

Intel® Iris® Plus Graphics and UHD Graphics Open

Source

Programmer's Reference Manual

ċĮı ĳħĤ <:;C ;:ĳħ ČĤĭĤıĠĳĨĮĭ ĎĭĳĤī ĈĮıĤĻ ĕıĮĢĤĲĲĮıĲ

based on the "Ice Lake" Platform

Volume 9: Render Engine

January 2020, Revision 1.0

ii Doc Ref # IHD-OS-ICLLP-Vol 9-1.20

Creative Commons Li cense

You are free to Share - to copy, distribute, display, and perform the work under the following

conditions:

¶ Attribution. You must attribute the work in the manner specified by the autho r or licensor (but

not in any way that suggests that they endorse you or your use of the work).

¶ No Derivative Works. You may not alter, transform, or build upon this work.

Notices and Discla imers

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO

LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS

IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE

FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY

EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING

LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR

INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result,

directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS

FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS

SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES

OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE

ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY,

PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION,

WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE,

OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers

must not rely on the absence or characteristics of any features or instructions marked "reserved" or

"undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for

conflicts or incompatibilities arising from future changes to them. The information here is subject to

change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which

may cause the product to deviate from published specifications. Current characterized errata are

available on request.

Implementations of the I2C bus/protocol may re quire licenses from various entities, including Philips

Electronics N.V. and North American Philips Corporation.

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

* Other names and brands may be claimed as the property of others.

Copyright © 2020, Intel Corporation. All rights reserved.

Doc Ref # IHD-OS-ICLLP-Vol 9-1.20 iii

Table of Contents

Render Engine ... 1

Workload Submission .. 1

Context Submission Overview .. 1

Render-3D-GPGPU Command Streamer ... 3

Render Engine Command Streamer (RCS) .. 3

Position Only Shader Command Streamer (POCS) ... 6

Software Interface ... 20

Engine State ... 33

Memory Access Indirection .. 33

Context Image .. 34

3D Pipeline Stages ... 59

3D Pipeline-Level State ... 60

3D Pipeline Geometry .. 61

Block Diagram .. 61

POSH Pipeline Overview .. 62

General Programming of Thread-Generating Stages (VS, HS, DS, GS) 63

3D Primitives Overview ... 85

Thread Request Generation .. 92

Vertex Data Overview .. 98

Vertex Fetch (VF) Stage ... 103

Vertex Shader (VS) Stage .. 117

Hull Shader (HS) Stage .. 122

Tessellation Engine (TE) Stage .. 134

Domain Shader (DS) Stage ... 139

Geometry Shader (GS) Stage... 147

Stream Output Logic (SOL) Stage ... 164

3D Pipeline Rasterization... 172

Common Rasterization State... 172

3D Pipeline ð CLIP Stage Overview ... 172

3D Pipeline - Strips and Fans (SF) Stage ... 184

Object Setup .. 197

iv Doc Ref # IHD-OS-ICLLP-Vol 9-1.20

Attribute Interpolation Setup .. 218

Depth Offset .. 221

Other SF Functions .. 221

Windower (WM) Stage .. 221

Pixel .. 245

Pixel Hashing ... 246

Coarse Pixel Shading .. 248

Early Depth/Stencil Processing ... 250

Pixel Shader Thread Generation .. 259

Pixel Backend ... 289

GPGPU Compute Pipeline .. 302

General Purpose Compute Model ... 302

GPGPU Context in GPU Hardware ... 305

GPGPU PIPE Overview .. 306

Programming the GPGPU Pipeline .. 306

Thread Lifecycle .. 307

Command Sequence .. 309

GPGPU Pipeline Notes ... 311

CURBE/Indirect Payload Dispatch ... 311

Media GPGPU Payload Limitations ... 312

Media State Model .. 313

Commands for GPGPU Pipe ... 314

MEDIA_VFE_STATE ... 314

MEDIA_STATE_FLUSH ... 315

MEDIA_CURBE_LOAD ... 315

MEDIA_INTERFACE_DESCRIPTOR_LOAD .. 316

MEDIA_OBJECT ... 316

MEDIA_OBJECT_GRPID .. 316

MEDIA_OBJECT_WALKER .. 317

GPGPU_WALKER ... 318

Synchronization of the Media-GPGPU Pipeline ... 318

Supporting Commands for MEDIA-GPGPU Pipe .. 319

Thread Spawner (TS) ... 319

Doc Ref # IHD-OS-ICLLP-Vol 9-1.20 v

Memory Resources for Threads ... 320

GPGPU Walker... 321

Parameterized Media Walker .. 326

Thread Dispatch .. 336

Thread Dispatch Format .. 336

INTERFACE_DESCRIPTOR_DATA .. 337

R0 Headers ... 338

Thread Tracking and Synchronization .. 342

Thread Synchronization Monitors ... 342

Barriers and Shared Local Memory ... 343

Media-GPGPU Thread EOT Message ... 344

Context Switch for GPGPU and Media ... 345

3D and GPGPU Programs .. 346

EU Overview .. 347

Primary Usage Models ... 348

Messages ... 352

Registers and Register Regions .. 357

SIMD Execution Control .. 410

End of Thread .. 413

Assigning Conditional Flags .. 413

Destination Hazard .. 416

Non-present Operands ... 417

Instruction Prefetch ... 417

ISA Introduction ... 417

Shared Functions .. 573

Binding Table ... 573

Fused Send Message Handling .. 575

3D Sampler ... 575

Data Port ... 655

Pixel Data Port ... 734

Shared Functions Pixel Interpolater .. 759

Message Gateway .. 781

Media Sampler .. 786

vi Doc Ref # IHD-OS-ICLLP-Vol 9-1.20

Doc Ref # IHD-OS-ICLLP-Vol 9-1.20 1

Render Engine

The Render Engine supports command streams used both for 3D and Compute (GPGPU) workloads.

These command streams fetch the data, and dispatch individual work items to many threads that operate

in parallel. The threads run small software programs (also called kernels or shaders) on the GPU

processors (called Execution Units).

The command streamers control the programmable pipelines in the Render Engine so that the individual

programs run in parallel but are synchronized to start only when t heir required data is available, and

complete when all the work i s done.

Each pipeline in the Render Engine shares common state with all the threads running in the pipeline. The

command streamer manages that state.

Workload Submission

This section describes work submission to the Rendering engine which can run 3D, Compute and

Programmable Media workloads

Context Submission Overview

Work into the Render/GPGPU engine is fed using the Render Command Streamer.

The Render engine runs in one of the following modes (that is specified using the PIPE_SELECT

command):

¶ 3D

¶ Media/GPGPU

When Software submits multiple elements(contexts) into the execution list, the hardware executes the

elements serially.

2 Doc Ref # IHD-OS-ICLLP-Vol 9-1.20

Doc Ref # IHD-OS-ICLLP-Vol 9-1.20 3

Render-3D-GPGPU Command Streamer

This section describes the infrastructure provided by the Command Streamer of the Render engine which

supports 3D, Compute and Programmable Media.

Render Engine Command Streamer (RCS)

The RCS (Render Command Streamer) unit primarily serves as the software programming interface

between the O/S driver and the Render Engine. It is responsible for fetching, decoding, and dispatching

of data packets (3D/Media Commands with the header DWord removed) to the front -end interface

module of Render Engine.

Logic Functio ns Included

¶ MMIO register pro gramming interface.

¶ DMA action for f etching of ring data fr om memory.

¶ Management of the Head pointer for t he Ring Buffer.

¶ Decode of ring data and sending it to the appropriate destination: 3D (Vertex Fetch Unit) & GPGPU.

¶ Handling of user interrupts.

¶ Flushing the 3D and GPGPU Engine.

¶ Handle NOP.

¶ DMA action for fe tching of execlists from memory.

¶ Handling of rin g context switch interrupt.

The register programming bus is a DWord interface bus that is driven by the configuration master. The

RCS unit only claims memory mapped I/O cycles that are targeted to its range of 0x2000 to 0x27FF. The

Gx and MFX Engines use semaphore to synchronize their operations.

RCS operates completely independent of the MFx CS.

The simple sequence of events is as follows: a ring (say PRB0) is programmed by a memory-mapped

register write cycle. The DMA inside RCS is kicked off. The DMA fetches commands from memory based

on the starting address and head pointer. The DMA requests cache lines from memory (one cacheline CL

at a time). There is guaranteed space in the DMA FIFO (8 CL deep) for data coming back from memory.

The DMA control logic has copies of the head pointer and the tail pointer. The DMA increments the head

pointer after making requests for ring commands. Once the DMA copy of the head pointer becomes

equal to the tail pointer, the DMA stops requesting.

The parser starts executing once the DMA FIFO has valid commands. All the commands have a header

DWord packet. Based on the encoding in the header packet, the command may be targeted towards

Vertex Fetch Unit or GPPGU engine or the command parser. After execution of every command, the

actual head pointer is updated. The ring is considered empty when the head pointer becomes equal to

the tail pointer.

4 Doc Ref # IHD-OS-ICLLP-Vol 9-1.20

Batch Buffer Privilege Regist er

FORCE_TO_NONPRIV - FORCE_TO_NONPRIV

Mode Regis ters

The following are the Mo de Registers:

Register

INSTPM - Instruction Parser Mode Register

EXCC - Execute Condition Code Register

NOPID - NOP Identification Register

CSPREEMPT - CSPREEMPT

IDLEDLY - Idle Switch Delay

SEMA_WAIT_POLL - Semaphore Poll ing Interval on Wait

HWS_PGA - Hardware Status Page Address Register

Hardware Status Page Layout

Logical Context Support

The following are the Logical Context Support Registers:

Register

BB_ADDR - Batch Buffer Head Poin ter Register

BB_ADDR_UDW - Batch Buffer Upper Head Pointer Re gister

CXT_SIZE - Context Sizes

CXT_EL_OFFSET - Exec-List Context Offset

SYNC_FLIP_STATUS - Wait For Event and Display Flip Flags Register

SYNC_FLIP_STATUS_1 - Wait For Event and Displa y Flip Flags Register 1

SYNC_FLIP_STATUS_2 - Wait For Event and Di splay Flip Flags Register 2

WAIT_FOR_RC6_EXIT - Control Register for Power Management

SBB_ADDR - Second Level Batch Buffer Head Pointer Register

SBB_ADDR_UDW - Second Level Batch Buffer Upper Head Pointer Regis ter

SBB_STATE - Second Level Batch Buffer State Register

PS_INVOCATION_COUNT_SLICE0 - PS Invocation Count for Slice0

PS_INVOCATION_COUNT_SLICE1 - PS Invocation Count for Slice1

PS_INVOCATION_COUNT_SLICE2 - PS Invocation Count for Slice2

PS_DEPTH_COUNT_SLICE0 - PS Depth Count for Slice0

PS_DEPTH_COUNT_SLICE1 - PS Depth Count for Slice1

PS_DEPTH_COUNT_SLICE2 - PS Depth Count for Slice2

DISPLAY_MESSAGE_FORWARD_STATUS - Display Message Forward Status Register

R_PWR_CLK_STATE - Render Power Clock State Register

Doc Ref # IHD-OS-ICLLP-Vol 9-1.20 5

Context Save Registers

The following are the Context Save Registers:

Register

BB_PREEMPT_ADDR - Batch Buffer Head Pointer Preemption Register

BB_PREEMPT_ADDR_UDW - Batch Buffer Upper Head Pointer Preemption R egister

RING_BUFFER_HEAD_PREEMPT_REG - RING_BUFFER_HEAD_PREEMPT_REG

BB_START_ADDR - Batch Buffer Start H ead Pointer Register

BB_START_ADDR_UDW - Batch Buffer Start Upper Head Pointer Register

BB_ADDR_DIFF - Batch Address Difference Register

BB_OFFSET - Batch Offset Register

SBB_PREEMPT_ADDR - Second Level Batch Buffer Head Pointer Preemption Register

SBB_PREEMPT_ADDR_UDW - Second Level Batch Buffer Upper Head Pointer Preemption Register

BB_PER_CTX_PTR - Batch Buffer Per Context Pointer

MI Commands for Render Engine

This chapter describes the formats of the òMemory Interfaceó commands, including brief descriptions of

their use. The functions performed by these commands are discussed fully in the Memory Interface

Functions Device Programming Environment chapter.

This chapter describes MI Commands for the original graphics processing engine. The term òfor

Rendering Engineó in the title has been added to differentiate this chapter from a similar one describing

the MI commands for the Media Decode Engine.

The commands detailed in this chapter are used across product families. However, slight changes may be

present in some commands (i.e., for features added or removed), or some commands may be removed

entirely. Refer to the Preface chapter for product speci fic summary.

Commands

MI_NOOP

MI_ARB_CHECK

MI_ARB_ON_OFF

MI_BATCH_BUFFER_START

MI_BATCH_BUFFER_END

MI_CONDITIONAL_BATCH_BUFFER_END

MI_DISPLAY_FLIP

MI_LOAD_SCAN_LINES_EXCL

MI_LOAD_SCAN_LINES_INCL

MI_CLFLUSH

MI_MATH

MI_REPORT_HEAD

MI_STORE_DATA_IMM

6 Doc Ref # IHD-OS-ICLLP-Vol 9-1.20

Commands

MI_ATOMIC

MI_COPY_MEM_MEM

MI_LOAD_REGISTER_REG

MI_LOAD_REGISTER_MEM

MI_STORE_REGISTER_MEM

MI_SUSPEND_FLUSH

MI_USER_INTERRUPT

MI_WAIT_FOR_EVENT

MI_SEMAPHORE_SIGNAL

MI_SEMAPHORE_WAIT

MI_FORCE_WAKEUP

Watchdog Timer Registers

These registers together implement a watchdog timer. W riting ones to the control register enables the

counter, and writing zeros disables the counter. The second register is programmed with a threshold

value which, when reached, signals an interrupt that then resets the counter to 0. Program the threshold

value before enabling the counter or extremely frequent interrupts may result.

Note: The counter itself is not observable. It increments with the main render clock.

Programming Notes: When watch dog timer is enabled, HW does not trigger any kind of idle

sequences. SW must enable and disable watch dog timer for any given workloa d within the same

command buffer dispatch. SW must disable watch dog timer around semaphore waits and wait for

events commands so that HW can trigger appropriate idle sequence for power savings.

Position Only Shader Command Strea mer (POCS)

Position only shader (POSH) is a new geometry pipeline that has the optional ability to execute the

position only vertex shaders and perform the visibility test on t hese vertices before the actual vertex

shader is executed. POSH pipe can run ahead of the original geometr y pipe by executing position only

vertex shaders and doing visibility test on these vertices and recording this information. Geometr y pipe

when processing the vertices will use this visibility information outputted by POSH pipe t o skip the vertex

fetch and shading for vertices that are already marked as culled.

POSH pipe has its own command streamer called Position only command streamer (POCS). A context

running on render pipe can exercise POSH capabilities through Render Command Streamer (RCS). RCS

manages the POSH pipe through POCS for POSH enabled contexts. Render command streamer loads the

context to execute on POCS when a POSH enable context execution begins in render pipe, similarly

preempts context executing in POCS when the POSH enabled context switches out of render pipe. Once

POCS is loaded with context it starts executing the ring buffer similar to RCS, refer Programming Model

section for more details.

Doc Ref # IHD-OS-ICLLP-Vol 9-1.20 7

Position Only Command Strea mer (POCS)

The POCS (Position Only Shader Command Streamer) unit primarily serves as the programming interface

between the render command streamer and the POSH pipe. It is responsible for fetching, decoding, and

dispatching of data packets (3D Commands with the header DWord removed) for the POSH pipe.

Logic Functions Includ ed

¶ MMIO register programming interface.

¶ DMA action for fetching of ring buffer and batch buffer data from memory.

¶ Management of the Head pointer for th e Ring Buffer.

¶ Decode and execution of command programmed in ring buffer and b atch buffers.

¶ Flushing the POSH pipe.

Handle NOOP.

The register programming bus is a DWord interface bus that is driven by the configuration master. The

POCS unit only claims memory mapped I/O cycles that are targeted to its range of 0x1_8000 to 0x1_9FFF.

The POCS and RCS use semaphore to synchronize their operations.

POSH Programming Model

The POSH + Render pipeline will appear as a monolithic engine from SW perspective. Render Command

Streamer (RCS) is hardware front end interface to the SW for the modif ied Render + POSH pipeline. SW

will use a single context (and associated LRCA) to submit work to the modified Render + POSH pipeline

through its associated ring buffer.

Context submission model should be visualized as context submitted to RCS. RCS will set up the context

definition in HW and trigg ers POSH pipe to execute the same context, resulting in execution of the same

ring buffer by render pipe and POSH pipe in parallel. POSH pipe has its own command streamer called

POCS (POSH Command Streamer). Similarly, when the context is switched out on th e render pipe due to

whatever reasons (Wait For Event, Semaphore Wait or Preemption due to pending execlist), RCS will

ensure POSH pipe is preempted and its corresponding logic state is saved through POCS.

POCS and RCS get to see the same ring buffer, however the execution of the same ring buffer by POCS

and RCS are asynchronous to each other and its SW responsibility to ensure POCS and RCS are

synchronized through semaphores as and when required. SW will provide independent command buffers

(batch buffers) to be executed by RCS and POCS. Marking of batch buffers for POCS and RCS and

execution of ring buffer are detailed in the latter subse ctions.

This model of execution has the following implications:

¶ POCS and RCS have to run on the same context definition. RCS sets up context with GAM and

POCS runs within this address space.

8 Doc Ref # IHD-OS-ICLLP-Vol 9-1.20

¶ Even though the currently running context may not be utilizing th e POSH pipe, a waiting context

with POSH enabled has to wait for the current context to be evicted. (wait ing context cannot take

advantage of the idle POSH pipe ahead of getting scheduled on the render engine)

POSH Enabled Context

A context submitted to r ender engine exercising POSH functionality is called òPOSH Enabledó context.

Application (UMD) decides if a context is POSH Enabled at the time of context creation. A context is

indicated as POSH enabled to HW by setting òPOSH Enableó bit in CTX_SR_CTL register of RCS. SW

allocates additional separate memory space (POSH LRCA) for the POSH Enabled contexts. POSH pipe

uses the POSH LRCA for its context state management.

Context Submission and LRCA for POSH

SW will continue to submit POSH enabled contexts to ELSP in RCS. There is no change in the pending

execlist submission or context switch status report mechanism to/from RCS.

Listed below are the SW changes required for submission of the POSH enabled context:

¶ òPOSH Enableó bit in CTX_SR_CTL of RCS must be set to indicate POSH enabled context to HW.

Refer POSH functionality control section for the bit definition and programming .

¶ POSH LRCA is provided to RCS through register programming in the ring context of RCS. Refer

RCS ring context details below.

¶ POSH LRCA format is similar to that of RCS, i.e PPHWSP followed by ring context followed by the

engine context. However POSH ring context will only have the ring buffer and batch buffer details.

POSH ring context will not have the page directory pointers details as the PPGTT is setup by RCS.

¶ SW does not control POCS context ID independently. The context ID for POCS will be supplied

from RCS, and thus will be the same.

¶ SW must update the ring context of POSH with ring buffer details on the very first submission and

whenever the ring buffer start address, control and head pointer details are updated. POSH pipe

(POCS) will sample the tail pointer fro m RCS. Note that the POCS and RCS share the same ring

buffer.

Doc Ref # IHD-OS-ICLLP-Vol 9-1.20 9

RCS Ring Context

The table below highlights the POSH LRCA details in RCS ring context. Ring context listed below is for

illustration of the change, òRegister State Contextó in òRender Logical Context Dataó should be referred as

the final format for implementation.

Description Unit # of DW

NOOP CSEL 1

MI_LOAD_REGISTER_IMM CSEL 1

 CSEL 2

Ring Buffer Head CSEL 2

Ring Tail Pointer Register CSEL 2

RING_BUFFER_START CSEL 2

RING_BUFFER_CONTROL CSEL 2

Batch Buffer Current Head Register (UDW) CSEL 2

Batch Buffer Current Head Register CSEL 2

Batch Buffer State Register CSEL 2

SECOND_BB_ADDR_UDW CSEL 2

SECOND_BB_ADDR CSEL 2

SECOND_BB_STATE CSEL 2

BB_PER_CTX_PTR CSEL 2

RCS_INDIRECT_CTX CSEL 2

RCS_INDIRECT_CTX_OFFSET CSEL 2

NOOP CSEL 2

NOOP CSEL 1

MI_LOAD_REGISTER_IMM CSEL 1

CTX_TIMESTAMP CSEL 2

PDP3_UDW CSEL 2

PDP3_LDW CSEL 2

PDP2_UDW CSEL 2

PDP2_LDW CSEL 2

PDP1_UDW CSEL 2

PDP1_LDW CSEL 2

PDP0_UDW CSEL 2

PDP0_LDW CSEL 2

MI_LOAD_REGISTER_IMM CSEL 1

POSH_LRCA CSEL 2

NOOP CSEL 9

10 Doc Ref # IHD-OS-ICLLP-Vol 9-1.20

Description Unit # of DW

NOOP CSEL 1

MI_LOAD_REGISTER_IMM CSEL 1

R_PWR_CLK_STATE CSEL 2

GPGPU_CSR_BASE_ADDRESS CSEL 3

NOOP CSEL 9

POCS Ring Context

Table below details the POSH ring context. Ring context listed below is for illustration of the change,

òRegister State Contextó in òRender Logical Context Dataó should be referred as the final format for

implementation.

Description Unit # of DW

NOOP CSEL 1

MI_LOAD_REGISTER_IMM CSEL 1

Ring Buffer Head CSEL 2

Ring Tail Pointer Register CSEL 2

RING_BUFFER_START CSEL 2

RING_BUFFER_CONTROL CSEL 2

Batch Buffer Current Head Register (UDW) CSEL 2

Batch Buffer Current Head Register CSEL 2

Batch Buffer State Register CSEL 2

SECOND_BB_ADDR_UDW CSEL 2

SECOND_BB_ADDR CSEL 2

SECOND_BB_STATE CSEL 2

BB_PER_CTX_PTR CSEL 2

RCS_INDIRECT_CTX(Always Invalid) CSEL 2

Doc Ref # IHD-OS-ICLLP-Vol 9-1.20 11

Description Unit # of DW

RCS_INDIRECT_CTX_OFFSET CSEL 2

NOOP CSEL 2

NOOP CSEL 48

POSH Command Tran sport

The following subtopics de scribe the command transport mechanism from SW to POCS.

"POSH Start" Batch Buffers

Batch buffers dedicated to be executed by POSH pipe are indicated by setting the field òPOSH Startó in

the MI_BATCH_BUFFER_START command header. Once òPOSH Startó is set in a batch buffer all the

following ch ained batch buffers and next level batch buffers will implicitly inherit the òPOSH Startó field

value. Once òPOSH Startó is set in a batch buffer all the following command sequences are to be

executed by POCS until the corresponding batch buffer sequencing is terminated through

MI_BATCH_BUFFER_END/MI_CONDITIONAL_BATCH_BUFFER_END command.

Example:

¶ Once òPOSH Startó is encountered in a first level batch buffer by HW, it will get reset only w hen the

first level batch buffer execution is terminated through batc h buffer end and the command

execution sequence goes back to the ring buffer,

¶ Similarly, once òPOSH Startó is encountered in a second level batch buffer by HW, it will get reset

only when the second level batch buffer execution is terminated through batch buffer end and the

command execution sequence goes back to the first level buffer,

¶ Similarly, once when òPOSH Startó is encountered in a third level batch buffer by HW, it will get

reset only when the third level batch b uffer execution is terminated throug h batch buffer end and

the command execution sequence goes back to the second level batch buffer.

Command sequences executed from the òPOSH Startó batch buffer may lead to chained batch buffers or

next level batch buffers. Batch buffers executed by POCS may have MI Commands, 3DSATE commands

and 3DPRIMTIVE commands for POSH pipe, however these will be a subset of the commands that are

supported by render pipe. RCS on parsing MI_BATCH_BUFFER_START command with òPOSH Startó

enabled NOOPS the command and moves on the following command.

MI Commands Supported by POCS

POCS supports all the MI commands supported by RCS except for the below exceptions.

POCS doesnõt support below commands and SW must not program them as part of the POSH command

sequence.

12 Doc Ref # IHD-OS-ICLLP-Vol 9-1.20

Commands not supported in POSH executed command buffers:

Column Title1

MI_DISPLAY_FLIP

MI_LOAD_SCANLINES_INCL/EXCL

MI_WAIT_FOR_EVENT

MI_USER_INTERRUPT

MI_REPORT_PERF_COUNT

MI_SET_CONTEXT

MI_ARB_ON_OFF

3D State Commands Supported by P OCS

The table below lists the 3DSTATE Commands Supported by POSH Pipe. State commands programmed

for POSH which are not listed in the table below will be gracefully discarded (NOOPõd) by POCS.

3D State Commands

¶ 3DSTATE_VF

¶ 3DSTATE_INDEX_BUFFER

¶ 3DSTATE_VERTEX_BUFFER

¶ 3DSTATE_VERTEX_ELEMENTS

¶ 3DSTATE_VF_COMPONENT_PACKING

¶ 3DSTATE_VF_INSTANCING

¶ 3DSTATE_VF_SGVS

¶ 3DSTATE_VF_TOPOLOGY

¶ 3DSTATE_VF_STATISTICS

¶ 3DPRIMTIVE

¶ 3DSTATE_VS

¶ 3DSTATE_PUSH_CONSTANT_ALLOC_VS

¶ 3DSTATE_CONSTANT_VS

¶ 3DSTATE_BINDING_TABLE_POOL_ALLOC

¶ 3DSTATE_BINDING_TABLE_POINTERS_VS

¶ 3DSTATE_SAMPLER_STATE_POINTERS_VS

¶ 3DSTATE_URB_VS

¶ 3DSTATE_CLIP

¶ 3DSTATE_SFFE

¶ 3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP

¶ 3DSTATE_SCISSOR_STATE_POINTERS

¶ 3DSTATE_MULTISAMPLE

¶ 3DSTATE_RASTER

Doc Ref # IHD-OS-ICLLP-Vol 9-1.20 13

3D State Commands

¶ 3DSTATE_DRAWING_RECTANGLE

¶ 3DSTATE_INT

¶ PIPECONTROL Command

¶ 3DSTATE_SBE (for PID computation)

¶ 3DSTATE_SAMPLE_PATTERN

¶ 3DSTATE_PTBR_PAGE_POOL_BASE_ADDRESS

¶ 3DSTATE_PTBR_FREE_LIST_BASE_ADDRESS

¶ 3DSTATE_PTBR_RENDER_LIST_BASE_ADDRESS

¶ 3DSTATE_PTBR_TILE_PASS_INFO

Commo n Non -Pipeline Sate Commands

¶ STATE_BASE_ADDRESS

"POSH Enable" Batch Buffers

POCS parses/traverses (doesnõt execute) the ring buffer to look for batch buffers programmed with

òPOSH Startó field set. òPOSH Enableó field in the MI_BATCH_BUFFER_START command is a hint to POCS

to traverse (parse, donõt execute) the batch buffer to look for òPOSH Startó batch buffers. òPOSH Enableó

field is only inherited to the chained batch buffer and doesnõt get inherit to the next level batch buffers

unlike òPOSH Startó field. òPOSH Enableó field must be explicitly set in the MI_BATCH_BUFFER_START

command which calls the next level batch buffers in order for the POCS to parse them to look for òPOSH

Startó batch buffers. POCS ends the òPOSH Enableó batch buffer on executing MI_BATCH_BUFFER_END or

on MI_CONDITIONAL_BATCH_BUFFER_END meeting the required condition. òPOSH Startó field takes

precedence over the òPOSH Enableó field in POCS.

Example:

¶ Once òPOSH Enableó is encountered in a first level batch buffer, POCS will traverse the whole of the

first level batch buffers (including chained first level) to check for òPOSH Startó field in

MI_BATCH_BUFFER_START command. POCS by default will not traverse the second level batch

buffers. SW must explicitly set the òPOSH Enableó field for the second level batch buffer called

from first level batch buffer if the second level batch buffer have to be traversed by POCS.

¶ Similarly, Once òPOSH Enableó is encountered in a second level batch buffer, POCS will traverse the

whole of th e second level batch buffers (including chained second level) to check for òPOSH Startó

field in MI_BATCH_BUFFER_START command. POCS by default will not traverse the third level batch

buffers. SW must explicitly set the òPOSH Enableó field for the third level batch buffer called from

second level batch buffer if the third level batch b uffer have to be traversed by POCS.

¶ Similarly, Once òPOSH Enableó is encountered in a third level batch buffer, POCS will traverse the

whole of the thi rd level batch buffers (including chained second level) to check for òPOSH Startó

field in MI_BATCH_BUFFER_START command.

14 Doc Ref # IHD-OS-ICLLP-Vol 9-1.20

RCS ignores òPOSH Enableó field and has no implications due to the òPOSH Enableó field set in the

MI_BATCH_BUFFER_START command.

POSH Ring Buffer

POCS and RCS share the same ring buffer. POCS parses the ring buffer to look for batch buffe rs start

commands with òPOSH Enableó or òPOSH Startó fields set, it doesnõt execute any commands

programmed in the ring buffer. POCS and RCS executing the same ring buffer results in two different

command sequences based on the òPOSH Startó and òPOSH Enableó fields programmed in various batch

buffers.

POSH Preemption

Once the context is loaded to POCS, only way it can be switched out is through explicit preemption from

RCS, POCS doesnõt switch out an context on encountering un-successful Wait for Events or Semaphore

Wait or running out of comma nds on head equal to tail pointer. RCS on switching out the context e ither

due to synchronous context switch or preemption, it also preempts POCS if the context is POSH enabled.

POCS receives preemption from RCS and triggers the preemption flow for POSH pipe. POSH pipe

supports 3D object level preemption. Preemption from RCS can happen when POCS is in one of the

below states:

¶ POCSFE has executed the context and have Head Equals Tail.

¶ POCSFE is busy executing commands.

POCS and RCS Synchronizatio n

Once POCS is triggered, it executes parallel to RCS, it only stops (doesnõt switch out) when it runs out of

command (head equals to tail) or on encountering unsuccessful semaphore wait. Command sequence

execution of POCS is completely asynchronous to RCS command sequence execution. SW is responsible

to explicitly synchronize POCS and RCS command sequence execution whenever required based on the

various produce consume model using MI_SEMAPHORE_WAIT command.

GPGPU/Media

POSH pipe is dedicated for 3D workloads and doesnõt support execution of GPGPU or Media workloads.

SW must ensure POSH pipe is flushed and stalled while render pipe is executing GPGPU or Media

workloads for POSH enabled contexts. This must be achieved using explicit M I_SEMAPHORE_WAIT

commands. This is necessary to ensure the Execution Units only sees either 3D workloads or

GPGPU/Media workloads, current architecture doesnõt support executing both 3D and GPGPU workloads

concurrently.

HW Binding Table with RS Disabled

RCS sets up the HW Binding Table functionality when 3DSTATE_BTP_POOL_ALLOC is programmed with

RS disabled. POSH pipe uses the mode set by RCS. SW will explicitly synchronize POCS and RCS to

Doc Ref # IHD-OS-ICLLP-Vol 9-1.20 15

ensure they always work in the same mode of operation wither HW BTP Enabled or Disabled. Note that

both POCS and RCS will maintain their own copie s of 3DSTATE_BTP_POOL_ALLOC.

Protection -On/Off Mode

RenderCS controlls the Protection-On/Off mode at all times for both POSH and Render pipes.

Protection-on/off mode set by Rend erCS applies to memory clients form both render pipe and POSH

pipe. based on the protection on signal from RCS. SW must explicitly ensure both POSH and Render

pipes are synchronized around Protection and ProtectionOff zones during the command sequencing.

POSH MMIO

POSH pipe implements its own set of MMIO registers similar to render pipe, however POSH pipe

implements the registers relevant to the functionality supported in POSH pipeline. Listed below are the

only registers that are accessible in POSH pipeline.

Registers in POCSFE

MMIO SYMBOL Suffix

DMA_FADD POCS

ACTHD POCS

ACTHD_UDW POCS

CS_ALU_ACCU POCS

CS_ALU_CF POCS

CS_ALU_SRCA POCS

CS_ALU_SRCB POCS

CS_ALU_ZF POCS

BB_ADDR POCS

BB_ADDR_DIFF POCS

BB_ADDR_UDW POCS

BB_OFFSET POCS

BB_PER_CTX_PTR POCS

BB_PREEMPT_ADDR POCS

BB_PREEMPT_ADDR_UDW POCS

BB_START_ADDR POCS

BB_START_ADDR_UDW POCS

BB_STATE POCS

CCID POCS

CTXT_PREMP_DBG POCS

CTXT_SR_CTL POCS

CXT_EL_OFFSET POCS

16 Doc Ref # IHD-OS-ICLLP-Vol 9-1.20

MMIO SYMBOL Suffix

CMD_CCTL_0 POCS

RCS_CTXID_PREEMPTION_HINT POCS

CTX_TIMESTAMP POCS

CTX_WA_BB_ADDR POCS

EXCC POCS

FORCE_TO_NONPRIV_0 POCS

FORCE_TO_NONPRIV_1 POCS

FORCE_TO_NONPRIV_2 POCS

FORCE_TO_NONPRIV_3 POCS

FORCE_TO_NONPRIV_4 POCS

FORCE_TO_NONPRIV_5 POCS

FORCE_TO_NONPRIV_6 POCS

FORCE_TO_NONPRIV_7 POCS

FORCE_TO_NONPRIV_8 POCS

FORCE_TO_NONPRIV_9 POCS

FORCE_TO_NONPRIV_10 POCS

FORCE_TO_NONPRIV_11 POCS

CS_GPR_R_0 POCS

CS_GPR_R_1 POCS

CS_GPR_R_2 POCS

CS_GPR_R_3 POCS

CS_GPR_R_4 POCS

CS_GPR_R_5 POCS

CS_GPR_R_6 POCS

CS_GPR_R_7 POCS

CS_GPR_R_8 POCS

CS_GPR_R_9 POCS

CS_GPR_R_10 POCS

CS_GPR_R_11 POCS

CS_GPR_R_12 POCS

CS_GPR_R_13 POCS

CS_GPR_R_14 POCS

CS_GPR_R_15 POCS

GFX_MODE POCS

HWS_PGA POCS

PWRCTX_MAXCNT POCS

Doc Ref # IHD-OS-ICLLP-Vol 9-1.20 17

MMIO SYMBOL Suffix

IPEHR POCS

IDLEDLY POCS

CSCMDOP POCS

CSCMDVLD POCS

INSTPM POCS

INSTPS POCS

MI_PREDICATE_RESULT_1 POCS

MI_PREDICATE_RESULT_2 POCS

MI_MODE POCS

NOPID POCS

PDP0 POCS

PDP1 POCS

PDP2 POCS

PDP3 POCS

PR_CTR_THRSH POCS

PREEMPTDLY POCS

PREEMPTION_HINT POCS

PREEMPTION_HINT_UDW POCS

DMA_FADD_P_UDW POCS

RING_BUFFER_CTL POCS

RING_BUFFER_HEAD POCS

RING_BUFFER_HEAD_PREEMPT_REG POCS

RING_BUFFER_START POCS

RING_BUFFER_TAIL POCS

TIMESTAMP POCS

RESET_CTRL POCS

SBB_ADDR POCS

SBB_ADDR_UDW POCS

SBB_PREEMPT_ADDR POCS

SBB_PREEMPT_ADDR_UDW POCS

SBB_STATE POCS

SEMA_WAIT_POLL POCS

CURRENT_LRCA POCS

18 Doc Ref # IHD-OS-ICLLP-Vol 9-1.20

Registers i n POCSBE

MMIO SYMBOL Suffix

3DPRIM_BASE_VERTEX POCS

3DPRIM_END_OFFSET POCS

3DPIM_INSTANCE_COUNT POCS

3DPRIM_START_INSTANCE POCS

3DPRIM_START_VERTEX POCS

3DPRIM_VERTEX_COUNT POCS

3DPRIM_XP0 POCS

3DPRIM_XP1 POCS

3DPRIM_XP2 POCS

IA_PRIMITIVES_COUNT POCS

IA_VERTICES_COUNT POCS

VS_INVOCATION_COUNT POCS

CL_INVOCATION_COUNT POCS

CL_PRIMITIVES_COUNT POCS

MI_PREDICATE_DATA POCS

MI_PREDICATE_RESULT POCS

MI_PREDICATE_SRC0 POCS

MI_PREDICATE_SRC1 POCS

CSBEFSM POCS

CSFLFLAG POCS

CSFLFSM POCS

CSFLTRK POCS

CS_CONTEXT_STATUS1 POCS

CTX_RESTORE_ACK_0 POCS

CTX_RESTORE_ACK_1 POCS

FF_MODE POCS

STATE_ACK POCS

STATE_ACK_SLICE1 POCS

STATE_ACK_SLICE2 POCS

STATE_ACK_SLICE3 POCS

State_ACK_Register_Slice_5 POCS

State_Ack_Register_Slice4 POCS

Doc Ref # IHD-OS-ICLLP-Vol 9-1.20 19

POSH Functiona lity Controls

POSH functionality enabling and disabling is hierarchically controlled at various levels in the context

execution flow.

¶ Context Granularity

¶ Batch Buffer Granularity

¶ 3DPRIMTIVE Granularity

POSH Control Description

Context

Granularity

POSH feature can be enabled or disabled at context level by programming the

òPOSH Enableó field in CTX_SR_CTL register of the RCS. When POSH is disabled in

CTX_SR_CTL register, RCS will not engage POSH.

Usage model is one time programming of òPOSH Enableó field at context creation

time.

Dynamic enabling or disabling of POSH during context execution should be

achieved through Batch Buffer and 3DPRIMTIVE granularity controls.

Batch Buffer

Granularity

POSH Enable:

òPOSH Enableó field in MI_BATCH_BUFFER_START command indicates the

possibility of encountering òPOSH Startó batch buffer from the corresponding

command sequence.

POSH Start:

Commands to be executed by the POCS must be programmed in a dedicated

batch buffer and this batch buffer is indicated with a bit òPOSH Startó in the

MI_BATCH_BUFFER_START command. Once POCS encounters the batch buffer

with òPOSH Startó it executes all the command in the corresponding batch buffer

and also the chained batch buffers from the corresponding buffer.

RCS skips the MI_BATCH_BUFFER_START command with òPOSH Startó set and

goes on the following command.

Programming Notes:

POCS executes only the MI_BATCH_BUFER_START commands programmed in the

ring buffer with òPOSH Enableó set and NOOPS (predicates) all the other

commands in the ring buffer. POCS only parses/traverses the batch buffer with

òPOSH Enableó to check for any batch buffer programmed with òPOSH Startó set.

SW must set òPOSH Enableó field in the MI_BATCH_BUFFER_START command

programmed in ring buffer if the commands in t he corresponding batch buffer or

the chained batch buffers (includes Second Level and third level) has at least one

batch buffer start command with òPOSH Startó set (also implies 3DPRIMITIVE

command for which POSH is enabled).

20 Doc Ref # IHD-OS-ICLLP-Vol 9-1.20

POSH Control Description

3DPRIMTIVE

Granularity

òPOSH Enableó field in the 3DPRIMTIVE command indicates the POSH pipe to

create the visibility recording data and indicates Render pipe to use visibility

recording data for the corresponding 3DPRIMTIVE command.

POSH Interrupts

There are no interrupts generated by POSH pipe.

Software Interface

This chapter describes the memory-mapped registers associated with the Memory Interface, including

brief descriptions of their use. Refer to each registerõs description and related feature for more

information on each ind ividual bit.

The registers detailed in this chapter are used across the family of products and are extensions to

previous projects. However, slight changes may be present in some registers (i.e., for features added or

removed), or some registers may be removed entirely. These changes are clearly marked within this

chapter.

Synchroni zation of the 3D Pipeline

Two types of synchronizations are supported for the 3D pipe: top of the pipe and end of t he pipe. Top of

the pipe synchronization really enforces the read-only cache invalidation. This synchronization

guarantees that primitives rendered after such synchronization event fetches the latest read-only data

from memory. End of the pipe synchronization enforces that the read and/or read -write buffers do not

have outstanding hardware accesses. These are used to implement read and write fences as well as to

write out certain statistics deterministically with respect to progress of primitives through th e pipeline

(and without requiring the pipeline to be flushed.) The PIPE_CONTROL command (see details below) is

used to perform all of above synchronizations.

Top-of -Pipe Synchronization

Top-of-pipe synchronization refers to SW actions to prepare HW for new state-binding at the beginning

of the rendering sequence in a given context. HW may have residual states cached in the state-caches

and read-only surfaces in various caches. With new rendering sequence, read-only surfaces may go

through change in the bind ing. Hence read-only invalidation is required before such new rendering

sequence. Read-only cache invalidation is top -of-pipe synchronization. Upon parsing this specific pipe-

control command, HW invalidates all caches in GT domain that have read-only surfaces but does not

guarantee invalidation beyond GT caches

Upon parsing this specific pipe-control command, HW invalidates all caches in GT domain that have

read-only surfaces but does not guarantee invalidation beyond GT caches (i.e. LLC).

Doc Ref # IHD-OS-ICLLP-Vol 9-1.20 21

Further, HW does not guarantee that all prior accesses to those read-only surfaces have completed.

Therefore, SW must guarantee that there are no pending accesses to those read-only surfaces before

initializing the top -of-pipe synchronization. PIPE-CONTROL command described below allows for

invalidating individual read -only stream type. It is recommended that driver invalidates only the required

caches on the need basis so that cache warm-up overhead can be reduced.

End-of -Pipe Synchronization

The driver can use end-of-pipe synchronization to know that rendering is complete (although not

necessarily in memory) so that i t can deallocate in-memory rendering state, read-only surfaces,

instructions, and constant buffers. An end-of-pipe synchronization point is also sufficient to guarantee

that all pending depth tests have completed so that the visible pixel count is complete prior to storing it

to memory. End-of-pipe completion is sufficient (although not necessary) to guarantee that read events

are complete (a òread fenceó completion). Read events are still pending if work in the pipeline requires

any type of read except a render target read (blend) to complete.

Write synchronization is a special case of end-of-pipe synchronization that requires that the r ender cache

and/or depth related caches are flushed to memory, where the data will become globally visible. This

type of synchronization is required prior to SW (CPU) actually reading the result data from memory, or

initiating an operation that will use as a read surface (such as a texture surface) a previous render target

and/or depth/sten cil buffer. Exercising the write cache flush bits (Render Target Cache Flush Enable,

Depth Cache Flush Enable, DC Flush) in PIPE_CONTROL only ensures the write caches are flushed and

doesnõt guarantee the data is globally visible.

SW can track the completion of the end -of-pipe-synchronization by using òNotify Enableó and òPost-

Sync Operation - Write Immediate Dataó in the PIPE_CONTROL command. òNotify Enableó and òPost-

Sync Operation - Write Immediate Dataó generate a fence cycle on achieving end-of-pipe-

synchronization for the correspo nding PIPE_CONTROL command. Fence cycle ensures all the write cycles

in front of it are to global visible point before they themselves get processed. It is guaranteed the data

flushed out by the PIPE_CONTROL is updated in memory by the time SW receives the corresponding

Pipe Control Notify interrupt.

In case the data flushed out by the render engine is to be read back in to the render engine in coherent

manner, then the render engine has to wait for the fence completion before accessing the flushed data.

This can be achieved by following means on various products:

PIPE_CONTROL command with CS Stall and the required write caches flushed with Post-Sync-Operation

as Write Immediate Data.

Example:

¶ WorkLoad-1 (3D/GPGPU/MEDIA)

¶ PIPE_CONTROL (CS Stall, Post-Sync-Operation Write Immediate Data, Required Write Cache Flush bits set)

 WorkLoad-2 (Can use the data produced or output by Workload-1)

22 Doc Ref # IHD-OS-ICLLP-Vol 9-1.20

Synchronization Actions

In order for the driver to act based on a synchronization point (usual ly the whole point), the reaching of

the synchronization point must be communic ated to the driver. This section describes the actions that

may be taken upon completion of a synchronizati on point which can achieve this communication.

Writing a Value to Memo ry

The most common action to perform upon reaching a synchronization point is t o write a value out to

memory. An immediate value (included with the synchronization command) may be writte n. In lieu of an

immediate value, the 64-bit value of the PS_DEPTH_COUNT (visible pixel count) or TIMESTAMP register

may be written out to memory. Th e captured value will be the value at the moment all primitives parsed

prior to the synchronization command s have been completely rendered, and optionally after all said

primiti ves have been pushed to memory. It is not required that a value be written to m emory by the

synchronization command.

Visible pixel or TIMESTAMP information is only useful as a delta between 2 values, because these

counters are free-running and are not to b e reset except at initialization. To obtain the delta, two

PIPE_CONTROL commands should be initiated with the command sequence to be measured between

them. The resulting pair of values in memory can then be subtracted to obtain a meaningful statistic

about the command sequence.

PS_DEPTH_COUNT

If the selected operation is to write the visible pixel count (PS_DEPTH_COUNT register), the

synchronization command should include the Depth Stall Enable parameter. There is more than one

point at which the global vis ible pixel count can be affected by the pipeline; once the synchronization

command reaches the first point at which the count can be affected, any primitives following it are

stalled at that point in the pipeline. This prevents the subsequent primitives fr om affecting the visible

pixel count until all primitives preceding the synchro nization point reach the end of the pipeline, the

visible pixel count is accurate and the synchronization is completed. This stall has a minor effect on

performance and should only be used in order to obtain accurate òvisible pixeló counts for a sequence of

primitives.

The PS_DEPTH_COUNT count can be used to implement an (API/DDI) òOcclusion Queryó function.

Generating an Interrupt

The synchronization command may indicate that a òSync Completionó interrupt is to be generated (if

enabled by the MI Interrupt Control Registers ð see Memory Interface Registers) once the rendering of all

prior primitives is complete. Again, the completion of rendering can be considered to be when the

internal render cache has been updated, or when the cache contents are visible in memory, as selected

by the command options.

Doc Ref # IHD-OS-ICLLP-Vol 9-1.20 23

Invalidating of Caches

If software wishes to use the notification that a synchronization point has been reached in order to reuse

referenced structures (surfaces, state, or instructions), it is not sufficient just to make sure rendering is

complete. If additional primitives are initia ted after new data is laid over the top of old in memory

following a synchronization point, it is poss ible that stale cached data will be referenced for the

subsequent rendering operation. In order to avoid t his, the PIPE_CONTROL command must be used. (See

PIPE_CONTROL Command description).

PIPE_CONTROL Command

The PIPE_CONTROL command provides mechanism to achieve the synchronization of the 3D pipeline

and to execute post-synchronization operations as described in the section òSynchronization of the 3D

pipelineó. Parsing a PIPE_CONTROL command stalls the 3D pipe only if the stall enable bit is set.

Commands after PIPE_CONTROL will continue to be parsed and processed in the 3D pipeline. This may

include additio nal PIPE_CONTROL commands. The implementation does enforce a practical upper limit

(8) on the number of PIPE_CONTROL commands that may be outstanding at once. Parsing a

PIPE_CONTROL command that causes this limit to be reached will stall the parsing of new commands

until the first of the outstanding PIP E_CONTROL commands reaches the end of the pipe and retires.

Although PIPE_CONTROL is intended for use with the 3D p ipe, it is legal to issue PIPE_CONTROL when

the Media pipe is selected. In this case PIPE_CONTROL will stall at the top of the pipe until the Media FFs

finish processing commands parsed before PIPE_CONTROL. Post-synchronization operations, flushing of

caches and interrupts will then occur if enabled via PIPE_CONTROL parameters. Due to this stalling

behavior, only one PIPE_CONTROL command can be outstanding at a time on the Me dia pipe.

For the invalidate operation of the pipe control, the follow ing pointers are affected. The invalidate

operation affects the context restore of these packets. If the pipe control invalidate operation is

completed before the context save, the indirect pointe rs will not be context restored from memory on a

context switch.

¶ Pipeline State Pointer

¶ Media State Pointer

¶ Constant Buffer Packet

Programm ing Note

¶ SW must ensure to invalidate the Media State and Constant Buffers using òGeneric Media State Clearó prior

to the releasing the associated resources (memory).

¶ SW must ensure to invalidate the Push Constants using òIndirect State Pointers Disableó prior to the

releasing the associated resources (memory).

It is up to software to program the appropriate read -only cache invalidation such as the sampler and

constant read caches or the instruction and state caches. Once notification is observed, new data may

then be loaded (potentially òon top ofó the old data) without fear of stale cache data being referenced

for subsequent rendering.

24 Doc Ref # IHD-OS-ICLLP-Vol 9-1.20

If software wishes to access the rendered data in memory (for analysis by the application or to copy it to

a new location to use as a texture, for example), it must also ensure that the write cache (render cache) is

flushed after the synchronization point is reached so that memory will be updat ed. This can be done by

setting the Write Cache Flush Enable bit. Note that the Depth Stall Enable bit must be clear in order

for the flush of the render cache to occur. Depth Stall Enable is intended only for accurate reporting of

the PS_DEPTH counter; the render cache cannot be flushed nor can the read caches be invalidated

(except for the instruction/state cache) in conjunction with this op eration.

Vertex caches are only invalidated when the VF invalidate bit is set in PIPE_CONTROL (i.e. decision is

done in software, not hardware) Note that the index-based vertex cache is always flushed between

primitive top ologies and of course PIPE_CONTROL can only be issued between primitive topologies.

Therefore only the VF (òaddress-basedó) cache is uniquely affected by PIPE_CONTROL.

PIPE_CONTROL

PIPE_CONTROL

Hardware supports up to 32 pending PIPE_CONTROL flushes.

The table below explains all the different flush/invalidation scenarios.

Caches Invalidated/Flushed by PIPE_CONTROL Bit Settings

Write

Cache

Flush

Notifi cation

Enabled

Non -VF RO

Cache

Invali date

VF RO Cache

Invalidate

Marker

Sent

Pipeline

Mar ker

Enable

Comple tion

Requested

Top of Pipe

Invalidate

Pulse from

CS

0 0 0 0 N/A N/A N/A N/A

0 0 0 1 Yes No N/A No

0 0 1 0 No N/A N/A Yes

0 0 1 1 Yes No No Yes

X 1 0 X Yes Yes Yes No

X 1 1 X Yes Yes Yes Yes

1 X 0 X Yes Yes Yes No

1 X 1 X Yes Yes Yes Yes

Programmin g Restrictions for PIPE_CONTROL

PIPE_CONTROL arguments can be split up into three categories:

¶ Post-sync operations

¶ Flush Types

¶ Stall

Doc Ref # IHD-OS-ICLLP-Vol 9-1.20 25

Post-sync operation is only indirectly affected by the flush type category via the stall bit. The stall

category depends on the both flush type and post -sync operation arguments. A PIPE_CONTROL with no

arguments set is Invalid .

Post-Sync Operation

These arguments relate to events that occur after the marker initiated by the PIPE_CONTROL command is

completed. The table below shows the restrictions:

Argument Bits Restriction

Protected Memory

Disable

27 Must not be set in PIPECONTROL command programmed for POCS.

LRI Post Sync

Operation

23 Post Sync Operation ([15:14] of DW1) must be set to 0x0.

Protected Mem Enable 22 Requires stall bit ([20] of DW1) set.

Protected Mem Enable 22 Must not be set in PIPECONTROL command programmed for POCS.

Global Snapshot Count

Reset

19 This bit must not be exercised on any product.

 Requires stall bit ([20] of DW1) set.

Generic Media State

Clear

16 Requires stall bit ([20] of DW1) set.

Generic Media State

Clear

16 Must not be set in PIPECONTROL command programmed for POCS.

Indirect State Pointers

Disable

9 Requires stall bit ([20] of DW1) set.

Store Data Index 21 Post-Sync Operation ([15:14] of DW1) must be set to something other than '0'.

Sync GFDT 17 Post-Sync Operation ([15:14] of DW1) must be set to something other than '0'

or 0x2520[13] must be set.

TLB inv 18 Requires stall bit ([20] of DW1) set.

TLB inv (POCS Only) 18 Post-Sync Operation ([15:14] of DW1) must be set to something other tha n '0'.

Post Sync Op 15:14 LRI Post Sync Operation ([23] of DW1) must be set to '0'.

Post Sync Op 15:14 Post Sync Operations must not be set to "Write PS Depth Count" in

PIPECONTROL command programmed for POCS.

Notify En 8 Must not be set in PIPECONTROL command programmed for POCS.

Protected Memory

Application ID

6 Requires stall bit ([20] of DW1) set.

Protected Memory

Application ID

6 Must not be set in PIPECONTROL command programmed for POCS.

Flush Types

These are arguments related to the type of read only invalidation or write cache flushing is being

requested. Note that there is only intra -dependency. That is, it is not affected by the post-sync operation

or the stall bit. The table below shows the restrictions:

26 Doc Ref # IHD-OS-ICLLP-Vol 9-1.20

Arguments Bit Restriction s

Tile Cache Flush 28

¶ SW must always set CS Stall bit when Tile Cache Flush Enable bit is set in the

PIPECONTROL command.

¶ SW must ensure level1 depth and color caches are flushed prior to flushing

the tile cache. This can be achieved by following means:

¶ Single PIPECONTROL command to flush level1 caches and the tile

cache. Attributes listed below must be set. OR

¶ Tile Cache Flush Enable

¶ Render Target Cache Flush Enable

¶ DC Flush Enable

¶ Depth Cache Flush Enable

¶ Flushing of L1 caches followed by flushing of tile cache through two

different PIEPCONTROL commands. SW must ensure not to issue any

rendering commands between the two PIPECONTROL commands.

Depth Stall
 Must not set in PIPECONTROL command programmed for POCS.

Render Target

Cache Flush

 Must not be set in PIPECONTROL command programmed for POCS.

Depth Cache

Flush

 Must not be set in PIPECONTROL command programmed for POCS.

Stall Pixel

Scoreboard

1 No Restriction.

Stall Pixel

Scoreboard

 Must not be set in PIPECONTROL command programmed for POCS.

DC Flush Enable Must not be set in PIPECONTROL command programmed for POCS.

Inst invalidate 11 No Restriction.

Tex invalidate 10 Requires stall bit ([20] of DW) set for all GPGPU Workloads.

Constant

invalidat e

3 No Restriction.

State Invalidate 2 No Restriction.

Stall

If the stall bit is set, the command streamer waits until the pipe is completely flushed.

Arguments Bit Restrictions

Stall Bit 20 No Restrictions.

Doc Ref # IHD-OS-ICLLP-Vol 9-1.20 27

3D Registers

Context Save Registers

VF Instance Count Registers

VF Instance Count Register Set

Register Type: MMIO_VF

Address: 08300h - 08384h

Default Value: 0000 0000h

Access: RO

Size: 1088 bits

Description: Set of Registers for storing the index count values. In case of

preempted drawcalls, these register store index

count/number per element. For the non -preempted

drawcalls, the values stored are ignored upon restore.

 These are saved as part of render contex t.

DWord Bits Description

0 31:0 Index Count 0. Index Count value for Element 0.

 Format: U32

1 31:0 Index Count 1. Index Count value for Element 1.

 Format: U32

... 31:0 ...

33 31:0 Index Count 33. Index Count value for Element 33.

 Format: U32

Mode and Misc Ct rl Registers

This section contains various registers for controls and modes

Controls/Modes

MI_MODE - Mode Register for Software Interf ace

FF_MODE - Thread Mode Register

GFX_MODE - Graphics Mode Register

GT_MODE - GT Mode Register

SAMPLER_MODE - SAMPLER Mode Register

CACHE_MODE_1 - Cache Mode Register 1

GAFS_MODE - Mode Register for GAFS

FBC_RT_BASE_ADDR_REGISTER - FBC_RT_BASE_ADDR_REGISTER

FBC_RT_BASE_ADDR_REGISTER_UPPER - FBC_RT_BASE_ADDR_REGISTER_UPPER

L3CNTLREG - L3 Control Register

28 Doc Ref # IHD-OS-ICLLP-Vol 9-1.20

B/D/F/Type:

Address Offset: 0x7034

Default Value: 60000060h

Access: RW; RO;

Size: 32 bit

Below Register provides GT2 based L3 sizes.

For GT1 ð all sizes need to be multiplied by 0.5.

For GT3 ð all sizes need to be multiplie d by 2.

For GT4 ð all sizes need to be multiplied by 3.

All L3 ways have to be included in the programming to ensure that no ways are left out.

L3CNTLREG - L3 Control Register

Register

CACHE_MODE_SS - Cache Mode Subslice Register

Pipelines Statistics C oun ter Registers

These registers keep continuous count of statistics regarding the 3D pipeline. They are saved and

restored with context but should not be changed by software except to reset them to 0 at context

creation time. Write access to the statistics counter in this section must be done through

MI_LOAD_REGISTER_IMM, MI_LOAD_REGISTER_MEM, or MI_LOAD_REGISTER_REG commands in ring

buffer or batch buffer. These registers may be read at any time; however, to obtain a meaningful result, a

pipeline flush just prior to reading the registers is necessary to synchronize the counts with the primitive

stream.

Registers

IA_VERTICES_COUNT - IA Vertices Count

IA_PRIMITIVES_COUNT - Primitives Generated By VF

VS_INVOCATION_COUNT - VS Invocation Counter

HS_INVOCATION_COUNT - HS Invocation Counter

DS_INVOCATION_COUNT - DS Invocation Counter

GS_INVOCATION_COUNT - GS Invocation Counter

GS_PRIMITIVES_COUNT - GS Primitives Counter

CL_INVOCATION_COUNT - Clipper Invocation Counter

PS_INVOCATION_COUNT - PS Invocation Count

PS_INVOCATION_COUNT_SLICE0 - PS Invocation Count for Slice0

PS_INVOCATION_COUNT_SLICE1 - PS Invocation Count for Slice1

PS_INVOCATION_COUNT_SLICE2 - PS Invocation Count for Slice2

PS_INVOCATION_COUNT_SLICE4 - PS Invocation Count for Slice4

Doc Ref # IHD-OS-ICLLP-Vol 9-1.20 29

Registers

PS_INVOCATION_COUNT_SLICE5 - PS Invocation Count for Slice5

CPS_INVOCATION_COUNT - CPS Invocation Counter

PS_DEPTH_COUNT

PS_DEPTH_COUNT_SLICE0 - PS Depth Count for Slice0

PS_DEPTH_COUNT_SLICE1 - PS Depth Count for Slice1

PS_DEPTH_COUNT_SLICE2 - PS Depth Count for Slice2

PS_DEPTH_COUNT_SLICE3 - PS Depth Count for Slice3

PS_DEPTH_COUNT_SLICE4 - PS Depth Count for Slice4

PS_DEPTH_COUNT_SLICE5 - PS Depth Count for Slice5

TIMESTAMP - Reported Timestamp Count

Stream Output 0 Write Offset

Stream Output 1 Writ e Offset

Stream Output 2 Write Offs et

Stream Output 3 Write Offset

Wind ow Hardware Generated Clear Value

CS_CTX_TIMESTAMP- CS Context Timestamp Cou nt:

This register provides a mechanism to obtain cumulative run time of a GPU context on HW.

Register

CS_CTX_TIMESTAMP - CS Context Timestamp Count

Diagram below details on when CS_CTX_TIMESTAMP run time, save/restored during a GPGPU context

switch flow.

30 Doc Ref # IHD-OS-ICLLP-Vol 9-1.20

AUTO_DRAW Registers

3DPRIM_END_OFFSET - Auto Draw End Offset

3DPRIM_START_VERTEX - Load Indirect St art Vertex

3DPRIM_VERTEX_COUNT - Load Indirect Vertex Count

3DPRIM_INSTANCE_COUNT - Load Indirect Instance Count

3DPRIM_START_INSTANCE - Load Indirect Start Instance

3DPRIM_BASE_VERTEX - Load Indirect Base Vertex

3DPRIM_XP0 - Load Indirect Extended Paramet er 0

3DPRIM_XP1 - Load Indire ct Extended Parameter 1

3DPRIM_XP2 - Load Indirect Extended Parameter 2

MMIO Registers for GPGPU In direct Dispatch

These registers are normally written with the MI_LOAD_REGISTER_MEMORY command rather than from

the CPU.

GPGPU_DISPATCHDIMX - GPGPU Dispatch Dimension X

GPGPU_DISPATCHDIMY - GPGPU Dispatch Dimension Y

GPGPU_DISPATCHDIMZ - GPGPU Dispatch Dimension Z

TS_GPGPU_THREADS_DISPATCHED - Count Active Channels Dispatched

Commands

This section describes the commands specific to 3D-Compute engine

State Commands

This section covers the following commands:

¶ STATE_PREFETCH command. The STATE_PREFETCH command is provided strictly as an optional

mechanism to possibly enhance pipeline performance by prefetching data into the GPEõs

Instruction and State Cache (ISC).

¶ STATE_SIP command

Command

STATE_SIP

3DSTATE_URB_CLEAR

STATE_BASE_ADDRESS

The STATE_BASE_ADDRESS command sets the base pointers for subsequent state, instruction, and media

indirect object accesses by the GPE. (See Memory Access Indirection for details.)

Doc Ref # IHD-OS-ICLLP-Vol 9-1.20 31

The following commands must be reissued following any change to the base addresses:

¶ 3DSTATE_PIPELINE_POINTERS

¶ 3DSTATE_BINDING_TABLE_POINTERS

¶ MEDIA_STATE_POINTERS

Execution of this command causes a full pipeline flush, thus its use should be minimized for hig her

performance.

Command

STATE_BASE_ADDRESS

PIPELINE_SELECT

The Pipeline Select state is contained within the logical context.

Memory Interface Commands for Renderin g Engine

Command

MI_SET_CONTEXT

MI_TOPOLOGY_FILTER

Command O rdering Rules

There are several restrictions regarding the ordering of commands issued to the GPE. This subsection

describes these restrictions along with some explanation of why they exist. Refer to the various

command descriptions for additio nal informat ion.

PIPELINE_SELECT

The previously-active pipeline needs to be flushed immediately before switching to a different pipeline

via use of the PIPELINE_SELECT command.

Refer to for details on the PIPELINE_SELECT command.

PIPELINE_SELECT

PIPE_CONTROL

The PIPE_CONTROL command does not require URB fencing/allocation to have been performed, nor

does it rely on any other pipeline state. It is intended to be used on both the 3D pipe a nd the Media

pipe. It has special optimizations to support the pi pelining capability in the 3D pipe which do not apply

to the Media pipe.

Common Pipeline State -Setting Commands

The following commands are used to set state common to both the 3D and Media pi pelines. This state is

comprised of CS FF unit state, non-pipelined global state (EU, etc.), and Sampler shared-function state.

32 Doc Ref # IHD-OS-ICLLP-Vol 9-1.20

¶ STATE_BASE_ADDRESS

¶ STATE_SIP

¶ 3DSTATE_SAMPLER_PALETTE_LOAD

¶ 3DSTATE_CHROMA_KEY

¶ 3DSTATE_BINDING_TABLE_POOL_ALLOC

The state variables associated with these commands must be set appropriately prior to ini tiating activity

within a pipeline (i.e., 3DPRIMITIVE or MEDIA_OBJECT).

3D Pipeline -Specific State -Setting Commands

The following commands are used to set state specific to the 3D Pipeline.

¶ 3DSTATE_PIPELINED_POINTERS

¶ 3DSTATE_BINDING_TABLE_POINTERS

¶ 3DSTATE_VERTEX_BUFFERS

¶ 3DSTATE_VERTEX_ELEMENTS

¶ 3DSTATE_INDEX_BUFFERS

¶ 3DSTATE_VF_STATISTICS

¶ 3DSTATE_DRAWING_RECTANGLE

¶ 3DSTATE_CONSTANT_COLOR

¶ 3DSTATE_DEPTH_BUFFER

¶ 3DSTATE_POLY_STIPPLE_OFFSET

¶ 3DSTATE_POLY_STIPPLE_PATTERN

¶ 3DSTATE_LINE_STIPPLE

¶ 3DSTATE_GLOBAL_DEPTH_OFFSET

The state variables associated with these commands must be set appropriately prior to issuing

3DPRIMITIVE.

Media Pipeline -Specific State -Setting Commands

The following command is used to set state specific to the Media pip eline:

¶ MEDIA_STATE_POINTERS

The state variables associated with this command must be set appropriately prior to issuing

MEDIA_OBJECT.

3DPRIMITIVE

Before issuing a 3DPRIMITIVE command, all state (with the exception of MEDIA_STATE_POINTERS) needs

to be valid. Thus, the commands used to assign that state must be issued before issuing 3DPRIMITIVE.

Doc Ref # IHD-OS-ICLLP-Vol 9-1.20 33

MEDIA_OBJECT

Before issuing a MEDIA_OBJECT command, all state (with the exception of 3D-pipeline-specific state)

needs to be valid. Therefore, the commands used to set this state need to have been issued at some

point prior to the issue of MEDIA_OBJECT.

Engine State

This section describes the state specific to the 3D-Compute Engine

Memory Access Indirectio n

The GPE supports the indirection of certain graphics (GTT-mapped) memory accesses. This support

comes in the form of two base address state variables used in certain memory address computations with

the GPE.

The intent of this functionality is to support the dynamic relocation of certain driver -generated memory

structures after command buffers have been generated but prior to their submittal for execution. For

example, as the driver builds the command stream it could append pipeline state descriptors, kernel

binaries, etc. to a general state buffer. References to the individual items would be ins erted in the

command buffers as offsets from the base address of the state buffer. The state buffer could then be

freely relocated prior to command buffer exec ution, with the driver only needing to specify the final base

address of the state buffer. Two base addresses are provided to permit surface-related state (binding

tables, surface state tables) to be maintained in a state buffer separate from the general state buffer.

While the use of these base addresses is unconditional, the indirection can be effectively disabled by

setting the base addresses to zero. The following table lists the various GPE memory access paths and

which base address (if any) is relevant.

Base Address Utilization

Base Address

Used Memory Accesses

General State Base

Address

DataPor t Read/Write DataPort memory accesse s resulting from ôstatelessõ DataPort Read/Write

requests. See DataPort for a definition o f the ôstatelessõ form of requests.

Dynamic State Base

Address

Sampler reads of SAMPLER_STATE data and associated SAMPLER_BORDER_COLOR_STATE.

Viewport states used by CLIP, SF, and WM/CC

COLOR_CALC_STATE, DEPTH_STENCIL_STATE, and BLEND_STATE

Push Constants (depending on state of INSTPM<CONSTANT_BUFFER Address Offset Disable>)

Instruction Base

Address

Normal EU instruction str eam (non-system routine)

System ro uti ne EU instruction stream (starting address = SIP)

Surface State Base

Address

Sampler and DataPort reads of BINDING_TABLE_STATE, as referenced by BT pointers passed via

3DSTATE_BINDING_TABLE_POINTERS

Sampler and DataPort reads of SURFACE_STATE data

Indirect Object Base

Address

MEDIA_OBJECT Indirect Data accessed by the CS unit .

34 Doc Ref # IHD-OS-ICLLP-Vol 9-1.20

Base Address

Used Memory Accesses

None CS unit reads from Ring Buffers , Batch Buffers

CS writes resulting from PIPE_CONTROL command

All VF unit memory accesses (Index B uffer s, Vert ex Buffers)

All Sampler Surface Memory Data accesses (texture fetch, etc.)

All DataPort memory accesses except ôstatelessõ DataPort Read/Write requests (e.g., RT accesses.) See

DataPort for a definition of the ôstatelessõ form of requests.

Memory reads resulting from STATE_PREFETCH commands

Any physical memory access by the device

GTT-mapped accesses not included above (i.e., default)

Push Constants (depending on state of INSTPM<CONSTANT_BUFFER Address Offset Disable>)

The following notation is used in the BSpec to distinguish between addresses and offsets:

Notation Definition

PhysicalAddress[n:m] Corresponding bits of a physical graphics memory byte address (not mapped by a

GTT)

GraphicsAddress[n:m] Corresponding bits of an absolute, virtual graphics memory byte address (mapped

by a GTT)

GeneralStateOffset[n:m] Corresponding bits of a relative byte offset added to the General State Base

Address value, the result of which is interpreted as a virtual graphics memory byte

address (mapped by a GTT)

DynamicStateOffset[n:m] Corresponding bits of a relative byte offset added to the Dynamic State Base

Address value, the result of which is interpreted as a virtual graphics memory byte

address (mapped by a GTT)

InstructionBaseOffset[n:m] Corresponding bits of a relative byte offset added to the Instruction Base Address

value, the result of which is interpreted as a virtual graphics memory byte address

(mapped by a GTT)

SurfaceStateOffset[n:m] Corresponding bits of a relative byte offset added to the Surface State Base

Address value, the result of which is interpreted as a virtual graphics memory byte

address (mapped by a GTT)

Context Image

Logical Contexts are memory images used to store copies of the deviceõs rendering and ring context.

Logical Contexts are aligned to 256-byte boundaries.

Logical contexts are referenced by their memory address. The format and contents of rendering contexts

are considered device-dependent and software must not access the memory contents directly. The

definition of the logical rendering and po wer context memory formats is included here primarily for

internal documentation purposes.

Doc Ref # IHD-OS-ICLLP-Vol 9-1.20 35

Power Context Image

Render Engine Power Context

The table below captures the data from CS power context save/restored by PM. Address offsets in this

table are relative to the starting location of CS in the overall power context image manag ed by PM.

RCS Power Context Image

Descripti on Offset Unit

of

DW

Address Offset

(PWR) CSFE/CSBE

NOOP CS 1 0 CSFE

Load_Register_Immediate hea der 0x1100_10DB CS 1 001 CSFE

Load_Register_Immediate header 0x1100_10BF CS 1 0001 CSFE

GFX_MODE 0x229C CS 2 0002 CSFE

GHWSP 0x2080 CS 2 0004 CSFE

RING_BUFFER_CONTROL (Ring Always

Disabled)

0x203C CS 2 0006 CSFE

Ring Head Pointer Register 0x2034 CS 2 0008 CSFE

Ring Tail Pointer Register 0x2030 CS 2 000A CSFE

RING_BUFFER_START 0x2038 CS 2 000C CSFE

RING_BUFFER_CONTROL (Original status) 0x203C CS 2 000E CSFE

Batch Buffer Current Head Register (UDW) 0x2168 CS 2 0010 CSFE

Batch Buffer Current Head Register 0x2140 CS 2 0012 CSFE

Batch Buffer State Register 0x2110 CS 2 0014 CSFE

SECOND_BB_ADDR_UDW 0x211C CS 2 0016 CSFE

SECOND_BB_ADDR 0x2114 CS 2 0018 CSFE

SECOND_BB_STATE 0x2118 CS 2 001A CSFE

RC_PWRCTX_MAXCNT 0x2054 CS 2 001E CSFE

CTX_WA_PTR 0x2058 CS 2 0020 CSFE

NOPID 0x2094 CS 2 0022 CSFE

HWSTAM 0x2098 CS 2 0024 CSFE

IMR 0x20A8 CS 2 0026 CSFE

EIR 0x20B0 CS 2 0028 CSFE

EMR 0x20B4 CS 2 002A CSFE

CMD_CCTL_0 0x20C4 CS 2 002C CSFE

UHPTR 0x2134 CS 2 002E CSFE

BB_PREEMPT_ADDR_UDW 0x216C CS 2 0030 CSFE

BB_PREEMPT_ADDR 0x2148 CS 2 0032 CSFE

RING_BUFFER_HEAD_PREEMPT_REG 0x214C CS 2 0034 CSFE

36 Doc Ref # IHD-OS-ICLLP-Vol 9-1.20

Descripti on Offset Unit

of

DW

Address Offset

(PWR) CSFE/CSBE

PREEMPT_DLY 0x2214 CS 2 0036 CSFE

CTXT_PREMP_DBG 0x2248 CS 2 0038 CSFE

SYNC_FLIP_STATUS 0x22D0 CS 2 003A CSFE

SYNC_FLIP_STATUS_1 0x22D4 CS 2 003C CSFE

SYNC_FLIP_STATUS_2 0x22EC CS 2 003E CSFE

WAIT_FOR_RC6_EXIT 0x20CC CS 2 0040 CSFE

RCS_CTXID_PREEMPTION_HINT 0x24CC CS 2 0042 CSFE

CS_PREEMPTION_HINT_UDW 0x24C8 CS 2 0044 CSFE

CS_PREEMPTION_HINT 0x24BC CS 2 0046 CSFE

CCID Register 0x2180 CS 2 0048 CSFE

SBB_PREEMPT_ADDRESS_UDW 0x2138 CS 2 004A CSFE

SBB_PREEMPT_ADDRESS 0x213C CS 2 004C CSFE

MI_PREDICATE_RESULT_2 0x23BC CS 2 004E CSFE

CTXT_ST_PTR 0x23A0 CS 2 0050 CSFE

CTXT_ST_BUF 0x2370 CS 24 0052 CSFE

SEMA_WAIT_POLL 0x224C CS 2 0082 CSFE

IDLEDELAY 0x223C CS 2 0084 CSFE

DISPLAY MESSAGE FORWARD STATUS 0x22E8 CS 2 0086 CSFE

RCS_FORCE_TO_NONPRIV 0x24D0 CS 24 0088 CSFE

EXECLIST_STATUS_REGISTER 0x2234 CS 2 00A0 CSFE

CXT_OFFSET 0x21AC CS 2 00A4 CSBE

STOP_PARSER_CONTROL 0x2424 CS 2 00A6 CSBE

STOP_PARSER_HINT_ADDR 0x2428 Cs 4 00A8 CSBE

SYNC_FLIP_STATUS_3 0x22B8 CS 2 00AC CSFE

SYNC_FLIP_STATUS_4 0x22C0 CS 2 00AE CSFE

SYNC_FLIP_STATUS_5 0x22C4 CS 2 00B0 CSFE

SYNC_FLIP_STATUS_6 0x21F8 CS 2 00B2 CSFE

DISPLAY MESSAGE FORWARD STATUS_2 0x2188 CS 2 00B4 CSFE

DISPLAY MESSAGE FORWARD STATUS_3 0x218C CS 2 00B6 CSFE

EXECLIST_SQ_CONTENTS 0x2510 -0x254F CS 32 00B8 CSFE

CSB_INTERRUPT_MASK 0x2218 CS 2 00D8 CSFE

NOOP CS 2 00DE CSFE

NOOP CS 1 00E0 CSBE

Load_Register_Immediate header 0x1100_1019 CS 1 00E1 CSBE

FF_THREAD_MODE 0x20A0 CS 2 00E6 CSBE

Doc Ref # IHD-OS-ICLLP-Vol 9-1.20 37

Descripti on Offset Unit

of

DW

Address Offset

(PWR) CSFE/CSBE

GAFS_Mode 0x212C CS 2 00EC CSBE

RS_PREEMPTION_HINT_UDW 0x24C4 CS 2 00F2 CSBE

RS_PREEMPTION_HINT 0x24C0 CS 2 00F4 CSBE

VF PREMPTION VERTEX HINT 0x83B0 VF 2 00F8 CSBE

VF PREEMPTION INSTANCE HINT 0x83B4 VF 2 00FA CSBE

NOOP CS 3 00FC CSBE

MI_BATCH_BUFFER_END CS 1 00FF CSBE

POSH Power Context

The table below captures the data from CS power context save/restored by PM. Address offsets in this

table are relative to the starting location of CS in the overall power context image managed by PM.

POCS Power Cont ext Image

Description Offset Unit

of

DW

Address Offset

(PWR) CSFE/CSBE

NOOP POCS 1 0 CSFE

Load_Register_Immediate header 0x1100_1045 POCS 1 001 CSFE

GFX_MODE 0x1829C POCS 2 0002 CSFE

GHWSP 0x18080 POCS 2 0004 CSFE

RC_PWRCTX_MAXCNT 0x18054 POCS 2 0008 CSFE

CTX_WA_PTR 0x18058 POCS 2 000A CSFE

NOPID 0x18094 POCS 2 000C CSFE

CMD_CCTL_0 0x180C4 POCS 2 000E CSFE

PREEMPT_DLY 0x18214 POCS 2 0010 CSFE

CTXT_PREMP_DBG 0x18248 POCS 2 0012 CSFE

WAIT_FOR_RC6_EXIT 0x180CC POCS 2 0014 CSFE

RCS_CTXID_PREEMPTION_HINT 0x184CC POCS 2 0016 CSFE

CS_PREEMPTION_HINT_UDW 0x184C8 POCS 2 0018 CSFE

CS_PREEMPTION_HINT 0x184BC POCS 2 001A CSFE

MI_PREDICATE_RESULT_2 0x183BC POCS 2 001C CSFE

SEMA_WAIT_POLL 0x1824C POCS 2 001E CSFE

IDLEDELAY 0x1823C POCS 2 0020 CSFE

RCS_FORCE_TO_NONPRIV 0x184D0 POCS 24 0022 CSFE

EXECLIST_STATUS_REGISTER 0x18234 POCS 2 003A CSFE

CXT_OFFSET 0x181AC POCS 2 003E CSFE

STOP_PARSER_CONTROL 0x18424 POCS 2 0040 CSFE

38 Doc Ref # IHD-OS-ICLLP-Vol 9-1.20

Description Offset Unit

of

DW

Address Offset

(PWR) CSFE/CSBE

STOP_PARSER_HINT_ADDR 0x18428 POCS 4 0042 CSFE

NOOP POCS 8 0048 CSFE

NOOP POCS 1 0050 CSBE

Load_Register_Immed iate header 0x1100_1011 POCS 1 0051 CSBE

FF_THREAD_MODE 0x180A0 POCS 2 0056 CSBE

VF PREMPTION VERTEX HINT 0x16EB0 VFR 2 0060 CSBE

VF PREEMPTION INSTANCE HINT 0x16EB4 VFR 2 0062 CSBE

NOOP POCS 10 0064 CSBE

NOOP POCS 1 006E

MI_BATCH_BUFFER_END POCS 1 006F CSBE

Engine Register and State Context

This section describes programming requirements for t he Register State Context.

Programming Note

Context: Register State Context

¶ All the MMI O registers part of the òEngine Register and State Context Imageó are context specific and gets

context save/restored upon a context switch. MMIO register values belonging to a context can be exercised

through HOST/IA MMIO interface only when t he context is active in HW. Exercising context specific MMIO

registers through HOST/IA MMIO is completely asynchronous to the context execution in HW and canõt

guarantee a desired sampling point during execution. In execlist mode of scheduling there is no active

context when HW is Idle.

¶ All the write access to MMIO registers listed in the òEngine Register and State Context imageó subsections

below must be done through MI commands (MI_LOAD_REGISTER_IMM, MI_LOAD_REG_MEM,

MI_LOAD_REGISTER_REG) in the command sequence.

¶ MMIO reads or writes to any of the registers listed in the òEngine Register and State Context imageó

subsections through HOST/IA MMIO interface must follow the steps below:

¶ SW should set the Force Wakeup bit to prevent GT from entering C6.

¶ Write 0x2050[31:0] = 0x00010001 (disable sequence).

¶ Disable IDLE messaging in CS (Write 0x2050[31:0] = 0x00010001).

¶ Poll/Wait f or register bits of 0x22A4[6:0] turn to 0x30 value.

¶ Read/Write to desired MMIO registers.

¶ Enable IDLE messaging in CS (Write 0x2050[31:0] = 0x00010000).

¶ Force Wakeup bit should be reset to enable C6 entry.

Doc Ref # IHD-OS-ICLLP-Vol 9-1.20 39

EXECLIST CONTEXT(Ring)

EXECLIST CONTEXT

(PPGTT Base)

ENGINE CONTEXT(CSFE)

ENGINE CONTEXT(CSBE)

ENGINE CONTEXT(SOL)

ENGINE CONTEXT(VF)

ENGINE

CONTEXT(GAMWC)

ENGINE CONTEXT(GAMT)

ENGINE CONTEXT(LNCF)

ENGINE CONTEXT(SVG)

ENGINE CONTEXT(SVL)

ENGINE CONTEXT(TDL)

ENGINE CONTEXT(WM)

ENGINE CONTEXT(SC)

ENGINE CONTEXT(DM)

ENGINE CONTEXT(VFE)

ENGINE CONTEXT(CS -

Footer)

POSH Context Image

EXECLIST CONTEXT(Ring)

EXECLIST CONTEXT (PPGTT

Base)

ENGINE CONTEXT(CSFE)

ENGINE CONTEXT(CSBE)

ENGINE CONTEXT(VFR)

ENGINE CONTEXT(OVR)

ENGINE CONTEXT(SVGR)

ENGINE CONTEXT(CS -

Footer)

40 Doc Ref # IHD-OS-ICLLP-Vol 9-1.20

Register State Context ICL

Color Coding

EXECLIST CONTEXT

EXECLIST CONTEXT(PPGTT Base)

ENGINE CONTEXT

EXTENDED ENGINE CONTEXT

Description MMIO Offset/Command Unit # of DW

NOOP CSEL 1

MI_LOAD_REGISTER_IMM 0x1100_101D CSEL 1

 0x2244 CSEL 2

Ring Buffer Head 0x2034 CSEL 2

Ring Tail Pointer Register 0x2030 CSEL 2

RING_BUFFER_START 0x2038 CSEL 2

RING_BUFFER_CONTROL 0x203C CSEL 2

Batch Buffer Current Head Register (UDW) 0x2168 CSEL 2

Batch Buffer Current Head Register 0x2140 CSEL 2

Batch Buffer State Register 0x2110 CSEL 2

SECOND_BB_ADDR_UDW 0x211C CSEL 2

SECOND_BB_ADDR 0x2114 CSEL 2

SECOND_BB_STATE 0x2118 CSEL 2

BB_PER_CTX_PTR 0x21C0 CSEL 2

RCS_INDIRECT_CTX 0x21C4 CSEL 2

RCS_INDIRECT_CTX_OFFSET 0x21C8 CSEL 2

CCID 0x2180 CSEL 2

NOOP CSEL 1

MI_LOAD_REGISTER_IMM 0x1100_1011 CSEL 1

CTX_TIMESTAMP 0x23A8 CSEL 2

PDP3_UDW 0x228C CSEL 2

PDP3_LDW 0x2288 CSEL 2

PDP2_UDW 0x2284 CSEL 2

PDP2_LDW 0x2280 CSEL 2

PDP1_UDW 0x227C CSEL 2

PDP1_LDW 0x2278 CSEL 2

PDP0_UDW 0x2274 CSEL 2

PDP0_LDW 0x2270 CSEL 2

Doc Ref # IHD-OS-ICLLP-Vol 9-1.20 41

Description MMIO Offset/Command Unit # of DW

MI_LOAD_REGISTER_IMM 0x1100_1001 CSEL 1

POSH_LRCA 0x21B0 CSEL 2

NOOP CSEL 9

NOOP CSEL 1

MI_LOAD_REGISTER_IMM 0x1100_0001 CSEL 1

R_PWR_CLK_STATE 0x20C8 CSEL 2

GPGPU_CSR_BASE_ADDRESS CSEL 3

NOOP CSEL 9

NOOP CSFE 1

MI_LOAD_REGISTER_IMM 0x1100_1057 CSFE 1

EXCC 0x2028 CSFE 2

MI_MODE 0x209C CSFE 2

INSTPM 0x20C0 CSFE 2

PR_CTR_CTL 0x2178 CSFE 2

PR_CTR_THRSH 0x217C CSFE 2

TIMESTAMP Register (LSB) 0x2358 CSFE 2

BB_START_ADDR_UDW 0x2170 CSFE 2

BB_START_ADDR 0x2150 CSFE 2

BB_ADD_DIFF 0x2154 CSFE 2

BB_OFFSET 0x2158 CSFE 2

MI_PREDICATE_RESULT_1 0x241C CSFE 2

CS_GPR (1-16) 0x2600 CSFE 64

IPEHR 0x2068 CSFE 2

NOOP CSFE 6

NOOP CSBE 1

MI_LOAD_REGISTER_IMM 0x1100_10AD CSBE 1

CS_CONTEXT_STATUS1 0x2184 CSBE 2

IA_VERTICES_COUNT 0x2310 CSBE 4

IA_PRIMITIVES_COUNT 0x2318 CSBE 4

VS_INVOCATION_COUNT 0x2320 CSBE 4

HS_INVOCATION_COUNT 0x2300 CSBE 4

DS_INVOCATION_COUNT 0x2308 CSBE 4

GS_INVOCATION_COUNT 0x2328 CSBE 4

GS_PRIMITIVES_COUNT 0x2330 CSBE 4

CL_INVOCATION_COUNT 0x2338 CSBE 4

CL_PRIMITIVES_COUNT 0x2340 CSBE 4

42 Doc Ref # IHD-OS-ICLLP-Vol 9-1.20

Description MMIO Offset/Command Unit # of DW

PS_INVOCATION_COUNT_0 0x22C8 CSBE 4

PS_DEPTH_COUNT _0 0x22D8 CSBE 4

GPUGPU_DISPATCHDIMX 0x2500 CSBE 2

GPUGPU_DISPATCHDIMY 0x2504 CSBE 2

GPUGPU_DISPATCHDIMZ 0x2508 CSBE 2

MI_PREDICATE_SRC0 0x2400 CSBE 2

MI_PREDICATE_SRC0 0x2404 CSBE 2

MI_PREDICATE_SRC1 0x2408 CSBE 2

MI_PREDICATE_SRC1 0x240C CSBE 2

MI_PREDICATE_DATA 0x2410 CSBE 2

MI_PREDICATE_DATA 0x2414 CSBE 2

MI_PRED_RESULT 0x2418 CSBE 2

3DPRIM_END_OFFSET 0x2420 CSBE 2

3DPRIM_START_VERTEX 0x2430 CSBE 2

3DPRIM_VERTEX_COUNT 0x2434 CSBE 2

3DPRIM_INSTANCE_COUNT 0x2438 CSBE 2

3DPRIM_START_INSTANCE 0x243C CSBE 2

3DPRIM_BASE_VERTEX 0x2440 CSBE 2

Load Indirect Extended Pa rameter 0 0x2690 CSBE 2

Load Indirect Extended Parameter 1 0x2694 CSBE 2

Load Indirect Extended Parameter 2 0x2698 CSBE 2

GPGPU_THREADS_DISPATCHED 0x2290 CSBE 4

PS_INVOCATION_COUNT_1 0x22F0 CSBE 4

PS_DEPTH_COUNT _1 0x22F8 CSBE 4

DUMMY_REG 0x215C CSBE 2

DUMMY_REG 0x2480 CSBE 2

DUMMY_REG 0x2484 CSBE 2

DUMMY_REG 0x2490 CSBE 2

DUMMY_REG 0x2494 CSBE 2

OA_CTX_CONTROL 0x2360 CSBE 2

OACTXID 0x2364 CSBE 2

PS_INVOCATION_COUNT_2 0x2448 CSBE 4

PS_DEPTH_COUNT_2 0x2450 CSBE 4

DUMMY_REG 0x2174 CSBE 2

CPS_INVOCATION_COUNT 0x2478 CSBE 4

PS_INVOCATION_COUNT_3 0x2458 CSBE 4

Doc Ref # IHD-OS-ICLLP-Vol 9-1.20 43

Description MMIO Offset/Command Unit # of DW

PS_DEPTH_COUNT_3 0x2460 CSBE 4

PS_INVOCATION_COUNT_4 0x2468 CSBE 4

PS_DEPTH_COUNT_4 0x2470 CSBE 4

PS_INVOCATION_COUNT_5 0x24A0 CSBE 4

PS_DEPTH_COUNT_5 0x24A8 CSBE 4

PS_INVOCATION_COUNT_6 0x25D0 CSBE 4

PS_DEPTH_COUNT_6 0x25B0 CSBE 4

PS_INVOCATION_COUNT_7 0x25D8 CSBE 4

PS_DEPTH_COUNT_7 0x25B8 CSBE 4

NOOP CSBE

6

MI_TOPOLOGY_FILTER CSBE 1

NOOP CSBE 2

PIPELINE_SELECT CSBE 1

STATE_BASE_ADDRESS CSBE 22

3DSTATE_PUSH_CONSTANT_ALLOC_VS CSBE 2

3DSTATE_PUSH_CONSTANT_ALLOC_HS CSBE 2

3DSTATE_PUSH_CONSTANT_ALLOC_DS CSBE 2

3DSTATE_PUSH_CONSTANT_ALLOC_GS CSBE 2

3DSTATE_PUSH_CONSTANT_ALLOC_PS CSBE 2

3DSTATE_BINDING_TABLE_POOL_ALLOC CSBE 4

DUMMY_CMD 0x791A0002 CSBE 4

DUMMY_CMD 0x791B0002 CSBE 4

DUMMY_CMD 0x30000001 CSBE 1

3DSTATE_PTBR_TILE_PASS_INFO CSBE 4

NOOP CSBE 5

NOOP SOL 1

MI_LOAD_REGISTER_IMM 0x1100_1027 SOL 1

SO_NUM_PRIMS_WRITTEN0 0x5200 SOL 4

SO_NUM_PRIMS_WRITTEN1 0x5208 SOL 4

SO_NUM_PRIMS_WRITTEN2 0x5210 SOL 4

SO_NUM_PRIMS_WRITTEN3 0x5218 SOL 4

SO_PRIM_STORAGE_NEEDED0 0x5240 SOL 4

SO_PRIM_STORAGE_NEEDED1 0x5248 SOL 4

SO_PRIM_STORAGE_NEEDED2 0x5250 SOL 4

SO_PRIM_STORAGE_NEEDED3 0x5258 SOL 4

44 Doc Ref # IHD-OS-ICLLP-Vol 9-1.20

Description MMIO Offset/Command Unit # of DW

SO_WRITE_OFFSET0 0x5280 SOL 2

SO_WRITE_OFFSET1 0x5284 SOL 2

SO_WRITE_OFFSET2 0x5288 SOL 2

SO_WRITE_OFFSET3 0x528C SOL 2

3DSTATE_SO_BUFFER SOL 32

NOOP SOL 3

3DSTATE_SO_DECL_LIST SOL 259

NOOP SOL 0

3DSTATE_INDEX_BUFFER VF 5

3DSTATE_VERTEX_BUFFERS VF 133

3DSTATE_VERTEX_ELEMENTS VF 69

3DSTATE_VF_STATISTICS VF 1

3DSTATE_VF VF 2

3DSTATE_SGVS VF 2

3DSTATE_VF_INSTANCING VF 69

3DSTATE_VF_TOPOLOGY VF 2

NOOP VF 5

MI_LOAD_REGISTER_IMM 0x1100_10C7 VF 1

INSTANCE CNT 08300 - 08384h VF 68

INSTANCE INDX 08400 - 08484h VF 68

COMMITTED VERTEX NUMBER 08390h VF 2

COMMITTED INSTANCE ID 08394h VF 2

COMMITTED PRIMITIVE ID 08398h VF 2

STATUS 0839Ch VF 2

COMMON VERTEX 083A0h VF 2

VF_GUARDBAND 083A4h VF 2

INDEX_OPCODE_DATA00 08490h VF 2

INDEX_OPCODE_DATA01 08494h VF 2

INDEX_OPCODE_DATA10 08498h VF 2

INDEX_OPCODE_DATA11 0849Ch VF 2

TOKPROC_CULL_COUNT0 084A0h VF 2

TOKPROC_CULL_COUNT1 084A4h VF 2

TOKPROC_PID_COUNT0 084A8h VF 2

TOKPROC_PID_COUNT1 084ACh VF 2

TOKPROC_CULL_VERTEX 084B0h VF 2

TOKPROC_PID_OBJECT 084B4h VF 2

Doc Ref # IHD-OS-ICLLP-Vol 9-1.20 45

Description MMIO Offset/Command Unit # of DW

TOKPROC_DUMMY_OBJECT 084B8h VF 2

TOKPROC_CL_PTR 084BCh VF 2

TOKPROC_CL_MISC 084C0h VF 2

TOKPROC_STG1_DATA 084C4h VF 2

TOKPROC_STG1_VERTEX_COUNT 084C8h VF 2

TOKPROC_STG1_OBJECT_COUNT 084CCh VF 2

TOKPROC_STG1_VALID 084D0h VF 2

TOKPROC_STG0_INSTANCE_COUNT 084D4h VF 2

TOKPROC_STG0_VERTEX_COUNT 084D8h VF 2

TOKPROC_STG0_COUNT 084DCh VF 2

TOKPROC_STG0_VALID 084E0h VF 2

TOKIN_DATA0 084F0h VF 2

TOKIN_DATA1 084F4h VF 2

TOKIN_DATA2 084F8h VF 2

TOKIN_DATA3 084FCh VF 2

NOOP VF 7

3DSTATE_VF_COMPONENT_PACKING VF 5

3DSTATE_VF_SGVS_2 VF 3

3DSTATE_PTBR_TILE_SELECT VF 2

NOOP VF 6

NOOP GAMWC 1

MI_LOAD_REGISTER_IMM 0x1100_107F GAMWC 1

GFX_MOCS_0 C800 GAMWC 2

GFX_MOCS_1 C804 GAMWC 2

GFX_MOCS_2 C808 GAMWC 2

GFX_MOCS_3 C80C GAMWC 2

GFX_MOCS_4 C810 GAMWC 2

GFX_MOCS_5 C814 GAMWC 2

GFX_MOCS_6 C818 GAMWC 2

GFX_MOCS_7 C81C GAMWC 2

GFX_MOCS_8 C820 GAMWC 2

GFX_MOCS_9 C824 GAMWC 2

GFX_MOCS_10 C828 GAMWC 2

GFX_MOCS_11 C82C GAMWC 2

GFX_MOCS_12 C830 GAMWC 2

46 Doc Ref # IHD-OS-ICLLP-Vol 9-1.20

Description MMIO Offset/Command Unit # of DW

GFX_MOCS_13 C834 GAMWC 2

GFX_MOCS_14 C838 GAMWC 2

GFX_MOCS_15 C83C GAMWC 2

GFX_MOCS_16 C840 GAMWC 2

GFX_MOCS_17 C844 GAMWC 2

GFX_MOCS_18 C848 GAMWC 2

GFX_MOCS_19 C84C GAMWC 2

GFX_MOCS_20 C850 GAMWC 2

GFX_MOCS_21 C854 GAMWC 2

GFX_MOCS_22 C858 GAMWC 2

GFX_MOCS_23 C85C GAMWC 2

GFX_MOCS_24 C860 GAMWC 2

GFX_MOCS_25 C864 GAMWC 2

GFX_MOCS_26 C868 GAMWC 2

GFX_MOCS_27 C86C GAMWC 2

GFX_MOCS_28 C870 GAMWC 2

GFX_MOCS_29 C874 GAMWC 2

GFX_MOCS_30 C878 GAMWC 2

GFX_MOCS_31 C87C GAMWC 2

GFX_MOCS_32 C880 GAMWC 2

GFX_MOCS_33 C884 GAMWC 2

GFX_MOCS_34 C888 GAMWC 2

GFX_MOCS_35 C88C GAMWC 2

GFX_MOCS_36 C890 GAMWC 2

GFX_MOCS_37 C894 GAMWC 2

GFX_MOCS_38 C898 GAMWC 2

GFX_MOCS_39 C89C GAMWC 2

GFX_MOCS_40 C8A0 GAMWC 2

GFX_MOCS_41 C8A4 GAMWC 2

GFX_MOCS_42 C8A8 GAMWC 2

GFX_MOCS_43 C8AC GAMWC 2

GFX_MOCS_44 C8B0 GAMWC 2

GFX_MOCS_45 C8B4 GAMWC 2

GFX_MOCS_46 C8B8 GAMWC 2

GFX_MOCS_47 C8BC GAMWC 2

GFX_MOCS_48 C8C0 GAMWC 2

Doc Ref # IHD-OS-ICLLP-Vol 9-1.20 47

Description MMIO Offset/Command Unit # of DW

GFX_MOCS_49 C8C4 GAMWC 2

GFX_MOCS_50 C8C8 GAMWC 2

GFX_MOCS_51 C8CC GAMWC 2

GFX_MOCS_52 C8D0 GAMWC 2

GFX_MOCS_53 C8D4 GAMWC 2

GFX_MOCS_54 C8D8 GAMWC 2

GFX_MOCS_55 C8DC GAMWC 2

GFX_MOCS_56 C8E0 GAMWC 2

GFX_MOCS_57 C8E4 GAMWC 2

GFX_MOCS_58 C8E8 GAMWC 2

GFX_MOCS_59 C8EC GAMWC 2

GFX_MOCS_60 C8F0 GAMWC 2

GFX_MOCS_61 C8F4 GAMWC 2

GFX_MOCS_62 C8F8 GAMWC 2

GFX_MOCS_63 C8FC GAMWC 2

NOOP GAMWC 14

NOOP GAMT 1

MI_LOAD_REGISTER_IMM 0x1100_100B GAMT 1

TR_VATT_L3 4DE0 GAMT 2

Tiled Resources VA Translation Table L3 ptr - DW1 4DE4 GAMT 2

TRNULLDETCT 4DE8 GAMT 2

TiledResources Invalid Tile Detection R egister 4DEC GAMT 2

TiledResources Inv alid Tile Detection Register 4DF0 GAMT 2

 4DFC GAMT 2

NOOP GAMT 2

NOOP LNCF 1

MI_LOAD_REGISTER_IMM 0x1100_1001 LNCF 1

L3CNTLREG 7034 LNCF 2

NOOP LNCF 1

MI_LOAD_REGISTER_IMM 0x1100_1041 LNCF 1

LNCFCMOCS0 B020 LNCF 2

LNCFCMOCS1 B024 LNCF 2

LNCFCMOCS2 B028 LNCF 2

LNCFCMOCS3 B02C LNCF 2

LNCFCMOCS4 B030 LNCF 2

LNCFCMOCS5 B034 LNCF 2

48 Doc Ref # IHD-OS-ICLLP-Vol 9-1.20

Description MMIO Offset/Command Unit # of DW

LNCFCMOCS6 B038 LNCF 2

LNCFCMOCS7 B03C LNCF 2

LNCFCMOCS8 B040 LNCF 2

LNCFCMOCS9 B044 LNCF 2

LNCFCMOCS10 B048 LNCF 2

LNCFCMOCS11 B04C LNCF 2

LNCFCMOCS12 B050 LNCF 2

LNCFCMOCS13 B054 LNCF 2

LNCFCMOCS14 B058 LNCF 2

LNCFCMOCS15 B05C LNCF 2

LNCFCMOCS16 B060 LNCF 2

LNCFCMOCS17 B064 LNCF 2

LNCFCMOCS18 B068 LNCF 2

LNCFCMOCS19 B06C LNCF 2

LNCFCMOCS20 B070 LNCF 2

LNCFCMOCS21 B074 LNCF 2

LNCFCMOCS22 B078 LNCF 2

LNCFCMOCS23 B07C LNCF 2

LNCFCMOCS24 B080 LNCF 2

LNCFCMOCS25 B084 LNCF 2

LNCFCMOCS26 B088 LNCF 2

LNCFCMOCS27 B08C LNCF 2

LNCFCMOCS28 B090 LNCF 2

LNCFCMOCS29 B094 LNCF 2

LNCFCMOCS30 B098 LNCF 2

LNCFCMOCS31 B09C LNCF 2

TCCNTLREG B0A4 LNCF 2

NOOP LNCF 8

3DSTATE_CONSTANT_VS_Commited SVG 11

3DSTATE_CONSTANT_HS_Commited SVG 11

3DSTATE_CONSTANT_DS_Commited SVG 11

3DSTATE_CONSTANT_GS_Commited SVG 11

3DSTATE_VS SVG 9

3DSTATE_BINDING_TABLE_POINTERS_VS SVG 2

3DSTATE_SAMPLER_STATE_POINTERS_VS SVG 2

3DSTATE_URB_VS SVG 2

Doc Ref # IHD-OS-ICLLP-Vol 9-1.20 49

Description MMIO Offset/Command Unit # of DW

3DSTATE_STREAMOUT SVG 5

3DSTATE_CLIP SVG 4

3DSTATE_SF SVG 4

3DSTATE_SCISSOR_STATE_POINTERS SVG 2

3DSTATE_VIEWPORT_STATE_POINTERS_CL_SF SVG 2

3DSTATE_RASTER SVG 5

3DSTATE_WM_HZ_OP SVG 5

3DSTATE_MULTISAMPLE SVG 2

3DSTATE_HS SVG 9

3DSTATE_BINDING_TABLE_POINTERS_HS SVG 2

3DSTATE_SAMPLER_STATE_POINTERS_HS SVG 2

3DSTATE_URB_HS SVG 2

3DSTATE_TE SVG 4

3DSTATE_DS SVG 11

3DSTATE_BINDING_TABLE_POINTERS_DS SVG 2

3DSTATE_SAMPLER_STATE_POINTERS_DS SVG 2

3DSTATE_URB_DS SVG 2

3DSTATE_GS SVG 10

3DSTATE_BINDING_TABLE_POINTERS_GS SVG 2

3DSTATE_SAMPLER_STATE_POINTERS_GS SVG 2

3DSTATE_URB_GS SVG 2

3DSTATE_CONSTANT_VS_NonComitted SVG 11

3DSTATE_CONSTANT_HS_NonComitted SVG 11

3DSTATE_CONSTANT_DS_NonComitted SVG 11

3DSTATE_CONSTANT_GS_NonComitted SVG 11

3DSTATE_DRAW_RECTANGULAR SVG 4

MI_LOAD_REGISTER_IMM 0x1100_1001 SVG 1

FF_PERF_REG 0x6b1c SVG 2

NOOP SVG 1

3DSTATE_CONSTANT_PS_comitted SVL 11

NOOP SVL 1

3DSTATE_WM SVL 2

3DSTATE_VIEWPORT_STATE_POINTER_CC SVL 2

3DSTATE_CC_STATE_POINTERS SVL 2

3DSATE_WM_SAMPLEMASK SVL 2

3DSTATE_WM_DEPTH_STENCIL SVL 4

50 Doc Ref # IHD-OS-ICLLP-Vol 9-1.20

Description MMIO Offset/Command Unit # of DW

3DSTATE_WM_CHROMAKEY SVL 2

3DSTATE_DEPTH_BUFF SVL 8

3DSTATE_HIZ_DEPTH_BUFF SVL 5

3DSTATE_STC_DEPTH_BUFF SVL 5

3DSTATE_CLEAR_PARAMS SVL 3

3DSTATE_CPS SVL 9

3DSTATE_SBE SVL 6

3DSTATE_SBE_SWIZ SVL 11

3DSTATE_PS SVL 12

3DSTATE_BINDING_TABLE_POINTERS_PS SVL 2

STATE_SAMPLER_STATE_POINTERS_PS SVL 2

3DSTATE_BLEND_STATE_POINTERS SVL 2

3DSTATE_PS_EXTRA SVL 2

3DSTATE_PS_BLEND SVL 2

NOOP SVL 1

3DSTATE_CONSTANT_PS_NonComitted SVL 11

3DSTATE_3D_MODE SVL 2

3DSTATE_SAMPLE_PATTERN SVL 9

3DSTATE_SUBSLICE_HASH_TABLE SVL 6

NOOP SVL 33

MI_LOAD_REGISTER_IMM 0x1100_101B SVL 1

Cache_Mode_0 0x7000 SVL 2

Cache_Mode_1 0x7004 SVL 2

GT_MODE 0x7008 SVL 2

FBC_RT_BASE_ADDR_REGISTER 0x7020 SVL 2

FBC_RT_BASE_ADDR_REGISTER_UPPER 0x7024 SVL 2

OA_CULL 0x7030 SVL 2

 0x731C SVL 2

Z_DISCARD_EN 0x7040 SVL 2

NOOP SVL 6

NOOP TDL 1

MI_LOAD_REGISTER_IMM 0x1100_104F TDL 1

TD_CTL E400 TDL 2

TD_CTL2 E404 TDL 2

TD_VF_VS_EMSK E408 TDL 2

TD_GS_EMSK E40C TDL 2

Doc Ref # IHD-OS-ICLLP-Vol 9-1.20 51

Description MMIO Offset/Command Unit # of DW

TD_WIZ_EMSK E410 TDL 2

TD_TS_EMSK E428 TDL 2

TD_HS_EMSK E4B0 TDL 2

TD_DS_EMSK E4B4 TDL 2

EU_PERF_CNT_CTL0 E458 TDL 2

EU_PERF_CNT_CTL1 E558 TDL 2

EU_PERF_CNT_CTL2 E658 TDL 2

EU_PERF_CNT_CTL3 E758 TDL 2

EU_PERF_CNT_CTL4 E45C TDL 2

EU_PERF_CNT_CTL5 E55C TDL 2

EU_PERF_CNT_CTL6 E65C TDL 2

CULLBIT3 E488 TDL 2

CACHE_MODE_SS E420 TDL 2

VSR_PUSHCONSTANT_BASE E518 TDL 2

VSR_EMASK E51C TDL 2

SLM_BANKHASH E660 TDL 2

NOOP TDL 10

STATE_SIP TDL 3

NOOP TDL 1

NOOP WM 1

MI_LOAD_REGISTER_IMM 0x1100_1007 WM 1

WMHWCLRVAL 0x5524 WM 2

3DSTATE_POLY_STIPPLE_PATTERN WM 33

3DSTATE_AA_LINE_PARAMS WM 3

3DSTATE_POLY_STIPPLE_OFFSET WM 2

3DSTATE_LINE_STIPPLE WM 3

3DSTATE_SLICE_HASH_STATE_POINTERS WM 2

NOOP WM 11

3DSTATE_MONOFILTER_SIZE SC 2

3DSTATE_CHROMA_KEY SC 16

NOOP SC 1

MI_LOAD_REGISTER_IMM 0x1100_100D SC 1

SAMPLER_MODE 0xE18C SC 2

NOOP SC 14

NOOP DM 1

3DSTATE_SAMPLER_PALETTE_LOAD0 DM 257

52 Doc Ref # IHD-OS-ICLLP-Vol 9-1.20

Description MMIO Offset/Command Unit # of DW

NOOP DM 1

3DSTATE_SAMPLER_PALETTE_LOAD1 DM 257

NOOP DM 1

MI_LOAD_REGISTER_IMM 0x1100_0001 DM 1

DM_DUMMY_REG 0xE000 DM 2

NOOP DM 8

 VFE 64 +

n*1216

MI_BATCH_BUFFER_END CSEND 1

NOOP CSEND 127

POSH Register State Context ICL

Color Coding

EXECLIST CONTEXT

EXECLIST CONTEXT(PPGTT Base)

ENGINE CONTEXT

EXTENDED ENGINE CONTEXT

URB_ATOMIC CONTEXT

Description MMIO Offset/Command Unit # of DW

NOOP POCSEL 1

MI_LOAD_REGISTER_IMM 0x1100_101B POCSEL 1

 0x18244 POCSEL 2

Ring Buffer H ead 0x18034 POCSEL 2

Ring Tail Pointer Register 0x18030 POCSEL 2

RING_BUFFER_START 0x18038 POCSEL 2

RING_BUFFER_CONTROL 0x1803C POCSEL 2

Batch Buffer Current Head Register (UDW) 0x18168 POCSEL 2

Batch Buffer Current Head Register 0x18140 POCSEL 2

Batch Buffer State Register 0x18110 POCSEL 2

SECOND_BB_ADDR_UDW 0x1811C POCSEL 2

SECOND_BB_ADDR 0x18114 POCSEL 2

SECOND_BB_STATE 0x18118 POCSEL 2

BB_PER_CTX_PTR 0x181C0 POCSEL 2

RCS_INDIRECT_CTX 0x181C4 POCSEL 2

RCS_INDIRECT_CTX_OFFSET 0x181C8 POCSEL 2

Doc Ref # IHD-OS-ICLLP-Vol 9-1.20 53

Description MMIO Offset/Command Unit # of DW

NOOP POCSEL 2

NOOP POCSEL 48

NOOP POCSFE 1

EXCC 0x18028 POCSFE 2

MI_MODE 0x1809C POCSFE 2

INSTPM 0x180C0 POCSFE 2

TIMESTAMP Register (LSB) 0x18358 POCSFE 2

BB_START_ADDR_UDW 0x18170 POCSFE 2

BB_START_ADDR 0x18150 POCSFE 2

BB_ADD_DIFF 0x18154 POCSFE 2

BB_OFFSET 0x18158 POCSFE 2

MI_PREDICATE_RESULT_1 0x1841C POCSFE 2

CS_GPR (1-16) 0x18600 POCSFE 64

IPEHR 0x18068 POCSFE 2

NOOP POCSFE 10

NOOP POCSBE 1

MI_LOAD_REGISTER_IMM 0x1100_1045 POCSBE 1

CS_CONTEXT_STATUS1 0x18184 POCSBE 2

IA_VERTICES_COUNT 0x18310 POCSBE 4

IA_PRIMITIVES_COUNT 0x18318 POCSBE 4

VS_INVOCATION_COUNT 0x18320 POCSBE 4

CL_INVOCATION_COUNT 0x18338 POCSBE 4

CL_PRIMITIVES_COUNT 0x18340 POCSBE 4

MI_PREDICATE_SRC0 0x18400 POCSBE 2

MI_PREDICATE_SRC0 0x18404 POCSBE 2

MI_PREDICATE_SRC1 0x18408 POCSBE 2

MI_PREDICATE_SRC1 0x1840C POCSBE 2

MI_PREDICATE_DATA 0x18410 POCSBE 2

MI_PREDICATE_DATA 0x18414 POCSBE 2

MI_PRED_RESULT 0x18418 POCSBE 2

3DPRIM_END_OFFSET 0x18420 POCSBE 2

3DPRIM_START_VERTEX 0x18430 POCSBE 2

3DPRIM_VERTEX_COUNT 0x18434 POCSBE 2

3DPRIM_INSTANCE_COUNT 0x18438 POCSBE 2

3DPRIM_START_INSTANCE 0x1843C POCSBE 2

3DPRIM_BASE_VERTEX 0x18440 POCSBE 2

54 Doc Ref # IHD-OS-ICLLP-Vol 9-1.20

Description MMIO Offset/Command Unit # of DW

Load Indirect Extended Parameter 0 0x18690 POCSBE 2

Load Indirect Extended Parameter 1 0x18694 POCSBE 2

Load Indi rect Extended Parameter 2 0x18698 POCSBE 2

MI_TAGADDR 0x18194 POCSBE 4

PTBR_NUM_PAGES_RECORDED_REGISTER 0x18594 POCSBE 2

PTBR_PAGE_POOL_SIZE_REGISTER 0x18590 POCSBE 2

NOOP POCSBE 8

MI_TOPOLOGY_FILTER POCSBE 1

NOOP POCSBE 2

PIPELINE_SELECT POCSBE 1

STATE_BASE_ADDRESS POCSBE 22

3DSTATE_PUSH_CONSTANT_ALLOC_VS POCSBE 2

3DSTATE_BINDING_TABLE_POOL_ALLOC POCSBE 4

DUMMY_CMD 0x791A0002 POCSBE 4

3DSTATE_PTBR_POOL_BASE_ADDRESS POCSBE 3

3DSTATE_PTBR_FREE_LIST_BASE_ADDRESS POCSBE 3

3DSTATE_PTBR_RENDER_LIST_BASE_ADDRESS POCSBE 3

3DSTATE_PTBR_TILE_PASS_INFO POCSBE 4

NOOP POCSBE 15

3DSTATE_INDEX_BUFFER VFR 5

3DSTATE_VERTEX_BUFFERS VFR 133

3DSTATE_VERTEX_ELEMENTS VFR 69

3DSTATE_VF_STATISTICS VFR 1

3DSTATE_VF VFR 2

3DSTATE_SGVS VFR 2

3DSTATE_VF_INSTANCING VFR 69

3DSTATE_VF_TOPOLOGY VFR 2

NOOP VFR 5

 0x1100_1095 VFR 1

INSTANCE CNT 16E00 - 16E84h VFR 68

Doc Ref # IHD-OS-ICLLP-Vol 9-1.20 55

POSH Register State Context

Color Coding

EXECLIST CONTEXT

EXECLIST CONTEXT(PPGTT Base)

ENGINE CONTEXT

EXTENDED ENGINE CONTEXT

URB_ATOMIC CONTEXT

Descrip tio n MMIO Offset/Command Unit # of DW

NOOP POCSEL 1

MI_LOAD_REGISTER_IMM 0x1108_1019 CSEL 1

 0x18244 POCSEL 2

Ring Buffer Head 0x18034 POCSEL 2

Ring Tail Pointer Register 0x18030 POCSEL 2

RING_BUFFER_START 0x18038 POCSEL 2

RING_BUFFER_CONTROL 0x1803C POCSEL 2

Batch Buffer Current Head Register (UDW) 0x18168 POCSEL 2

Batch Buffer Current Head Register 0x18140 POCSEL 2

Batch Buffer State Register 0x18110 POCSEL 2

BB_PER_CTX_PTR 0x181C0 POCSEL 2

RCS_INDIRECT_CTX 0x181C4 POCSEL 2

RCS_INDIRECT_CTX_OFFSET 0x181C8 POCSEL 2

CCID 0x18180 POCSEL 2

SEMAPHORE_TOKEN 0x182B4 POCSEL 2

NOOP POCSEL 4

NOOP POCSEL 54

NOOP POCSFE 1

 0x1100_1067 POCSFE 1

BB_STACK_WRITE_PORT 0x18588 POCSFE 12

EXCC 0x18028 POCSFE 2

MI_MODE 0x1809C POCSFE 2

INSTPM 0x180C0 POCSFE 2

TIMESTAMP Register (LSB) 0x18358 POCSFE 2

BB_START_ADDR_UDW 0x18170 POCSFE 2

BB_START_ADDR 0x18150 POCSFE 2

BB_ADD_DIFF 0x18154 POCSFE 2

56 Doc Ref # IHD-OS-ICLLP-Vol 9-1.20

Descrip tio n MMIO Offset/Command Unit # of DW

BB_OFFSET 0x18158 POCSFE 2

MI_PREDICATE_RESULT_1 0x1841C POCSFE 2

CS_GPR (1-16) 0x18600 POCSFE 64

IPEHR 0x18068 POCSFE 2

CS_MI_ADDRESS_OFFSET 0x183B4 POCSFE 2

MI_SET_PREDICATE_RESULT 0x183B8 POCSFE 2

WPARID 0x1821C POCSFE 2

PREDICATION_MASK 0x181FC POCSFE 2

NOOP POCSFE 6

NOOP POCSBE 1

 0x1100_103E POCSBE 1

CS_CONTEXT_STATUS1 0x18184 POCSBE 2

IA_VERTICES_COUNT 0x18310 POCSBE 4

IA_PRIMITIVES_COUNT 0x18318 POCSBE 4

VS_INVOCATION_COUNT 0x18320 POCSBE 4

CL_INVOCATION_COUNT 0x18338 POCSBE 4

CL_PRIMITIVES_COUNT 0x18340 POCSBE 4

MI_PREDICATE_SRC0 0x18400 POCSBE 2

MI_PREDICATE_SRC0 0x18404 POCSBE 2

MI_PREDICATE_SRC1 0x18408 POCSBE 2

MI_PREDICATE_SRC1 0x1840C POCSBE 2

MI_PREDICATE_DATA 0x18410 POCSBE 2

MI_PREDICATE_DATA 0x18414 POCSBE 2

MI_PRED_RESULT 0x18418 POCSBE 2

3DPRIM_END_OFFSET 0x18420 POCSBE 2

3DPRIM_START_VERTEX 0x18430 POCSBE 2

3DPRIM_VERTEX_COUNT 0x18434 POCSBE 2

3DPRIM_INSTANCE_COUNT 0x18438 POCSBE 2

3DPRIM_START_INSTANCE 0x1843C POCSBE 2

3DPRIM_BASE_VERTEX 0x18440 POCSBE 2

Load Indirect Extended P arameter 0 0x18690 POCSBE 2

Load Indirect E xtended Parameter 1 0x18694 POCSBE 2

Load Indirect Extended Parameter 2 0x18698 POCSBE 2

MI_TAGADDR 0x18194 POCSBE 4

PTBR_NUM_PAGES_RECORDED_REGISTER 0x18594 POCSBE 2

NOOP POCSBE 12

Doc Ref # IHD-OS-ICLLP-Vol 9-1.20 57

Descrip tio n MMIO Offset/Command Unit # of DW

MI_TOPOLOGY_FILTER POCSBE 1

NOOP POCSBE 2

PIPELINE_SELECT POCSBE 1

STATE_BASE_ADDRESS POCSBE 22

3DSTATE_PUSH_CONSTANT_ALLOC_VS POCSBE 2

3DSTATE_BINDING_TABLE_POOL_ALLOC POCSBE 4

NOOP POCSBE 4

3DSTATE_PTBR_POOL_BASE_ADDRESS POCSBE 3

3DSTATE_PTBR_FREE_LIST_BASE_ADDRESS POCSBE 3

3DSTATE_PTBR_RENDER_LIST_BASE_ADDRESS POCSBE 3

3DSTATE_PTBR_TILE_PASS_INFO POCSBE 4

NOOP POCSBE 15

3DSTATE_INDEX_BUFFER VFR 5

3DSTATE_VERTEX_BUFFERS VFR 133

3DSTATE_VF_STATISTICS VFR 1

3DSTATE_VF VFR 2

3DSTATE_VFG VFR 4

3DSTATE_VF_INSTANCING VFR 69

3DSTATE_VF_TOPOLOGY VFR 2

NOOP VFR 5

 0x1100_100D VFR 1

COMMITTED VERTEX NUMBER 16E90h VFR 2

COMMITTED INSTANCE ID 16E94h VFR 2

COMMITTED PRIMITIVE ID 16E98h VFR 2

STATUS 16E9Ch VFR 2

COMMON VERTEX 16EA0h VFR 2

VF_GUARDBAND 16EA4h VFR 2

NOOP VFR 21

NOOP VFR 2

NOOP VFR 6

OVR Context OVR 1040

3DSTATE_CONSTANT_VS_Commited SVGR 11

NOOP SVGR 11

NOOP SVGR 11

NOOP SVGR 11

3DSTATE_VERTEX_ELEMENTS SVGR 69

58 Doc Ref # IHD-OS-ICLLP-Vol 9-1.20

Descrip tio n MMIO Offset/Command Unit # of DW

3DSTATE_VF_COMPONENT_PACKING SVGR 5

3DSTATE_VF_SGVS SVGR 2

3DSTATE_VF_SGVS_2 SVGR 3

3DSTATE_VS SVGR 9

3DSTATE_BINDING_TABLE_POINTERS_VS SVGR 2

3DSTATE_SAMPLER_STATE_POINTERS_VS SVGR 2

3DSTATE_URB_ALLOC_VS SVGR 3

NOOP SVGR 37

3DSTATE_CLIP SVGR 4

3DSTATE_PRIMITIVE_REPLICATION SVGR 6

3DSTATE_SF SVGR 4

3DSTATE_SCISSOR_STATE_POINTERS SVGR 2

3DSTATE_VIEWPORT_STATE_POINTERS_CL_SF SVGR 2

3DSTATE_RASTER SVGR 5

NOOP SVGR 9

3DSTATE_MULTISAMPLE SVGR 2

NOOP SVGR 55

3DSTATE_DRAWING_RECTANGLE SVGR 4

NOOP SVGR 1

MI_LOAD_REGISTER_IMM 0x1100_1011 SVGR 1

FF_PERF_REG 0x17b1c SVGR 2

CULLBIT1 0x17100 SVGR 2

VFLSKPD 0x172A8 SVGR 2

FF_MODE 0x17210 SVGR 2

PTBR_PAGE_POOL_SIZE_REGISTER 0x17520 SVGR 2

NOOP SVGR 2

NOOP SVGR 4

MI_BATCH_BUFFER_END CSEND 1

NOOP CSEND 127

Doc Ref # IHD-OS-ICLLP-Vol 9-1.20 59

3D Pipeline Stages

The following table lists the various stages of the 3D pipeline and describes their major functions.

Pipeline Stage Functions Performed

Command Stream (CS)
The Command Stream stage is responsible for managing the 3D pipeline and

passing commands down the pipeline. In addition, the CS unit reads òconstant dataó

from memory buffers and places it in the URB.

Note that the CS stage is shared between the 3D, GPGPU and Media pipelines.

Vertex Fetch (VF) The Vertex Fetch stage, in response to 3D Primitive Processing commands, is

responsible for reading vertex data from memory, reformatting it, and writing the

results into Vertex URB Entries. It then outputs primitives by passing references to

the VUEs down the pipeline.

Vertex Shader (VS) The Vertex Shader stage is responsible for processing (shading) incoming vertices

by passing them to VS threads.

Hull Shader (HS) The Hull Shader is responsible for processing (shading) incoming patch primitives as

part of the tessellation process.

Tessellation Engine (TE) The Tessellation Engine is responsible for using tessellation factors (computed in the

HS stage) to tessellate U,V parametric domains into domain point topologies.

Domain Shader (DS) The Domain Shader stage is responsible for processing (shading) the domain points

(generated by the TE stage) into corresponding vertices.

Geometry Shader (GS) The Geometry Shader stage is responsible for processing incoming objects by

passing each objectõs vertices to a GS thread.

Stream Output Logic (SOL) The Stream Output Logic is responsible for outputting incoming obje ct vertices into

Stream Out Buffers in memory.

Clipper (CLIP) The Clipper stage performs Clip Tests on incoming objects and clips objects if

required. Objects are clipped using fixed-function hardware.

Strip/Fan (SF) The Strip/Fan stage performs object setup. Object setup uses fixed-function

hardware.

Windower/Masker (WM) The Windower/Masker performs object rasterization and determines visibility

coverage.

CPS Pipeline stage that gathers coarse pixels (CPs) for Coarse Pixel Shading (CPS).

PS Dispatch (PSD) PSD assembles and dispatches Pixel Shader (PS) threads at one of these rates: CP,

Pixel (P), or Sample (S).

60 Doc Ref # IHD-OS-ICLLP-Vol 9-1.20

3D Pipeline -Level State

This section contains table commands for the 3D Pipeline Level.

Programming Note

Context: 3D Pipeline-Level State - Push Constant URB Allocation

The push constants are buffered in the Push Constant section of the URB which is part of the L3$. Software is

required to program the hardware to allocate space in the URB for each shader push constant. The software is

limited to the low addresses of the URB and must ensure that none of the shaders have overlapping handles.

Software may use some if not all of the Push Constant region of the URB for pr-stage handle allocations as long as

none of the push constants and handle allocations overlap.

Refer to the various 3DSTATE_PUSH_CONSTANT_ALLOC_xx state commands for details regarding the maximum

size of the Push Constant and other state programming information.

Below is a diagram that represents how the hardware may move and store one CONSTANT_BUFFER command for a

fixed function shader:

Doc Ref # IHD-OS-ICLLP-Vol 9-1.20 61

The bubbles in the URB are caused by the constant buffer in memory starting on a half cacheline and being an even

number in length. If the constant buffer starts on an odd ca cheline and has an odd number length, then there will

only be a bubble at the beginning of the buffer in the URB. If the constant buffer in memory starts on a cache line

boundary and has an odd number length, then the bubble will only be at the end of the co nstant buffer in th e URB.

Once the constant buf fer is writ ten to the GRF space then all the bubbles will be removed.

Software must guarantee that there is enough space in the push constant buffer in the URB to hold one constant

buffer from memory. This includes any buffering to write th e 512b aligned requests from memory into the URB.

Because the L3$ only supports writes from memory in 512b chunks, the URB may have some bubbles between each

constant buffer fetch.

3DSTATE_3D_MODE

3D Pipeline Geometry

Block Dia gram

The following block diagram shows the stages of the Geometry Pipeline and where they are positioned in

the overall 3D Pipeline.

62 Doc Ref # IHD-OS-ICLLP-Vol 9-1.20

POSH Pipeline Overview

The Position -Only Shading (POSH) pipeline (aka òCull Pipeó or òRecord Pipeó) is utilized to improve 3D

rendering performance by removing culled obje cts from the Render pipeline workload. The POSH

pipeline pre-processes geometry objects using simple òposition-onlyó vertex input and vertex shaders.

These objects are then subjected to clipper/setup cull tests. The results of these cull tests are then stored

(compressed) as streams of òvisibility tokensó in memory. Later, when the same geometry work is

submitted to the Render pipe, the VF stage of the Render pipe will receive the pre-recorded visibility

tokens and use those tokens to skip over culled objects and only process the non-culled objects. The

POSH pipe is designed to run ahead of the Render pipe by buffering visibility data for render passes and

possibly entire frames before being consumed by the Render pipe.

POSH Pipelin e Work Submission

Work is performed on the POSH pipeline by submitting command str eams to the POSH CS (POCS) unit

which operates similarly to the Render CS (RCS) unit. Refer to Command Stream Programming for POCS

programming det ails.

Geometry & Setup Stage s of POSH Pipeline

The POSH pipeline contains POSH-specific versions of a subset of the Render pipe stages:

¶ VFR (POSH VF)

¶ VSR (POSH VS)

¶ CLR (POSH CL)

¶ SFR (POSH SF)

Doc Ref # IHD-OS-ICLLP-Vol 9-1.20 63

Note that the POSH pipeline does not contain HS, DS, GS or StreamOut stages and therefore does not

support those fun ctions. Work submitted to the POSH pipeline shall not contain state commands for

those stages not attempt to enable those functions.

These POSH stages are programmed in a similar manner as the corresponding Render stages. When

stage-related state commands are submitted to the POSH pipeline, the corresponding stages in the

POSH pipeline are programmed. POSH/Render pipeline programming differences are described in the

state command definitions.

OVR Stage of POSH Pipeline

An Object Visibility Recording (OVR) stage is located at the end of the POSH pipe. It is used to compress

and store visibility token streams in memory, as well as reading those streams during rendering and

passing the tokens to the VF stage. Refer to the Render Engine Command Streamer BXML for

programming details.

URB Programming when POSH Enabled

When the POSH pipeline is enabled, a URB allocation for the VSR stage is required. This allocation is

programmed via execution of 3DSTATE_URB_*_VS commands in the POSH pipeline. Software shall be

required to manage this allocation, taking into account the sy nchronous operation of the RCS and POCS

workloads. This programming may require explicit synchronization between the pipelines, e.g., when

Render vs. POSH URB allocation boun daries are changed.

When the POSH pipeline is enabled, a URB allocation for the POSH pipeline Push Constants may be

defined. Refer to the relevant Push Constant URB commands for details on how this allocation is defined

and used.

General Progra mm ing of Thr ead-Generating Stages (V S, HS, DS, GS)

This section provides common programming information for the thread -generating Geometry FF stages

(VS, HS, DS, GS). The intent is to include the common description here in order to avoid r edundancy in

the subsequent stage-specific sections. The stage-specific sections will include any unique or exception

information, restrictions, etc. relevant to those stages.

3DSTATE_ Common State Variables

This section describes FF state variables, programmed via 3DSTATE_<FF> commands, that are common

to at least two thread-generating FF stages (VS, HS, DS, GS).

The states described in these sections are only used by HW when the given stage is enabled (i.e., can

request thread execution), unless specifically called out as an exception.

Thread Management S tat e

These state variables are used by a stage to manage thread request generation.

64 Doc Ref # IHD-OS-ICLLP-Vol 9-1.20

State VS HS DS GS

Maximum Number of Threads Y Y Y Y

Maximum Number of Threads

This field specifies, for a particular stage, the maximum number of threads allowed to be simultaneously

active. Here òactiveó refers to (a) outstanding in the thread request queue, (b) resident in the EUs, or (c) in

the thread retirement queue ð up to the point the stage sees the thread retirement. Note that the sum of

(a) and (c) above is non-zero, and therefore ð depending on configuration ð the allowed number of

active threads can exceed the total number of thread slots available in the EUs.

There are two main factors to consider when programming this state variable:

¶ Scratch space availabilit y: In the case where threads require scratch space, SW shall allocate

enough contiguous scratch space for the stage to allow each active thread (as programmed by thi s

field) to access its full per-thread allocation (as programmed by PerThreadScratchSpace). This

may require SW to reduce MaximumNumberOfThreads to accommodate limitations on scratch

space availability.

¶ Performance: For best performance, it is recommended that SW program this field to its

maximum value. This will maximize the number of threads available to perform the stageõs

function. However, SW is free to program a smaller value (as long as it meets any restrictions), e.g.,

for performance or wor karound experimentation.

Thread State Initializ ation State

The following values are programmed as state, subsequently included by the stage as thread request

control information, and eventually loaded into an EU architectural (ARF) register upon thread dispatch.

In most instances these initial values can be subsequently overwritten by the thread.

For a complete description of these EU ARF register fields, refer to the EU Execution Environment section.

These values do not appear in the thread payload. (This information may be referred to as the threadõs

òtransparent headeró, as it is forwarded to the EUs but not visible in the thread payload.)

State EU State VS HS DS GS

Kernel Start Pointer ip[31:6] Y Y Y Y

Floating Point Mode cr0.0[0] Y Y Y Y

Single Program Flow cr0.0[2] N Y N Y

Vector Mask Enable cr0.0[3] Y Y Y Y

Illegal Opcode Exception Enable cr0.1[12] Y Y Y Y

Software Exception Enable cr0.1[13] Y Y Y Y

Thread Priority sr0.0[23] Y Y Y Y

Binding Table Pointer see note Y Y Y Y

Doc Ref # IHD-OS-ICLLP-Vol 9-1.20 65

Kernel Start Pointer (KSP)

This field specifies bits [31:6] of the value loaded into the EUõs Instruction Pointer (ip), which in turn

specifies the starting offset of the kernel program to be executed. The state is specified as a 64B-granular

offset from t he Instruction Base A ddress register (programmed via STATE_BASE_ADDRESS). Bits[5:3]

of the EU ôipõ register (which identify a Dword within a 64B region) are loaded with 0 upon th read

dispatch.

Note (below) that Kernel Start Pointer [47:32] can be programmed via FF state, but these bits are

ignored by HW as the EU ôipõ register only supports a 32-bit value.

A stage may support more than one KSP state, where HW performs an on-the-fly selection of one of the

KSPs based on some criteria. Refer to the stage-specific sections for details. For those stages that support

multiple di spatch modes but only a single KSP state, SW shall ensure that the KSP value programmed

corresponds with the selected dispatch mode.

SW Usage Model Note (no HW implications):

¶ The 64B cacheline prior to the Kernel Start Pointer may be reserved.

Floating Poi nt Mode

This state bit is loaded into the EUõs Single Precision Floating Point Mode (FPMode, cr0.0[0]) which, in

turn, controls how certain single-precision floating point operations are performed within the E U

subsystem.

Single Program Flow

This state bit is loaded into the EUõs Single Program Flow (SPF, cr0.0[2]) which, in turn, controls how

certain flow control instructions operate across the EU channels.

Vector Mask Enable

This state bit is loaded into the EUõs Vector Mask Enable (VME, cr0.0[3]) which, in turn, selects whether

the EUõs Dispatch Mask or Vector Mask register is used as the execution mask for subsequent

instructions.

Illegal Opcode Exception

This state bit is loaded into the EUõs Illegal Opcode Exception Enable (cr0.1[12]) which, in turn, enables

or disables the EUõs illegal opcode exception mechanism.

Software Exception Enable

This state bit is loaded into the EUõs Software Exception Enable (cr0.1[13]) which, in turn, enables or

disables the EUõs software exception mechanism.

Thread Dispatc h Priority

This state bit can be used to give thread requests emanating from a Geometry FF stage higher thread

dispatch priority than thread request sources that are not marked as high priority.

66 Doc Ref # IHD-OS-ICLLP-Vol 9-1.20

This state bit is also loaded into the EUõs Priority Class (sr0.0[23]) which, in turn, determines whether the

EU thread is considered as belonging to the high priority class.

Binding Table Pointer (BTP)

Upon thread request, the BTP specified for the relevant FF stage is passed to, and stored in, the EU as

part of th read state. This BTP value is subsequently passed to the Shared Functions (e.g., Sampler) that

are required to access surfaces specified in the Binding Table. Here the BTP is passed via a side-band

channel and not directly in the me ssage descriptor or message header.

Thread State Ini tialization Stat e (Defau lte d)

The following EU state variables are defaulted upon thread dispatch and therefore cannot be controlled

via Geometry FF state programming. Refer to the relevant EU sections for an understanding of t hese

state variables and whether the thread can overwrite the defaulted values. Note that this is not an

exhaustive list of defaulted EU state variables, only the ones deemed most interesting for Geometry FF

threads.

State EU State Default Value

FFID sr0.0[27:24] see below

Rounding Mode cr0.0[5:4] 0

Single Precision Denorm Mode cr0.0[7] 0

Double Precision Denorm Mode cr0.0[6] 0

Stack Overflow Exception Enable cr0.1[11] 0

External Halt Exception Enable cr0.1[14] 0

Breakpoint Exception Enable cr0.1[15] 0

Instruction Pointer [5:3] ip[5:3] 0

Stack Pointer sp.0 0 (see note below)

Stack Pointer Limit sp_limit 0 (see note below)

FFID

The EUõs Fixed Function Identifier (FFID, sr0.0[27:24]) is initialized to a value corresponding to the

Geometry FF stage that requested the thread dispatch. Note that this simply identifies the source FF unit,

not the specific thread dispatched.

Stack Pointer, Stac k Pointer Limit

These EU state registers are defaulted to 0 for threads requested by Geometry FF units, as opposed to

other thread request sources that may cause them to be initialized differently. The threads can overwrite

the defaulted values if so desired.

Doc Ref # IHD-OS-ICLLP-Vol 9-1.20 67

Prefetch State

The following state variables can be used by SW to attempt the prefetch of certain state from memory

into int ernal state cache. The prefetch is requested as part of the first thread dispatch after these state

variables are specified.

Programming Restriction: Software shall not specify a prefetch region that extends into an invalid

memory page, otherwise the prefetch may incur page faults.

Performan ce Note: Early prefetch of the state that will likely be referenced by the thread can improve

thread execution performance. This is not guaranteed, especially if the amount of prefetched data is

large which may result in state cache thrashing. Also, these prefetch requests are considered low priority

hints by HW and may be dropped under conditio ns of high memory demand.

State VS HS DS GS

Sampler Count Y Y Y Y

Binding Table Entry Count Y Y Y Y

Sampler Count

This field specifies how many SAMPLER_STATE structures are prefetched from memory. The count can be

specified as 0 or as a multiple of 4 (4,8,12,16). Refer to the state definition for encodings and further

details.

Performance Note: It is recommended that SW program this field to (roughly) equal the number of

sampler state structures referenced by the thread.

Binding Table Entry Count

This field specifies how many binding table entries (BTEs) and associated SURFACE_STATE structures are

prefetched from m emory. The format of this field depends on whether or not HW-generated binding

tables are enabled, as determined by

3DSTATE_BINDING_TABLE_POOL_ALLOC::BindingTablePoolEnable .

SW Usage Note: When HW-generated binding tables are enabled, it is recommended that the Binding

Table Entry Count value be generated when the shader is compiled.

HW-Generated Binding Tables Disabled :

The field has a Format of U8 and specifies a count of BTEs to be prefetched ([0,255]). Each of the

SURFACE_STATE structures referenced by the BTEs will also be prefetched.

HW-Generated Bindi ng Tables Enabled:

This field has a Format of Bitmask8 and indicates which 64B cache lines of BTEs will be fetched. Each bit

in this field corresponds to a cache line, where a cache line holds 8 16-bit BTEs. Bit 0 refers to the

cacheline starting at the Binding Table Pointer, as programmed by

3DSTATE_BINDING_TABLE_POINTER_xx.

68 Doc Ref # IHD-OS-ICLLP-Vol 9-1.20

By default, only the SURFACE_STATE structures referenced by the first 4 non-zero BTEs of each 64B

cacheline will be prefetched.

Common Thread Payloa d-Related St ate

The following state variables are either included directly in the thread payload and/or used to control or

compute other fields in the thread payload.

State VS HS DS GS

Sampler State Pointer Y Y Y Y

Per-Thread Scratch Space Y Y Y Y

Scratch Space Base Pointer Y Y Y Y

Include Vertex Handles N Y N Y

Sampler State Pointer

This state variable specifies the starting, 32B-granular offset of the stageõs SAMPLER_STATE table in

memory, relative to the DynamicStateBaseAddress . It is programmed via

3DSTATE_SAMPLER_STATE_POINTERS_xx commands.

This value is included in thread payloads in R0.3[31:5] and is also directly propagated to the Sampler

shared function for use in processing òheaderlessó messages. If a thread can potentially send any

messages to the Sampler shared function that requires the Sampler State Pointer in the message header,

that thread shall ensure that it passes along the Sampler State Pointer value passed in the thread

payload.

Scratch Space

The Per-Thread Scratch Space state variable specifies the amount of scratch memory required by each active

thread of a stage. The value is specified as a 4-bit power of two (in excess of 10) bytes, where programmed values

in the valid range [0,11] specify scratch space requirements in the range [1KB, 2MB].

When a thread becomes òactiveó it is allocated a portion of scratch space, sized according to

PerThreadScratchSpace . The starting location of each threadõs scratch space allocation, ScratchSpaceOffset , is

passed in the thread payload in R0.5[31:10] and is specified as a 1KB-granular offset from the

GeneralStateBaseAddress . The computation of ScratchSpaceOffset includes the starting address of the stageõs

scratch space allocation, as programmed by ScratchSpaceBasePointer . The maximum number of active threads for

a stage is specified by the MaximumNumberOfThreads state. SW shall abide by the scratch space restrictions

included in the descripti on of MaximumN umberOfThreads .

This value is also included within thread payloads in R0.3[3:0]. If a thread can potentially send any òA32 Statelessó

messages to the DataPort shared function, that thread shall ensure that it passes along the

PerThreadScratch Space value passed in the thread payload.

The state command specifies starting offset of th e scratch memory region allocated to a stage (Scratch Space Base

Pointer). It is specified as a 22-bit, 1KB-aligned offset from the GeneralStateBaseAddress .

Each thread requested by the FF stage will be allocated itõs exclusive portion of this space, with the per-thread

allocation size specified by Per-Thread Scratch Space. The computed offset of the thread -specific portion is

Doc Ref # IHD-OS-ICLLP-Vol 9-1.20 69

passed in the thread payload as Scratch Space Offset . If the thread needs to access this scratch space, it shall

utilize òstatelessó DataPort read/write message, where the DataPort will cause the General State Base Address to

be added to the specific scratch space offset passed in the message header.

Include Vertex Handles

This state variable specifies whether input vertex URB handles are included in the thread payload for

threads requested by the FF stage. SW shall set this bit if the thread kernel requires access to the data

contained input v ertex URB entries, either in addition to or instead of the input vertex data pushed into

the thread payload.

URB Payload State

The following state variables specify certain parameters related to the amount and location of URB-

sourced data in the thread payload. State variables specifying other parameters are found in other state

commands. Refer to the Thread Payload Overview subsection for more details.

State VS HS DS GS

Dispatch GRF Start Register for URB Data Y Y Y Y

Vertex/Patch URB Entry Read Offset Y Y Y Y

Vertex/Patch URB Entry Read Length Y Y Y Y

Dispatch GRF Start Register for URB Da ta

This state variable specifies a 5b GRF# (32B offset) within the thread payload where URB-sourced data

starts. The URB-sourced data starts with some (possibly zero) amount of pushed Constant data, followed

by some (possibly zero) amount of Vertex or Patch data.

Programming Restric tion : Software shall ensure that it does not cause URB data to overwrite the R0

Header or Extended Header.

Vertex/Patch URB Entry Read Off set

This state variable specifies the 32B offset at which data is to be read from each Vertex or Patch URB

entry before being included in the thre ad payload.

Vertex/Patch URB Entry Read Length

This state variable specifies the number of 16B (vertex elements) to be read from each Vertex or Patch

URB entry, starting from the offset specified by th e Vertex/PatchURBEn tr yReadOffse t state.

If the read length is non-zero, SW shall ensure that the specification of the source (URB) data does not

extend beyond the allocated and valid data in the URB entry. Other restrictions are described in the

Thread Payload Overview subsection.

70 Doc Ref # IHD-OS-ICLLP-Vol 9-1.20

Pre-Rasterization Vertex Stat e

The following state variables are implemented in the FF stages whose associated threads generate

vertices (therefore the HS stage is excluded). The state variables control some aspects of how the

generated (òoutputó) vertices are treated if the pipeline is configured to have the stageõs vertices to reach

the Clip and Setup stages. Hardware determines which stage produces these òpre-rasterizationó vertices

as a function of which FF stages are enabled. For example, if the GS and DS stages are disabled, the VS

stageõs set of state variables will be used or alternatively, if the GS stage is enabled, the GS stageõs set of

state variables will be used.

There are òForceó state bits in the Clip & Setup stages that can be used to override use of these per-FF

state variables and instead use corresponding state variables programmed in the Clip and/or Setup

stages.

State VS HS DS GS

Vertex URB Entry Output Read Offset Y N Y Y

Vertex URB Entry Output Read Length Y N Y Y

User Clip Distance Clip Test Enable Bitmask Y N Y Y

User Clip Distance Cull Test Enable Bitmask Y N Y Y

Vertex URB Entry Output Read Offset

This state variable specifies the 32B offset at which attribute data is to be read from each Vertex URB

entry for use by the Setup stage.

Vertex URB Entry Outp ut Read Length

This state variable specifies the number of 16B attributes to be read from each Vertex URB entry for use

by the Setup stage, starting from the offset specified by the VertexURBEntryOutpu tReadOffset state.

User Clip Distance Clip Test Enable Bit mask

This state variable is used in the Clip stageõs clip test functionality. See Clip stage documentation for

details.

User Clip Distance Cull Test Enabl e Bitmask

This state variable is used in the Clip stageõs cull test functionality. See Clip stage documentation for

details.

UAV Access State

This state variable is used by the HW UAV Coherency mechanism.

State VS HS DS GS

Accesses UAV Y Y Y Y

Doc Ref # IHD-OS-ICLLP-Vol 9-1.20 71

Accesses UAV

This state bit indicates that threads requested by this FF stage may perform accesses to UAV resources. If

SW enables the HW UAV Coherency function, it shall set this bit in order to include this stage in the

coherency activities. For improved performance, SW should only set this bit for those FF stages that

require it. If the HW UAV Coherency function is enabled, this bit is ignored.

Statistics Enable

This state variable is used to enable/disable the statistic counter for a FF stage.

State VS HS DS GS

Statistics Enable Y Y Y Y

Statistics Enab le

This state bit controls whether or not the statistic counter(s) associated with a FF stage are enabled. Refer

to the specific FF stage descriptions for details on the statistics counter(s) supported.

SW shall disable statistics counting via this bit prior to submitting an y 3DPRIMITIVE commands that are

not to be included in statistics counting. For example, if the statistics counters are to be maintained to

only track application-submitted work, SW shall ensure that any driver-generated work is not included in

the statistics.

Thread State (Ignored)

The following state variables can be programmed but are ignored in the HW implementation.

State VS HS DS GS

Kernel Start Pointer [47:32] Y Y Y Y

Scratch Space Base Offset Upper Y Y Y Y

URB Allocation Overv iew

The Geometry FF stages use the URB for temporary storage of vertex and/or patch data as URB Entries,

as well as Push Constant (PC) URB Buffers. Software can program the total size of the URB (see URB/L3

documentation). Software can also partition the URB space into FF stage-specific allocations for URB

Entries and/or PC URB Buffers. These allocations can be changed dynamically to accommodate changing

pipeline configurations and shader data requirements, though such changes may have performance

impacts. There shall be no overlap between the individual allocations and no allocation may extend

beyond the programmed URB upper limit.

Only the first 32KB of the URB can be used for VS, HS, DS, GS, and PS PC URB Buffer allocations. See Push

Constant Programming.

72 Doc Ref # IHD-OS-ICLLP-Vol 9-1.20

Software can place URB Entry allocations following any PC URB Buffer allocations. Software shall define

allocations for all the relevant Geometry FFs (VS, HS, DS, GS), though a subset of these allocations can be

ònulló allocations that do not consume URB space. The VS stage always requires a non-null allocation.

The HS and DS stages only require non-null allocations when tessellation is enabled. Likewise, the GS

stage only requires a non-null allocation when GS is enabled.

When POSH is Enabled (via CTXT_SR_CTL), an additional 32KB block of URB is allocated for POCS pipeline Push

Constants.

This block is located immediately after the RCS Push Constant URB Buffer Allocation.

When enabled, the size of the Push Constant URB allocation mentioned in the URB programming

informat ion (below) will increase to 64KB total (vs. the 32KB size shown)

URB Space Partitioning

The starting offset (within the URB space) of a FF URB Entry allocation is specified by a URBStartAddress

state. The size of an allocation is defined by a NumberOfU RBEntr ies state and a corresponding

URBEntr yAllocationSize state.

