Intel® Iris® Plus Graphics and UHD Graphics Open
Source

Programmer's Reference Manual

¢t {jhA <:;C ;:ih CHY HI Gij
based on the "Ice Lake" Platform

Volume 9: Render Engine

January 2020, Revision 1.0

Creative Commons Li cense

You are free to Share - to copy, distribute, display, and perform the work under the following
conditions:

1 Attribution. You must attribute the work in the manner specified by the autho r or licensor (but
not in any way that suggests that they endorse you or your use of the work).

1 No Derivative Works. You may not alter, transform, or build upon this work.

Notices and Discla imers

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WNHL® PRODUCTS. NO

LICENSE, EXPRESS OR IMPLIED, BY ESTOPPETHHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS
IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONQIFISNSE

FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATS@EVERITEL DISCLAIMS ANY

EXPRESS OR IMPLIED WARRANTY, RELATINGAI®E AND/OR USE OF INTEL PRODUCTS INCLUDING
LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANODRBI
INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTRELAEEROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result,

directly or indirectly, in personal injury or death. SHOULD YOU PURHASE OR USE INTEL'S PRODUCTS

FOR ANY SUCH MISSION CRITICAL ARPATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS
SUBSIDIARIESUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES
OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAKBESEXPENSES AND REASONABLE
ATTORNEYS' FEES ARISING OUT OF, BDIREY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY,
PERSONAL INJUR OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION,
WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NERSTIBI THE DESIGN, MANUFACTURE,

OR WARNING OF THE INTEL PRODUCR®NY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers
must not rely on the absence or characteristics of any features orinstructions marked "reserved" or
"undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for
conflicts or incompatibilities arising from future changes to them. The information here is subject to
change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which
may cause the product to deviate from published specifications. Current characterized errata are
available on request.

Implementations of the 12C bus/protocol may re quire licenses from various entities, including Philips
Electronics N.V. and North American Philips Corporation.

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.
* Other names and brands may be claimed as the poperty of others.

Copyright © 2020, Intel Corporation. All rights reserved.

ii Doc Ref # IHD-OS-ICLLRVoI 9-1.20

Table of Contents

=T 0o =T = oo 1T PP 1
WOrKIoad SUBMISSION ... e srree e e 1
Context SUDMISSION OVEIVIEWuuviieiiriieeeitieee e ettt e e sttt e e e sreeeessstbeeeessabeeeeesarseeessanneeeesann 1.
Render-3D-GPGPU COmMMANd SITEAMET..........cueiiireieriieerrere e et sree e e sree e nnneas 3.
Render Engine Command Streamer (RCS).....ccoiuviiiiiiiiiieiiieee et 3.
Position Only Shader Command Streamer (POCS)........cccoccveeeeeii v eeevveeeeeee 6
SOfWAIE INLEITACE. ... et 20
L T TSI = = 33.
Memory ACCESS INAITECHIONuei e 33.
(070 a1 (=) ([4= 1o PP PPPPPPPPPP 34
3D PIPEIINE STAQES.....evviieiiiiiieiiiiitieierere e 59
3D PIPEliNE-LEVEI STALE.........eiiiiiiiiiiei ittt e e st sbn e ane 60.
e T o L= [T oI =T o 0= 1 Y/ 6l
2] (oTot QB I T=To | =1 o O PP PUP PP OPPPRY 61
POSH PiPEIINE OVEIVIEW. ...ttt ettt e et e e s 62..
General Programmng of Thread-Generating Stages (VS, HS, DS, GS)....................... 63.
3D PriMItiVES OVEIVIEW.eeiiiiitiiieeiitiee e ettt ettt s st sb e e e it e e e e sbae e e s aebe e e e eeeee 85...
Thread RequeSt GENEIAtiON.............coiviiiiiiiiieieeeieeeeeeeeeeeeeeeveeeeeeeeaseeeersrerere e reraraanaananane 92.
VErtEX DAt@ OVEIVIEW........veiiiiiiiiie ettt ettt ettt ettt e ettt e e s st ar e e e sabbeeeessabeeeeeane 98.
VerteX FEICh (V) StAge.......oovviiiiiiiiiiiieiiiieie e 103
VerteX Shader (VS) STAgE......uuuuiuiiiiiiiiiiiii s rrr s s s e s e a e s e e e e e e e e e e e aaaaaaaaaas 117
HUIl Shader (HS) StAgE.oueiiieiiiee ettt 122
Tessellation Engine (TE) Stage.......cooooiviieei e, 134
Domain Shader (DS) StAgE........cuueiiiiiiiiiiiiee ettt e e abree e e s sbbeeee e 139
Geometry Shader (GS) STAgE. .. ccui ittt ettt e e e e e e 147
Stream OUutput LOGIC (SOL) Stage......uuuiiiiiiiiieiiiiee ettt e neneeee s 164
3D Pipeling RASLEIZALION.cciiiiiiiiiiiii et e e e e eas 172
Common RASIENZAtION STALE..........uviiiiiiiie e 172
3D Pipeline 8 CLIP Stage OVEIVIEW.......ocuuviieiiiiiee e iiieeeeaiieee e siteee e e steeeeessnbeeeessnaeee e e 172
3D Pipeline - Strips and Fans (SF) Stage.......c.uuuuiiiiiiiiiiiieee et 184
L@ 1T ST =1 (1 o 197

Doc Ref # IHD-OS- ICLLRVoI 9-1.20

Qn_t5|

Attribute INterpolation SELUPccceviiiiiiie e 218
DEPIN OFFSEL ...eeiiiiiiiie it e et e s e s e e s ar e e e aaeee 221
Other SF FUNCHONS.....oiiiieiiie e 221
WiINAOWET (WIM) STAQE .. uuviiiiieeee e iiiiieiee et e e e s s s e e e e e s e st e e e e e e e s s st areeeeeaeeessnnnnnenees 221
PIXEL e e e e e e e anes 245
L DG o F= 1= 11T SR 246
Coarse PiXel SNAING.......coiiiiiiiii e 248.
Early Depth/StencCil ProCESSING.......cccciiiiiiiiiie i e e e e e e s rreer e e e e e e s e st e e e e e e e e e e nans 250
Pixel Shader Thread GENEration.............cueiiiiiiiiii i 259
PiIXEI BACKENA.cciiiiiiiiiiiiiie ettt e e e e s 289
GPGPU Compute PIPeliNe.......cooi ittt e e nr e e nas 302
General Purpose Compute MOEL..........cooiiiiiiiiiiiiee e 302
GPGPU Context in GPU HaIGWAIE...........coiiriiiiiiiieeeeiiiieee e steeee s e sneeee e 305
GPGPU PIPE OVEIVIEW......uttiiie ittt eittee ettt ettt e sttt e e sibe e e e sttt e e sasnseaesaneneeeesnnneee s 306
Programming the GPGPU PIPeliNe.............uuuiiiiiiiiiiieieiiiiiiiiin s 306
B I 1= T I I =T o Yo = 307
COMMANT SEQUENCE.cee ittt ettt ettt ettt e e e bbb e e e e st e e e e sbee e e s sbbeeeeanenas 3009.
GPGPU PipeliNg NOES......uuuiiiiiiiiiiiiiiiieiiti s s s s s s s s e s e s e s e s e s e e e e e s aaaaaaaaaaaaaeas 311
CURBE/Indirect Payload DiSPatCh............ccuiiiiiiiiiiiiiiiee e 311
Media GPGPU Payload LimitationS............uuuriiiiiiiiisieees s sesseen e e e e e e e e e e aaa e 312
Media State MOEIouiiiiiiie et 313
Commands fOr GPGPU PIPE........oiiiiiiiieii ittt e e e e 314
MEDIA _VEFE_STATE. ... e e e e e e e e e e e e e e e e aeaeaaeans 314
MEDIA _STATE _FLUSH.ottt en e e e n e e e e e e e e e e aaaaaaeeas 315
MEDIA_CURBE_LOAD.......uuutiitiiiiiiiii s e s e e e e e s e e e e aaeaaaaeeeas 315
MEDIA_INTERFACE_DESCRIPTOR_LQAD........cuitiiiiiitieiiueeeeeeienennennneernrannneennnennnnnnns 316
MEDIA _OBJIECT. ...ttt e e e e a e e eas 316
MEDIA_OBJIECT _GRPUD......outuiiiiirirree s inan s e e e e s e e e e e e e e e e e e e e aaaaaaaaaaaaeaeaeaeees 316
MEDIA_OBJECT _WALKER......cco oottt 317
GPGPU_WALKER ..ottt 318
Synchronization of the Media-GPGPU Pipeline...........cccoviiiiiiiiiiee e 318
Supporting Commands for MEDIA-GPGPU Pipe........cc.cueiiiiiiiiiiieeeeeeeiieeeeeeenn 319
Thread SPAWNET (TS).. . ittt s e et e e e e ber e e s st e e s e nbeeeeennres 319

Doc Ref # IHD-OS-ICLLRVoI 9-1.20

Memory Resources for TAreads.........ccuuvvvviei i 320
GPGPU WaIKEL........eeeeeeeeee ettt ettt e e e e s st e e e e e e e e e s nnbaaaeeeeens 321
Parameterized Media WaIKET............oooviiiiiiieeee e 326
QI L= T= Lo I T = Lo o OSSR 336
Thread DiSPatCh FOIMAL...........eiiiiiiiiii et e e e e e 336
INTERFACE_DESCRIPTOR_DATA . ..o a e e e 337
RO HEAAETS. ...ttt ettt e e e b e e e et e e e e e srre e e e enees 338
Thread Tracking and SYNChroNiZatioN...........ccuuviiiree e 342
Thread Synchronization MONITOIS..........uviiiiiiiiie e 342
Barriers and Shared LOCal MEMOIY.........cooiiiiiiiiiiiiie et 343
Media-GPGPU Thread EOT MESSAQE........cceeeeeee e 344
Context Switch for GPGPU ad Medi@coooiiiiiiiiiiiiee e 345
3D aNd GPGPU PrOQraMS.......cceviiiiiiiieieeeeeeeeeeeeseresseseerersrsrerernnernrnrr.—.————————————————————. 346.
BU OVEIVIEW.....tiiiee ittt ettt e e e st e e e e st bt e e e sabb e e e e sbneeeeennbeeee s e 347
Primary Usage MOGEIS............oooiiiiiiiiiiieeieeeeeee et nnnas 348

(1Y LS EST= Vo [T PP PPPPPPPTP 352
Registers and RegSter REGIONS.......coiuiiiiiiiiiiie ittt snnee s 357
SIMD EXECULION CONEIOL.....iviieeiiiiiie ettt 410
ENd Of Thr@ad........coiiiiiiiiiiii e A3
Assigning Conditional Flags.........coooooiiiii i 413
DeStiNation HAZAI.........uuiiiiiiiii et 416
NON-PreSENT OPEIANGASeiiiiiiiie ettt e et e e e sbr e e e s sbreeeessabeeeeees Al7
INSTIUCHION PrefetCh.....cii e 417
ISA INFOAUCTION ...ttt e s snnneeesnnnneee e D17
Shared FUNCHIONS........oiiiiiiiiee e b e e s 573
BiNAING TabBIE......ooii et 573
Fused Send Message HanaliNg. ...t 575
3D SAMPIET ...ttt h e e e e e e et ee e s aanreee e 575

[0 F = I o S 655
PiIXEI DA POF.......veiieeiiiiee ettt e e et e s e e e e nree e e e 134
Shared Functions Pixel INterpolater...........cueviiiiiiiiie e 759
MESSAGE GAIEBWAY........ceeieiiiiieii ettt ettt ettt ettt ettt et et aeeeeeesesebebebebebebabnbnrnna 781
Lo L= IS T= T o] o] 1= RSP 786

Doc Ref # IHD-OS- ICLLRVoI 9-1.20

Vi

Doc Ref # IHD-OS-ICLLRVoI 9-1.20

Qn_t5|

Render Engine

The Render Enginesupports command streams used both for 3D and Compute (GPGPU) workloals.
These command streans fetch the data, and dispatch individual work items to many threads that operate
in parallel. The threads run small software programs (also called kernels or shalers) on the GPU
processors (@lled Executbn Units).

The command streamers control the programmable pipelines in the Render Engine so that the individual
programs run in parallel but are synchronized to start only when t heir required data is available, ard
complete when all the work is done.

Eachpipeline in the Render Engine shares common state with all the threads running in the pipeline. The
command streamer manages that state.

Workload Submission

This section describes work submission to the Rendering engine which can run 3D, Compute and
Programmable Media workloads

Context Submission Overview

Work into the Render/GPGPU engine is fed using the Render Command Streamer.

The Render engine runs in one of the following mod es (that is specified using the PIFE_SELECT
command):

1 3D
1 Media/GPGPU

When Software submits multiple elements(contexts) into the execution list, the hardware executes the
elements serially.

Doc Ref # IHD-OS- ICLLRVoI 9-1.20 1

Host
Interrupts
Workload Block
Submission A
Execution list Interrupts

POSH
Command
Streamer

N slices

Doc Ref # IHD-OS-ICLLRVoI 9-1.20

Render-3D-GPGPU Command Streamer

This section describes the inflastructure provided by the Command Streamer of the Render engine which
supports 3D, Compute and Programmable Media.

Render Engine Command Streamer (RCS)

The RCS (Render Command Streamer) unit primarily serves as the softwarerpgramming interface
between the O/S driver and the Render Engine.lt is responsible for fetching, decoding, and dispatching
of data packets (3D/Media Commands with the header DWord removed) to the front-end interface
module of Render Engine.

Logic Functio ns Included

MMIO register pro gramming interface.

DMA action for fetching of ring data fr om memory.

Management of the Head pointer for t he Ring Buffer.

Decode of ring data and sending it to the appropriate destination: 3D (Vertex Fetch Unit) & GPGPU.
Handling of user interrupts.

Flushing the 3D and GPGPU Engine.

Handle NOP.

=A =4 =4 -4 -4 -4 -4

DMA action for fe tching of execlists from memory.
9 Handling of rin g context switch interrupt.

The register programming bus is a DWord interface bus that is driven by the configuration master. The
RCS unit only clains memory mapped I/O cycles that are targeted to its range of 0x2000 to Ox27FF.The
Gx and MFX Engines usesemaphore to synchronize their operations.

RCS operates completely independent of the MFx CS.

The simple sequence of events is as follows: a ring (safRBO) is programmed by a memorymapped
register write cycle. The DMAinside RGCS is kicked off. The DMA féches commands from memory based
on the starting address and head pointer. The DMA requests cache lines from memory (one cacheline CL
at a time). There is guaranteed space in the DMA FIP (8 CL deep) for data coming back from memory.
The DMA control logic has copies of the head pointer and the tail pointer. The DMA increments the head
pointer after making requests for ring commands. Once the DMA copy of the head pointer becomes
equal to the tail pointer, the DMA stops requesting.

The parser starts executingonce the DMA FIFO has validcommands. All the commands have a header
DWord packet. Based on the encoding in the header packet, the command may be tamgeted towards
Vertex Fetch Unit or GPPGU engine or the canmand parser. After execution of every command, the
actual head pointer is updated. The ring is considered empty when the head pointer becomes equal to
the tail pointer.

Doc Ref # IHD-OS- ICLLRVoI 9-1.20 3

Qn_t5|

Batch Buffer Privilege Regist er
FORCE_TO_NONPRAFORCE_TO_ NON®V

Mode Regis ters

The following are the Mo de Registers:

Register

INSTPM - Instruction Parser Mode Register

EXCG Execute Condition Code Register

NOPID- NOP Identification Register

CSPREEMPT CSPREEMPT

IDLEDLY - Idle Switch Delay

SEMA_WAIT_POLL Semaphore Poll ing Interval on Wait

HWS_PGA Hardware Status Page Address Register

Hardware Status Page Layout

Logical Context Support

The following are the Logical Context Support Registers:

Register

BB_ADDR- Batch Buffer Head Poin ter Register

BB_ALDR_UDW- Batch Buffer Upper Head Pointer Re gister

CXT_SIZE Context Sizes

CXT_EL_OFFSETEXec-List Context Offset

SYNC_FLIP_STATUSNait For Event and Display Flip Flags Register

SYNC_FLIP_STATUS- Wait For Event and Display Flip Flags Register 1

SYNC_FLIP_STATUS- ®Vait For Event and Di splay Flip Flags Register 2

WAIT_FOR_RC6_EXITControl Register for Power Management

SBB_ADDR Second Level Batch Buffer Head Pointer Register

SBB_ADDR_UDW Secord Level Batch Buffer Upper Head Pointer Regis ter

SBB_STATE Second Level Batch Buffer State Register

PS _INVOCATON_COUNT_SLICE®S Invocation Count for Slice0

PS_INVOCATION_COUNT_SLICHAS Invocation Count for Slicel

PS INVOCATION_COUNT ISE2- PS Invocation Count for Slice2

PS DEPTH_COUNBLICEG PS Depth Count for Slice0

PS DERH_COUNT_SLICEIPS DepthCount for Slicel

PS_DEPTH_COUNT_SLICERS Depth Count for Slice2

DISPLAY_MESSAGE_FORWARD_STATWO&splay Message Forward Status Register

R_PWR_CK_STATE- Render Power Clock State Register

Doc Ref # IHD-OS-ICLLRVoI 9-1.20

Context Save Registers

The following are the Context Save Reisters:

Register

BB_PREEMPT_ADDRBatch Buffer Head Pointer Preemption Register

BB_PREEMPT_ADDR_UDWBatch Buffer Upper Head Pointer Preemption R egister

RING_BUFFER_HEAD_PREEMPT GRIRING_BUFFER_HEAD PREEMPT_REG

BB_STARTADDR - Batch Buffer Start H ead Pointer Register

BB_START_ADDR_UDWBatch Buffer Start Upper Head Pointer Register

BB_ADDR_DIFF Batch Address Difference Register

BB_OFFSET Batch Offset Register

SBB_PREEMPTADDR- Second Level Batch Buffer Head Pointer Preemption Register

SBB_PREEMPT_ADDR_UDWSecond Level Batch Buffer Upper Head Pointer Preemption Register

BB_PER_CTX_ PTRBatch Buffer Per Context Pointer

MI Commands for Render Engine

Thischapterdesci bes t he f or mats of canmandspirMdlading brigf ddsanidtiens df a c e 6
their use. The functions performed by these commands are discussed fully in theMemory Interface
Fundions Device Programming Environment chapter.

This chapter describes MI Commands for the original graphics processi ng engi nhe. The ter |
Rendering Engined in the title has been addedgto di
the MI commands for the Media Decode Engine.

The commands detailed in this chapter are used across product families. Howeve, slight changes may be
present in some commands (i.e., for features added or removed), or some commands may be removed
entirely. Refer to the Prefacechapter for product specific summary.

Commands

MI_NOOP

MI_ARB_CHECK

MI_ARB_ON_OFF

MI_BATCH_BUFFER_®RT

MI_BATCH_BUFFER_END

MI_CONDITIONAL_BATCH_BUFFER_END

MI_DISPLAY_FLIP

MI_LOAD_SCAN_LINES_EXCL

MI_LOAD_SAN_LINES_INCL

MI_CLFLUSH

MI_MATH

MI_REPORT_HEAD

MI_STORE_DATAMM

Doc Ref # IHD-OS- ICLLRVoI 9-1.20 5

Commands

MI_ATOMIC

MI_COPY_MEM_MEM

MI_LOAD_REGISTER_REG

MI_LOAD_REGISTER_MEM

MI_STORE_REGISTER_MEM

MI_SU®LEND_FLUSH

MI_USER_INTERRUPT

MI_WAIT_FOR_EVHT

MI_SEMAPHORE_SIGNAL

MI_SEMAPHORE_WAIT

MI_FORCE_WAKEUP

Watchdog Timer Registers

These registers tayether implement a watchdog timer. W riting ones to the control register enables the
counter, and writing zeros disables the counter. The secondregister is programmed with a threshold
value which, when reached, signals an interrupt that then resets the counter to 0. Program the threshold
value before enabling the counter or extremely frequent interrupts may re sult.

Note: The counter itself is not observable. k increments with the main render clock.

Programming Notes: When watch dog timer is enabled, HW does not trigger any kind of idle
sequences. SW must enable and disable watch dogtimer for any given workloa d within the same
command buffer dispatch. SW mustdisable watch dog timer around semaphore waits and wait for
events commands so that HW can trigger appropriate idle sequence for power savings.

Position Only Shader Command Strea mer (POCS)

Position only shader (POSH) is a new geometry pipelire that has the optional ability to execute the
position only vertex shaders and perform the visibility test on these vertices before the actual verex
shader is executed. POSH pipe can run abad of the original geometry pipe by executing position only
vertex shaders ard doing visibility test on these vertices and recording this information. Geometr y pipe
when processing the vertices will use this visbility information outputted by POSH pipe t o skip the vertex
fetch and shading for vertices that are already marked as culed.

POSH pipe has its own command streamer called Position only command streame (POCS). A contek
running on render pipe can exercise POSH capabilities through Render CommandStreamer (RCS). RCS
manages the POSH pipe through POCS for POSH eabled contexts. Render command streamer loads the
context to execute on POCS when a POSH ende context execution begins in render pipe, similarly
preempts context executing in POCS when thePOSH enabled context switdes out of render pipe. Once
POCS isdaded with context it starts executing the ring buffer similar to RCS, refer Programming Model
section for more details.

6 Doc Ref # IHD-OS-ICLLRVoI 9-1.20

Position Only Command Strea mer (POCS)

The POCS (Position Only Shade€ommand Streamer) unit primarily serves as the programming interface
between the render command streamer and the POSH pipe. It is responsible for fetching, decoding, and
dispatching of data packets (3D Commands with the header DWord removed) for the POSH pipe.

Logic Functions Includ ed

1 MMIO register programming interface.

1 DMA action for fetching of ring buffer and batch buffer data from memory.

f Management of the Head pointer for th e Ring Buffer.

1 Decode and execution of command programmed in ring buffer and b atch buffers.
1 Flushing the POSH pipe.

Handle NOOP.

The register programming bus is a DWord interface bus that is driven by the configuration master. The
POCS unit only claims menory mapped I/O cycles that are targeted to its range of 0x1_8000 to Ox1_9FFF.
The POCS and RCS use semaphe to synchronize their operations.

POSH Programming Model

The POSH + Render pipeline will appear as a monolithic engine from SW perspective. Rende€ommand
Streamer (RCS) is hardwarerbnt end interface to the SW for the modif ied Render + POSH pipeline.SW
will use a single context (and associated LRCA) to submit work to the modified Render + POSH pipeline
through its associated ring buffer.

Context submission model should be visualized as context submitted to RCS. RCS will setip the context
definition in HW and trigg ers POSHpipe to execute the same context, resulting in execution of the same
ring buffer by render pipe and POSH pipe in parallel. POSHpipe has its own command streamer called
POCS (POSH Command Streamergimilarly, when the context is switched out on th e render pipe due to
whatever reasons (Wait For Event, Semaphore Wait or Preemption due to pending execlist), RCS will
ensure POSH pipeis preempted and its corresponding logic state is saved through POCS.

POCS aml RCS get to see the same ing buffer, however the execution of the same ring buffer by POCS
and RCS are asynchronous to each other and its SW responsibility to ensure POCS andFs are
synchronized through semaphores as and when required. SW will provide hdependent command buffers
(batch buffers) to be executed by RCS and POCS. Marking of batch buffers for POCS and RCS and
execution of ring buffer are detailed in the latter subse ctions.

This model of execution hasthe following implications:

1 POCS and RCS dve to run on the same context definition. RCS setsup context with GAM and
POCS runs within this address space.

Doc Ref # IHD-OS- ICLLRVoI 9-1.20 7

1 Even though the currently running context may not be utilizing th e POSH pipe, a waiting context
with POSH enabled has to wait for the current mntext to be evicted. (waiting context cannot take
advantage of the idle POSH pipe ahead of getting scheduled on the render engine)

POSH Enabled Context

A context submitted to r ender engine exercising POSH functiomal i ty is called O0OPOSH
Application (UMD) decides if a context is POSH Enablel at the time of context creation. A context is
indicated as POSH enabled to HW by s etister of RCSORNOS H
allocates additional separate memory space (POSH LRCA) for #n POSH Enabled contexts. PSH pipe

uses the POSH LR@® for its context state management.

Context Submission and LRCA for POSH

SW will continue to submit POSH enabled contexts to ELSP in RCS. There is no change ime& pending
execlist submission or context switch status report mechanism to/from RCS.

Listed below are the SW changes required for submission of the POSH enabled context:

T 6POSH Enabled6 bit i n CTutXoirtliRate®D3IH ewmabled RoDtBXt tonkdVg.t b e s
Refer POSH functionality control sedion for the bit definition and programming .

1 POSH LRCAs provided to RCS through register programming in the ring context of RCS. Refer
RCS ring context details below.

9 POSH LRCAormat is similar to that of RCS, ie PPHWSP followed by ring context followed by the
engine context. However POSH ringcontext will only have the ring buffer and batch buffer details.
POSH ring context will not have the page directory pointers details asthe PPGTT is setup by RCS.

1 SW doesnot control POCS context ID independently. The context ID for POCS wil be supplied
from RCS, andthus will be the same.

1 SW must update the ring context of POSH with ring buffer details on the very first submission and
whenever the ring buffer start address, control and head pointer details are updated. POSH pipe

(POCS) wilsample the tail pointer from RCS. Note that the POCS and RCS share the same ring
buffer.

8 Doc Ref # IHD-OS-ICLLRVoI 9-1.20

Qn_t5|

RCS Ring Context

The table below highlights the POSH LRCAdetails in RCS ring context. Ring ontext listed below is for
illustratonof t he change, e0 Reoqitxtermled LdgitabCto Rt ext Datadé shoul d
the final format for implementation.

Description Unit # of DW

NOOP CSEL 1
MI_LOAD_FEGISTER_IMM CSEL 1

CSEL 2
Ring Buffer Head CSEL 2
Ring Tail Pointer Regiser CSEL 2
RING_BUFFER_STAR CSEL 2
RING_RJIFFER_CONTROL CSEL 2
Batch Buffer Current Head Register (UDW) CSEL 2
Batch Buffer Current Head Register CSEL 2
Batch Buffer State Register CSEL 2
SECOND_BB_ADDR_UDW CEL 2
SECOND_BB_ADDR CSEL 2
SECOND_BB_ST& CSEL 2
BB_PER_CTX PTR CSEL 2
RCS_INDIECT_CTX CSEL 2
RCS_INDIRECT_CTX_OFFSET CSEL 2
NOOP CSEL 2
NOOP CSEL 1
MI_LOAD_REGISTER_IMM CSEL il
CTX_TIMESTAMP CSEL 2
PDP3_UDW CSEL 2
PDP3_LDW CSEL 2
PDP2_UDW CSE 2
PDP2_LDW CSEL 2
PDP1_UDW CSEL 2
PDPL_LDW CSEL 2
PDPO_UDW CSEL 2
PDPO_LDW CSE 2
MI_LOAD REGISTER_IMM CSEL 1
POSH_LRCA CSEL 2
NOOP CSEL 9

Doc Ref # IHD-OS- ICLLRVoI 9-1.20 9

Qn_t5|

Description Unit # of DW
NOOP CSEL 1
MI_LOAD_REGISTER_IMM CSEL 1
R_PWR_CLK_ STATE CSEL 2
GPGRJ_CSR_BASE_ADDRESS CSEL 3
NOOP CSEL 9

POCS Ring Context

Table below details the POSH ring context. Rirg context listed below is for illustration of the change,

ORegister State Contextdé in ORender Logi enatffor Cont e xt
implementation.

Description Unit | # of DW
NOOP CSEL 1
MI_LOAD_REGISTE _IMM CSEL 1
Ring Buffer Head CSEL 2
Ring Tail Pointer Register CSEL 2
RING_BUFFER_START CSEL 2
RING_BUFFER_CONTROL CSEL 2
Batch Buffer Current Head Register (UDW) CSEL 2
Batch Buffer Current Head Register CEL 2
Batch Buffer State Register CSEL 2
SECOND_B_ADDR_UDW CEL 2
SECOND_BB_ADDR CSEL 2
SECOND_BB_STATE CSEL 2
BB_PER_CTX_PTR CSEL 2
RCS_INDIRECT_C®ways Invalid) CSEL 2

10 Doc Ref # IHD-OS-ICLLRVoI 9-1.20

Description Unit | # of DW
RCS_INDIRECT_CTX_OFFSET CSEL 2
NOOP CSE 2
NOOP CSEL 48

POSH Command Tran sport

The following subtopics de scribe the command transport mechanism from SW to POCS.

"POSH Start" Batch Buffers

Batch buffers dedicated to be executed by POSH pipe
the MI_BATCH_BUFFER_START commandhdéer . Once 0P OSHbat® bufferalldhei s set i
following ch ained batch buffers and next level batch bufferswi | I i mpl i ci tly i nherit
value. Once OPOSH St ar t lbefollosvingscenimandsequencesaretmhe buf f er a
executed by POCS until the orresponding batch buffer sequencing is terminated through
MI_BATCH_BUFFER_END/MI_REDITIONAL_BATCH_BUFFER_END command.

Example:

T Once OPOSH Starto i s enc o dfer byeHWwWeitdvill genhreset offlyiwhenthe | e v e
first level batch buffer execution is terminated through batc h buffer end and the command
execution sequence goes back to the ring buffer,

9 Similarly, once6 POSH Startdé i s encount er ercdy W it will gsteesed nd |
only when the second level batch buffer execution is terminated through batch buffer end and the
command execution sequence goes back to the first level buffer,

I Similartly,once when O0POSH Starté is tmwieubyH&, rritevdl get n a
reset only when the third level batch b uffer execution is terminated throug h batch buffer end and
the command execution sequence goes back to the second level batch buffer.

Command sequences execut ed hluffeonay ledd & chaiRed Bakth [Buffeesrot 6 b ¢
next level batch buffers. Batchbuffers executed by POCS mg have Ml Commands, 3DSATE commands

and 3DPRIMTIVE commands for POSH pipe, however these wilbe a subset of the commands that are
supported by render pipe. RCS on parsing MI_BATCH_ BUFFEB TART command with 0
enabled NOOPSthe command and moves on the following command.

MI Commands Supported by POCS

POCS supports all the Ml commands syported by RCS except for the below exceptions.

POCSdoesit support bel ow c ¢onotrpegranghera asgartdf\the OSH conmand
sequence.

Doc Ref # IHD-OS- ICLLRVoI 9-1.20 11

Qn_t5|

Commands not supported in POSH executed command buffers:

Column Titlel

MI_DISPLAY_FLIP

MI_LOAD_SCANLINES_INCL/EXCL

MI_WAIT_FOR_EVENT

MI_USER_INTERRUPT

MI_REP®T_PERF_COUNT

MI_SET_CONTEXT

MI_ARB_ON OFF

3D State Commands Supported by P OCS

The table below lists the 3ADSTATECommands Supported by POSH Pipe. State commands programmed
for POSH which are not listed in the table below will be gracefully discarded (NOOP&6d) by POCS.

3D State Commands

3DSTATE_VF

3DSTATE_INDEX_BUFFER
3DSTATE_VEFEX_BUFFER
3DSTATE_VERTEXEMENTS
3DSTATE_VF_COMPONENT_PACKING
3DSTATE_VF_INSTANCING
3DSTATE_VF_SGVS
3DSTATE_VF_TOPOLOGY
3DSTATE_VF_STATISTICS

3DPRIMTIVE

3DSTATE_VS
3DSTATE_PUSHCONSTANT_ALLOC_VS
3DSTATE_CONSTANVS
3DSTATE_BINDING_TABLE_POOL_ALLOC
3DSTAE_BINDING_TAEE_POINTERS_VS
3DSTATE_SAMPLER_STATE_POINTERS_VS
3DSTATE_URB_VS

3DSTATE_CLIP

3DSTATE_SFFE
3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP
3DSTATE_SCISSOR_STATE_POINTERS
3DSTATE_MULTISAMPLE
3DSTATE_RASTER

=A =4 =4 -4

12 Doc Ref # IHD-OS-ICLLRVoI 9-1.20

3D State Commands

3DSTATE DRAWING_RECTANGLE
3DSTATE_INT

PIPECONTRL Command
3DSTATE_SBE (fé?ID computation)

=A =4 =4 =4

=

3DSTATE_SAMPLE_PATTERN

3DSTATE_PTBR_PAGE_POOL_BASE_ADDRESS
3DSTATE_PTBR_FREE_LIST_BASE_ADDRESS
3DSTATE_PTBR_RENDER_LIST BASE_ABDRES
3DSTATE_PTBR_TILE_PASS_INFO

=A =4 =4 =4

Commo n Non -Pipeline Sate Commands

1 STATE_BASEDDRES

"POSH Enable" Batch Buffers

POCS parses/traverses (doesnd6t execute) the ring bu
OPOSH Starto field istheMl _BATEKW BUFFERTARD tommanfisia birt @ POCS

to traverse (parse, don Gexecute) the batch buffertolook f or O0POSH Startdé batch buf
field is only inherited to the chained atdhbuffersouf f er
unl i kH oSPt@ird .6 dPOSH Enabl e ¢ydetiinghe MI_BATGHt BUBRE SEARD | i ci t |
command which calls the next | evel batch buffers in
Startoé batch buffeHsEnBRBLCE 6 e bmeaxacudtimg®dlu BATEHS BUFFER_END or

on MI_CONDITIONAL_BTCH_BUFFER_END meeting thequiredc ondi t i on. OPOSH St art
precedence over the O0OPOSH Enabled6 field in POCS.

Example:

T Once OPOSH Enabl ed i sveldaah buffer, P@GSeidtravense thee wHole of the | e
first level batch buffers (including chained first level) to ¢ hec k for 0OPOSH St ¢
MI_BATCH_BUFFER_START command. POCS by default will not traverse the second level batch
buffers. SW must expl ci t 'y set Hlhed aPtieietbn&flevel batch buffer called
from first level batch buffer if the second level batch buffer have to be traversed by POCS.

T Similarly, Once OPOSH Enabl edé6 i s encourraverse¢hd i n
whole of the second lewel batch buffers (including chained secondlev el) t o c¢ h eStka rftod
field in MI_BATCH_BUFFER_START command. POCS by default will not traverse the third level batch
buffers. SW must explidciftileyl ds eftovekbhteh rdfét CaBed frdEnlaeb | €
second level batch buffer if the third level batch b uffer have to be traversed by POCS.

T Similarly, Once OPOSH Enabledé6 is encountered in
whole of the third level batch buffers (includingchai ned second | evel) rtd ch
field in MI_BATCH_BUFFE_START aonmand.

Doc Ref # IHD-OS- ICLLRVoI 9-1.20 13

RCS ignores OPOSH Enable6o field and has no implicat
MI_BATCH_BUFFER_START command.

POSH Ring Buffer

POCS and RG share thesame ring buffer. POCS parses the ring bufler to look for batch buffe rs start
commands with OPOSH Enabledéd or OPOSH Startoé fields
programmed in the ring buffer. POCS and RCS executinghe same ring buffer results in two different
command sequencePBPOSHaStar tod amae ddP A&l & barious batch

buffers.

POSH Preemption

Once the context is loaded to POCS, only wayit can be switched out is through explicit preemption from

RCS, POCS doesnot swi t ch o uisuceessfulMainfar Everits oroSmapblonec ou nt e
Wait or running out of comma nds on head equal to tail pointer. RCS onswitching out the context e ither

due to synchronous context switch or preemption, it also preempts POCS if the context is POSH enabled.

POCS receives preemption from RCS and trigers the preemption flow for POSH ppe. POSH pipe

supports 3D object level preemption. Preemption from RCS can happen when POCS is in one of the

below states:

9 POCSFE has executed the context and have Head Equals Tail.

9 POCSFE is busy executing commands.

POCS and RCS Synchronization

Once POCSs triggered, it executes parallel to RCSit onl y st o ptesh oft)dvbes & mur& out of w
command (head equals to tail) or on encountering unsuccessful semaphore wait. Command sequence
execution of POCS is compétely asynchronous to RCS command sequence execution. SW is esponsible
to explicitly synchronize POCS ad RCS command sequence execution whenever required based on the
various produce consume model using MI_SEMAPHORE_WAIT command.

GPGPU/Media

POSH pipe isdedicated for 3D workloads and doesn 6t s u p p o r df GR&SRWE ar Madia watkloads.

SW must ensure POSI pipe is flushed and stalled while render pipe is executing GPGPU or Media

workloads for POSH enabled contexts. This must be achieved usig explicit MI_SEMAPHORE_WAIT

commands. This is recessary to ensure theExecution Units only sees either 3D workloadsor

GPGPU/ Medi a wor kl oads, current architecture doesnbot
concurrently.

HW Binding Table with RS Disabled

RCS sets up the HW Binding Table functonality when SDSTATE_BTP_POOL_ALLOC isgrammed with
RS disabled.POSH pipe uses the mode set by RCS. SW will explicitly synchronize POCS and RCS to

14 Doc Ref # IHD-OS-ICLLRVoI 9-1.20

ensure they always work in the same mode of operation wither HW BTP Enabled or Disabled. Note that

both POCS and RCS will matain their own copie s of 3DSTATE_BTP_POOL_ALLOC

Protection -On/Off Mode

RenderCS controlls the Protection On/Off mode at all times for both POSH and Render pipes.

Protection-on/off mode set by Rend erCS applies to memory clients form both render pipe and POSH
pipe. based on the protection on signal from RCS. SW must explicitly ensure both POSH and Render
pipes are synchronized around Protection and ProtectionOff zones during the command sequencing.

POSH MMIO

POSH pipe implements its own set of MMIO registers similar to render pipe, however POSH pipe

implements the registers relevant to the functionality supported in POSH pipeline. Listed below are the

only registers that are accessible in POSH pipelie.

Registers in POCSFE

MMIO SYMBOL Suffix
DMA_FADD POCS
ACTHD POCS
ACTHD_UDWV POCS
CS_ALU_ACCU POCS
CS_ALU_CF POCS
CS_ALU_SRCA POCS
CS_ALU_SRCB POCS
CS_ALU_ZF POCS
BB_ADDR POCS
BB_ADDR_DIFF POCS
BB_ADDR_UDW POCS
BB_OFFSET POCS
BB_PERCTX_PTR POCS
BB_PREEMPT_ADDR POCS
BB_PREEMPRADDR_UDW POCS
BB_START_ADDR POCS
BB_STRT_ADDR_UDW POCS
BB_STATE POCS
CCID POCS
CTXT_PREMP_DBG POCS
CTXT_SR_CTL POCS
CXT_EL_OFFSET POCS

Doc Ref # IHD-OS- ICLLRVoI 9-1.20

15

Qn_t5|

MMIO SYMBOL Suffix
CMD_CCTL 0 POCS
RCS_CTXID_PREEMPTION_HINT POCS
CTX_TIMESTAMP POCS
CTX_WABB_ADDR POCS
EXCC POCS
FORCE_TO GINPRIV_0 POCS
FORCE_TO_NONPRIV_1 POCS
FORCE_TO_NONPRIV_2 POCS
FORE_TO_NONPRIV_3 POCS
FORCE_TO_NONPRIV_4 POCS
FORCE_TO_NONPRIV_5 POCS
FORCE_TO_NONPRIV_6 POCS
FORCE_TO_NONPRIV_7 POCS
FORCE_TO_NONPRIV_8 POCS
FORCETO_NONPRIV_9 POCS
FORCETO_NONPRIV10 POCS
FORCE_TO_NONPRIV_11 POCS
CS_GPRR O POCS
CS_GPR R 1 POCS
CS_GPR_R 2 POCS
CS_GPR_R 3 POCS
CS_GPR_R 4 POCS
CS_ GPR R 5 POCS
CS_GPR R 6 POCS
CS_ GPR R 7 POCS
CS_GPR R 8 POCS
CS_GPR R 9 POCS
CS_®R_R_10 POCS
CS_GPR R_11 POCS
CS_ ®R_R 12 POCS
CS_GPR_R_13 POCS
CS_GPR_R_14 POCS
CS GPR_R_15 POCS
GFX_MODE POCS
HWS_PGA POCS
PWRCTX_MAXCNT POCS

16

Doc Ref # IHD-OS-ICLLRVoI 9-1.20

MMIO SYMBOL Suffix
IPEHR POCS
IDLEDLY POCS
CSCMDOP POCS
CSCMDVLD POCS
INSTPM POCS
INSTPS POCS
MI_PREDICATE_RESULT 1 POCS
MI_PREDICATE_RESULT 2 POCS
MI_MODE POCS
NOPID POCS
PDPO POCS
PDP1 POCS
PDP2 POCS
PDP3 POCS
PR_CTR_THRS POCS
PREEMPTDLY POCS
PREEMPTION_HINT POCS
PREEMPTION_HINT_UDW POCS
DMA_FADD_P_UDW POCS
RING_BUFFER_CTL POCS
RING_BUFFER_HEAD POCS
RING_BUFFERIEAD_PREEMPT_REG POCS
RING_BUFFERTBRT POCS
RING_BUFFER_TAIL POCS
TIMESTAMP POCS
RESET_CTRL POCS
SEB_ADDR POCS
SBB_ADDR_UDW POCS
SBB_PREEMPT_ADDR POCS
SBB_PREEMPT_ADDR_UDW POCS
SBB_STATE POCS
SEMA_WAIT_POLL POCS
CURRENT_LRCA POCS

Doc Ref # IHD-OS- ICLLRVoI 9-1.20

17

Qn_t5|

Registers in POCSBE

MMIO SYMBOL Suffix
3DPRIM_BSE_VERTEX POCS
3DPRIM_END_OFFSET POCS
3DPIM_INSTANCE_COUNT POCS
3DPRIM_START_INSTANCE POCS
3DPRIM_START_VERTEX POCS
3DPRIM_VERTEX_COUNT POCS
3DPRIM_XPO POCS
3DPRIM_XP1 POCS
3DPRIM_XP2 POCS
IA_PRIMITIVES_COUNT POCS
IA_VERTICES_COUNT POCS
VS _INVO@TION_COUNT POCS
CL_INVOCATION_COUNT POCS
CL_PRIMITIVES_COUNT POCS
MI_PREDICATE_DATA POCS
MI_PREDICATE_RESULT POCS
MI_PREDICATE_SRCO POCS
MI_PREDICATE_SRC1 POCS
CSBEFS POCS
CSFLFLAG POCS
CSFLFSM POCS
CSFLTRK POCS
CS_CONTEXT_STATUS1 POCS
CTX_RETORE_ACK_0 POCS
CTX_RESTORE_ACK_1 POCS
FF_MODE POCS
STATE_ACK POCS
STATE_ACK_SLICE1 POCS
STATE_ACK_SLICE2 POCS
STATE_ACK_SLICE3 POCS
State ACK_Register_i8e_5 POCS
State_ Ack_Register_Slice4 POCS

18

Doc Ref # IHD-OS-ICLLRVoI 9-1.20

POSH Functionality Controls

POSH functionality enabling and disabling is hierarchically controlled at various levels in the context
execution flow.

9 Context Granularity
9 Batch Buffer Granularity
1 3DPRIMTIVE Granlarity

POSH Control Description
Context POSHfeature can be enabled or disabled at context level by programming the
Granularity OPOSMHalEl ed6 f i el dregister oftheXRCS R/he@ PQSH is disabled in

CTX_SR_CTL register, RCS wilitrengage POSH.

Usage modelisone t i me pr ogr ammi ng oatconteRt@r8aton E
time.

Dynamic enabling or disabling of POSH during context execution should be
achieved through Batch Buffer and 3DPRIMTIVE granularity controls.

Batch Buffer POSH Enable:

Granularity OPOSHDbE®RG field in M _BAT TaGHNdBaESEE R S 1
possibilityofencount eri ng O0POSH St ahetcdrrespanding h |
command sequence.

POSH Start:

Commands to be executed by the POCS must beprogrammed in a dedicated
batch bufferandthis bat ch buffer i sOBHdBtated
MI_BATCH_BUFFER_ART command. Once POCS encounters the batc buffer
wi t h 0 P OB8 ékecBtesalrthe @ommand in the corresponding batch buffer
and also the chained batch buffers from the corresponding buffer.

RCS skips theMI_ BATCH BUFFER_START commamtdé ws ¢ th
goes on the following command.

Programming Notes:

POCS excutes only the MI_BATCH_BUFER_START commands programmed in th
ring buffer wiét s ed P @ HredicadediiRilSthe(other
commands in the ring buffer. POCS only parses/travases the batch buffer with

0 POSH Ewoehbckfer@nytbatch buffer pr ogr ammed with

SW must set 0 ROiStHe ME BATCH BUWFFER AT command

programmed in ring buffer if the commands in t he corresponding batch buffer or
the chained batch buffers (includes Second Level and third level) has atleast one
batch buffer start c¢ommaamigplies BOPRIMIGIPED S H
command for which POSH E enabled).

Doc Ref # IHD-OS- ICLLRVoI 9-1.20

POSH Control Description

3DPRIMTIVE OPO&EHabl ed6 field i n mardedicateskRhe POSH pipeEo ¢ g
Granularity create the visibility recording data and indicates Render pipe to use visibility
recording data for the corresponding 3DPRIMTIVE @mmand.

POSH Interrupts

There are no interrupts generated by POSH pipe.

Software Interface

This chapter describes the memory-mapped registers associated with the Memory Interface, including
brief descriptions of their use. Refer to eachr e g i sleseiptiGnsand related feature for more
information on each ind ividual bit.

The registers detailedin this chapter are used across the family of products and are extensions to
previous projects. However, slight changes may be present in some registers (i.g for features added or
removed), or some registers may be renoved entirely. These changes are clarly marked within this
chapter.

Synchroni zation of the 3D Pipeline

Two types of synchronizations are supported for the 3D pipe: top of the pipe and end of t he pipe. Top of
the pipe synchronization really enforces the read-only cache invalidation. This syrchronization
guarantees that primitives rendered after such synchronization event fetches the latest read-only data
from memory. End of the pipe synchronization enforces that the read and/or read -write buffers do not
have outstanding hardware accesses. Thee are used to implement read and write fences as well as to
write out certain statistics deterministically with respect to progress of primitives through th e pipeline
(and without requiring the pipeline to be flushed.) The PIPE_CONTROL command (see detibelow) is
used to perform all of above synchronizations.

Top-of-Pipe Synchronization

Top-of-pipe synchronization refers to SW actions to prepare HW for new state-binding at the beginning
of the rendering sequence in a given context. HW may have residualstates cached in the state-caches
and read-only surfaces in various @aches. With new rendering sequence, readonly surfaces may go
through change in the bind ing. Hence read-only invalidation is required before such new rendering
sequence. Readonly cache invalidation is top -of-pipe synchronization. Upon parsing this specific pipe-
control command, HW invalidates all caches in GT domain that have readonly surfaces but does not
guarantee invalidation beyond GT caches

Upon parsing this specific pipe-control command, HW invalidates all caches in GT donain that have
read-only surfaces but does not guarantee invalidation beyond GT caches (i.eLLC).

20 Doc Ref # IHD-OS-ICLLRVoI 9-1.20

Further, HW does not guarantee that all prior accesses to those readonly surfaces have completed.
Therefore, SW mug guarantee that there are no pending accesses to those read only surfaces before
initializing the top -of-pipe synchronization. PIPECONTROLcommand described below allows for
invalidating individual read -only stream type. It is recommended that driver invalidates only the required
caches on the need basis so that cache wam-up overhead can be reduced.

End-of -Pipe Synchronization

The driver can use end-of-pipe synchronization to know that rendering is complete (although not

necessarily in memory) sothat it can deallocate in-memory rendering state, read-only surfaces,

instructions, and constant buffers. An end-of-pipe synchronization point is also sufficient to guarantee

that all pending depth tests have completed so that the visible pixel count is complete prior to storing it

to memory. End-of-pipe completion is sufficient (although not necessary) to guarantee that read events
arecomplet e r(emadd fenced completion). Read eventeqirear e st
any type of read except a render target read (blend) to complete.

Write synchronization is a special case of end of-pipe synchronization that requires that the r ender cache
and/or depth related caches are flushed to memory, where the data will become globally visible. This
type of synchronization is required prior to SW (CPU) actually reading the result data from memory, or
initiating an operation that will use as a read surface (such as a texture surface) a previous render target
and/or depth/sten cil buffer. Exercising the wrie cache flush bits (Render Target Cache Flush Eable,
Depth Cache Flush Eable, DC Flush) in PIPE_CONTROL only ensures the write caches #ushed and
doesndt guarantee the data is globally visible.

SW can track the completion of the end -of-pipe-synchronizaton by wusing ONotify Enahb
SyncOperation - Write Ilmediate Dat a6 i n the PlIPE_CONTROL command. ¢
Sync Operation -Wr i t e | mmedi ate Datad gener atokpipa- fence cycl
synchronization for the correspo nding PIPE_CONTROL command. Fence cycle ensurasthe write cycles

in front of it are to global visible point before they themselves get processed. Itis guaranteed the data

flushed out by the PIPE_CONTROL is updated in memy by the time SW receives thecorresponding

Pipe Control Notify interrupt.

In case the data flushed out by the render engine is to be read back in to the render engine in coherent
manner, then the render engine has to wait for the fence completion before accessing the flushed data.
This canbe achieved by following means on various products:

PIPE_CONTROL comamd with CS Stall and the required write caches flished with Post-Sync Operation
as Write Immediate Data.

Example:

1 WorkLoad-1 (3D/GPGPU/MEDIA)
1 PIPECONTROL (CS StallPost SyncOperation Write Immediate Data, Required Write Cade Flush hits set)

WorkLoad-2 (Can use the data produced or output by Workload-1)

Doc Ref # IHD-OS- ICLLRVoI 9-1.20 21

Synchronization Actions

In order for the driver to act based on a synchronization point (usual ly the whole point), the reaching of
the synchronization point must be communic ated to the driver. This section describes the actions that
may be taken upon completion of a synchronizati on point which can achieve this communication.

Writing a Value to Memo ry

The most common action to perform upon reaching a synchronization point is to write a value out to
memory. An immediate value (included with the synchronization command) may be writte n. In lieu of an
immediate value, the 64-bit value of the PS_DEPTH_CQNIT (visible pixel count) or TIMESTAMPregister
may be written out to memory. Th e captured value will be the value at the moment all primitives parsed
prior to the synchronization command s have been completely rendered, and optionally after all said
primiti ves have beenpushed to memory. It is not required that a value be written to m emory by the
synchronization command.

Visible pixel or TIMESTAMP informatio is only useful as a delta between 2 values, because these
counters are free-running and are not to b e reset excep at initialization. To obtain the delta, two
PIPE_CONTROL commarsdshould be initiated with the command sequence to be measured between
them. The resulting pair of values h memory can then be subtracted to obtain a meaningful statistic
about the command sequence.

PS_DEPTH_COUNT

If the selected operation is to write the visible pixel count (PS_DBTH_COUNT register), the
synchronization command should include the Depth Stall Enable parameter. There is more than one
point at which the global vis ible pixel count can be affected by the pipeline; once the synchronization
command reaches the first point at which the count can be affected, any primitives following it are
stalled at that point in the pipeline. This prevents the subsequent primitives fr om affecting the visible
pixel count until all primitives preceding the synchro nization point reach the end of the pipeline, the
visible pixel count is accurate and the synchronization is completed. This stall has a minor effect on

performance and should only be used in order to obtain accurat e ovi si bl e pi xel 6f coun

primitives.

The PS_DEPTKCOUNT count can be used to implementan (API/DD) o6 Occl usi on Queryo

Generating an Interrupt

The synchronization command may indicate that a dSync Complei on é i nt e r genemted (if s
enabled by the Ml Interrupt Control Registers d see Memory Interface Registersonce the rendering of all
prior primitives is complete. Again, the completion of rendering can be considered to be when the
internal render cache has been updated or when the cache contents are visible h memory, as selected
by the command options.

22 Doc Ref # IHD-OS-ICLLRVoI 9-1.20

t

(0]

f

b

Invalidating of Caches

If software wishes to use the notification that a synchronization point has been reached in order to reuse
referenced structures (surfaces, state or instructions), it is not sufficient just to make sure rendering is
complete. If additional primitives are initia ted after new data is laid over the top of old in memory

following a synchronization point, it is poss ible that stale cached data will be referenced for the

subsequent rendering operation. In order to avoid t his, the PIPE_CONTROL command must be used. (See
PIPE_CONTROL Command descriptin.

PIPE_CONTROL Command

The PIPE_CONTROL command provides mechanism tachieve the synchronization of the 3D pipeline

and to execute post-synchronization operationsasdescribe d i n t he section 0Synchr
pipel i ned. Par si ngommang staisEhe GIDMpE G1IY if thecstall enable bit is set.

Commands after PIPECONTROL will continue tobe parsed and processed in the 3D pipeline. This may

include additio nal PIPE_CONTROL commands. The implementation @&s enforce a practical upper limit

(8) on the number of PIPE_CONTROL commands that may be outstandingt once. Parsng a

PIPE_CONTROL comnmal that causes this limit to be reached will stall the parsing of new commands

until the first of the outstanding PIP E_CONTROL commands reaches thenel of the pipe and retires.

Although PIPE_CONTROL is intended for uswith the 3D pipe, it is legal to issue PIPE_CONTROL when
the Media pipe is selected. In this case PIPE_CORNROL will stall at the top of the pipe until the Media FFs
finish processing commands parsed before PIPE_CONTROL. Pesynchronization operations, flushing of
caches and interrupts will then occur if enabled via PIPE_CONTROL panzeters. Due to this stalling
behavior, only one PIPE_CONTROL command can beutstanding at a time on the Me dia pipe.

For the invalidate operation of the pipe control, the follow ing pointers are affected. The invaldate
operation affects the context restore of these packets. If the pipe control invalidate operation is
completed before the context save, the indirect pointers will not be context restored from memory on a
context switch.

1 Pipeline State Pointer
1 Media State Pointer
i Constant Buffer Packet

Programm ing Note

I SW must ensure toinvalidatethe Medi a St ate and Constant Buf f ernos
to the releasing the associated resources (memory).

1 SW mustensure to invalidate the Push Constat s using o0l ndirect p®ttathee Poi
releasing the associated esources (memory).

It is up to software to program the appropriate read -only cache invalidation such as the samger and
constant read caches or the instruction and state caches. Once notification is observed, new data may
then be loaded (pote nt i aldpy odfoon tth withautlfedr ofdstale @aghe data being referenced
for subsequent rendering.

Doc Ref # IHD-OS- ICLLRVoI 9-1.20 23

If software wishes to access the rendeed data in memory (for analysis by the application or to copy it to
a new location to use as a texture, for example), it must also ensure that the write cache (render cache) is
flushed after the synchronization point is reached so that memory will be updat ed. This can be done by
setting the Write Cache Flush Enable bit. Note that the Depth Stall Enable bit must be clear in order
for the flush of the render cache to occur. Depth Stall Enable is intended only for accurate reporting of
the PS_DEPTH counter; thrender cache cannot be flushed nor can the read caches be invalidated
(except for the instruction/state cache) in conunction with this op eration.

Vertex caches are only invalidated when the VF invalidate bit is set in PIPE_CONTR@le. decision is
done in software, not hardware) Note that the index-based vertex cache is always fished between
primitive top ologies and of course PIPE_CONTRQtan only be issued between primitive topologies.
Therefore onl y-btalse dVWdis upiqualyaffactedsbg PIPE_CONTROL.

PIPE_CONTROL
PIPE CONTROL
Hardware supports up to 32 pending PIPE_CONROL flushes.

The table below explains all the different flush/invalidation scenarios.

Caches Invalidated/Flushed by PIPE_CONTROL Bit Settings

Top of Pipe
Write Non-VF RO Pipeline Invalidate
Cache Notifi cation Cache VF RO Cache| Marker Mar ker Comple tion Pulse from
Flush Enabled Invali date Invalidate Sent Enable Requested CS
0 0 0 0 N/A N/A N/A N/A
0 0 0 1 Yes No N/A No
0 0 1 0 No N/A N/A Yes
0 0 1 1 Yes No No Yes
X 1 0 X Yes Yes Yes No
X 1 1 X Yes Yes Yes Yes
1 X 0 X Yes Yes Yes No
1 X 1 X Yes Yes Yes Yes

Programmin g Restrictions for PIPE_CONTROL
PIPE_CONTROL arguments can be split up into three categories:

9 Post-sync operations
1 Flush Types
1 Stall

24 Doc Ref # IHD-OS-ICLLRVoI 9-1.20

Qn_t5|

Post-sync operation is only indirectly affected by the flush type category via the stall bit. The stall
category depends on the both flush type and post -sync operation arguments. A PIPE_CONTROL with no
arguments set is Invalid .

Post-Sync Operation

These aguments relate to events that occur after the marker initiated by the PIPE_CONTROL command is
completed. The table below shows the restrictions:

Argument Bits Restriction

Protected Memory 27 Must not be set in PIPECONTROL command programmed for POCS.

Disable

LRI Post Sye 23 Post Sync Operation (fL5:14] of DW1) must be set to 0x0.

Operation

Protected Mem Enable 22 Requiresstall bit ([20] of DW1) set.

Protected Mem Enable 22 Must not be set in PIPECONTROL command programmed for POCS.

Global Snapshot Count 19 This bit must not be exercised on any product.

Reset Requires stall bit (20] of DW1) set.

Generic Media State 16 Requires stall bit ([20] of DW1) set.

Clear

Generic Media State 16 Must not be set in PIPECONTROL command programmed for POCS.

Clear

Indirect State Pointers 9 Requires stall bit ([20] of DW1) set.

Disable

Store Data Index 21 Post-Sync Operation ([15:14]of DW1) must be set to something other than '0'.

Sync GFDT 17 Post-Sync Operation ([15:14] of DW1) must be set to something other than '0'
or 0x2520[13] must be set.

TLB inv 18 Requires stall bit ([20] of DW1) set.

TLB inv (RDCS Only) 18 Post-Sync Opemtion ([15:14] of DW1) must be set to something other than '0'.

Post Sync Op 15:14 |[LRI Post Sync Operation ([23] of DW1) must be set to '0'.

Post Sync Op 15:14 |[Post Sync Operations mustnot be set to "Write PS Depth Count” in
PIPECONTROL command programrad for POCS.

Notify En 8 Must not be set in PIPECONTROL command programmed for POCS.

Protected Memory 6 Requires stall bit ([20] of DW1) set.

Application ID

Protected Memory 6 Must not be set in PIPECONTROL comrand programmed for POCS.

Application ID

Flush Types

These are arguments related to thetype of read only invalidation or write cache flushing is being
requested. Note that there is only intra-dependency. That is, it is not affeded by the post-sync operation
or the stall bit. The table below shows the restrictions:

Doc Ref # IHD-OS- ICLLRVoI 9-1.20 25

Qn_t5|

Arguments Bit Restriction s
Tile Cache Flush 28
1 SW must always set CS Stall bit when Tile Cache Flush Enable bit is set in the
PIPECONTROL command.
1 SW must ensure levell depth and color caches are flushed prior to flushing
the tile cache. This can be achieved by followng means:
1 Single PIPECONTROL comnmal to flush levell caches and the tile
cache. Attributes listed below must be set. OR
9 Tile Cache Flush Enable
1 RenderTarget Cache Flush Enable
1 DC Flush Enable
1 Depth Cache Flush Enable
9 Hushing of L1 caches followed by flushing of tile cache through two
different PIEPCONTROL commands. SW must ensure not to issue any
rendering commands between the two PIPECONTROIcommands.
Must not set in PIPECONTRQ@ command programmed for POCS.
Depth Stall
Render Target Must not be set in PIPECONTROL command programmed for POCS.
Cache Flush
Depth Cache Must not be set in PIPECONTROL commangbrogrammed for POCS.
Flush
Stall Pixel 1 No Restriction.
Sooreboard
Stall Pixel Must not be set in PIPECONTROL command programmedor POCS.
Sooreboard
DC Flush Enable Must not be set in PIPECONTROL command programmed for POCS.
Inst invalidate 11 No Restriction.
Tex invalidate 10 Requires stll bit ([20] of DW) set for all GPGPU Wokloads.
Constant 3 No Restriction.
invalidat e
State Invalidate 2 No Restriction.

Stall

If the stall bit is set, the command streamer waits until the pipe is completely flushed.

Arguments

Bit

Restrictions

Stall Bit

20

No Restrictions.

26

Doc Ref # IHD-OS-ICLLRVoI 9-1.20

3D Registers
Context Save Registers

VF Instance Count Registers

VF Instance Count Register Set

Register Type: MMIO_VF

Address: 08300h - 08384h

Default Value: 0000 0000h

Access: RO

Size: 1088 bits

Description: Se of Registers for storing the index count values. In case of

preempted drawcalls, these register store index
count/number per element. For the non -preempted
drawcalls, the values stored are ignored upon restore.
These are saved aart of render context.

DWord Bits Description

0 31:0 Index Count 0. Index Count value for Element 0.
Format: U32

1 31:0 Index Count 1. Index Count value for Element 1.
Format: U32

31:.0

33 31:0 Index Count 33. Index Count value for Element33.

Format: U32

Mode and Misc Ctrl Registers

This section contains various registers for controls and modes

Controls/Modes

MI_MODE- Mode Register for Software Interf ace

FF_MODE Thread Mode Register

GFX_MODE Graphics Mode Register

GT_MODE GT Mode Register

SAMPLER_NDDE- SAMPLERMode Register

CACHE_MODE_-1Cache Mode Register 1

GAFS_MODEMode Register for GAFS

FBC_RT_BASE_ADDR_REGISTHEBC_RT_BASE_ADDR_REGISTER

FBC_RT_BASE_ADDR_REGISTER_UPPEBC_RT_BASE_ADDR_REGISTER_UPPER

L3CNTLRES - L3 Control Register

Doc Ref # IHD-OS- ICLLRVoI 9-1.20

27

Qn_t5|

B/D/F/Type:

Address Offset: 0x7034
Default Value: 60000060h
Access: RW; RO;
Size: 32 bit

Below Register provides GT2 based L3 sizes.

For GT16 all sizes need to be multiplied by 0.5.

For GT30 all sizes need to be multiplied by 2.

For GT44 all sizes need tobe multiplied by 3.

All L3 ways have to be included in the programming to ensure that no ways are left out.

L3CNTLREG L3 Control Register

Register

CACHE_MODE_S®ache Male Subslice Register

Pipelines Statistics C ounter Registers

These registers keg continuous count of statistics regarding the 3D pipeline. They are saved and
restored with context but should not be changed by software except to reset them to 0 at context
creation time. Write access to the statistics counter in this section must be done through
MI_LOAD_REGISTER_IMM, MI_LOAD_REGISTER_MEM, or MI_LOAD_RE®EGEommands in ring
buffer or batch buffer. These registers may be read at any time; however, to oltain a meaningful result, a
pipeline flush just prior to reading the registers is necessary to synchronize the counts with the primitive
stream.

Registers

IA_VERTICES_COUNTA Vertices Count

IA_PRIMITIVES_COUNTPrimitives Generated By VF

VS_INVOCATION_COUNTS Invocation Counter

HS _INVOCATON COUNT- HS Invocation Counter

DS INVOCATION_COUNTDS Invocation Counter

GS_INVOCATION_CO\T - GS Invocation Counter

GS_PRIMITIVES_COUNTGS Primitives Counter

CL_INVOCATION_COUNTClipper Invocation Counter

PS INVOCATION_COUNTPS Invocation Count

PS_INWOCATION_COUNT_SLICE®S Invocation Count for Slice0

PS INVOCATION_COUNT_SEIC- PS Invocation Count for Slicel

PS_ INVOCATION_COUNT_SLICH?S Invocation Count for Slice2

PS INVOCATION_COUNT_SLICERS Invocation Count for Slice4

28 Doc Ref # IHD-OS-ICLLRVoI 9-1.20

Registers

PS_INWDCATION_COUN_SLICES PS Invocation Count for Slice5

CPS_INVOCATION_COUNTPS Invoation Counter

PS_DEPTH_COUNT

PS_DEPTH_COUNT_SLICERS Depth Count for Slice0

PS DEPTH_COUNT_ISIE1- PS Depth Count for Slicel

PS_DEPTH_COUNT_SLICERS Depth Couwt for Slice2

PS DEPTH_COUNT_SLICEBS Depth Count for Slice3

PS_DEPTH_COUNSLICE4- PS Depth Count for Slice4

PS DEPTH_COUNT_SLICEBS Depth Count for Slice5

TIMESTAMP - Reported Timestamp Count

Stream Output 0 Write Offset

Stream Output 1 Writ e Offset

Stream Output 2 Write Offs et

Stream Output 3 Write Offset

Wind ow Hardware Generated Clear Value

CS_CTX_TIMESTAMPCS Context Timestamp Cou nt:

This register provides a mechanism to obtain cumulative run time of a GPU context on HW.

Register

CSCTX_TIMESAMP - CS Context Timestamp Count

Diagram below details on when CS_CTX_TIMESTAMP run time, save/restored during a GPGPU context
switch flow.

. Context Life Cycle in HW
Time

\ 4

S_Wfe preempt \fo = preempt_done

¥

Context- : Ctx.
! ! ! !

CTX_TIMESTAMP First TH Launch by TSG EU PREEMPFT CTX_TIMESTAMP
Restored TSG - = Saved
__ | L
CT3_TIMESTAMP

Timer Run Period |
WW

CT_TIMESTAMP Run Time for Context-A

/

Fig: CTX_TIMESTAMP fucntionality during context execution

Doc Ref # IHD-OS- ICLLRVoI 9-1.20 29

AUTO_DRAW Registers

3DPRIM_END_OFFSETAuto Draw End Offset
3DPRIM_START_VERTEXLoad Indirect St art Vertex
3DPRIM_VERTEX_ COUNTLoad Indirect Vertex Count
3DPRIM_INSTANCE_COUNTLoad Indirect Instance Count
3DPRIM_START_INSTANCH.oad Indirect Start Instance
3DPRIM_BASE_VERTEXLoad Indirect Base Vertex
3DPRIM_XPO- Load Indirect Extended Paramet er O
3DPRIM_XP1- Load Indire ct Extended Parameter 1
3DPRIM_XP2- Load Indirect Extended Parameter 2

MMIO Registers for GPGPU In direct Dispatch

These registers are normally written with the MI_LOAD REGISTER_MEMORY command rather than from
the CPU.

GPGPU_IBPATCHDIMX- GPGPU Dispatch Dimension X

GPGPU_DISPATCHDIMYGPGPU Dispatch Dimension Y

GPGPU_DISPATCHDIMZ GPGPU Dispatch Dimension Z

TS _GPGPU_THREADS_DISPATCHEIbunt Active Channels Dispatched

Commands

This section describesthe commands specific to 3D-Compute engine

State Commands

This section covers the following commands:

1 STATE_PREFETCH commandThe STATE_PREFETCH command is provided strictly as an optional
mechanism to possibly enhance pipeline performance by prefetchingdat a i nt o t he GPEG®
Instruction and State Cache (ISC).

9 STATE SIP command

Command

STATE_SIP

3DSTATE_URB_CLEAR

STATE_BASE_ADDRESS

The STATE_BASE_ADDRESS command sets the base pointers for subsequent state, instruction, and media
indirect object accesses by the GPE. & Memory Access Indirection for details.)

30 Doc Ref # IHD-OS-ICLLRVoI 9-1.20

Qn_t5|

The following commands must be reissued following any change to the base addresses:

1 3DSTATE_PIPELINE_POINTERS
1 3DSTATE_BINDING_TABLE_POINTERS
1 MEDIA_STATE_POINTERS

Execution of this command causes a full pipeline flush, thusits use should be minimized for hig her
performance.

Command

STATE_BASE_ADDRESS

PIPELINE_SELECT

The Pipeline Select state is contained within the logical context.

Memory Interface Commands for Renderin g Engine

Command

MI_SET_CONTEXT

MI_TOPOLOGY_FILTE

Command O rdering Rules

There areseweral restrictions regarding the ordering of commands issued to the GPE. This subsection
describes these restrictions along with some explanation of why they exist. Refer to the various
command descriptions for additio nal information.

PIPELINESELECT

The previously-active pipeline needs to be flushed immediately before switching to a different pipeline
via use of the PIPELINESELECT command.

Refer to for details on the PIPELINE_SELECT command.
PIPELINE_SELECT
PIPE_ CONTROL

The PIPECONTROL command does notrequire URB fencing/allocation to have been performed, nor
does it rely on any other pipeline state. It is intended to be used on both the 3D pipe and the Media
pipe. It has special optimizations to support the pi pelining capability in the 3D pipe which do not apply
to the Media pipe.

Common Pipeline State -Setting Commands

The following commands are used to set state common to both the 3D and Media pi pelines. This state is
comprised of CS FF unit state, noApipelined global state (BJ, etc.), and Sampler slred-function state.

Doc Ref # IHD-OS- ICLLRVoI 9-1.20 31

STATE_BASE_ADDRESS

STATE_SIP
3DSTATE_SAMPLER_PALETTE_LOAD
3DSTATE_CHROMAEY

1 3DSTATE_BINDING_TABLE_POOLL®C

=A =4 =4 =4

The state variables associated with these commands must beset appropriately prior to ini tiating activity
within a pipeline (i.e., 3DPRIMITIVE or MEDIA_OBJECT).

3D Pipeline -Specific State -Setting Commands

The following commands are used to set state specific to the 3D Pipeline.

=

3DSTATE_PIPELINED_POINTERS
3DSTATEBINDING_TABLE_POINTERS
3DSTATEVEREX_BUFAES
3DSTATE_VERTEX_ELEMEN
3DSTATE_INDEX_BUFFERS
3DSTATE_VF_STATISTICS
3DSTATE_DRAWING_RECTANGLE
3DSTATE_CONSTANT_COR
3DSTATE_DEPTH_BUFFER
3DSTATEPOLY_SIPPLE_OFFSET
3DSTATE_POLY_STIPPLE_PATTERN
3DSTATE_LINE_BPLE
3DSTATE_GLOBAL_DEPTH_CEFS

= =4 =4 =4 4 4 4 -4 -4 -4 4

=

The state variables associated wih these commands must be set appropriately prior to issuing
3DPRIMITIVE.

Media Pipeline -Specific State -Setting Commands
The following command is used to set state specific to the Media pip eline:
1 MEDIA_STATE_POINTERS

The state variables associated with this command must be set appropriately prior to issuing
MEDIA_OBJECT.

3DPRIMITIVE

Before issuing a 3DPRIMITIVE command, all sta (with the exception of MEDIA_STATE_POINTERS) needs
to be valid. Thus,the commands used to assign that state must be issued before issuing 3SDPRIMITIVE.

32 Doc Ref # IHD-OS-ICLLRVoI 9-1.20

MEDIA_OBJECT

Qn_t5|

Before issuing a MEDIA_OBJECT command, all state (withe exception of 3D-pipeline-spedfic state)
needs to be valid. Therefore,the commands used to set this state need to have been issued at some
point prior to the issue of MEDIA_OBJECT.

Engine State

This section describes the state specific to the 3D Compute Engine

Memory Access Indirectio n

The GPE supports the indirection of certain graphics (GTImapped) memory accesses. This suport
comes in the form of two base aldressstate variables used in certain memory address computations with

the GPE.

The intent of this functionality is to support the dynamic relocation of certain driver -generated memory
structures after command buffers have been generated but prior to their submittal for execution. For
example, as the driver builds the command stream it could append pipeline state descriptors, kernel
binaries, etc. to a general state buffer. References tahe individual items would be ins erted in the
command buffers as offsets from the base address of the state buffer. The state buffer could then be
freely relocated prior to command buffer exec ution, with the driver only needing to specify the final base
address of the state buffer. Two base addressesare provided to permit surface-related state (binding
tables, surface state tables) to be maintained in a state huffer separate from the general state buffer.

While the use of these base addresses is unconditimal, the indirection can be effectively disabled by
setting the base addresses to zero. The following table lists the various GPE memory access paths and
which base address (if any) is relevan

Base Address Utilization

Base Address
Used

Memory Accesses

General State Base
Address

O60statel es
form of re

DataPort Read/Write DataPort memory accesse sresul ting from
requests. See DataPort for a definiiono f t he ©6statel essd

Dynamic State Base
Address

Sampler reads of SAMPLER_STATEtdand associated SAMPLER_BORDEPOLORSTATE.

Viewport states used by CLIP, SF, and WM/CC

COLOR_CALC_STATE, DEPTH_STENCIL_STATE, and BLEND_STATE

Push Corstants (depending on state of INSTPM<CONSTANT_BUFFER Address Offset Disable>)

Instruction Base
Address

Normal EU instruction str eam (non-system routine)

System ro uti ne EU instruction stream (starting address = SIP)

Surface State Base
Address

Sampler and DataPort reads of BINDING_TABE_STATE, as referenced by BT pointers passed via
3DSTATEBINDING_TABLE_POINTERS

Sampler and Da@aPort reads of SURFACE_STATE data

Indirect Object Base
Address

MEDIA_OBJECT Indirect Data accessed by the CS unit .

Doc Ref # IHD-OS- ICLLRVoI 9-1.20

33

Qn_t5|

Base Address
Used

Memory Accesses

None CS unit reads from Ring Buffers , Batch Buffers

CS writes resulting from PIPE_CONTROL comman

All VF unit memory accesses lndex B uffer s, Vertex Buffers)

All Sampler Surface Memory Data accesses (texture fetch, etc.)

All DataPort memory accesses e x c e p t

O0stat el es s Gequbstsi{eaqy.PRTratcesses.)dHde/
DataPort for a definiion of the O6statelessd form of requests

Memory reads resulting from STATE_REFETCHcommands

Any physical memory access by the device

GTTFmapped accesses ot included above (i.e., default)

Push Constants (depending on state of INSTPM<CONSTANT_BUFFER Address Offset Disable>)

The following notation is used in the BSpec to distinguish between addresses and offsets:

Notation

Definition

PhysicalAddres[n:m]

Corresponding bits of a physical graphics memory byte address (hot mapped by a
GTT)

GraphicsAddress[n:m]

Corresponding bits of an absolute, virtual graphics memory byte address (mapped
by a GTT)

GeneralStateOffset[n:m]

Corresponding bits of a relative byte offset added to the General State Bas
Address value, the result of which is interpreted as a virtual graphics memory byte
address (mgped by a GTT)

DynamicStateOffset[n:m]

Corresponding bits of a relative byte offset added to the Dynamic State Base
Address value, the result of which is interpreted as a virtual graphics memory byte
address (mapped by a GTT)

InstructionBaseOffset[n:m]

Corresponding bits of a relative byte offset added to the Instruction Base Address
value, the result of which is interpreted as a virtual graphics memory byte address
(mapped by a GTT)

SurfaceStateOffset[n:m]

Corresponding bits of a relative byte offset added to the Surface State Base
Address value, the result of which is interpreted as a virtual graphics memory byte
address (mapped by a GTT)

Context Image

Logical Contexts are memory images used to storecopies of t he deviceds render.

Logical Contexts are aligned to 256-byte boundaries.

Logical contexts are referenced by their memory address. Theformat and contents of rendering contexts
are considered device-dependent and software must not access the memory contents directly. The

definition of the logical rendering and power context memory formats is included here primarily for
internal documentation purposes.

34

Doc Ref # IHD-OS-ICLLRVoI 9-1.20

n

Power Context Image

Render Engine Power Context

Qn_t5|

The table below captures the data from CS power context save/restored by PM. Adiress offsets in this
table are relative to the starting location of CS in the overall power context image manag ed by PM.

RCS Power Context Image

of | Address Offset
Descripti on Offset Unit DW (PWR) CSFE/CSBE

NOOP Cs 1 0 CSFE
Load_Register_Immediate hea der 0x1100_10DB CS 1 001 CSFE
Load Register_Immediate header 0x1100_10BF CS 1 0001 CSFE
GFX_MODE 0x229C Cs 2 0002 CSFE
GHWSP 0x2080 Cs 2 0004 CSFE
RING_BUFFER_CONTROL (Ring Alway 0x203C Cs 2 0006 CSFE
Disabled)

Ring Head Pointer Register 0x2034 CS 2 0008 CSFE
Ring Tail Pointer Regiser 0x2030 CS 2 000A CSFE
RING_BUFFER_START 0x2038 CS 2 0ooC CSFE
RING_BUFFER_CONTR@riginal status) 0x203C Cs 2 000E CSFE
Batch Bufer Current Head Register (UDW) |0x2168 CS 2 0010 CSFE
Batch Buffer Current Head Reister 0x2140 CS 2 0012 CSFE
Batch Buffer State Register 0x2110 CS 2 0014 CSFE
SECOND_BB_ADDR_UDW 0x211C CS 2 0016 CSFE
SECOND_BB_ADDR 0x2114 CsS 2 0018 CSFE
SECOND_BB_STATE 0x2118 CsS 2 001A CSFE
RC_PWRCTX_MAXCNT 0x2054 CsS 2 001E CSFE
CTX_WA PTR 0x2058 CsS 2 0020 CSFE
NOPID 0x2094 CsS 2 0022 CSFE
HWSTAM 0x2098 CsS 2 0024 CSFE
IMR 0x20A8 CS 2 0026 CSFE
EIR 0x20B0 CS 2 0028 CSFE
EMR 0x20B4 CS 2 002A CSFE
CMD_CCTL_O 0x20C4 CS 2 002C CSFE
UHPTR 0x2134 CS 2 002E CSFE
BB_PREEMPT_ADDR_UDW 0x216C CS 2 0030 CSE
BB_REEMPT_ADDR 0x2148 CS 2 0032 CSE
RING_BUFFER_HEAD PREEMPT _REG |0x214C CS 2 0034 CSFE
Doc Ref # IHD-OS- ICLLRVoI 9-1.20 35

Qn_t5|

of | Address Offset
Descripti on Offset Unit DW (PWR) CSFE/CSBE

PREEMPT DLY 0x2214 cs |2 |oose CSFE
CTXT_PREMP_DBG 0x2248 cs |2 |ooss CSFE
SYNC_FLIP_STATUS 0x22D0 cs |2 |oo3a CSFE
SYNC_FLIP_STATUS 1 0x22D4 cs |2 |oo3c CSFE
SYNC_RIP_STAUS 2 0x22EC cs |2 |oosE CFE
WAIT_FOR_RC6_EXIT 0x20CC cs |2 |oo40 CSFE
RCS_CTXID_PREEMPTION_HINT 0x24CC cs |2 |ooaz CSFE
CS_PREEMPTION_HINT_UDW 0x24C8 cs |2 |oo44 CSFE
CS_PREEMPTION_HINT 0x24BC cs |2 |oose CSFE
CCID Register 0x2180 cs |2 |ooss CSFE
SBB_REEMPT_BDRESSUDW 0x2138 cs |2 |oosa CSFE
SBB_PREEMPT_ADDRES 0x213C cs |2 |ooac CSFE
MI_PREDICATE_RESULT 2 0x23BC cs |2 |oo4E CSFE
CTXT_ST_PTR 0x23A0 cs |2 |oos0 CSFE
CTXT_ST _BUF 0x2370 cs |24 |oo0s2 CSFE
SEMA_WAIT_POLL 0x224C cs |2 |oos2 CSFE
IDLEDELAY 0x223C cs 0084 CSFE
DISPLAY MESSAGEDRVARD STATUS | 0x22E8 cs 0086 CSFE
RCS_FORCE_TO_NONPRIV 0x24D0 cs |24 |ooss CSFE
EXECLIST_STATUS_REGISTER 0x2234 cs |2 |ooao CSFE
CXT_OFFSET 0x21AC cs |2 |ooas CSBE
STOP_PARSER_CONTROL 0x2424 cs |2 |oone CSBE
STOP_PRSERHINT ADDR 0x2428 cs |4 |ooas CSBE
SYNC_RIP_STATUS3 0x22B8 cs |2 |ooac CSFE
SYNC_FLIP_STATUS_4 0x22C0 cs |2 |ooaE CSFE
SYNC_FLIP_STATUS 5 0x22C4 cs |2 |ooBo CSFE
SYNC_FLIP_STATUS 6 0x21F8 cs |2 |ooB2 CSFE
DISPLAY MESSAGE FORWARD STATUS_]0x2188 cs |2 |ooBa CSFE
DISPLAY MESSAGE FORWARD STABU3 | 0x218C cs |2 |ooBe CSFE
EXECLIST SQ_CONTENTS 0x2510-0x254F |CS |32 |00BS CSFE
CSB_INTERRUPT_MASK 0x2218 cs 00D8 CSFE
NOOP cs |2 |oopE CSFE

| 00EO CSBE

lox1100_1019 | 00EL CSBE

| 00E6 CSBE

36

Doc Ref # IHD-OS-ICLLRVoI 9-1.20

(intel'

Descripti on

POSH Power Context

Offset

Unit

of
DW

Address Offset

(PWR) CSFE/CSBE
00EC CSBE
00F2 CSBE
00F4 CSBE
00F8 CSBE
00FA CSBE
00FC CSBE
0O0FF CSBE

The table below captures the data from CS power context save/restored by PM. Address offsets in this
table are relative to the starting location of CS in the overall power context image managed by PM.

POCS Power nt ext Image

of | Address Offset
Description Offset Unit DW (PWR) CSFE/CSBE
NOOP POCSs |1 0 CSFE
Load_Register_Immediate header 0x1100_1045 POCS |1 001 CSFE
GFX_MODE 0x1829C POCS |2 0002 CSFE
GHWSP 0x18080 POCS |2 0004 CSFE
RC_PWROX_MAXCNT 0x18054 POCS |2 0008 CSFE
CTX_WA_PTR 0x18058 POCS |2 000A CSFE
NOPID 0x18094 POCS |2 0oocC CSFE
CMD_CCTL_O 0x180C4 POCS |2 000E CSFE
PREEMPT_DLY 0x18214 POCS |2 0010 CSFE
CTXT_PREMP_DBG 0x18248 POCs |2 0012 CSFE
WAIT_FOR_RC6_EXIT 0x180CC POCSs |2 0014 CSFE
RCS_CTXID_PREERTION_HINT 0x184CC POCs |2 0016 CSFE
CS_PREEMPTION_HINT_UDW 0x184C8 POCs |2 0018 CSFE
CS_PREEMPTION_HINT 0x184BC POCSs |2 001A CSFE
MI_PREDICATE_RESULT 2 0x183BC POCSs |2 001C CSFE
SEMA_WAIT_POLL 0x1824C POCSs |2 001E CSFE
IDLEDELAY 0x1823C POCSs |2 0020 CSFE
RCS FORCE_TO_NONPRIV 0x184D0 POCS (24 0022 CSFE
EXECLIST_STATUS_REGISTER 0x18234 POCSs |2 003A CSE
CXT_OFFSET 0x181AC POCS 003E CSFE
STOP_PARSER_CONTROL 0x18424 POCS 0040 CSFE
Doc Ref # IHD-OS-ICLLPVoI 9-1.20 37

(intel'

#of | Address Offset
Description Offset Unit DW (PWR) CSFE/CSBE
STOP_PARSER_HINT_ADDR 0x18428 POCS |4 0042 CSFE
NOOP POCS |8 0048 CSFE

0050 CSBE

0x1100_1011 0051 CSBE

0056 CSBE

0060 CSBE

0062 CSEE

0064 CSBE

006E

006F CSBE

Engine Register and State Context

This sction describes programming requirements for t he Register State Context.

Programming Note

Context: Register State Context

1 All the MMI O registers part of the 0 Egme Register and St ate Context | mageo
context save/restored upon a context switch. MMIO register values belonging to a context can be exercised
through HOST/IA MMIO interface only when the context is active in HW. Exercisig context specific MMIO
registers through HOST/IA MMIO is completely asynchronoustot he context executi o
guarantee a desired sampling point during execution. In execlist mode of scheduling there is no active
context when HW is Idle.

1 Allthewriteaccess t o MMI O registers |listed i n trhaeg edOE nsguibnse
below must be done through MI commands (MI_LOAD_REGISTER_IMM, MI_LOAD_REG_MEM,
MI_LOAD_REGISTER_REG) in the commaedsence.

1 MMIO reads or writes to any of theregister s | i sted in the O0Engine Regis
subsectionsthrough HOST/IA MMIO interface must follow the steps below:

1 SW should set the Force Wakeup bit to prevent GT from entering C6.
Write 0x2050[31:0] = 0x00010001 (disale sequence).

Disable IDLE messaging in CS (Write 0x2050[31:0] = 0x00010001).
Poll/Wait for register bits of 0x22A4[6:0]turn to 0x30 value.
Read/Write to desired MMIO registers.

Enable IDLE messaging in CS (Write 0x2050[3a} = 0x00010000).
Force Wakeup bit should be reset to enable C6 entry.

=A =4 =4 A A -4

38 Doc Ref # IHD-OS-ICLLRVoI 9-1.20

EXECLIST CONTEXT(RIN

EXECLIST CONTEXT
(PPGTT Base)

ENGINE CONTEXTSFE)

ENGINE CONTEXT(CSB

ENGINE CONTEXT(SOL

ENGINE CONTEXT(VF)

ENGINE
CONTEXT(GAMWC)

ENGINE CONTEXTAMT)

ENGNE CONTEXT(LNCH

ENGINECONTEXT(SVG)

ENGINE CONTEXT(SVL|

ENGINE CONTEXT(TDL

ENGINE ©ONTEXT(WM)

ENGINE CONTEXT(SC)

ENGINE CONTEXDM)

ENGINE CONTEXT(VFE

ENGINE CONTEXT(GS
Footer)

POSH Context Image

EXECLIST CONTEXTi{R)

EXECLIST@NTEXT (PPGT
Base)

ENGINE CONTEXCTSH)

ENGINE CONTEXT(CSBH

ENGINE CONEXT(VFR)

ENGINE CONTEXT(OVR

ENGINE CONTEXBVGR)

ENGINE CONTEXT(GS
Footer)

Doc Ref # IHD-OS- ICLLRVoI 9-1.20

Register State Context ICL

Color Coding

EXECLIST CONTEXT

EXECLIST CONTEXT(PPIGBase)

ENGINE ©ONTEXT

EXTERDED ENGINE CONTEXT

Description MMIO Offset/Command Unit # of DW

NOOP CSEL 1
MI_LOAD REGISTER_IMM 0x1100_101D CSEL 1

0x2244 CSEL 2
Ring Buffer Head 0x2034 CSEL 2
Ring Tail Pointer Register 0x2030 CSEL 2
RING_BUFFER_START 0x2038 CSEL 2
RING_BUFFE_CONTROL 0x203C CSEL 2
Batch Buffer Current Head Register (UDW) 0x2168 CSEL 2
Batch Buffer Current Head Register 0x2140 CSEL 2
Batch Buffer State Register 0x2110 CSEL 2
SECOND_BB_ADDRDW 0x211C CSEL 2
SECOND_BB_ADDR 0x2114 CSEL 2
SECONDBBSTATE 0x2118 CSEL 2
BB_PERCTXPTR 0x21CO0 CSEL 2
RCS_INDIRECT_CTX 0x21C4 CSEL 2
RCS_INDIRECT_CTX_OFFSET 0x21C8 CSEL 2
CCID 0x2180 CSEL 2
NOOP CSEL 1
MI_LOAD_REGISTER_IMM 0x1100_1011 CSEL 1
CTX_TIMESTAMP 0x23A8 CSEL 2
PDP3_UDW 0x228C CSEL 2
PDP3_IDW 0x2288 CSEL 2
PDP2_UDW 0x2284 CSEL 2
PDP2_LDW 0x2280 CSEL 2
PDP1_UDW 0x227C CSEL 2
PDP1_LDW 0x2278 CSEL 2
PDPO_UDW 0x2274 CSEL 2
PDPO_LDW 0x2270 CSEL 2

40

Doc Ref # IHD-OS-ICLLRVoI 9-1.20

Description MMIO Offset/Command Unit #of DW
MI_LOAD_REGISTER_IMM 0x1100 1001 CSEL 1
POSH_LRCA 0x21B0 CSEL 2
NOOP CSEL 9
NOOP CSEL 1
MI_LOAD REGISTER_IMM 0x1100_0001 CH. 1
R_PWR_CLK _STATE 0x20C8 CSEL 2
GPGPU_CSR_BASE_ADDRESS CSEL 3
NOOP CSEL 9
NOOP CSFE 1
MI_LOAD_REGTER_IMM 0x1100_1057 CSFE 1
EXCC 0x2028 CSFE 2
MI_MODE 0x209C CSFE 2
INSTPM 0x20CO0 CSFE 2
PR_CTR_CTL 0x2178 CSFE 2
PR_CTR HRSH 0x217C CSFE 2
TIMESTAMP Register (LSB) 0x2358 CSFE 2
BB_START_ADDR_UDW 0x2170 CSFE 2
BB_START_ADDR 0x2150 CSFE 2
BB_ADD_DIFF 0x2154 CSFE 2
BB_OFFSET 0x2158 CSFE 2
MI_PREDICATE_RESULT_1 0x241C CSFE 2
CS_GPR (116) 0x2600 CSFE 64
IPEHR 0x2068 CSFE 2
NOOP CSFE 6
NOOP CSBE 1
MI_LOAD_REGISTER_IMM 0x1100_10AD CSBE 1
CS_CONTEXT_STATUS1 0x2184 CSBE 2
IA_VERTICES_COUNT 0x2310 CSBE 4
IA_PRIMITIVES_COUNT 0x2318 CSBE 4
VS INVOCATION_COUNT 0x2320 CSBE 4
HS_INVOCATI®I_COUNT 0x2300 CSBE 4
DS_INVOCATION_COUNT 0x2308 CSBE 4
GS_INVOCATION_COUNT 0x2328 CSBE 4
GS_PRIMITIVES_COUN 0x2330 CSBE 4
CL_INVOCATION_COUNT 0x2338 CSBE 4
CL_PRIMITIVES_COUNT 0x2340 CSBE 4

Doc Ref # IHD-OS- ICLLRVoI 9-1.20

41

Description MMIO Offset/Command Unit #of DW
PS_INVOCATION_COUNT_ 0 0x22C8 CSBE 4
PS_DEPH_COUNT _0 0x22D8 CSBE 4
GPUGU_DISPACHDIMX 0x2500 CSBE 2
GPUGPU_DISPATCHDIMY 0x2504 CSBE 2
GPUGPU_DISPAT@HMZ 0x2508 CSBE 2
MI_PREDICATE_SRCO 0x2400 CSBE 2
MI_PREDICATE_SRCO 0x2404 CSBE 2
MI_PREDICATE_SRC1 0x2408 CSBE 2
MI_PREDICATERC1 0x240C CSBE 2
MI_PREDICATE_DATA 0x2410 CSBE 2
MI_PREDICATE_DATA 0x2414 CSBE 2
MI_PRED_RESULT 0x2418 CSBE 2
3DPRIM_END_OFFSET 0x2420 CSBE 2
3DPRIM_START_VERTEX 0x2430 CSBE 2
3DPRIM_VERTE COUNT 0x2434 CSBE 2
3DPRIM_INSTANCE_COUNT 0x2438 CSBE 2
3DPRIM_START_INSTANCE 0x243C CSBE 2
3DPRIM BASE_VETEX 0x2440 CSBE 2
Load Indirect Extended Pa rameter O 0x2690 CSBE 2
Load Indirect Extended Parameter 1 0x2694 CSBE 2
Load Indirect Extended Parameter 2 0x2698 CSBE 2
GPGPU_TREADS_DISPATCHED 0x2290 CSBE 4
PS_INVOCATION_COUNT 1 0x22F0 CSBE 4
PS DEPTHCOUNT _1 0x22F8 CSBE 4
DUMMY_REG 0x215C CSBE 2
DUMMY_REG 0x2480 CSBE 2
DUMMY_REG 0x2484 CSBE 2
DUMMY_REG 0x2490 CSHE 2
DUMMY_REG 0x2494 CSBE 2
OA_CTX_CONTRO 0x2360 CSBE 2
OACTXID 0x2364 CSBE 2
PS_INVOCATION_COUNT_2 0x2448 CSBE 4
PS_DPTH COUNT 2 0x2450 CSBE 4
DUMMY_REG 0x2174 CSBE 2
CPS_INVOCATION_COUNT 0x2478 CSBE 4
PS_INVOCATION_COUNT 3 0x2458 CSBE 4

42

Doc Ref # IHD-OS-ICLLRVoI 9-1.20

Description MMIO Offset/Command Unit #of DW
PS DEPTH_COUNT_3 0x2460 CSBE 4
PS_INVOCATION_COUNT 4 0x2468 CSBE 4
PS DEPTH_COUNT_4 0x2470 CSBE 4
PS_INVOCATION_CIONT 5 0x24A0 CSBE 4
PS DPTH_COUNT_5 0x24A8 CSBE 4
PS_INVOCATION_COUNT _6 0x25D0 CSBE 4
PS DEPTH_COUNT_6 0x25B0 CSBE 4
PS_INVOCATION_COUNT 7 0x25D8 CSBE 4
PS_DEPTH_COUNT_7 0x25B8 CSBE 4
NOOP CSBE 6
MI_TOPOLOGY_FILTER CSBE
NOOP CSBE
PIPELINE_SELECT CSHe
STATE_BSE_ADDRESS CSBE 22
3DSTATE_PUSH_CONSTANT_ALLOC_VS CSBE 2
3DSTATE_BSH_CONSTANT_ALLOC_HS CSBE 2
3DSTATE_PUSHGINSTANT _ALLOC_DS CSBE 2
3DSTATE_PUSH_CONSTANT_ALLOC_GS CSBE 2
3DSTATE_PUSH_CONSNT _ALLOC_PS CSBE 2
3DSTATE_BINDING_TABIEDOL ALLOC CSBE 4
DUMMY_CMD 0x791A0002 CSBE 4
DUMMY_CMD 0x791B0002 CSBE 4
DUMMY_CMD 0x30000001 CSBE 1
3DSTATEPTBR_TILE_PASS_INFO CSBE 4
NOOP CSBE 5
NOOP SOL 1
MI_LOAD_REGISTER_IMM 0x1100_1027 SOL 1
SO_NUM_PRIMS_WRITTENO 0x5200 SOL 4
SO_NUM_PRMS WRITTEN1 0x5208 SOL 4
SO_NUM_PRMS WRITTEN2 0x5210 SOL 4
SO_NUM_PRIMS_WRITTEN3 0x5218 SOL 4
SO_PRIM_STORAGE_NEEDEDO 0x5240 SOL 4
SO_PRIM_STORAGE_NEEDED1 0x5248 SOL 4
SO_PRIMSTORAGE_NEEDED?2 0x5250 SOL 4
SO_PRIM_STORAGE_NEEDED3 0x5258 SOL 4

Doc Ref # IHD-OS- ICLLRVoI 9-1.20

43

Description MMIO Offset/Command Unit #of DW
SO_WRTE OFFSETO 0x5280 SOL 2
SO _WRITE_BEFETL 0x5284 SOL 2
SO_WRITE_OFFSET2 0x5288 SOL 2
SO_WRITE_OFFSET3 0x528C SOL 2
3DSTATE_SO_BUFFER SOL 32
NOOP SOL 3
3DSTATESO_DECL_LIST SOL 259
NOOP SOL 0
3DSTATE_INDEX BUFFER VF 5
3DSTATE_VERTEX BUFFERS VF 133
3DSTATE_VERTEXLEMENTS VF 69
3DSTATE_VF_STATISTICS VF
3DSTATE_VF VF
3DSTATE_SGVS VF
3DSTATE_VF_INSTANCING VF 69
3DSTATE_VFOPOLOGY VF
NOOP VF
MI_LOAD_REGISTER_IMM 0x1100_10C7 VE
INSTANCE CNT 08300 - 08384h VF 68
INSTANCE INDX 08400 - 08484h VF 68
COMMITTEDVERTEX NUMBR 08390h VF 2
COMMITTED INSTANCE ID 08394h VF 2
COMMITTED PRIMITIVE ID 08398h VF 2
STATUS 0839Ch VF 2
COMMON VERTEX 083A0h VF 2
VF_GUARDBAND 083A4h VF 2
INDEX_OPCODE_DATAOQQ 08490h VF 2
INDEX_OPCODBATAOL 08494h VF 2
INDEX_OPCODBDATAI0 08498h VF 2
INDEX_OPCODE_DATA11 0849Ch VF 2
TOKPROC_CULL_COUNTO 084A0h VF 2
TOKPROC_CULL_COUNT1 084A4h VF 2
TOKPROC_PID_COUNTO 084A8h VF 2
TOKPROC_PID_COUNT1 084ACh VF 2
TOKPROC_CULVERTEX 084B0h VF 2
TOKPROC_RD_OBJET 084B4h VF 2

44

Doc Ref # IHD-OS-ICLLRVoI 9-1.20

Description MMIO Offset/Command Unit #of DW
TOKPROC_DMMY_OBJECT 084B8h VF
TOKPROC_CL_PTR 084BCh VF 2
TOKPROC_CL_4C 084CO0h VF 2
TOKPROC_STG1_DATA 084C4h VF 2
TOKPROC_STG1_VERTEX_COUNT 084C8h VF 2
TOKPROC_STG1_OBJECT_COUNT 084CCh VF 2
TOKPROC_STG1_VALID 084D0h VF 2
TOKPR@_STGO_INSTANCE_COUNT 084D4h VF 2
TOKPROC_STGO_VERTEX_COUNT 084D8h VF 2
TOKPROC_STGO_COUNT 084DCh VF 2
TOKPROC_STGO_VALID 084EOh VF 2
TOKIN_DATAO 084F0h VF 2
TOKIN_DATA1 084F4h VF 2
TOKIN_DATA2 084F8h VF 2
TOKIN_DATAS3 084FCh VF 2
NOOP VF 7
3DSTAE_VF_COMPONENT_PACKING VF 5
3DSTATE_VF _SGVS 2 VF 3
3DSTATE_PTBR_TILE_SELECT VF 2
NOOP VF 6
NOOP GAMWC 1
MI_LOAD_REGISTER_IMM 0x1100_107F GAMWC 1
GFX_MOCS_0 C800 GAMWC 2
GFX_MOCS_1 C804 GAMWC 2
GFX_MOCS2 C808 GAMWC 2
GFX_MOCS_3 caoC GAMWC 2
GFX_MOCS 4 C810 GAMWC 2
GFX_MOCS 5 c814 GAMWC 2
GFX_MOCS_6 C818 GAMWC 2
GFX_MOCS 7 cs8ic GAMWC 2
GFX_MOCS_8 C820 GAMWC 2
GFX_MOCS 9 C824 GAMWC 2
GFX_MOCS 10 C828 GAMWC 2
GFX_MOCS 11 c82C GAMWC 2
GFX_MOCS 12 C830 GAMWC 2

Doc Ref # IHD-OS- ICLLRVoI 9-1.20

45

Description MMIO Offset/Command Unit #of DW
GFX_MOCS_13 C834 GAMWC 2
GEX_MOCS_14 C838 GAMWC 2
GFX MOCS_15 C83C GAMWC 2
GFX_MOCS_16 C840 GAMWC 2
GFX_MOCS_17 C844 GAMWC 2
GFX_MOCS_18 C848 GAMWC 2
GFX_MDCS_19 c84C GAMWC 2
GFX_MOCS_20 C850 GAMWC 2
GFX_MOCSs_21 C854 GAMWC 2
GFX_MOCS_22 C858 GAMWC 2
GFX_MOCS_23 C85C GAMWC 2
GFX_MOCS_24 C860 GAMWC 2
GFX_MOCS_25 C864 GAMWC 2
GFX_MOCS_26 C868 GAMWC 2
GFX_MOCS_27 c86C GAMWC 2
GFX_MOC<8 C870 GAMWC 2
GFX_MOCS_29 c874 GAMWC 2
GFX_MOCS_30 C878 GAMWC 2
GFX_MOCS_31 c87C GAMWC 2
GFX_MOCS_32 C880 GAMWC 2
GFXMOCS 33 C884 GAMWC 2
GFX_MOCS_34 C888 GAMWC 2
GFX_MOCS_35 Cc88C GAMWC 2
GFX_MOCS_36 C890 GAMWC 2
GFX_MOCS_37 C894 GAMWC 2
GFX_MOCS_38 C898 GAMWC 2
GFXMOCS_39 C89C GAMWC 2
GFX_MOCS_40 C8A0 GAMWC 2
GFX_MOCS_41 C8A4 GAMWC 2
GFX_MOCs42 C8A8 GAMWC 2
GFXMOCS 43 C8AC GAMWC 2
GFX_MOCS_44 C8B0 GAMWC 2
GFX_MOCS_45 c8B4 GAMWC 2
GFX_MOCS_46 C8B8 GAMWC 2
GFX_MOCS 47 C8BC GAMWC 2
GFX_MOCs48 C8C0 GAMWC 2

46

Doc Ref # IHD-OS-ICLLRVoI 9-1.20

Description MMIO Offset/Command Unit #of DW
GFX_MOCS_49 c8c4 GAMWC 2
GFX_MOCS_50 C8C8 GAMWC 2
GFX_MOCS_51 c8ccC GAMWC 2
GFX_MOCS_52 C8DO0 GAMWC 2
GFXMOCS_53 Cc8D4 GAMWC 2
GFX_MOCS 46 C8D8 GAMWC 2
GFX_MOCS_55 C8DC GAMWC 2
GFX_MOCS_56 C8EO GAMWC 2
GFX_MOCS_57 C8E4 GAMWC 2
GFX_MOCS_58 C8ES8 GAMWC 2
GFX_MOCS_59 C8EC GAMWC 2
GFX_MOCS_60 C8F0 GAMWC 2
GFX_MOCS 61 C8F4 GAMWC 2
GFX_MOCS_62 C8F8 GAMWC 2
GFX_MOCS63 C8FC GAMWC 2
NOOP GAMWC 14
NOOP GAMT 1
MI_LOAD_REGISTER_IMM 0x1100_100B GAMT 1
TR_VATT L3 4DEO GAMT 2
Tiled Resources VA Translation Table L3 ptr - DW1 ADE4 GAMT 2
TRNULLDETCT 4DES8 GAMT 2
TiledResources Invalid Tile Detection R egister ADEC GAMT 2
TiledResources Invalid Tile Detection Register ADFO GAMT 2
4DFC GAMT 2
NOOP GAMT 2
NOOP LNCF 1
MI_LOAD_REGISTER_IMM 0x1100 1001 LNCF 1
L3CNTLREG 7034 LNCF 2
NOOP LNCF 1
MI_LOAD_REGISTER_IMM 0x1100_1041 LNCF 1
LNCFCMOCSO0 B020 LNCF 2
LNCFCMOCS1 B024 LNCF 2
LNCFQVMOCS2 B028 LNCF 2
LNCFCMOG3 B02C LNCF 2
LNCFCMOCS4 B030 LNCF 2
LNCFCMOCS5 B034 LNCF 2
Doc Ref # IHD-OS- ICLLRVoI 9-1.20 47

Description MMIO Offset/Command Unit #of DW
LNCFCMOCS6 B038 LNCF 2
LNCFCMOCS7 B0O3C LNCF 2
LNCFCMOCSS8 B040 LNCF 2
LNCFCMOCS9 B044 LNCF 2
LNCFCMOCS10 B048 LNCF 2
LNCF@®10CS11 B04C LNCF 2
LNCFCMOCS12 B050 LNCF 2
LNCFCMOCS13 B054 LNCF 2
LNCFCMOCS14 B058 LNCF 2
LNCFCMOCS15 B0O5C LNCF 2
LNCFCMOG16 B060 LNCF 2
LNCFCMOCS17 B064 LNCF 2
LNCFCMOCS18 B068 LNCF 2
LNCFCMOCS19 BO6C LNCF 2
LNCFCMOCS20 BO70 LNCF 2
LNCFCMOCS21 BO74 LNCF 2
LNCFCMOCS22 B078 LNCF 2
LNCFCMOCS23 BO7C LNCF 2
LNCFCMOCS24 B080 LNCF 2
LNCFCMOCS25 B084 LNCF 2
LNCFCMOCS26 B088 LNCF 2
LNCFCMOCS27 B0O8C LNCF 2
LNCFCMOCS28 B090 LNCF 2
LNCFCMOCS29 B094 LNCF 2
LNCFCMQCS30 B098 LNCF 2
LNCFCMOCS31 B09C LNCF 2
TCCNILREG BOA4 LNCF 2
NOOP LNCF 8
3DSTATE_CONSTANT_ VS Commited SVG 11
3DSTATECONSTANT_HS Commited SVG 11
3DSTATE_CONSTANT DS _Commited SVG 11
3DSTATE_CONSTANT_GS_Commited SVG 11
3DSTATEVS SVG 9
3DSTATE_BINDING_TABLE_POINTERS_ VS SVG 2
3DSTATE_SMPLER_STATE_POINTERS VS SVG 2
3DSTATE_URB_VS SVG 2

48

Doc Ref # IHD-OS-ICLLRVoI 9-1.20

Description MMIO Offset/Command Unit #of DW
3DSTATE_BREAMOUT SVG 5
3DSTATE_CLIP SVG 4
3DSTATE_SF SVG 4
3DSTATE_SCISSOR_STATE_POINTERS SVG 2
3DSTATE_VIEWPORSTATE_POINTERS CL_SF SVG 2
3DSTATE_RASTER SVG 5
3DSTATE_WM_HZ ©® SVG 5
3DSTATE_MULTISAMPLE SVG 2
3DSTATE_HS SVG 9
3DSTATE_BINDING_TABLE_POINTERS_HS SVG 2
3DSTATE_SAMPLER_STATE_POINTERS_HS SVG 2
3DSTATE_URB_HS SVG 2
3DSTATE_HE SVG 4
3DSTATE_DS SVG 11
3DSTATE_BINING_TABLE_POINTERS_DS SVG
3DSTATE_SAMLERSTATE_@INTERS_DS SVG
3DSTATEURB_[3 SVG
3DSTATE_GS SVG 10
3DSTATE_BINDING_TABLE_POINTERS_GS SVG
3DSTATE_SAMPLER_STATE_POINTERS_GS SVG
3DSTATE_URB_GS SVG
3DSTATE_CONSTANT_VSorComitted SVG 11
3DSTATE_CONSTANT_HS_ NonComitted SVG 11
3DSTATE_ CONSTANT_DS NGomitted SVG 11
3DSTATE_CONSTANT_GS_NonComitted SVG 11
3DSTATE_DRAW_RECTANGULAR SVG
MI_LOAD_REGISTER_IMM 0x1100_1001 SVG
FF_PERF_REG 0x6blc SVG
NOOP SVG
3DSTATE_CONSTANT_PS_comitted SVL 11
NOOP SVL 1
3DSTATE WM SVL 2
3DSTATE_VIEWPORT _SEAB®INTER_CC SVL 2
3DSTATE_CC_STATE_POINTERS SVL 2
3DSATE_WM_SAMPLEMASK SVL 2
3DSTATEWM_DEPTH_STENCIL SVL 4
Doc Ref # IHD-OS- ICLLRVoI 9-1.20 49

Description MMIO Offset/Command Unit #of DW
3DSTATE_WM_CHROMAKE SVL 2
3DSTATE_DEPTH_BUFF SVL 8
3DSTATE_HIZ DEPTH_BUFF SVL 5
3DSTATE_STC_BHH_BUF SVL 5
3DSTATE_CLEAR_PARAMS SWL 3
3DSTATE_CPS SVL 9
3DSTATE_SBE SVL 6
3DSTATE_SBE_SWIZ SVL 11
3DSTATE_PS SVL 12
3DSTATE_BINDING_TABLE IRDERS_PS SVL 2
STATE_SAMPLER_STATE_POINTERS_PS SVL 2
3DSTATE_BLEND_STATE_POIRSE SVL 2
3DSTATEPSEXTRA SVL 2
3DSTATE_PS_BLEND SVL 2
NOOP SVL 1
3DSTATE_CONSTANT_PS_NonComitted SVL 11
3DSTATE_3D_MODE SVL
3DSTATE_SAMPLE_FPRERN SVL
3DSTATE_SUBSLICE_HASH_TABLE SVL
NOOP SVL 33
MI_LOAD_REGISTERVIM 0x1100_101B SVL 1
Cache_Mode_0 0x7000 SVL 2
Cache_Mode_1 0x7004 SVL 2
GT_MODE 0x7008 SVL 2
FBC_RT_BASE_ARDREGISTER 0x7020 SVL 2
FBC_RT BASE_ADDR_REER_UPPER 0x7024 SVL 2
OA_CULL 0x7030 SVL 2

0x731C SVL 2
Z_DISCARD_EN 0x7040 SVL 2
NOOP SVL 6
NOOP TDL 1
MI_LOAD_REGISTERMM 0x1100 104F TDL 1
TD_CTL E400 TDL 2
TD_CTL2 E404 TDL 2
TD_VF_VS_EMSK E408 TDL 2
TD_GS_EMSK E40C TDL 2

50

Doc Ref # IHD-OS-ICLLRVoI 9-1.20

Description MMIO Offset/Command Unit #of DW
TD_WIZ_EMSK E410 TDL 2
TD_TS _EMSK E428 TDL 2
TD_HS EMSK E4BO TDL 2
TD DS _EMSK E4B4 TDL 2
EU_PERF_CNT_CTLO E458 TDL 2
EU_PERF_CNT_CTL1 E558 TDL 2
EU_PERFCNT_CTL2 E658 TDL 2
EU PRF _CNT_CTL3 E758 TDL 2
EU_PERF_CNT_CTL4 E45C TDL 2
EU_PERF_CNT_CTL5 E55C TDL 2
EU_PERF_CNT _CTL6 E65C TDL 2
CULLBIT3 E488 TDL 2
CACHE_MODE_SS E420 TDL 2
VSR_PUSHCONSTANT_BASE E518 TDL 2
VSR_EMASK E51C TDL 2
SLM BANKHASH E660 TDL 2
NOOP TDL 10
STATE_SIP TDL 3
NOOP TDL 1
NOOP WM 1
MI_LOAD_REGISTER_IMM 0x1100_1007 WM 1
WMHWCLRVAL 0x5524 WM 2
3DSTATE_POLY_STIPPLE_PATTERN WM 33
3DSTATE_AA LINE_PARAMS WM
3DSTATE_POLY_STIPPLE_OFFSET WM
3DSTATE_LINESTPPLE WM
3DSTATE_SLICE_HASHASE_POINTER WM
NOOP WM 11
3DSTATE_MONOFILTER_SIZE SC 2
3DSTATE_CHROMA_KEY scC 16
NOOP SC 1
MI_LOAD_REGISTER_IMM 0x1100_100D SC
SAMPLER_MODE OxE18C SC 2
NOOP SC 14
NOOP DM 1
3DSTATE_SMPLER_PALETTE_ADO DM 257
Doc Ref # IHD-OS- ICLLRVoI 9-1.20 51

Qn_t5|

Description MMIO Offset/Command Unit #of DW
NOOP DM 1
3DSTATE_SAMLER _PALETTE_LOAD1 DM 257
NOOP DM 1
MI_LOAD_REGISTER_IMM 0x1100_0001 DM 1
DM_DUMMY_REG 0xE000 DM 2
NOOP DM 8
VFE 64 +
n*1216
MI_BATCH_BUFFER_END CSEND 1
NOOP CSEND 127
POSH Register State Context ICL
Color Coding
EXECLIST CONTEXT
EXECLISTONTEXT(PPGTT Base)
ENGINE CONTEXT
EXTENDED ENGINE CONTEXT
URB_ATOMIC CONTEXT |
Description MMIO Offset/Command Unit # of DW
NOOP POCSEL 1
MI_LOAD_REGISTER MW 0x1100_101B POCSEL 1
0x18244 POCSEL 2
Ring Buffer Head 0x18034 POCSEL 2
Ring Tail Poirter Register 0x18030 POCSEL 2
RING BUFFER_START 0x18038 POCSEL 2
RING_BUFFER_CONTROL 0x1803C POCSEL 2
Batch Buffer Current Head Register (UDW) 0x18168 POCSEL 2
Batch Buffer Current Head Registe 0x18140 POCSEL 2
Batch Buffer State Register 0x18110 POCSEL 2
SECOND_BB_ADDR_UDW 0x1811C POCSEL 2
SECOND_BB_ADDR 0x18114 POCSEL 2
SECOND_BB_STATE 0x18118 POCSEL 2
BB _PER_CTX_PTR 0x181CO POCSEL 2
RCS_INDIRECT_CTX 0x181C4 POCSEL 2
RCSINDIRECT_CTX_OFFSET 0x181C8 POCSEL 2

52

Doc Ref # IHD-OS-ICLLRVoI 9-1.20

Description MMIO Offset/Command Unit # of DW
NOOP POCSE 2
NOOP POCSEL 48
NOOP POCSE 1
EXCC 0x18028 POCSFE 2
MI_MODE 0x1809C POCSFE 2
INSTPM 0x180CO0 POCSFE 2
TIMESTAMP Register (LSB) 0x18358 POCSFE 2
BB_START_ADDR_UDW 0x18170 POCSFE 2
BB_START_ADDR 0x18150 POCSFE 2
BB_ADD_DIFF 0x18154 POCSHE 2
BB OFFSET 0x18158 POCSFE 2
MI_PREDICATE_RESULT 1 0x1841C POCSFE 2
CS_GPR (16) 0x18600 POCSFE 64
IPEHR 0x18068 POCSFE 2
NOOP POCSFE 10
NOOP POCSBE 1
MI_LOAD_REGISTERMM 0x1100_1045 POCSBE 1
CS_CONTEXT_STATUS1 0x18184 POCSBE 2
IA_VERTIES OUNT 0x18310 POCSBE 4
IA_PRIMITVES_COUNT 0x18318 POCSBE 4
VS_INVOCATION_COUNT 0x18320 POCSBE 4
CL_INVOCATION_COUNT 0x18338 POCSBE 4
CL_PRIMITIVES_COUNT 0x18340 POCSBE 4
MI_PREDICATE_SRCO 0x18400 POCSBE 2
MI_PREDICATE_SRCO 0x18404 POCSBE 2
MI_PREDIGATE_SRC1 0x18408 POCSBE 2
MI_PREDICATE_SRC1 0x1840C POCSBE 2
MI_PREDICATE_DATA 0x18410 POCSBE 2
MI_PREDICAE_DATA 0x18414 POCSBE 2
MI_PRED_RESULT 0x18418 POCSBE 2
3DPRIM_END_OFFSET 0x18420 POCSBE 2
3DPRIM_START_VERTEX 0x18430 POCSBE 2
3DPRIM_VEREXCOUNT 0x18434 POCSBE 2
3DPRIM_NSTANCE_COUNT 0x18438 POCSBE 2
3DPRIM_START_INSTANCE 0x1843C POCSBE 2
3DPRIM_BASE_VERTEX 0x18440 POCSBE 2

Doc Ref # IHD-OS- ICLLRVoI 9-1.20

53

Description MMIO Offset/Command Unit # of DW
Load Indirect Extended Parameter 0 0x18690 POCSBE 2
Load Indirect Extended Parameter 1 0x18694 POCSBE 2
Load Indi rect Extended Parameter 2 0x18698 POCSBE 2
MI_TAGADDR 0x18194 POCSBE 4
PTBR_NUM_PACGE RECORDED_REGISTER 0x18594 POCSBE 2
PTBR_PS&E POOL_SIZE_REGISTER 0x18590 POCSBE 2
NOOP POCSBE 8
MI_TOPOLOGY_FILTER POCSBE 1
NOOP POCSBE 2
PIPELINE_SELECT POCSBE 1
STATE_BASE_ADDRESS POCSBE 22
3DSTATE_PUSH_CONSTANT_ALLOC_VS POCSHE 2
3DSTATE_BINDING_TABLE_POOL_ALLOC POCSBE 4
DUMMY_CMD 0x791A0002 POCSBE 4
3DSTATE_PTBR_POOL_BASE_ADDRESS POCSBE 3
3DSTATE_PTBR_FREE_LIST_BASE_ADDRESS POCSBE 3
3DSTATE_PTB RBEIDER_LIS BASE_ADDRESS POCSBE 3
3DSTATE_PTBR_TILE_PASSOINF POCSBE 4
NOOP POCSBE 15
3DSTATE_INDEXBUFFER VFR 5
3DSTATE_VERTEX_BUFFERS VFR 133
3DSTATE_VERTEX_ELEMENTS VFR 69
3DSTATE_VF_STATISTICS VFER
3DSTATE_VF VFER
3DSTATE_SGVS VFER
3DSTATE_F_INSTANCING VFER 69
3DSTATE_VF GPOLOGY VFR
NOOP VFER
0x1100_1095 VFR
INSTANCE CNT 16E00- 16E84h VFR 68

54

Doc Ref # IHD-OS-ICLLRVoI 9-1.20

POSH Register State Context

Color Coding

EXECLIST CONTEXT

EXECLIST CONTEXT(PPGTT Base)

ENGINE CONTEXT

EXTENDED ENGINEGNTEXT

URBATOMIC CONTEXT

Description MMIO Offset/Command Unit # of DW
NOOP POCSEL 1
MI_LOAD_REGISTER_IMM 0x1108 1019 CSEL 1
0x18244 POCSEL 2
Ring Buffer Head 0x18034 POCSEL 2
Ring Tail Pointer Register 0x18030 POCSEL 2
RING_BUFFER_START 0x18038 POCSEL 2
RING_BUFFER_CONTROL 0x1803C POCSEL 2
Batch Buffer Current Head Regster (UDW) 0x18168 POCSEL 2
Batch Buffer Current Head Register 0x18140 POCSEL 2
Batch Buffer State Register 0x18110 POCSEL 2
BB_PER_CTX PTR 0x181CO0 POCSEL 2
RCS_INDIRECT_CTX 0x181C4 POGCSEL 2
RCS_INDIRECT_CTOEFSET 0x181C8 POCSEL 2
CCID 0x18180 POCSEL 2
SEMAPHORE_TOKEN 0x182B4 POCSEL 2
NOOP POCSEL 4
NOOP POCSEL 54
NOOP POCSFE 1
0x1100_1067 POCSFE 1
BB_STACK_WRITE_PORT 0x18588 POCSFE 12
EXCC 0x18028 POCSFE 2
MI_MODE 0x1809C POCSFE 2
INSTPM 0x180C0 POCSFE 2
TIMESTAMP Register (LSB) 0x18358 POCSFE 2
BB_START_ADDR_UDW 0x18170 POCSFE 2
BB_START_ADDR 0x18150 POCSFE 2
BB_ADD_DIFF 0x18154 POCSFE 2
Doc Ref # IHD-OS- ICLLRVoI 9-1.20 55

Description MMIO Offset/Command Unit # of DW
BB_OFFSET 0x18158 POCSFE
MI_PREDCATE_RESULT 1 0x1841C POCSFE 2
CS_@R (1-16) 0x18600 POCSFE 64
IPEHR 0x18068 POCSFE 2
CS_MI_ADDRESS_OFFSET 0x183B4 POCSFE 2
MI_SET PREDICATE_RESULT 0x183B8 POCSFE 2
WPARID 0x1821C POCSFE 2
PREDICATION_MASK 0x181FC POCSFE 2
NOOP POCSE 6
NOOP POCSBE 1
0x1100_103E POCSBE 1
CS CONTEXT_STAUS1 0x18184 POCSBE 2
IA_ VERTICES_COUNT 0x18310 POCSBE 4
IA_PRIMITIVES_COUNT 0x18318 POCSBE 4
VS_INVOCATION_COUNT 0x18320 POCSBE 4
CL_INVOCATION_COUNT 0x18338 POCSBE 4
CL_PRIMITVES_COUNT 0x18340 POCSBE 4
MI_PREDICATE_SRC 0x18400 POCSBE 2
MI_PREDICAE_SRCO 0x18404 POCSBE 2
MI_PREDICATE_SRC1 0x18408 POCSBE 2
MI_PREDICATE_SRC1 0x1840C POCSBE 2
MI_PREDICATE_DATA 0x18410 POCSBE 2
MI_PREDICATE_DATA 0x18414 POCSBE 2
MI_PRED_RESULT 0x18418 POCSBE 2
3DPRIM_END OFFSET 0x18420 POCSHE 2
3DPRM_START_ VEREX 0x18430 POCSBE 2
3DPRIM_VERTEX_ COUNT 0x18434 POCSBE 2
3DPRIM_INSTANCE_COUNT 0x18438 POCSBE 2
3DPRIM_START_INSTANCE 0x1843C POCSBE 2
3DPRIM_BASE_VERX 0x18440 POCSBE 2
Load Indirect Extended P arameter O 0x18690 POCSBE 2
Load Indirect E xten ded Parameter 1 0x18694 POCSBE 2
Load Indirect Extended Parameter 2 0x18698 POCSBE 2
MI_TAGADDR 0x18194 POCSBE 4
PTBR_NUM_PAGES_RECORDED_REGISTER 0x18594 POCSBE 2
NOOP POCSBE 12

56

Doc Ref # IHD-OS-ICLLRVoI 9-1.20

Description MMIO Offset/Command Unit # of DW
MI_TOPOLOGYFILTER POCSBE
NOOP POCSBE 2
PIPELINE_SELECT POCSE 1
STATE_BSE_ADDRESS POCSBE 22
3DSTATE_PUSH_CONSTANT_ALLOC_VS POCSBE 2
3DSTATE_BINDING_TABLE_POOL_ALLOC POCSBE 4
NOOP POCSBE 4
3DSTATE_PTBR_POOL_BASE_ADDRESS POCSBE 3
3DSTATE_PTBR_FREE_LIST BA®DRESS POCSBE 3
3DSTATE_PTBR_RENDER_LIST BASERESS POCSBE 3
3DSTATE_PTBR_EILASS_INFO POCSBE 4
NOOP POCSBE 15
3DSTATE_INDEX_ BUFFER VFR 5
3DSTATE_VERTEX_ BUFFERS VFR 133
3DSTATE_VF_STATISTICS VFR 1
3DSTATE_VF VFR
3DSTATE_VFG VFR 4
3DSTATE_VF_INSTANCING VFR 69
3DSTATE_VF_TOPOL®G VR 2
NOOP VFR 5
0x1100_100D VFR 1
COMMITTED VERTEX NUMBER 16E90h VFR 2
COMMITTED INSTANCE ID 16E94h VFER 2
COMMITTED PRIMITIVE ID 16E98h VFER 2
STATUS 16E9Ch VFR 2
COMMON VERTEX 16EAOh VFER 2
VF_GUARDBAND 16EA4h VFER 2
NOOP VFER 21
NOOP VFER 2
NOOP VFR 6
OVR Context OVR 1040
3DSTATE_CONSTANT_VS_Commited SVGR 11
NOOP SVGR 11
NOOP SVGR 11
NOOP SVGR 11
3DSTATE_KERTEX_ELEMENTS SVGR 69
Doc Ref # IHD-OS- ICLLRVoI 9-1.20 57

Description MMIO Offset/Command Unit # of DW
3DSTATE_VF_COMPONENT_PACKING SVGR 5
3DSTATE_VF_SGVS SVGR 2
3DSTATE_VF_SGVS 2 SVGR 3
3DSTATE_VS SVR 9
3DSTATE_BINDING_TABLE_POBRSVS SVGR 2
3DSTATE_SAMPLER_STHA POINTERS VS SVGR 2
3DSTATE_URB_ALLOC VS SVGR 3
NOOP SVGR 37
3DSTATE_CLIP SVGR 4
3DSTATE_PRIMITIVE_REPLICATION SVGR 6
3DSTATE_SF SVGR 4
3DSTATE_SCISSOR_STATE_POINTERS SVR 2
3DSTATEVIEWPORT_STATE_POINTERSSF SVGR 2
3DSTATE_RASTER SVGR 5
NOOP SVGR 9
3DSTATEMULTISAMPLE SVGR 2
NOOP SVGR 55
3DSTATE_DRAWING_RECTANGLE SVGR 4
NOOP SVGR 1
MI_LOAD_REGISTER_IMM 0x1100_1011 SVGR 1
FF_PERF_REG 0x17blc SVGR 2
CULIBIT1 0x17100 SVGR 2
VFLSKPD 0x172A8 SVGR 2
FF_MODE 0x17210 SVGR 2
PTBR_PAGEO®L_SIZE REGISTER 0x17520 SVGR 2
NOOP SVGR 2
NOOP SVGR 4
MI_BATCH_BUFFER_END CSEND 1
NOOP CSEND 127
58 Doc Ref # IHD-OS ICLLRVoI 9-1.20

3D Pipeline Stages

Qn_t5|

The following table lists the various stages of the 3D pipeline and describes their major functions.

Pipeline Stage

Functions Performed

Command Stream (CS)

The Command Stream stage is responsible for managing the 3D pipdine and
passing commands down the pipelinantddtn
from memory buffers and places it in the URB.

Note that the CS stage is shared between the 3D, GPGPEnd Media pipelines.

Vertex Fetch (VF)

The Vertex Fetch stage in response to 3D Primitive Processing commands, is
responsible for reading vertex data from memory, reformatting it, and writing the
results into Vertex URB Entries. It then outputs primitives by passing references to
the VUEs down the pipeline.

Vertex Shader (VS)

The Vertex Shader stage is responsible for processing (shading) incommg vertices
by passing them to VS threads.

Hull Shader (HS)

The Hull Shader is responsible for processing (shading) incoming patch primitives as
part of the tessellation process.

Tessellation Engine (TE)

The Tessellation Engine is responsible for using ¢ssellation factors (computed in the
HS stage) to tessellate U,V parametric domains into domain point topologies.

Domain Shader (DS)

The Domain Shader stage is respondile for processing (shading) the domain points
(generated by the TE stage) into correspnding vertices.

Geometry Shader (G5)

The Geometry Shaler stage is responsible for processing incoming objects by
passing each objectds vertices to a GS

Stream Output Logic (SOL)

The Stream Output Logic is responsible for outputting incoming obje ct verticesinto
Stream Out Buffersin memory.

Clipper (CLIP)

The Clipper stage performs Clip Tests on incoming objects and clips objects if
required. Objects are cipped using fixed-function hardware.

Strip/Fan (SF)

The Strip/Fan stage performs object stup. Object setup uses fixed-function
hardware.

Windower/Masker (WM)

The Windower/Masker performs object rasterization and determines visibility
coverage.

CPS

Pipeline stage that gathers coarse pixels (CPs) for Coese Pixel Shading (CPS).

PS Dispatch PD)

PSD asembles and dispatches Pkel Shader (F5) threads at one of these rates: CP,
Pixel (P), or Sample (S).

Doc Ref # IHD-OS- ICLLRVoI 9-1.20 59

Qn_t5|

3D Pipeline -Level State

This section contains table commands for the 3D Pipeline Level.

Programming Note

Context: 3D Pipeline-Level State - Push Constant URB Allocation

The push constants are buffered in the Push Constant section of the URB which is part of the L3$. Software is
required to program the hardware to allocate space in the URB for each shader push constan. The software is
limited to the low addresses of the URB andmust ensure that none of the shaders have overlapping handles.

Software may use some if not all of the Push Consant region of the URB for pr-stage handle allocations as long as
none of the push constants and handle allocations overlap.

Refer to the various 3BDSTATE_PUSH_CONSTANT_ALLOC_xx state commands for details regarding the maximum
size of the Push Constant and dher state programming information.

Below is a diagram that represents how the hardware may move and store one CONSTANT_BUFFER comand for a
fixed function shader:

MEMORY URB GRF

Constant Buffer 1 Constant Buffer O
Constant Buffer 0

Constant Buffer 1

Constant Buffer 1
Constant Buffer 0

Constant Buffer 2

Constant Buffer 2
Constant Buffer 2 Constant Buffer 3

Constant Buffer 3

Constant Buffer 3

60 Doc Ref # IHD-OS-ICLLRVoI 9-1.20

Qn_t5|

The bubbles in the URB are caused by the constant buffer in memory startingon a half cacheline and being an even
number in length. If the constant buffer starts on an odd ca cheline and has an odd number length, then there will
only be a bubble at the beginning of the buffer in the URB. If the constant buffer in memory starts on a cache line
boundary and has an odd number length, then the bubble will only be at the end of the co nstant buffer in th e URB.
Once the constant buffer is written to the GRF space then all the bubbles will be removed.

Software must guarantee that there is enough space in the push constant buffer in the URB to hold one constant
buffer from memory. This includes any buffering to write the 512b aligned requests from memory into the URB.
Because the L3$ only supports writes from memory in 512b chunks, the URB mayhave some bubbles between each
constant buffer fetch.

3DSTATE_3D_MODE

3D Pipeline Geometry

Block Dia gram

The following block diagram shows the stages d the Geometry Pipeline and where they are positioned in
the overall 3D Pipeline.

Render Command
Streamer (RCS)
- L

Vertex Fetch (VF)
L.

Vertex Shader (VS)
L

Hull Shader (HS)
-

Tessellation Engine (TE)

Domain Shader (DS)
g =

Geometry Shader (GS)
-

| Thread-Reguesting Stage ‘

~ | Fixed-Function-Only Stage ‘
StreamOut (SO)

J L

Clipper

<—Rasterization—>}<—6eometry Pipeline

Doc Ref # IHD-OS- ICLLRVoI 9-1.20 61

POSH Pipeline Overview

The Position -Only Shading (POSH) pipeline (akal 6 CPi ped or ORecor coveBD pe 6)
rendering performance by removing culled obje cts from the Render pipeline workload. The POSH

pipelinepre-pr ocesses geometry obj exnlsy & s eargt esx mpr peu to paorsd
These djects are then subjected to clipper/setup cull tests. The resuts of these cull tests are then stored
(compressed) as str eams n.fLatay, whes thebsanteigaometry vk sns 6 i n n
submitted to the Render pipe, the VF stage of the Render pipe will receive the pre-recorded visibility

tokens and use those tokens to skip over culled objects and only process the non-culled objects. The

POSH pipeis designed to run ahead of the Render pipe by buffering visibility data for render passes and

possibly entire frames before being consumed by the Render pipe.

§ o — — — —— — —_—— o —— — —

i [
| POSH Pipe | | RENDER Pipe |
| [I :
| [I |
= . Res i
| [I :
| [I |
I VFR ! . VF |
| [I
| W5R | | | ¥5 :
: CLR : : HS |
| SFR | i TE :
: ovR : : DS l
| [I GS :
: soL |
- i CL :
icibili I
Visibility | = |
Data | |
(Memory b e |

i

POSH Pipelin e Work Submission

Work is performed on the POSH pipeline by submitting command str eams to the POSH CS (POCS) unit
which operates similarly to the Render CS (RCS) unit. Refer t€ommand Stream Programmingfor POCS
programming det ails.

Geometry & Setup Stage s of POSH Pipeline
The POSH pipeline contains POSH specific versions of a subset d the Render pipe stages:

1 VFR (POSH VF)
1 VSR (POSH VS)
1 CLR (POSH CL)
1 SFR (POSH SF)

62 Doc Ref # IHD-OS-ICLLRVoI 9-1.20

Note that the POSH pipeline does not contain HS, DS, GS or StremOut stages and therefore does not
support those fun ctions. Work submitted to the POSH pipeline shall not contain state commands for
those stages not attempt to enable those functions.

These ROSH stages are pogrammed in a similar manner as the corresponding Render stages When
stage-related state commands are submitted to the POSH pipeline, the corresponding stages in the
POSH pipeline are programmed. POSH/Render pipeline programming differenaes are describedin the
state command definitions.

OVR Stage of POSH Pipeline

An Object Visibility Recording (OVR) dage is located at the end of the POSH pipe. It is used tocompress
and store visibility token streams in memory, as well as reading those f$reams during rendering and
passing the tokens to the VF stage.Refer to the Rerder Engine @mmand Streamer BXMLfor
programming details.

URB Programming when POSH Enabled

When the POSH pipeline is enabled, a URB allocation for the VSR stage is required his allocation is
programmed via execution of SBDSTATE_URB_* V®mmands in the POSH pipeline. Software shall be
required to manage this allocation, taking into account the sy nchronous operation of the RCS and POCS
workloads. This programming may require explicit synchronization between the pipelines, e.g., when
Rendervs. POSH URB aiktation boun daries are changed.

When the POSH pipeline is enabled, a URB allocation for the PGH pipeline Push Constants may be
defined. Refer to the relevant Push Constant URB.ommands for details on how this allocation is defined
and used.

General Progra mming of Thr ead-Generating Stages (V S, HS, DS, GS)

This section provides common programming information for the thread -generating Geometry FF stages
(VS, HS, DS, GS). The inteis to include the common description here in order to avoid r edundancy in
the subsequent stage-specific sections.The stage-specific sections will include any unique or exception
information, restrictions, etc. relevant to those stages.

3DSTATE_ Common State Variables

This section describes FF state variables, proggmmed via 3DSTA'E <FF> commands, that are common
to at least two thread-generating FF stages (VS, HS, DS, GS)

The states described in these sections are only used by HW when the given stages enabled (i.e.,can
request thread execution), unless specifially called out as an exception.

Thread Management S tate

These state variables are used by a stage to managehread request generation.

Doc Ref # IHD-OS- ICLLRVoI 9-1.20 63

Qn_t5|

State VS| HS | DS | GS

Maximum Number of Threads Y Y Y Y

Maximum Number of Threads

This field specifies, for a particularstage, the maximum number of threads allowed to be simultaneously
active. Her e 0 act i \ngiathetlerdacdregsesttqueue((B) yesident in the EUs, dr (c) in
the thread retirement queue & up to the point the stage sees the thread retirement. Note that the sum of
(@) and (c) above is nonzero, and therefore d depending on configuration & the allowed number of

active threads can exceed the total number of thread slots available in the EUs.

There are two main factors to consider when programming this state variable:

9 Scratch space availabilit y: In the case where threads require scratch space, SW shiallocate
enough contiguous scratch space for the stage to allow each active thread (as programmed by this
field) to access its full per-thread allocation (as programmed by PerThreadScratchSpace). This
may require SW to reduce MaximumNumberOfThreads to accommodate limitations on scratch
space availability.

1 Performance: For best performance, it is reconmended that SW program this field to its
maximum value. This will maximize the number of threadsavaill abl e t o perform t he
function. However, SW is fee to program a smaller value (as long as it meets any restrictions), e.g.,
for performance or wor karound experimentation.

Thread State Initializ ation State

The following values are programmed asstate, subsequently included by the stage as thread requeg
control information, and eventually loaded into an EU architectural (ARF) register upon thread dispatch.
In most instances these initial valuescan be subsequertly overwritten by the thread.

For acomplete description of these EU ARF register fieldsrefer to the EU Execution Environment section

These values do not appear in the thread payload. (Thisnformat i on may be referred to
0t r ans padereon tisdbswarded to the EUsbut not visible in the thread payload.)

State EU State | VS| HS | DS | GS
Kernel Start Pointer ip[31:6] Y |Y |Y |Y
Floating Point Mode cr0.0[0] Y |Y |Y |Y
Single Program Flow cr0.0[2] N |Y N [Y
Vector Mask Enable cr0.0[3] Y |Y |Y |Y
lllegal Opcode Exception Enable cr0.1[12] Y |Y |Y |Y
Software Exception Enable cr0.1[13] Y |Y |Y |Y
Thread Priority sr0.0[23] Y |Y |Y |Y
Binding Table Pointer see note Y |Y |Y |Y

64 Doc Ref # IHD-OS-ICLLRVoI 9-1.20

Kernel Start Pointer (KSP)

This field specifies bits [31:6] of the value loaded into the E M4iraction Pointer (ip), which in turn
specifies the starting offset of the kernel program to be executed. The state is specified as a 64Bgranular
offset from t he Instruction Base A ddress register (programmed via STATE_BASE_ADDRSS. Bits[5:3]
oft he pEAJ rédgi st e ify a(Dwdndwithin a 648 eegidn) are loaded with O upon thread
dispatch.

Note (below) that Kernel Start Pointer [47:32] can be programmed via FF state, but hese bits are
ignored by HW astronhseppdtta 32-bipvaluer e g i

A stage may support more than one KSP state, where HW performs an onthe-fly selection of one of the
KSPs based on some criteria. Refer to the stagespedfic sections for details. For those stages that support
multiple di spatch modes but only a single KSP state, SW shall esure that the KSP value programmed
corresponds with the selected dispatch mode.

SW Usage Model Note (no HW implications):

1 The 64B cachdine prior to the Kernel Start Pointer may be reserved

Floating Poi nt Mode

This state bit is loaded into the EUS Single Precision Floating Point Mode (FPMode, cr0.0[0]) which, in
turn, controls how certain single-precision floating point operations are performed within the E U
subsystem.

Single Program Flow

This state bitis loaded into the E U &iagle Program Flow (SPF, t0.0[2]) which, in turn, controls how
certain flow control instructions operate across the EU channels.

Vector Mask Enable

This state bit is loaded into the E U ¥ector Mask Enable (VME, cr0.0[3]) whichjn turn, selects whether
theEUOG s Di saghkarMecthr Mdsk register is used as the execution mask for subsequent
instructions.

lllegal Opcode Exception

This state bit i Blegd Opgatle Hxcdaption Enable HceD 1[E2]) @hich, in turn, enables
or disablest h e ikegabapcode exception mechanism.

Software Exception Enable

This state bit i Softwame&xtepton Enabieo (crd.1j18]) whithdisturn, enables or
disablestheEWb s sof t war echansmepti on m

Thread Dispatc h Priority

This state bit can be used to give thread requests emanating from a Geometry FF stage higher thread
dispatch priority than thread request sources that are not marked as high priority.

Doc Ref # IHD-OS- ICLLRVoI 9-1.20 65

This state bitis also loaded into the E Bridrgy Class (sr0.0[23]) which,in turn, determines whether the
EUthread is considered as belonging to the high priority class.

Binding Table Pointer (BTP)

Upon thread request, the BTP specified for the relevant FF stage ipassed to, and storedin, the EU as
part of thread state. ThisBTP value 5 subsequently passed tothe Shared Functions (e.g., Sampler) that
are required to access surfaces specified in the Binding Table. Here the BTP is passed via a sid&nd
channel and not directly in the me ssage descriptor or message header.

Thread State Ini tialization Stat e (Defau lte d)

The following EU state variables are defaulted upon thread dispatch and therefore cannot be controlled
via Geometry FF state programming. Refer to therelevant EU sections 6r an understanding of t hese
state variables and whether the thread can overwrite the defaulted values. Note that this is not an
exhaustive list of defaulted EU state variables, only the ones deemed most interesting for Geometry FF
threads.

State EU State Default Value
FFID sr0.0[27:24] see below
Rounding Mode cr0.0[5:4] 0
Single Precision Denorm Mode cr0.0[7] 0
Double Precision Denorm Mode ¢r0.0[6] 0
Stack Overflow Exception Enable cr0.1[11] 0
External Halt Exception Enable cr0.1[14] 0
Breakpoint Exception Enable cr0.1[15] 0
Instruction Pointer [5:3] ip[5:3] 0
Stack Pointer sp.0 0 (see note below)
Stack Pointer Limit sp_limit 0 (see note below)

FFID

T h e Eixéd Runction Identifier (FFID, sr0.0[27:24]) is initialized to avalue corresponding to the
Geometry FF stage hat requested the thread dispatch. Note that this simply identifies the source FF unit,
not the specific thread dispatched.

Stack Pointer, Stac k Pointer Limit

These EU state registers are defaulted to O for thieads requested by Geometry FF units, as opposd to
other thread request sources that may cause them to be initialized differently. The threads can overwrite
the defaulted values if so desired.

66 Doc Ref # IHD-OS-ICLLRVoI 9-1.20

Prefetch State

The following state variables can be used by SV to attempt the prefetch of certain state from memory
into int ernal state cache. The prefdch is requested as part of the first thread dispatch after these state
variables are specified.

Programming Restriction: Software shall not specify a prefetch region that extends into an invalid
memory page, otherwise the prefetch may incur page faults.

Performan ce Note: Early prefetch of the state that will likely be referenced by the thread can improve
thread execution performance. This is not guaranteed, especialy if the amount of prefetched data is
large which may result in state cachethrashing. Also, these prefetch requests are considered low priority
hints by HW and may be dropped under conditio ns of high memory demand.

State VS|HS |DS|GS
Sampler Count Y |Y Y |Y
Binding Table Entry Count Y |Y Y |Y

Sampler Count

This field specifies how many SAMPLER_SNTE strictures are prefetched from memory. The count can be
specified as 0 or as a multiple of 4 (4,8,12,16). Refer to the state definition for encodings and further
details.

Performance Note: It is recommended that SW program this field to (roughly) equal the number of
sampler state structures referenced by the thread.

Binding Table Entry Count

This field specifies how many binding table entries (BTEs) and associate@URFACE_STATE structures are
prefetched from m emory. The format of this field depends on whether or not HW-generated binding
tables are enabled, as determined by

3DSTATE_BINDING_TABLE_POOL_ALIRdEtingTablePoolEnable .

SW Usage Note: When HW-generated binding tables are enabled, it is recommended that the Binding
Table Entry Caunt value be generated when the shader is compiled.

HW-Generated Binding Tables Disabled:

The field has a Format of U8 and specifies a count of BTESs to be prefetched ([0,255]). Eaaif the
SURFACE_STATE structures referenced tye BTEs will ado be prefetched.

HW-Generated Bindi ng Tables Enabled:

This field has a Format of Bitmask8 and indicates which 64B cache lines of BTEs will be fetched. Each bit
in this field corresponds to a cache line, where a cache line holds 8 16bit BTEs.Bit O refersto the
cacheline starting at the Binding Table Pointer, as programmed by
3DSTATE_BINDING_TABLE_POINTER_xx.

Doc Ref # IHD-OS- ICLLRVoI 9-1.20 67

By default, only the SURFACE_STATE structures referenced by the first 4 naero BTEf each 64B
cacheline will be prefetched.

Common Thread Payloa d-Related St ate

The following state variables are either included directly in the thread payload and/or used to control or
compute other fields in the thread payload.

State VS| HS | DS | GS

Sampler State Pointer

Per-Thread Scratch Space

Scrach Space Base Pointer

z <<=
<[=<T=<T=<
z <<=
<[<T=<T=<

Include Vertex Handles

Sampler State Pointer

This state variable specifies the starting, 32Bgr anul ar of f s et PLER STAAEtabkinage & s
memory, relative to the DynamicStateBaseAddress. It is programmed via
3DSTATE_SMIPLER_STATE_POINTERSommands.

This value is included in thread payloads in R0.3[31:5] and is also directly propagated to the Sampler

shared functionforus e i n processi ng 0 h thaat ean potestiallp semdarsys ages . |
messagesto the Sampler shared function that requires the Sampler State Pointer in the messageheader,

that thread shall ensure that it passes along the Sampler State Pointer véue passed in the thread

payload.

Scratch Space

The Per-Thread Scratch Space state variable specifies the amount of scratch memory required by each active
thread of a stage. The value is specified as a 4bit power of two (in excess of 10) bytes, where programmed values
in the valid range [0,11] specify scratch space requiremers in the range [1KB, 2MB].

When a threadivbécbmebssoall ocated a portion of scratch sp
PerThreadScratchSpace. The starting location of eacht _h r e scrdtbhsspace allocation,ScratchSpaceOffset | is

passed in the thread payload in R0.5[31:10] and is specified as a 1KBgranular offset from the

GeneralStateBaseAddress. The computation of ScratchSpaceOffset includes the starting addressofthe st age 6 s
scratch space allocation, as prgrammed by ScratchSpaceBasePointer. The maxmum number of active threads for

a stage is specified by the MaximumNumberOfThreads state. SW shall abide by the scratch space restrictions

included in the description of MaximumN umberOfThreads .

This value is al® included within thread payloads in R0.3[3:0]. If athread can potential | vy send aregd 0A32
messages to the DataPort shared function, that thread shall ensure that it passes along the
PerThreadScratch Space value passed in the thread payload.

The state command specifies starting offset of th e scratch memory region allo cated to a stage (Scratch Space Base
Pointer). It is specified as a 22bit, 1KB-aligned offset from the GeneralStateBaseAddress.

Each thread requested by the FF stage will be allocatedi t s excl usi ve portheipar-threaddf t hi s s
allocation size specified by Per-Thread Scratch Space. The computed offset of the thread - specific portion is

68 Doc Ref # IHD-OS-ICLLRVoI 9-1.20

passed in the thread payload asScratch Space Offset . If the thread needs to access thisscratch space, it shall
ut i | i ze [DBawPod teadiwets medsage where the DataPort will cause the General State Base Address to
be added to the specific scratch space offset passed in the message heder.

Include Vertex Handles

This state variable specifies whether input vertex URB handes are included inthe thread payload for
threads requested by the FF stage. SW shall set this bit if the thread kernel requires access to the data
contained input v ertex URB entries, either in addition to or instead of the input vertex data pushed into
the thread payload.

URB Payload State

The following state variables specify certain parameters related to the amount and location of URB-
sourced data in the thread payload. Sate variables specifying other parameters are found in other state
commands. Referto the Thread Paylbad Overview subsection for more details.

State VS| HS | DS | GS
Dispatch GRF Start Register for URB Data Y |Y Y |Y
Vertex/Patch URB Entry Read Offset Y |Y Y |Y
Vertex/Patch URB Entry Read Length Y |Y |Y [|Y

Dispatch GRF Start Register for URB Da ta

This state varidble spedfies a 5b GRF# (32B offsetithin the thread payload where URB-sourced data
starts. The URBsourced data starts with some (possibly zerg amount of pushed Constant data, followed
by some (possibly zero) amount of Vertex or Patch data.

Programming Restriction : Software shall ensurethat it does not cause URB data to overwrite the RO
Header or Extended Header.

Vertex/Patch URB Entry Read Off set

This state variable specifies the 32B offseat which data is to be read from each Vertex or Patch URB
entry before being included in the thre ad payload.

Vertex/Patch URB Entry Read Length

This state variable specifies the number of 16B (vertex elemens) to be read from each Vertex or Patch
URB enty, starting from the offset specified by th e Vertex/PatchURBERN tr yReadOffset state.

If the read length is non-zero, SW shall ensure that the spedication of the source (URB) data does not
extend beyond the allocated and valid data in the URB entry. Otherrestrictions are described in the
Thread Payoad Overview subsection.

Doc Ref # IHD-OS- ICLLRVoI 9-1.20 69

Pre-Rasterization Vertex Stat e

The following state variables are implemented in the FF stages whose associated threads generate

vertices (therefore the HS stage is excluded). The statevariables control some aspects of how the

gener at ed (vaitices argtredted if the pipeline isconf i gured t o have rdgathe st &
the Clip and Setup stages. Hardware determines whichstag pr oduces-rabéesei apteono
as a function of which FF stages are enabledFor example, if the GS and DS stages are disabled, theVS
stageds set of stabe wmbhteabbhesvel yl| bDé& uvubedGCPbofst age
state variables will be used.

Thereare0 For ce 6 st ate bits dthatcantbeusddtoioyerride use efthesp pesi-a g e
state variables and instead use corresponding statevariables programmed in the Clip and/or Setup
stages.

State VS| HS | DS | GS

Vertex URB Entry Output Read Offset

Vertex URB Entry Output Read Length

User Clip Distance Clip Test Enable Bitmask

<[<[<]=<
zlzlz]=z
<[<[<]=<
<[<[<]=<

User Clip Distance Cull Test Enable Bitmask

Vertex URB Entry Output Read Offset

This state vaiable specifies the 32B offset at which attribute data is to be read from each Vertex URB
entry for use by the Setup stage.

Vertex URB Entry Outp ut Read Length

This state variable specifies the number of 16B attributes to be read from each Veatex URB entry for use
by the Setup stage, starting from the offset specified by the VertexURBEntryOutpu tReadOffset state.

User Clip Distance Clip Test Enable Bitmask

This state variable is used in the Clodupentatibrafgre s c |l i
details.

User Clip Distance Cull Test Enabl e Bitmask

This state variable isused intheC | i p st &g ®miricsonatityy Sele Clip stage dcumentation for
details.

UAV Access State

This state variable is used by the HW UAV Coherency rachanism.

State VS| HS | DS | GS

Accesses UAV Y Y Y Y

70 Doc Ref # IHD-OS-ICLLRVoI 9-1.20

AccessesUAV

This state bit indicates that threads requested by this FFstage may perform accesses to UAV resources. If
SW enables the HW UAV Coherency function, it shall set this bit in order to include this stage inthe
coherency activities. For improved performance, SW should only set this bit for those FF stages that
require it. If the HW UAV Coherency functon is enabled, this bit is ignored.

Statistics Enable

This state variable is used to enable/disable the statstic counter for a FF stage.

State VS| HS | DS | GS

Statistics Enable Y |Y Y Y

Statistics Enable

This state bit controls whether or not the statistic counter(s) associated with a FF stage are enabled. Refer
to the specific FF stage descriptions for details onthe statistics counter(s) supported.

SW shalldisable statistics counting via this bit prior to submitting an y 3DPRIMTIVE commands that are
not to be included in statistics counting. For example, if the statistics counters are to be maintained to
only track application-submitted work, SW shall ensurethat any driver-generated work is not included in
the statistics.

Thread State (Ignored)

The following state variables can be programmed but are ignored in the HW implementation.

State VS| HS | DS | GS
Kernel Sart Pointer [47:32] Y |Y |Y |Y
Scratch Space Bas Offset Upper Y |Y |Y |Y

URB Allocation Overv iew

The Geometry F-stages use the URB for temporary storage of vertex and/or patch data as URB Entries,
as well as Push Constant (PC) URB Buffers. Software can gmam the total size of the URB (see URB/L3
documentation). Software can also partition the URB space into FF tage-specific allocations for URB
Entries and/or PC URB Buffers. These allocations can be changed dynamically to accommodate changing
pipeline configurations and shader data requirements, though such changes may haveperformance
impacts. There shall be nooverlap between the individual allocations and no allocation may extend
beyond the programmed URB upper limit.

Only the first 32KB of the URB canbe used for VS, HS, DS, GS, and PS PC URB Buéilocations. SeePush
Constant Programming.

Doc Ref # IHD-OS- ICLLRVoI 9-1.20 71

Software can plac URB Etry allocations following any PC URB Buffer allocations. Software shall define
allocations for all the relevant Geometry FFs (VS, HS, D&S), though a subset of these allocations can e
onul | 6 al tdoooadorisuume BRBtsgaee. The VS stag always requires a non-null allocation.
The HS and DS stages only require nornull allocations when tessellation is enabled. Likewise, the GS
stage only requires a non-null allocation when GSis enabled.

When POSH is Enabledvia CTXT_SR_CTL), an addital 32KB block of URB is allocatedfor POCS pipeline Push
Constants.

This block is located immediately after the RCS Push Constant URBWBfer Allocation.

When enabled, the size of the Push ConstantURB allocation mentioned in the URBprogramming
information (below) will increase to 64KB total (vs. the 32KB sizeshown)

URB Space Partitioning

The starting offset (within the URB space) ofa FF URB Entry allocation is specified by & RBStartAddress
state. The size of an allocaton is defined by a NumberOfU RBErir ies state and a corresponding
URBEtr yAllocationSize state.

72 Doc Ref # IHD-OS-ICLLRVoI 9-1.20

