter

Aifo will be drawn. There is no Source address. All scal
controlled by the ClipRect registers from the SETUP_BLT command and the Destination Y1, Y2, X1, and

X2 registers in the TEXT_BLT command. Only the pixels that are within (inclusive comparisons) the clip

rectangle are written to the destination surface.

The Destination Pitch Register must be programmed with a value equal to the number of bytes in the

interval betweenthef i r st bytes of each adjacent scan | ineds wort
depth is 8 bits per pixel and the horizontal resolution of the display is 1024 pixels, the value to be

programmed into these bits is 400h, which is equal to the decimal value of 1024. Since the source data

used in this BLT operation is monochrome, the BLT engine will not use a byte-oriented pitch value for the

source data.

Since the source data is monochrome, color expansion is required to convert it to color with a color depth
of 8 bits per pixel. Since the Setup Pattern/Source Expansion Foreground Color Register is selected to
specify the foreground color of black to be used in dr .
with the value for that color. With the graphics system set for a color depth of 8 bits per pixel, the actual
colors are specified in the RAMDAC palette, and the 8 bits stored in the frame buffer for each pixel
actually specify the index used to select a color from that palette. This example assumes that the color
specified at index 00h in the palette is black, and therefore bits [7:0] of this register should be set to 00h
to select black as the foreground color. The BLT engine ignores bits [31:8] of this register because the
selected color depth is 8 bits per pixel. Even though the color expansion being performed on the source
data normally requires that both the foreground and background colors be specified, the value used to
specify the background color is not important in this example. Per-pixel write-masking is being performed
with the monochrome source data as the pixel mask, which means that none of the pixels in the source
data that will be converted to the background color will ever be written to the destination. Since these
pixels will never be seen, the value programmed into the Pattern/Source Expansion Background Color
Register to specify a background color is not important.

The Destination Width and Height Registers are not used. The Y1, Y2, X1, and X2 are used to describe
to the BLT engine the 8x8 pixel size of the destination location. The Destination Y1 and Y2 address (or
coordinate) registers must be programmed with the starting and ending scan line address (or Y
coordinates) of the destination data. This address is specified as an offset from the start of the frame
buffer of the scan line at the destination that will be written to first. The destination X1 and X2 registers
must be programmed with the starting and ending pixel offsets from the beginning of the scan line.

This BLT operation does not use the values in the Pattern Address Register, the Source Expansion
Background Color Register, or the Source Expansion Foreground Color Register.

28 5/29/2012 Doc Ref#:IHD -OS-V1Pt4 7T 0512

Results of Example Character Drawing BLT

I’/_: L [§4:F-8] :-_‘x'-
Mote: D‘-!'ll'l'h’i!-l‘lb‘!m!ﬂh 128, 128 =
Sege Lisss 128

e ?.L']_{ "f*] -

;‘12.!-.11!- ———

Drestination - 214800

S 135, 133

IIl\‘:.'I.'_ '.:-L.'.'I.'__'/ I

BE772-01

The preceding shows the end result of performing this BLT operation. Only the pixels that form part of the
actual |l etter Afo0 have been drawn into the 8x8 destinaf
within the destination with their original gray color.

1.3 BLT Instruction Overview

This chapter defines the instructions used to control the 2D (BLT) rendering function.

The instructions detailed in this chapter are used across devices. However, slight changes may be
present in some instructions (i.e., for features added or removed), or some instructions may be removed
entirely. Refer to the Device Dependencies chapter for summary information regarding device-specific
behaviors/interfaces/features.

The XY instructions offload the drivers by providing X and Y coordinates and taking care of the access
directions for overlapping BLTs without fields specified by the driver.

Color pixel sizes supported are 8, 16, and 32 bits per pixel (bpp). All pixels are naturally aligned.

1.4 BLT Engine State

Most of the BLT instructions are state-free, which means that all states required to execute the command
is within the instruction. If clipping is not used, then there is no shared state for many of the BLT
instructions. This allows the BLT Engine to be shared by many drivers with minimal synchronization
between the drivers.

Instructions which share state are:

All instructions that are X,Y commands and use the Clipping Rectangle by asserting the Clip
Enable field

All XY_Setup Commands (XY_SETUP_BLT and XY_SETUP_MONO_PATTERN_SL_BLT,
XY_SETUP_CLIP_BLT) load the shared state for the following commands:

XY_PIXEL_BLT (Negative Stride (=Pitch) Not Allowed)

Doc Ref#:IHD -OS-V1Pt4 7 0512 5/31/2012 29

@Eﬁl

XY_SCANLINES_BLT
XY_TEXT_BLT (Negative Stride (=Pitch) Not Allowed)
XY_TEXT_IMMEDIATE_BLT (Negative Stride (=Pitch) Not Allowed)

State registers that are saved & restored in the Logical Context:

BR1+ Setup Control (Solid Pattern Select, Clipping Enable, Mono Source Transparency Mode, Mono Pattern Transparency
Mode, Color Depth[1:0], Raster Operation[7:0], & Destination Pitch[15:0]) + 32bpp Channel Mask[1:0], Mono / Color
Pattern

BRO5 Setup Background Color

BR06 Setup Foreground Color

BRO7 Setup Pattern Base Address

BR09 Setup Destination Base Address

BR20 DWO for a Monochrome Pattern

BR21 DW1 for a Monochrome Pattern

BR24 ClipRectY1ld6X1

BR25 ClipRect Y26X2

1.5 Cacheable Memory Support

The BLT Engine can be used to transfer data betweenc acheabl e (fAsystemdo) memory an
(Amaino, or AUCO) graphics memory wusing the BLT instru
map memory pages as cacheable or UC. Only linear-mapped (not tiled) surfaces can be mapped as

cacheable.

Transfers between cacheable sources and cacheable destinations are not supported. Patterns and
monochrome sources can not be located in cacheable memory.

Cacheable write operands do notsnoopt he processords cache nor update memi
render cache. Cacheable read or write operands are not snooped (nor invalidated) from either internal
cache by external (processor, hublink, éé) accesses.

1.6 Device Cache Coherency: Render & Texture Caches

Software must initiate cache flushes to enforce coherency between the render and texture caches, i.e.,
both the render and texture caches must be flushed before a BLT destination surface can be reused as a
texture source. Color sources and destinations use the render cache, while patterns and monochrome
sources use the texture cache.

1.7 BLT Engine Instructions

The Instruction Target field is used as an opcode by the BLT Engine state machine to qualify the control
bits that are relevant for executing the instruction. The descriptions for each DWord and bit field are
contained in the BLT Engine Instruction Field Definition section. Each DWord field is described as a
register, but none of these registers can be written of read through a memory mapped location i they are
internal state only.

1.7.1 BLT Programming Restrictions

Overlapping Source/Destination BLTs: The following condition must be avoided when programming
the BIt engine: Linear surfaces with a cache line in scan line Y for the source stream overlapping with a
cache line in scan line Y-1 for the dest stream (=> non-aligned surface pitches). The cache coherency

30 5/29/2012 Doc Ref#:IHD -OS-V1Pt4 7T 0512

Q"_ti'

rules combined with the Blitter data consumption rules result in UNDEFINED operation. (Note that this
restriction will likely follow forward to future products due to architectural complexities.) There are two
suggested software workarounds:

In order to perform coherent overlapping Blts, (a) the Source and Destination Base Address registers
must hold the same value (without alignment restriction), and (b) the Source and Destination Pitch
registers (BR11,BR13) must both be a multiple of 64 bytes.

If (a) isnét possible, do overl apping source copy
All reserved fields must be programmed to Os.

When using monosource or text data (bit/byte/word aligned): do not program pixel widths greater than
32,745 pixels.

The other way to do this is driver should always program a dummy 3D
NON-PIPELINE state following the BLT commands.

Immediate Commands: There must be at least 1 command after any immediate blitter commands before
head == tail. This can be a simple MI_NOOP.

1.8 Fill/Move Instructions

These instructions use linear addresses with width and height. BLT clipping is not supported.

1.8.1 COLOR_BLT (Fill)

COLOR_BLT

Length Bias: 2

COLOR_BLT is the simplest BLT operation. It performs a color fill to the destination (with a possible ROP). The only
operand is the destination operand which is written dependent on the raster operation. The solid pattern color is
stored in the pattern background register.

This instruction is optimized to run at the maximum memory write bandwidth.

The typical Raster operation code = FO which performs a copy of the pattern background register to the destination.

DWord Bit Description

0 31:29 Client
Default Value: 02h 2D Processor

BROO Format: Opcode

' 28:22 Instruction Target(Opcode)
Default Value: 40h
Format: Opcode

21:20 32bpp Byte Mask
This field is only used for 32bpp.
Value | Name

Doc Ref#:IHD -OS-V1Pt4 7 0512 5/31/2012 31

BLTs

COLOR_BLT
1xb \Write Alpha Channel
X1b \Write RGB Channel
I 19:5 Reserved
Format: MBZ |
I 5:0 DWord Length |
Default Value: |03h |
1 31:26 Reserved
Format: MBZ |
'BR13 504 Color Depth l
Value Name
00b 8 Bit Color
01b 16 Bit Color(565)
10b 16 Bit Color(1555)
11b 32 Bit Color
' 23:16 Raster Operation
' 15:0 Destination Pitch (Signed)
Destination pitch in bytes (Same as before).
2 31:16 Destination Height (in scan lines)
' 15:0 Destination Byte Width (in bytes)
BR14
3 31:0 Destination Address
IAddress of the first byte to be written.
BRO9
A 31:0 Solid Pattern Color
8 bit = [7:0], 16 bit = [15:0], 32 bit = [31:0]
|BR16 i i

1.8.2 SRC_COPY_BLT (Move)

SRC_COPY BLT

Length Bias: 2

This BLT instruction performs a color source copy where the only operands involved is a color source and
destination of the same bit width.

The source and destination operands may overlap. The command must indicate the horizontal and vertical
directions: either forward or backwards to avoid data corruption. The X direction (horizontal) field applies to both the
destination and source operands. The source and destination pitches (stride) are signed.

DWord Bit Description
0 31:29 Client
Default Value: 02h 2D Processor
BROO Format: Opcode
' 28:22 Instruction Target(Opcode)

32 5/29/2012 Doc Ref#:IHD -OS-V1Pt4 7T 0512

SRC_COPY _BLT

Default Value: 43h

Format: Opcode

21:20 32bpp Byte Mask
This field is only used for 32bpp.

Value Name
1xb \Write Alpha Channel
X1b \Write RGB Channel
19:5 Reserved
Format: MBZ
5:0 DWord Length
Default Value: 04h
1 31 Reserved
Format: MBZ
'BR13 30 X Direction
(1 = written from right to left (decrementing = backwards); 0 = incrementing)
290:26 Reserved
Format: MBZ
25:24 Color Depth
Value Name
00b 8 Bit Color
01b 16 Bit Color(565)
10b 16 Bit Color(1555)
11b 32 Bit Color
23:16 Raster Operation
' 15:0 Destination Pitch (signed)
Destination pitch in bytes (Same as before).
2 31:16 Destination Height (in scan lines)
' 15:0 Destination Byte Width (in bytes)
BR14
3 31:0 Destination Address
IAddress of the first byte to be written.
BRO9
4 31:16 Reserved
Format: MBZ
BR11 15:0 Source Pitch
(double word aligned and signed)
5 31:0 Source Address
IAddress of the first byte to be read.
IBR12
1.9 2D (X,Y)BLT Instructions
Most BLT instructions (pradrdinatespecifications vsilowdr-leve) linears e

addresses. These instructions also support simple 2D clipping against a clip rectangle.

Doc Ref#:IHD -OS-V1Pt4 7 0512 5/31/2012

2D X, Y

@Eﬁl

The top and left Clipping coordinates are inclusive. The bottom and right coordinates are exclusive. The
BLT Engine performs a trivial reject for all CLIP BLT instructions before performing any accesses.

Negative destination and source coordinates are supported. In the case of negative source coordinates,
the destination X1 and Y1 are modified by the absolute value of the negative source coordinate before
the destination clip checking and final drawing coordinates are calculated. The absolute value of the
source negative coordinate is added to the corresponding destination coordinate. The BLT engine
clipping also checks for (DX2 [or = DX1) or (DY2 [or = DY1) after this calculation and if true, then the
BLT is totally rejected.

SRA . Source Pitch N DBA . Drest. Pitch N
(EX=0,E¥ =0} - (BX=0.0v=0p = ~
D{x1v1}
]
S(X1 ¥} =
v 3 Upper 5L n
f —
uk:: Left Piel A
-
E =
=
A
=
e
]
Src. LD | Src. Widith
o ol .
b 4 CXzvi)
Destination Surface
Source Surface

Saarmee Bty ol it ey B Irvesey panl it i for Source Clipping
Sz, TD = D=L, TL [Tap dimcard in 5L
Sz L = LE [L=lL Cimcard in Picals)
Sz Heignl = C=L. Hexgnl in 5L
Sz Wah = D=l Wialh in oo b

Mate: Sic. Filch = nalegqualta CsL Picn

B&TTI-01

DX1, DY1, CX1, and CY1 are inclusive, while DX2, DY2, CX2, and CY2 are exclusive.

Destination pixel address = (Destination Base Address + (Destination Y coordinate * Destination pitch) +
(Destination X coordinate * bytes per pixel)).

Source pixel address = (Source Base Address + (Source Y coordinate * Source pitch) + (Source X
coordinate * bytes per pixel)).

Since there is 1 set of Clip Rectangle registers, the Interrupt Ring BLT commands either MUST NEVER
enable clipping with these command and never use the XY_Pixel_BLT, XY_Scanline_BLT, nor
XY_Text BLT commands or it must use context switching. The Interrupt rings can also use the non-
clipped, linear address commands specified before this section.

The base addresses plus the X and Y coordinates determine if there is an overlap between the source
and destination operands. If the base addresses of the source and destination are the same and the
Source X1 is less than Destination X1, then the BLT Engine performs the accesses in the X-backwards

34 5/29/2012 Doc Ref#:IHD -OS-V1Pt4 7T 0512

Q"_ti'

access pattern. There is no need to look for an actual overlap. If the base addresses are the same and
Source Y1 is less than Destination Y1, then the scan line accesses are performed backwards.

Doc Ref#:IHD -OS-V1Pt4 7 0512 5/31/2012

35

