

Intel® Iris® Xe MAX Graphics Open Source

Programmer's Reference Manual

For the 2020 Discrete GPU formerly named "DG1"

Volume 11: Media Engines

February 2021, Revision 1.0

ii Doc Ref # IHD-OS-DG1-Vol 11-2.21

Notices and Disclaimers

Intel technologies may require enabled hardware, software or service activation.

No product or component can be absolutely secure.

Code names are used by Intel to identify products, technologies, or services that are in development and

not publicly available. These are not "commercial" names and not intended to function as trademarks.

Customer is responsible for safety of the overall system, including compliance with applicable safety-

related requirements or standards.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by

this document.

The products described may contain design defects or errors known as errata which may cause the

product to deviate from published specifications. Current characterized errata are available on request.

You may not use or facilitate the use of this document in connection with any infringement or other legal

analysis concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free

license to any patent claim thereafter drafted which includes subject matter disclosed herein.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of

merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising

from course of performance, course of dealing, or usage in trade.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers

must not rely on the absence or characteristics of any features or instructions marked "reserved" or

"undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for

conflicts or incompatibilities arising from future changes to them. The information here is subject to

change without notice. Do not finalize a design with this information.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its

subsidiaries. Other names and brands may be claimed as the property of others.

Doc Ref # IHD-OS-DG1-Vol 11-2.21 iii

Table of Contents

Media Engines .. 1

Media VDBOX .. 1

AVP .. 1

AVP Command Sequence Examples for Decoder .. 4

Video Command Streamer (VCS) .. 8

HCP.. 16

VP9 Decoder Command Sequence... 36

MFX Pipe ... 85

Session Decoder StreamOut Data Structure .. 143

AVC Encoder MBAFF Support ... 201

VDBOX Registers .. 252

Media VEBOX .. 253

Media VEBOX Introduction ... 253

SFC .. 260

SFC Overview .. 260

SFC Commands Definition .. 260

Doc Ref # IHD-OS-DG1-Vol 11-2.21 1

Media Engines

Media VDBOX

This chapter describes the VDBOX Media Engine.

AVP

The AV1 Codec Pipeline (AVP) is a fixed function hardware video codec responsible for decoding AV1

(AOMedia Video 1) video streams.

AVP Register Definitions

The Message Channel Interface is a read-only bus used to access the AVP status registers. All registers

are 32 bits where reserved bits return a value of zero and subtractive-decode is used to return 0x0000 for

all register holes.

Register Attributes Description

Host Register Attributes gives the defined register tags and their description.

Host Register Attributes

Tag Name Description

R/W Read/Write Bit is read and writeable.

R/SW Read/Special Write Bit is readable. Write is only allowed once after a reset.

RO Read Only Bit is only readable, but writes have no effects.

WO Write Only Bit is only writeable, reads return zeros.

RV Reserved Bit is reserved and not visible. Reads will return 0, and writes have no effect.

NA Not Accessible This bit is not accessible.

AVP Decoder Register Map

This documents all AVP Decoder MMIO Registers.

AVP Decoder Register Descriptions

Reserved.

AVP Command Summary

The AV1 is configured through a set of batch commands defined in the following sections. The software

driver builds a frame level workload using these commands and stores these workloads in graphics

memory where they are fetched by the Video Command Streamer (VCS) and presented to the AVP for

processing. The commands are processed by the Workload Parser within the AVP and the hardware is

2 Doc Ref # IHD-OS-DG1-Vol 11-2.21

configured by the Workload Parser prior to each frame level encode or decode. A workload is defined as

a set of commands necessary to encode or decode one frame.

The software driver is required to read the AVP disable fuse to determine if the AVP is enabled. If it is

disabled, then the software driver must not enable AVP batch commands to be sent to the AVP or a hang

event may occur. Only when the AVP is enabled through the fuse, should the batch commands be sent

to the AVP.

AVP Workload Command Model

DWord0 of each command is defined in AVP DWord0 Command Definition. The AVP is selected with the

Media Instruction Opcode "8h" for all AVP Commands.

HCP DWord0 Command Definition

DWord Bits Description

0 31:29 Command Type = PARALLEL_VIDEO_PIPE = 3h

28:27 Pipeline Type = 2h

26:23 Media Instruction Opcode = Codec/Engine Name = AVP = 8h

22:16 Media Instruction Command = <see HCP Media Instruction Commands (Opcode=7h)>

15:12 Reserved: MBZ

11:0 Dword Length (Excludes Dwords 0, 1) = <command length>

Each AVP command has assigned a media instruction command as defined in AVP Media Instruction

Commands (Opcode=8h).

AVP Media Instruction Commands (Opcode=8h)

Media Instruction Command Command DWord0 [22:16] Mode Scope

AVP_PIPE_MODE_SELECT 0h
Dec Picture

AVP_SURFACE_STATE 1h
Dec Picture

AVP_PIPE_BUF_ADDR_STATE 2h
Dec Picture

AVP_IND_OBJ_BASE_ADDR_STATE 3h
Dec Picture

Reserved 4h-5h

Reserved 8h-9h

Doc Ref # IHD-OS-DG1-Vol 11-2.21 3

Media Instruction Command Command DWord0 [22:16] Mode Scope

VD_CONTROL_STATE Ah Dec Picture

Reserved Bh-Fh

AVP_PIC_STATE 10h Dec Picture

Reserved 11h

AVP_REF_IDX_STATE 12h Dec Tile

Reserved 13h-14h

AVP_TILE_CODING 15h Dec Tile

Reserved 16h-1Fh

AVP_BSD_OBJECT_STATE 20h Dec Tile

Reserved 21h-31h

Reserved 33h-7Fh

AVP Command Sequence

The AV1 is configured for encoding or decoding through a set of batch commands defined in the

following sections. The software driver builds a frame level workload using these commands and stores

these workloads in graphics memory where they are fetched by the Video Command Streamer (VCS) and

presented to the AVP for processing. The commands are processed by the Workload Parser within the

AVP and the hardware is configured by the Workload Parser prior to each frame level encode or decode.

A workload is defined as a set of commands necessary to encode or decode one frame.

The software driver is required to read the AVP disable fuse to determine if the AVP is enabled. If it is

disabled, then the software driver must not enable AVP batch commands to be sent to the AVP or a hang

event may occur. Only when the AVP is enabled through the fuse, should the batch commands be sent

to the AVP.

4 Doc Ref # IHD-OS-DG1-Vol 11-2.21

AVP Command Sequence Examples for Decoder

AV1 workload is based upon a single tile decode. There are no states saved between tile decodes in the

AVP.

The following programming sequence will be used by single pipe decode.

<<Start Workload>>

|

VD_CONTROL (AVP_Pipe_Initialization) AVP PIpe Reset

|

AVP_PIPE_MODE_SELECT AVP Pipe Setup

|

AVP_SURFACE_STATE (Multiple) Frame Level Commands

AVP_PIPE_BUF_ADDR_STATE Frame Level Commands

AVP_IND_OBJ_BASE_ADDR_STATE Frame Level Commands

AVP_PIC_STATE Frame Level Commands

AVP_SEGMENT_STATE Frame Level Commands

AVP_INLOOP_FILTER_STATE Frame Level Commands

if (FILM_GRAIN ON) {

 AVP_FILM_GRAIN_STATE Frame Level Commands

}

|

AVP_TILE_CODING Tile Level Commands

|

AVP_BSD_OBJECT Decode Start

|

<< Tile Done >> Decode Finish

|

VD_CONTROL (AVP_Memory_Implicit_Fush) HW Data Flush to

Memory

|

MI_FLUSH_DW (Protection Disable) SW Flush and Protection

OFF

|

<<End Workload>>

Each tile should be programmed independently

Doc Ref # IHD-OS-DG1-Vol 11-2.21 5

AVP Buffer Size Requirements

This documents all the Memory Buffer Size Requirement and Media Internal Storage Programming.

The following tables indicate AV1 rowstore size requirement.

The number below indicates is number of cacheline per SB (SB can be 64x64 or 128x128).

The rowstore data can be stored in Internal Media Storage.

To allocate the following: Total CLs = (#CLs_per_SB * num_of_SB_per_tile_width)

Surface 8 bits 10 bits Comments

SB64 SB128 SB64 SB128

Bitstream Decoder/Encode Line Rowstore (BTDL) 2 4 2 4 Decoder Only

Spatial Motion Vector Line Rowstore (SMVL) 4 8 4 8

Intra Prediction Line Rowstore (IPDL) 2 4 4 8

Deblocker Filter Line Y Buffer (DFLY) 9 17 11 21

Deblocker Filter Line U Buffe (DFLU) 3 4 3 5

Deblocker Filter Line V Buffe (DFLV) 3 4 3 5

The following rowstore requires extra CL allocation in addition to CL per SB.

To allocate the following: Total CLs = (#CLs_per_SB * num_of_SB_per_tile_width) + #CLs_extra_per_surface

Surface #CLs per SB #CLs extra per surface

8 bit 10 bit 8 bit 10 bit

SB64 SB128 SB64 SB128 SB64 SB128 SB64 SB128

CDEF Filter Line Buffer (CDEF) 8 16 10 20 1 1 2 2

The following tables indicate AV1 tile storage. These will NOT be stored in Internal Media Storage.

To allocate the following, use the following equations based on Tile Line Rowstore or Tile Column Rowstore:

Total Tile Line CLs = (#CLs_per_SB * num_of_SB_per_FRAME_width)

Total Tile Column CLs = (#CLs_per_SB * num_of_SB_per_FRAME_height)

Note: In scalable mode, separate buffers must be allocated per pipes run concurrently.

[Programming suggestion: The largest tile width is 4096 in pixels. It is recommended to allocate the buffer

based on 4096 tile width

and it can be reused for all tiles within the frame]

Surface 8 bit 10 bit Comments

SB64 SB128 SB64 SB128

Bitstream Decode/Encode Tile Line Rowstore 2 4 2 4 Decode/Encode

Spatial Motion Vector Tile Line Rowstore 4 8 4 8

Intra Prediction Tile Line Rowstore Tile Row 2 4 4 8

Deblocker Filter Tile Line Y Buffer 9 17 11 21

Deblocker Filter Tile Column Y Buffer 8 16 10 20

6 Doc Ref # IHD-OS-DG1-Vol 11-2.21

Deblocker Filter Tile Line U Buffer 3 4 3 5

Deblocker Filter Tile Column U Buffer 2 4 3 5

Deblocker Filter Tile Line V Buffer 3 4 3 5

Deblocker Filter Tile Column V Buffer 2 4 3 5

CDEF Filter Top-Left Corner Buffer 1 * num_Tile_Horz *

num_Tile_Vert

1 CL per tiles

CDEF Filter Meta Tile Line Buffer 1 * num_Tile_Horz 1 CL per horz

tile

Loop Restoration Tile Line Y Buffer 7 * num_Tile_Horz 7 CL per horz

tile

Loop Restoration Tile Line U Buffer 5 * num_Tile_Horz 5 CL per horz

tile

Loop Restoration Tile Line V Buffer 5 * num_Tile_Horz 5 CL per horz

tile

The following buffer requires extra CLs at the end of frame width/height. These will NOT be stored in Internal Media

Storage.

To allocate the following, use the following equations based on Tile Line Rowstore or Tile Column Rowstore:

Total Tile Line CLs = (#CLs_per_SB * num_of_SB_per_FRAME_width) + #CLs_extra_per_surface

Total Tile Column CLs = (#CLs_per_SB * num_of_SB_per_FRAME_height) + #CLs_extra_per_surface

Note: In scalable mode, separate buffers must be allocated per pipes run concurrently.

[Programming suggestion: The largest tile width is 4096 in pixels. It is recommended to allocate the buffer

based on 4096 tile width

and it can be reused for all tiles within the frame]

Surface #CLs per SB #CLs extra per surface

8 bit 10 bit 8 bit 10 bit

SB64 SB128 SB64 SB128 SB64 SB128 SB64 SB128

CDEF Filter Tile Line Buffer 8 16 10 20 1 1 2 2

CDEF Filter Tile Column Buffer 8 16 10 20 1 1 2 2

CDEF Filter Meta Tile Column Buffer 1 1 1 1 0 0 0 0

Super-Res Tile Column Y Buffer 22 44 29 58 22 44 29 58

Super-Res Tile Column U Buffer 8 16 10 20 8 16 10 20

Super-Res Tile Column V Buffer 8 16 10 20 8 16 10 20

Loop Restoration Filter Tile Column Y

Buffer

9 17 11 22 2 2 2 2

Loop Restoration Filter Tile Column U

Buffer

5 9 6 12 1 1 1 1

Loop Restoration Filter Tile Column V

Buffer

5 9 6 12 1 1 1 1

Loop Restoration Meta Tile Column Buffer 1 1 1 1 1 1 1 1

Doc Ref # IHD-OS-DG1-Vol 11-2.21 7

The following table indicates AV1 frame buffer (except pixel buffer).

Surface SB64 SB128 Comments

CDF Tables Initialization

Buffer

242 CLs Intra frame uses 183 CLs;

inter frame uses 242 CLs

CDF Tables Backward

Adaptation Buffer

242 CLs

AV1 Segment ID Read

Buffer

2 *

Total_Num_SB64_in_Frame

8 *

Total_Num_SB128_in_Frame

AV1 Segment ID Write

Buffer

2 *

Total_Num_SB64_in_Frame

8 *

Total_Num_SB128_in_Frame

Collocated Motion

Vector Temporal Buffer

4 *

Total_Num_SB64_in_Frame

16 *

Total_Num_SB128_in_Frame

Current Frame Motion

Vector Write Buffer

4 *

Total_Num_SB64_in_Frame

16 *

Total_Num_SB128_in_Frame

This section documents the Internal Media Storage Programming for AV1 decoder.

The following table is created for a maximum of 4k tile width.

Since AV1 has a restriction of maximum 4k tile width and each tile is programmed

per tile independently, only 4k tile programming is needed (unlike other codec)

 Address Programming (N/A means disable)

Format Bitdepth TileSize BTDL SMVL IPDL DFLY DFLU DFLV CDEF

420 8/10 bit <= 4k 0 128 384 640 1344 1536 1728 N/A

AVP Common Commands

This documents commands only for AVP codec decoder

Commands

AVP_REF_IDX_STATE

AVP_SEGMENT_STATE

AVP_BSD_OBJECT

AVP Pipe Common Commands

The AVP Pipe Common Commands specify the AVP Decoder pipeline level configuration.

Shared Commands

VD_CONTROL_STATE

AVP Commands

AVP_PIPE_MODE_SELECT

AVP_SURFACE_STATE

8 Doc Ref # IHD-OS-DG1-Vol 11-2.21

AVP Commands

AVP_PIC_STATE

AVP_PIPE_BUF_ADDR_STATE

AVP_TILE_CODING

AVP_IND_OBJ_BASE_ADDR_STATE

Video Command Streamer (VCS)

The VCS (Video Command Streamer) unit primarily serves as the software programming interface

between the O/S driver and the MFD Engine. It is responsible for fetching, decoding, and dispatching of

data packets (Media Commands with the header DWord removed) to the front-end interface module of

MFX Engine.

Its logic functions include:

• MMIO register programming interface

• DMA action for fetching of execlists and ring data from memory

• Management of the Head pointer for the Ring Buffer

• Decode of ring data and sending it to the appropriate destination: AVC, VC1, or MPEG2 engine

• Handling of user interrupts

• Handling of ring context switch interrupt

• Flushing the MFX Engine

• Handle NOP

The register programming (RM) bus is a DWord interface bus that is driven by the Gx Command

Streamer. The VCS unit only claims memory mapped I/O cycles that are targeted to its range of 0x4000

to 0x4FFFF. The Gx and MFX Engines use semaphore to synchronize their operations.

VCS operates completely independent of the Gx CS.

The simple sequence of events is as follows: a ring (say PRB0) is programmed by a memory-mapped

register write cycle. The DMA inside VCS is kicked off. The DMA fetches commands from memory based

on the starting address and head pointer. The DMA requests cache lines from memory (one cacheline CL

at a time). There is guaranteed space in the DMA FIFO (16 CL deep) for data coming back from memory.

The DMA control logic has copies of the head pointer and the tail pointer. The DMA increments the head

pointer after making requests for ring commands. Once the DMA copy of the head pointer becomes

equal to the tail pointer, the DMA stops requesting.

The parser starts executing once the DMA FIFO has valid commands. All the commands have a header

DWord packet. Based on the encoding in the header packet, the command may be targeted towards

AVC/VC1/MPEG2 engine or the command parser. After execution of every command, the actual head

pointer is updated. The ring is considered empty when the head pointer becomes equal to the tail

pointer.

Doc Ref # IHD-OS-DG1-Vol 11-2.21 9

Context Management

Video Engine Power Context

This section lists the power context image of Video Engine across generations.

Video Engine Power Context

Table below captures the data from VCS power context save/restored by PM. Address offset in the below

table is relative to the starting location of VCS in the overall power context image managed by PM.

Address offsets in this table are relative to the starting location of VCS in the power context image

managed by each engine. MMIO offset mentioned for the registers in the below table are offset from the

units "MMIO Base Offset" mentioned in the table " Base Offset for all engines in the section Register

Access and User Mode Privileges. For Example: VCS has MMIO Base Offset as "0x1C_0000". In the below

table GFX_MODE register has 0x0029C as offset against it, actual MMIO Offset of GFX_MODE register for

VCS is 0xx1C_029C and for VECS it would be 0x1C_829C.

VCS Power Context Image

Description MMIO Offset Unit # of DW Address Offset (PWR) CSFE/CSBE

CSFE Power context without Display VCS 192 0 CSFE

NOOP VCS 1 00C0 CSBE

Load_Register_Immediate header 0x1100_1005 VCS 1 00C1 CSBE

GAC MODE REGISTER 0x000a0 VCS 2 00C6 CSBE

HUC_PMCR_REGISTER
0x00400

HUC 1 00C8 CSBE

VCS_WAKERATE_HCP
0x006E0

VCS 2 00CA CSBE

VCS_WAKERATE_MFX
0x006E4

VCS 2 00CC CSBE

VCS_SUBWELL
0x006E8

VCS 2 00CE CSBE

VCS_BUSYNESS_VCS
0x006EC

VCS 2 00D0 CSBE

VCS_BUSYNESS_HCP
0x006F0

VCS 2 00D2 CSBE

VCS_BUSYNESS_MFX
0x006F4

VCS 2 00D4 CSBE

NOOP VCS 9 00D9 CSBE

MI_BATCH_BUFFER_END VCS 1 00DF CSBE

../../../../Content/ga12/csfe/UserModePrivileges.htm
../../../../Content/ga12/csfe/UserModePrivileges.htm

10 Doc Ref # IHD-OS-DG1-Vol 11-2.21

VDBOX - Engine Register State and Context

This section discusses the following topics for the BSD Logical Render Context Address (LRCA):

• Ring Context

• Register State Context

Register State Context

EXECLIST CONTEXT

EXECLIST CONTEXT(PPGTT Base)

ENGINE CONTEXT

Description

Description When

 Suspended Context Unit Dword Count Address Offset (Dword)

CSFE Execlist Context VCSFE 192 0

MI_BATCH_BUFFER_END CSEND 1 00C0

NOOP CSEND 127 00C1

 DW 320

 K Bytes 1.25

Video Command Formats

MFX Commands

The MFX (MFD for decode and MFC for encode) commands are used to program the multi-format codec

engine attached to the Video Codec Command Parser. See the MFD and MFC chapters for a description

of these commands.

MFX state commands support direct state model and indirect state model. Recommended usage of

indirect state model is provided here (as a software usage guideline).

Doc Ref # IHD-OS-DG1-Vol 11-2.21 11

Pipeline

Type

(28:27)

Opcode

(26:24)

SubopA

(23:21)

SubopB

(20:16) Command Chapter

Recommended

Indirect State

Pointer Map Interruptable?

MFX Common (State)

2h 0h 0h 0h MFX_PIPE_MODE_SELECT MFX IMAGE N/A

2h 0h 0h 1h MFX_SURFACE_STATE MFX IMAGE N/A

2h 0h 0h 2h MFX_PIPE_BUF_ADDR_STATE MFX IMAGE N/A

2h 0h 0h 3h MFX_IND_OBJ_BASE_ADDR_STATE MFX IMAGE N/A

2h 0h 0h 4h MFX_BSP_BUF_BASE_ADDR_STATE MFX IMAGE N/A

2h 0h 0h 6h MFX_ STATE_POINTER MFX IMAGE N/A

2h 0h 0h 7-8h Reserved N/A N/A N/A

MFX Common (Object)

2h 0h 1h 9h MFD_ IT_OBJECT MFX N/A Yes

2h 0h 0h 4-1Fh Reserved N/A N/A N/A

AVC Common (State)

2h 1h 0h 0h MFX_AVC_IMG_STATE MFX IMAGE N/A

2h 1h 0h 1h MFX_AVC_QM_STATE MFX IMAGE N/A

2h 1h 0h 2h MFX_AVC_DIRECTMODE_STATE MFX SLICE N/A

2h 1h 0h 3h MFX_AVC_SLICE_STATE MFX SLICE N/A

2h 1h 0h 4h MFX_AVC_REF_IDX_STATE MFX SLICE N/A

2h 1h 0h 5h MFX_AVC_WEIGHTOFFSET_STATE MFX SLICE N/A

2h 1h 0h 6-1Fh Reserved N/A N/A N/A

AVC Dec

2h 1h 1h 0-7h Reserved N/A N/A N/A

2h 1h 1h 8h MFD_AVC_BSD_OBJECT MFX N/A No

2h 1h 1h 9-1Fh Reserved N/A N/A N/A

AVC Enc

2h 1h 2h 0-1h Reserved N/A N/A N/A

2h 1h 2h 2h MFC_AVC_FQM_STATE MFX IMAGE N/A

2h 1h 2h 3-7h Reserved N/A N/A N/A

2h 1h 2h 8h MFC_AVC_PAK_INSERT_OBJECT MFX N/A N/A

2h 1h 2h 9h MFC_AVC_PAK_OBJECT MFX N/A Yes

2h 1h 2h A-1Fh Reserved N/A N/A N/A

2h 1h 2h 0-1Fh Reserved N/A N/A N/A

VC1 Common

2h 2h 0h 0h MFX_VC1_PIC_STATE MFX IMAGE N/A

2h 2h 0h 1h MFX_VC1_PRED_PIPE_STATE MFX IMAGE N/A

2h 2h 0h 2h MFX_VC1_DIRECTMODE_STATE MFX SLICE N/A

2h 2h 0h 2-1Fh Reserved N/A N/A N/A

VC1 Dec

2h 2h 1h 0-7h Reserved N/A N/A N/A

12 Doc Ref # IHD-OS-DG1-Vol 11-2.21

Pipeline

Type

(28:27)

Opcode

(26:24)

SubopA

(23:21)

SubopB

(20:16) Command Chapter

Recommended

Indirect State

Pointer Map Interruptable?

2h 2h 1h 8h MFD_VC1_BSD_OBJECT MFX N/A Yes

2h 2h 1h 9-1Fh Reserved N/A N/A N/A

VC1 Enc

2h 2h 2h 0-1Fh Reserved N/A N/A N/A

MPEG2 Common

2h 3h 0h 0h MFX_MPEG2_PIC_STATE MFX IMAGE N/A

2h 3h 0h 1h MFX_MPEG2_QM_STATE MFX IMAGE N/A

2h 3h 0h 2-1Fh Reserved N/A N/A N/A

MPEG2 Dec

2h 3h 1h 1-7h Reserved N/A N/A N/A

2h 3h 1h 8h MFD_MPEG2_BSD_OBJECT MFX N/A Yes

2h 3h 1h 9-1Fh Reserved N/A N/A N/A

MPEG2 Enc

2h 3h 2h 0-1Fh Reserved N/A N/A N/A

The Rest

2h 4-5h, 7h x x Reserved N/A N/A N/A

Video Command Header Format

Video Command Header Format

Type Bits

 31:29 28:24 23 22 21:0

Memory

 Interface

 (MI)

000 Opcode

 00h - NOP

 0Xh - Single DWord Commands

 1Xh - Reserved

 2Xh - Store Data Commands

 3Xh - Ring/Batch Buffer Cmds

 Identification No./DWord Count

 Command Dependent Data

 5:0 - DWord Count

 5:0 - DWord Count

 5:0 - DWord Count

Doc Ref # IHD-OS-DG1-Vol 11-2.21 13

Type Bits

 31:29 28:27 26:24 23:16 15:0

Reserved 011 00 XXX XX

MFX Single DW 011 01 000 Opcode: 0h 0

Reserved 011 01 1XX

Reserved 011 10 0XX

AVC State 011 10 100 Opcode: 0h - 4h DWord Count

AVC Object 011 10 100 Opcode: 8h DWord Count

VC1 State 011 10 101 Opcode: 0h - 4h DWord Count

VC1 Object 011 10 101 Opcode: 8h DWord Count

Reserved 011 10 11X

Reserved 011 11 XXX

Type Bits

 31:29 28:27 26:24 23:21 20:16 15:0

MFX Common 011 10 000 000 subopcode DWord Count

Reserved 011 10 000 001-111 subopcode DWord Count

AVC Common 011 10 001 000 subopcode DWord Count

AVC Dec 011 10 001 001 subopcode DWord Count

AVC Enc 011 10 001 010 subopcode DWord Count

Reserved 011 10 001 011-111 subopcode DWord Count

Reserved (for VC1 Common) 011 10 010 000 subopcode DWord Count

VC1 Dec 011 10 010 001 subopcode DWord Count

Reserved (for VC1 Enc) 011 10 010 010 subopcode DWord Count

Reserved 011 10 010 011-111 subopcode DWord Count

Reserved (MPEG2 Common) 011 10 011 000 subopcode DWord Count

MPEG2Dec 011 10 011 001 subopcode DWord Count

Reserved (for MPEG2 Enc) 011 10 011 010 subopcode DWord Count

Reserved 011 10 011 011-111 subopcode DWord Count

Reserved 011 10 100-111 XXX

14 Doc Ref # IHD-OS-DG1-Vol 11-2.21

Watchdog Timer Registers

The following registers are defined as Watchdog Timer registers:

Register

PR_CTR_CTL - Watchdog Counter Control

PR_CTR_THRSH - Watchdog Counter Threshold

Logical Context Support

This section contains the registers for Logical Context Support.

Register

BB_STATE - Batch Buffer State Register

CXT_EL_OFFSET - Exec-List Context Offset

BB_START_ADDR - Batch Buffer Start Head Pointer Register

BB_START_ADDR_UDW - Batch Buffer Start Upper Head Pointer Register

BB_ADDR_DIFF - Batch Address Difference Register

BB_ADDR - Batch Buffer Head Pointer Register

SBB_ADDR - Second Level Batch Buffer Head Pointer Register

SBB_ADDR_UDW - Second Level Batch Buffer Upper Head Pointer Register

WAIT_FOR_RC6_EXIT - Control Register for Power Management

SBB_STATE - Second Level Batch Buffer State Register

BB_OFFSET - Batch Offset Register

RING_BUFFER_HEAD_PREEMPT_REG - RING_BUFFER_HEAD_PREEMPT_REG

BB_PREEMPT_ADDR - Batch Buffer Head Pointer Preemption Register

BB_PREEMPT_ADDR_UDW - Batch Buffer Upper Head Pointer Preemption Register

SBB_PREEMPT_ADDR - Second Level Batch Buffer Head Pointer Preemption Register

SBB_PREEMPT_ADDR_UDW - Second Level Batch Buffer Upper Head Pointer Preemption Register

MI_PREDICATE_RESULT_1 - Predicate Rendering Data Result 1

MI_PREDICATE_RESULT_2 - Predicate Rendering Data Result 2

DISPLAY_MESSAGE_FORWARD_STATUS - Display Message Forward Status Register

FORCE_TO_NONPRIV - FORCE_TO_NONPRIV

INDIRECT_CTX - Indirect Context Pointer

INDIRECT_CTX_OFFSET - Indirect Context Offset Pointer

BB_PER_CTX_PTR - Batch Buffer Per Context Pointer

SYNC_FLIP_STATUS - Wait For Event and Display Flip Flags Register

SYNC_FLIP_STATUS_1 - Wait For Event and Display Flip Flags Register 1

SYNC_FLIP_STATUS_2 - Wait For Event and Display Flip Flags Register 2

Doc Ref # IHD-OS-DG1-Vol 11-2.21 15

Mode Registers

The following are Mode Registers:

Mode Register

MI_MODE - Mode Register for Software Interface

INSTPM - Instruction Parser Mode Register

NOPID - NOP Identification Register

IDLEDLY - Idle Switch Delay

RESET_CTRL - Reset Control Register

PREEMPTION_HINT - Preemption Hint

PREEMPTION_HINT_UDW - Preemption Hint Upper DWord

SEMA_WAIT_POLL - Semaphore Polling Interval on Wait

Misc Register

HWS_PGA - Hardware Status Page Address Register

Hardware Status Page Layout

Registers in Media Engine

This topic describes the memory-mapped registers associated with the Memory Interface, including brief

descriptions of their use. The functions performed by some of these registers are discussed in more

detail in the Memory Interface Functions, Memory Interface Instructions, and Programming Environment

chapters.

The registers detailed in this chapter are used across multiple projects and are extentions to previous

projects. However, slight changes may be present in some registers (i.e., for features added or removed),

or some registers may be removed entirely. These changes are clearly marked within this chapter.

Register

TIMESTAMP - Reported Timestamp Count

CTX_TIMESTAMP - Context Timestamp Count

Memory Interface Commands for Video Codec Engine

This chapter describes the formats of the "Memory Interface" commands, including brief descriptions of

their use. The functions performed by these commands are discussed fully in the Memory Interface

Functions Device Programming Environment chapter.

This chapter describes MI Commands for the Video Codec Engine.

The commands detailed in this chapter are used across product families. However, slight changes may be

present in some commands (i.e., for features added or removed), or some commands may be removed

entirely. Refer to the Preface chapter for details.

16 Doc Ref # IHD-OS-DG1-Vol 11-2.21

MI Commands

MI_BATCH_BUFFER_END

MI_CONDITIONAL_BATCH_BUFFER_END

MI_BATCH_BUFFER_START

MI_FLUSH_DW

MI_COPY_MEM_MEM

MI_LOAD_REGISTER_REG

MI_MATH

MI_NOOP

MI_REPORT_HEAD

MI_SEMAPHORE_SIGNAL

MI_SEMAPHORE_WAIT

MI_STORE_REGISTER_MEM

MI_STORE_DATA_IMM

MI_SUSPEND_FLUSH

MI_USER_INTERRUPT

MI_LOAD_REGISTER_MEM

MI_ATOMIC

MI_FORCE_WAKEUP

HCP

HCP HW Codec Pipeline Introduction

The HEVC/VP9 Codec Pipeline (HCP) is a fixed function hardware video codec responsible for decoding

and encoding HEVC/VP9 (High Efficiency Video Coding) video streams.

Scope

The primary scope of the HCP document is to provide a description of the HCP commands processed by the Video

Command Streamer (VCS). The secondary scope is to provide a description of the status registers on the Message

Channel Interface to support encoding and decoding of the HEVC and VP9 video formats.

The sections include:

• Summary of Features

• Architecture Overview

• Commands

• Register Definitions

Acronyms and Applicable Standards

Doc Ref # IHD-OS-DG1-Vol 11-2.21 17

Summary of Features

The following sections define the general features of the HCP HW Decoder and Encoder pipeline, and the

features specific to HEVC and VP9 decoding and encoding, respectively.

VP9 Decoder Features

• Support full-featured VP9 Profile 1 and part of Profile 2 (444 only), up to 8K.

 • All headers (uncompressed and compressed header) are parsed and decoded outside the HCP HW

pipeline. They are then fed to the HW through a set of HCP (with VP9 specific) state commands.

 • Supports inner-loop decode part of the VP9 encoder implementation.

VP9 Encoder Features

• Supports ENC-PAK architecture

• Supports multiple pass BRC rate control operation flow

• Supports the VP9 Main Profile standard

• VP9 PAK Only mode is not supported.

HCP Hardware Pipeline Features

• Supports both decoder and encoder functions, setup on a per picture basis:

• Hardware acceleration provides Ctb/CU level decode and encode.

• No context switch is supported within a frame process.

• Supports Video Command Streamer (VCS):

• Shared with MFX HW pipeline, and at any one time, only one pipeline (MFX or HCP) and one

operation (decoding or encoding) can be active.

• Supports Message Channel Interface:

Feature

Supports Tile-YS and Tile-YF.

Supports Tile-Y Legacy.

• Supports NV12 video buffer plane:

• Supports 4:2:0, 8-bit per pixel component (Y, Cb and Cr) video.

• Supports 8Kx8K frame size.

HEVC Decoder Features

• Supports full-featured HEVC Main Profile standard, up to Level 6.2.

• Supports the long format HW decoding interface:

• All headers (SPS, PPS, Slice Header) are parsed and decoded outside the HCP HW pipeline.

They are then fed to the HW through a set of HCP state commands.

18 Doc Ref # IHD-OS-DG1-Vol 11-2.21

• Supports inner-loop decode with hardware entry points for Encoder.

• Error detection/resiliency down to the Ctb/CU level.

All 41 HEVC profiles:

• Yellow colored profiles have explicit GUID assigned

• Pink colored profiles are subset of Yellow colored profiles, and do not have their own GUID.

• Grey colored profiles are not supported by Intel HW at all.

No. Version HEVC Profiles Spec. Description Intel HW Decoder Intel HW VDENC Intel HW VME

1 Base Main 8b 4:2:0 only

2 Base Main 10 8/9/10b 4:2:0 only

3 Base Main Still

Picture

8b 4:2:0, 1 frame

only

7 RExt Main 12 8 to 12b 400/420 -Mono

8 RExt Main 4:2:2 10 8/9/10b

400/420/422

 -Mono

9 RExt Main 4:2:2 12 8-12b 400/420/422 G -Mono

10 RExt Main 4:4:4 8b 400/420/422/444 -Mono

11 RExt Main 4:4:4 10 8/9/10b

400/420/422/444

 -Mono

12 RExt Main 4:4:4 12 8-12b

400/420/422/444

-Mono

15 RExt Main 12 Intra

 -Mono

16 RExt Main 4:2:2 10

Intra

 -Mono

17 RExt Main 4:2:2 12

Intra

 -Mono

18 RExt Main 4:4:4 Intra

 -Mono

19 RExt Main 4:4:4 10

Intra

 -Mono

Doc Ref # IHD-OS-DG1-Vol 11-2.21 19

No. Version HEVC Profiles Spec. Description Intel HW Decoder Intel HW VDENC Intel HW VME

20 RExt Main 4:4:4 12

Intra

 -Mono

22 RExt Main 4:4:4 Still

Pic

8b 400/420/422/444 -Mono

28 V3 Screen-

Extended Main

8b 400/420 -Mono

29 V3 Screen-

Extended Main

10

8/9/10b 400/420 -Mono

30 V3 Screen-

Extended Main

4:4:4

8b 400/420/444 +

Main 4:4:4

 -Mono

31 V3 Screen-

Extended Main

4:4:4 10

8/9/10b

400/420/444 + Main

4:4:4 10

-Mono

HEVC Encoder Features

• Supports ENC-PAK architecture

• Supports multiple pass BRC rate control operation flow

• Supports the HEVC Main Profile standard, with certain restrictions on the feature set and coding

parameters, listed in the following table:

20 Doc Ref # IHD-OS-DG1-Vol 11-2.21

HEVC Encoder Features and Restrictions

Note that there is a difference between what PAK supported and what ENC supported. A

feature/function that is supported in the PAK, does not necessary being supported by ENC and

MediaSDK and the like.

Coding Tool Support Restriction Comments

LCU Size Yes

(spec)

 Support all 3 sizes: 16x16, 32x32, 64x64.

CU Size Yes

(spec)

 Support 8x8, 16x16, 32x32, 64x64.

 Max 64 CU per LCU; min. CU size intel supported is 8x8 for all LCU size.

PU Partition Yes

(spec)

 Support all inter symmetric (square) and asymmetric (non-square) PU

partitioning, according to HEVC spec. PU Size for inter : Smallest allowed

is 4x8 and 8x4, and they cannot be bidirectional. Inter 4x4 PU is not

allowed in Main Profile.

TU QuadTree Partial (intel)

 max depth is

set to 3

Max depth is 3 (64x64 CU with 4x4 TU). Decoder supports this depth, but

probably no need to search this for encode. Better to just split CU. HM

common conditions set the max to 2 for both inter and intra.

 Intel Encoder only supports 2 levels of quad-tree. That is,

max_transform_hierarchy_depth_inter/intra <= 2.

 Max num of TUs per CU is 16.

AMP Yes

(spec)

 Asymmetric Motion Partition (rectangular PU partitioning - 2NxnU,

2NxnD, nLx2N or nRx2N). Available only for 64x64 to 16x16 CU.

AMVP Yes

(spec)

 Adaptive/Advanced Motion Vector Prediction: spatial and PU-based

temporal co-located MV candidates with scaling. Logic available from

decoder. HW PAK is supporting temporal MV candidates.

Merge Yes

(spec)

 Merge Skip and Regular Merge. Max. 5 MV Merge candidates (4 spatial

+ 1 temporal co-located) with scaling. Logic available from decoder.

 [merge_flag, merge_index, skip_flag]

Parallel Motion

Merge

 No (intel) Tool for parallel decode of MVs. Since this isn't constrained by Main

Profile, the decoder has to meet performance targets in the worst case

anyway.

MC

Interpolation

Filter

Yes

(spec)

 1/4-pel Luma MV precision, 1/8-pel Chroma MV precision. 8-tap Luma

filtering for both 1/2-pel and 1/4-pel locations (1-pass). 4-tap Chroma

filtering. Use separable (first horizontal then vertical 1-D filtering) filter

coefficients. Not all filter kernels are symmetrical and can map into

simple arithmetic. It is a DCT-IF based filter. All operations are within 16-

bit data.

Weighted

Prediction

Yes

(spec)

 Free for PAK since decoder already has it. Cross fade and fade-in/out

detection required by VME. VME must supply weights, implicit weighted

prediction is not supported in HEVC. Only explicit weight is supported.

They are both unidirectional and bidirectional.

Combined

Reference

Frame List

 No (intel) Combine List0 and List1 into a single list to remove uni-prediction

signaling overhead.

Doc Ref # IHD-OS-DG1-Vol 11-2.21 21

Coding Tool Support Restriction Comments

Intra modes Yes

(spec)

 33 directions and DC/Planar modes, with adaptive pre-filtering on

reference pixels and boundary smoothing.

 Intel ENC-VME Mode search reduction for large CUs (64x64 and 32x32)

for performance speed up with minimal loss.

IPCM (intra) No (intel) Can be disabled completely by SPS, or only allowed at certain CU sizes.

No bit maximum on CUs in any profile/level (yet), so as of today there's

no mandate to support this for encode.

Constrained

Intra

 No (intel) Allow only intra neighboring blocks for current block intra-prediction.

Enabling this is a coding loss and does not result in a performance

improvement in HW designs.

2D DCT

Transform

Yes

(spec)

 Square shape only; 32x32, 16x16, 8x8 and 4x4.

Transform Skip

Evaluation

 No (intel)

 ENC will

estimate the

use of

transform skip

Significant coding gains for screen content (PowerPoint etc.). This tool is

disabled in the common conditions but isn't explicitly disallowed by

Main Profile. FQ is not bypass.

Sign bit hiding No (intel) Coding gain by removing one bypass bin per TU. Requires some smarts

in the PAK.

Trellis No (intel) Trellis Quantization

SAO No (intel) Difficult to implement in single pass, performance impact in 2-pass or

with previous frame search. Needs investigation. Decoder will support it.

Loop Filter

across

tiles/slices

boundary

 No (intel) Can be disabled for tiles and or slices in SPS, so that filter across all tiles

and slices boundaries. Main profile doesn't constrain.

Scaling List Yes

(spec)

 This uses the default (or custom) qp adjustment on a per-frequency

basis within a TU. Good coding improvement over flat scaling.

dQP Partial (intel)

 Yes for LCU;

No for CU

Being able to change QP per LCU or even up to once per 8x8 CU can

lead to significant coding gains. Not sure how easy it is for VME to

decide qp values though.

Chroma QP

offset

 No (intel) No ROI.

Dependent

slices

 No (intel) It is now part of Main Profile, but Intel will not support it. SW can

perform the slice repackaging without re-encoding.

Tiles No (intel) Although in Main Profile, it results in coding loss and doesn't improve

performance on HW. SW parallel processing (multithreaded) tool

Wavefront (aka

WPP)

 No (intel) Latest Main Profile spec has included Wavefront. We got a feedback that

this feature is highly desirable to support high performance

multithreading HEVC decoder.

Lossless

coding

 No (intel) Note: this is not the same as IPCM. Also details of this are in flux.

22 Doc Ref # IHD-OS-DG1-Vol 11-2.21

Coding Tool Support Restriction Comments

Interlaced

Video

 No (intel) Only progressive video encoding is supported.

LM mode No

(spec)

 Chroma-from-luma intra prediction (Linear Mode) is not allowed in Main

Profile (yet).

NSQT No

(spec)

 Non square transform is not allowed in the Main Profile

ALF No

(spec)

 Expensive and not in Main Profile currently. If decoder is going to

support it, may consider for encoder as well.

Entropy slices No

(spec)

 Not allowed in Main Profile, it is a SW parallel processing

(multithreaded) tool.

Slice

granularity !=

0

No

(spec)

 Not allowed by Main Profile, and highly likely to be removed from the

standard completely.

Architecture Overview

HCP HW pipeline is designed to support two codec standards: HEVC and VP9. It implements the

complete decoder process, but does not handle header (sequence header, frame/picture header, slice

header and tile header) parsing which is to be done by application/driver at software level. It also

implements the bitstream coding, residual generation and frame reconstruction part of the encoding

process (namely PAK), whereas the bit rate control, motion estimation and the block coding decision are

done either in software and/or in a separate HW modules.

 For decoder, both HEVC and VP9 are fully compliant to the standards, while for PAK, only a subset of

coding tools are implemented.

 The HCP can be programmed to function as either VP9 or HEVC at frame level at a time. The command

sequence for each codec is frame based.

HEVC/VP9 Encoder

The HEVC/VP9 encoder architecture consists of 2 major HW components: VDENC and PAK. In addition,

the HEVC architecture also supports a 3 HW components mode: Media ENC (EUs/Kernels+VME), and

PAK. Media EUs/Kernels implement the ENC portion of the encoding process. It communicates with the

VME to determine the best inter and intra coding modes for each block based on a set of cost functions

and algorithms. It also responsible for setting up multiple encoding passes to meet the target coding

efficiency. For both modes, the PAK is used to generate the final compressed bitstream on a per LCU

basis with coding parameters received from the ENC. It also provides feedback information for BRC rate

control purpose. As part of the PAK operation, it invokes the decoder in the reconstruction process.

HCP Command Summary

The HCP is configured for encoding or decoding through a set of batch commands defined in the

following sections. The software driver builds a frame level workload using these commands and stores

Doc Ref # IHD-OS-DG1-Vol 11-2.21 23

these workloads in graphics memory where they are fetched by the Video Command Streamer (VCS) and

presented to the HCP for processing. The commands are processed by the Workload Parser within the

HCP and the hardware is configured by the Workload Parser prior to each frame level encode or decode.

A workload is defined as a set of commands necessary to encode or decode one frame.

The software driver is required to read the HCP disable fuse to determine if the HCP is enabled. If it is

disabled, then the software driver must not enable HCP batch commands to be sent to the HCP or a

hang event may occur. Only when the HCP is enabled through the fuse, should the batch commands be

sent to the HCP.

Workload Command Model

DWord0 of each command is defined in HCP DWord0 Command Definition. The HCP is selected with the

Media Instruction Opcode "7h" for all HCP Commands.

HCP DWord0 Command Definition

DWord Bits Description

0 31:29 Command Type = PARALLEL_VIDEO_PIPE = 3h

28:27 Pipeline Type = 2h

26:23 Media Instruction Opcode = Codec/Engine Name = HCP = 7h

22:16 Media Instruction Command = <see HCP Media Instruction Commands (Opcode=7h)>

15:12 Reserved: MBZ

11:0 Dword Length (Excludes Dwords 0, 1) = <command length>

Each HCP command has assigned a media instruction command as defined in HCP Media Instruction

Commands (Opcode=7h).

24 Doc Ref # IHD-OS-DG1-Vol 11-2.21

HCP Media Instruction Commands (Opcode=7h)

Media Instruction Command Command DWord0 [22:16] Mode Scope

HCP_PIPE_MODE_SELECT 0h
Enc/Dec Picture

HCP_SURFACE_STATE 1h
Enc/Dec Picture

HCP_PIPE_BUF_ADDR_STATE 2h
Enc/Dec Picture

HCP_IND_OBJ_BASE_ADDR_STATE 3h
Enc/Dec Picture

HCP_QM_STATE 4h
Enc/Dec Picture

HCP_FQM_STATE (encoder only) 5h Enc Picture

Reserved 8h-Fh

HCP_PIC_STATE 10h
Enc/Dec Picture

HCP_TILE_STATE 11h
Dec Picture

HCP_REF_IDX_STATE 12h
Enc/Dec Slice

HCP_WEIGHTOFFSET_STATE 13h
Enc/Dec Slice

HCP_SLICE_STATE 14h
Enc/Dec Slice

HCP_TILE_CODING 15h Enc/Dec Tile

Reserved 16h-1Fh

HCP_BSD_OBJECT_STATE (decoder only) 20h
Dec Slice

HCP_PAK_OBJECT (encoder only) 21h
Enc LCU

HCP_INSERT_PAK_OBJECT (encoder only) 22h
Enc Bitstream

Reserved 23h-2Fh

HCP_VP9_PIC_STATE 30h Dec Picture

HCP_VP9_SEGMENT_STATE 32h Dec Picture

HCP_VP9_PAK_STATE 35h Enc LCU

HCP_VP9_RDOQ_STATE 3Ch Enc LCU

Reserved 3Dh-7Fh

Doc Ref # IHD-OS-DG1-Vol 11-2.21 25

HCP Command Sequence Examples

VP9 Encoder Command Sequence

For a single frame encoding process (w/o encryption) the command sequence is listed below. There are

no states saved between frame encoded in the HCP. There should be no other commands or context

switch within a group of PAK OBJECT Commands. HCP and MFX share the same VCS, but there is no

common encoding and decoding command that can be executed in both pipes, except the encryption

commands, mi_flush and MMIO commands.

------ Per Frame Level Commands

HCP_PIPE_MODE_SELECT

HCP_SURFACE_STATE

HCP_PIPE_BUF_ADDR_STATE

HCP_IND_OBJ_BASE_ADDR_STATE

HCP_VP9_PIC_STATE

HCP_VP9_SEGMENT_STATE

HCP_VP9_QUANT_LOOKUP_TABLES

HCP_PAK_INSERT_OBJECT - if header present at the beginning of frame

------- A group of LCUs

HCP_PAK_OBJECT

...

HCP_PAK_INSERT_OBJECT - if tail present at frame end

MI_FLUSH - when the frame is done

Command Sequence in Single Pipe Mode

Command Sequences with Tile Support

Single Pipe Mode- Following flow chart shows the command sequence when encoding frame using a single

pipe(VDbox).

26 Doc Ref # IHD-OS-DG1-Vol 11-2.21

Doc Ref # IHD-OS-DG1-Vol 11-2.21 27

Multiple Pipe Mode- When encoding a frame using multiple pipes, each pipe gets a single Tile Column or multiple

Tile columns depending upon Number of tile columns to encode. Following flow chart shows commands sequence

in a pipe (VDbox) when multiple pipes are used for encoding.

28 Doc Ref # IHD-OS-DG1-Vol 11-2.21

HCP Decoder Command Sequence

The long format workload for the HCP is based upon a single frame decode. There are no states saved

between frame decodes in the HCP. Once the bit stream DMA is configured with the HCP_BSD_OBJECT

command, and the bit stream is presented to the HCP, the frame decode will begin.

HCP Long Format Decode Workload Chart

The following programming sequence will be used by single pipe decode (CABAC+BE reconstruction) or scalable

CABAC only decode mode.

Doc Ref # IHD-OS-DG1-Vol 11-2.21 29

HCP Scalabe Backend Only Workload Chart

The scalable decoder workload for the HCP backend pipe is based upon a single frame decode using multiple

backend pipes. The frame is split into multple "virtual" vertical (column) tiles and they are processed by multple

linked backend pipes. [NOTE: the above command sequence is still used for HCP CABAC decode and the decoded

syntax elements are streamed to memory.]

The scalable decoder with CABAC in real tiles allows frame with tiles to be decodes by multiple pipes. Each pipes

will decode separate tile columns.

In this mode, the CABAC and BE will link and decode together. The following is the programming sequence.

30 Doc Ref # IHD-OS-DG1-Vol 11-2.21

Also, the number of tiles may be greater than the number of pipes used to decode the frame. In this case, multiple

phases will be introduced in the programming. For example, if N number of pipes are used to decode the frame.

The first phases will decode 0 to (N-1) tile column. The next phase will decode N to (2N -1). This will continue till all

the tile columns are processed.

[NOTE: The last phases may have fewer than N tile columns. In this case, only the needed pipes will be programmed

and used.

Doc Ref # IHD-OS-DG1-Vol 11-2.21 31

32 Doc Ref # IHD-OS-DG1-Vol 11-2.21

HCP Encoder Command Sequence

For a single frame encoding process (w/o multiple slices per frame), the command sequence is listed

below. There are no states saved between frame encoded in the HCP. There should be no other

commands or context switch within a group of PAK OBJECT Commands, representing a complete slice.

HCP and MFX share the same VCS, but there is no common encoding and decoding command that can

be executed in both pipes.

------ Per Frame Level Commands

HCP_PIPE_MODE_SELECT

HCP_SURFACE_STATE

HCP_PIPE_BUF_ADDR_STATE

HCP_IND_OBJ_BASE_ADDR_STATE

HCP_FQM_STATE - issue n number of times

HCP_QM_STATE - issue n number of times

HCP_PIC_STATE

------- Per Slice Level Commands (2 cases)

------- A Frame with only 1 Slice:

HCP_REF_IDX_STATE - set to provide L0 list for a P or B-Slice

HCP_REF_IDX_STATE - set to provide L1 list for a B-Slice

HCP_WEIGHTOFFSET_STATE Command - set to provide for L0 of a P or B-Slice

HCP_WEIGHTOFFSET_STATE Command - set to provide for L1 of a B-Slice

HCP_SLICE_STATE

HCP_PAK_INSERT_OBJECT - if header present at 1st slice start

------- A group of LCUs Per Slice

HCP_PAK_OBJECT

...

HCP_PAK_INSERT_OBJECT - if tail present at frame end

MI_FLUSH - when the frame is done

------ A Frame with Multiple Slices:

HCP_REF_IDX_STATE - set to provide L0 list for a P or B-Slice

HCP_REF_IDX_STATE - set to provide L1 list for a B-Slice

HCP_WEIGHTOFFSET_STATE Command - set to provide for L0 of a P or B-Slice

HCP_WEIGHTOFFSET_STATE Command - set to provide for L1 of a B-Slice

Doc Ref # IHD-OS-DG1-Vol 11-2.21 33

HCP_SLICE_STATE

HCP_PAK_INSERT_OBJECT - if header present at 1st slice start of a frame

HCP_PAK_OBJECT - a group of LCUs for a slice or a frame

...

HCP_PAK_INSERT_OBJECT - if tail present at slice or frame end

HCP_REF_IDX_STATE - set to provide L0 list for a P or B-Slice

HCP_REF_IDX_STATE - set to provide L1 list for a B-Slice

HCP_WEIGHTOFFSET_STATE Command - set to provide for L0 of a P or B-Slice

HCP_WEIGHTOFFSET_STATE Command - set to provide for L1 of a B-Slice

HCP_SLICE_STATE

HCP_PAK_INSERT_OBJECT - if header present at slice start

HCP_PAK_OBJECT - a group of LCUs for a slice or a frame

...

HCP_PAK_INSERT_OBJECT - if tail present at last slice end (frame end)

MI_FLUSH - when the frame is done

MFX_STITCH_OBJECT - a generic bitstream stitching command from MFX pipe

MI_FLUSH

MI_FLUSH is not allowed between Slices. HEVC CABAC has simplified its operation from AVC. There is

no longer a BSP_BUF_BASE_ADDR_STATE Command, as only a small local internal buffer is needed for

BSP/BSE row store. THE HCP PAK_INSERT_OBJECT has been designed to support both inline and

indirectly payload. Nevertheless, the MFX_STITCH_OBJECT command can still be used to stitch HEVC

bitstreams together, and is run in the MFX pipe. No HEVC specific STITCH command is implemented. The

SURFACE_STATE command for HEVC is redesigned and much simplified from that of MFX pipe.

Command Sequences with Tile Support

Single Pipe Mode- Following flow chart shows the command sequence when encoding frame using a single

pipe(VDbox).

34 Doc Ref # IHD-OS-DG1-Vol 11-2.21

Doc Ref # IHD-OS-DG1-Vol 11-2.21 35

Multiple Pipe Mode- When encoding a frame using multiple pipes, each pipe gets a single Tile Column or multiple

Tile columns depending upon Number of tile columns to encode. Following flow chart shows commands sequence

in a pipe (VDbox) when multiple pipes are used for encoding.

36 Doc Ref # IHD-OS-DG1-Vol 11-2.21

VP9 Decoder Command Sequence

VP9 decode programming is based upon a single frame decode. There are no states saved between

frame decodes in the HCP. Once the bit stream DMA is configured with the HCP_IND_OBJ_BSD_OBJECT

command, and the bit stream is presented to the HCP, the frame decode will begin.

VP9 Long Format Workflow Chart

The following is the programming for single pipe decode.

The following programming also for scalable mode CABAC FE decode pass. There will be only one bitstream

programming even if there are multiple tiles in the frame.

Doc Ref # IHD-OS-DG1-Vol 11-2.21 37

VP9 Scalable BE Only Workflow Chart

The following is the programming for scalable mode BE reconstruction pass (with multiple pipes). The following will

be programmed on all the pipes.

Memory Address Attributes

This section defines the memory address attributes for the third DWord of the HCP command buffer

address.

NOTE: The first DWord defines the lower address range and the second Dword defines the upper address

range in the HCP command buffer address.

MemoryAddressAttributes

38 Doc Ref # IHD-OS-DG1-Vol 11-2.21

HCP Pipe Common Commands

The HCP Pipe Common Commands specify the HEVC Decoder pipeline level configuration.

Commands

HCP_PIPE_MODE_SELECT_VideoCS

HCP_SURFACE_STATE_VideoCS

HCP_PIPE_BUF_ADDR_STATE_VideoCS

Commands

HCP_IND_OBJ_BASE_ADDR_STATE_VideoCS

HCP_QM_STATE_VideoCS

HCP_FQM_STATE_VideoCS

Column Title1

HCP_TILE_CODING

VD_CONTROL_STATE

Buffer Size Requirements

HEVC Buffer Requirement

HEVC Buffer Size Requirements

The following table indicates the buffer size in CLs per LCU. For memory allocation, the size will be the CLs per LCU

* the number of LCU horizontally (if it is line) or vertically (if is column)

Mode HEVC

Lcu_y_size in

pixels (64

for 64x64)

Lcu_size is in

number of

4x4 in the

 LCU per

column (16

for 64x64)

8 bit >8 bit

 4:2:0 4:2:2 4:4:4 4:2:0 4:2:2 4:4:4

Surface

Deblock

Line (per

LCU)

[(2*lcu_size*12

8) + 511]/512

[(2*lcu_size*128) +

511]/512

[(2*lcu_size*1.5*12

8) + 511]/512

[(2*lcu_size*25

6) + 511]/512

[(2*lcu_size*256) +

511]/512

[(2*lcu_size*1.5*25

6) + 511]/512

Deblock Tile

Line (per

LCU)

(

[(2*lcu_size*12

8) + 511]/512)

* 2

([(2*lcu_size*128)

+ 511]/512) * 2

(

[(2*lcu_size*1.5*12

8) + 511]/512) * 2

(

[(2*lcu_size*25

6) + 511]/512)

* 2

([(2*lcu_size*256)

+ 511]/512) * 2

(

[(2*lcu_size*1.5*25

6) + 511]/512) * 2

Deblock Tile

Column (per

(

[(2*lcu_size*12

(

[(2*lcu_size*1.5*12

(

[(2*lcu_size*1.5*12

(

[(2*lcu_size*25

(

[(2*lcu_size*1.5*25

(

[(2*lcu_size*1.5*25

Doc Ref # IHD-OS-DG1-Vol 11-2.21 39

LCU) 8 + 3*128) +

511]/512) * 2

8 + 3*128) +

511]/512) * 2

8 + 3*128) +

511]/512) * 2

6 + 3*256) +

511]/512) * 2

6 + 3*256) +

511]/512) * 2

6 + 3*256) +

511]/512) * 2

Top Right

Motion

Vector Tile

Column (per

LCU)

1 1 1 1 1 1

 Motion

Vector Line

(per LCU)

LCU16/32 : 1

 LCU64:2

LCU16/32 : 1

 LCU64:2

LCU16/32 : 1

 LCU64:2

LCU16/32 : 1

 LCU64:2

LCU16/32 : 1

 LCU64:2

LCU16/32 : 1

 LCU64:2

 Motion

Vector Tile

Line (per

LCU)

LCU16/32 : 2

 LCU64 : 4

LCU16/32 : 2

 LCU64 : 4

LCU16/32 : 2

 LCU64 : 4

LCU16/32 : 2

 LCU64 : 4

LCU16/32 : 2

 LCU64 : 4

LCU16/32 : 2

 LCU64 : 4

Right

Motion

Vector Tile

Column(per

LCU)

LCU16/32 : 2

 LCU64 : 4

LCU16/32 : 2

 LCU64 : 4

LCU16/32 : 2

 LCU64 : 4

LCU16/32 : 2

 LCU64 : 4

LCU16/32 : 2

 LCU64 : 4

LCU16/32 : 2

 LCU64 : 4

Top Right

Neighbor(pe

r LCU)

1 CL 1 CL LCU16 : 1

 LCU32/64 : 2

LCU16 : 1

 LCU32/64 : 2

LCU16 : 1

 LCU32/64 : 2

LCU16 : 2

 LCU32/64 : 3

HPR Left

Recon

Column(per

LCU)

LCU16/32 : 1

 LCU64 : 2

LCU16:1

 LCU32:2

 LCU64:3

LCU16:1

 LCU32:2

 LCU64:3

LCU16:1

 LCU32:2

 LCU64:4

LCU16:2

 LCU32:3

 LCU64:6

LCU16:2

 LCU32:3

 LCU64:6

HSF

 8/10 bit 12 bit

 4:2:0 4:2:2 4:4:4 4:2:0 4:2:2 4:4:4

Surface

SAO Line

(per LCU)

LCU16 : 2

 LCU32 : 3

 LCU64: 5

LCU16 : 2

 LCU32 : 3

 LCU64: 5

LCU16 : 3

 LCU32 : 4

 LCU64: 7

LCU16 : 2

 LCU32 : 4

 LCU64: 6

LCU16 : 2

 LCU32 : 4

 LCU64: 6

[LCU16 : 3

 LCU32 : 5

 LCU64: 8

SAO Tile

Line (per

LCU)

LCU16 : 4

 LCU32 : 6

 LCU64 : 10

LCU16 : 4

 LCU32 : 6

 LCU64 : 10

LCU16 : 6

 LCU32 : 8

 LCU64 : 14

LCU16 : 4

 LCU32 : 8

 LCU64 : 12

LCU16 : 4

 LCU32 : 8

 LCU64 : 12

[LCU16 : 6

 LCU32 : 10

 LCU64 : 16

SAO Tile

Column (per

LCU)

LCU16 : 8

 LCU32 : 10

 LCU64 : 18

LCU16 : 10

 LCU32 : 14

 LCU64 : 24

LCU16 : 10

 LCU32 : 14

 LCU64 : 24

[LCU16 : 8

 LCU32 : 10

 LCU64 : 18

LCU16 : 10

 LCU32 : 14

 LCU64 : 24

LCU16 : 10

 LCU32 : 14

 LCU64 : 24

The following table indicates the buffer size in CLs for the each row of frame or tile column.

Mode HEVC

 8 bit >8 bit

 4:2:0 4:2:2 4:4:4 4:2:0 4:2:2 4:4:4

Surfac

e

40 Doc Ref # IHD-OS-DG1-Vol 11-2.21

HSSE(

per

row of

frame

or tile

colum

n)

16*(frame/tile_

column

width_in_lcu +

3)

16*(frame/tile_

column

width_in_lcu +

3)

16*(frame/tile_column

width_in_lcu + 3)

16*(frame/tile_

column

width_in_lcu +

3)

16*(frame/tile_

column

width_in_lcu +

3)

16*(frame/tile_

column

width_in_lcu +

3)

HSAO(

per

row of

frame

or tile

colum

n)

(frame/tile_col

umn

width_in_lcu +

3)/4

(frame/tile

column

width_in_lcu +

3)/4

(frame(tile_column)_wi

dth_in_lcu + 3)/4

(frame/tile_col

umn

width_in_lcu +

3)/4

(frame/tile_col

umn

width_in_lcu +

3)/4

(frame/tile_col

umn

width_in_lcu +

3)/4

VP9 Buffer Size Requirements

The following table indicates the buffer size in CLs per LCU. For memory allocation, the size will be the CLs per LCU

* the number of LCU horizontally (if it is line) or vertically (if is column)

Mode

VP9

8 bits > 8 bits

4:2:0 4:2:2 4:4:4 4:2:0 4:2:2 4:4:4

Deblock Line (per SB64) 18 18 27 36 36 54

Deblock Tile Line (per SB64) 18 18 27 36 36 54

Deblock Tile Column (per SB64) 17 25 25 34 50 50

Top Right Motion Vector Tile Column (per LCU) NA NA NA NA NA NA

Right Motion Vector Line 5 5 5 5 5 5

Right Motion Vector Tile Line 5 5 5 5 5 5

Right Motion Vector Tile Column NA NA NA NA NA NA

HPR Left Recon Column(per LCU) 2 3 3 4 6 6

Top Right Neighbor 1 1 1 1 1 1

HSAO NA NA NA NA NA NA

VP9 HVD Line Rowstore (per SB64) 1 1 1 1 1 1

VP9 HVD Tile Rowstore (per SB64) 1 1 1 1 1 1

VP9 Probability buffer (per frame) 32 32 32 32 32 32

Doc Ref # IHD-OS-DG1-Vol 11-2.21 41

The following table indicates the buffer size in CLs for each row of frame or tile column.

Mo

de

VP9

8 bit > 8 bits

4:2:0 4:2:2 4:4:4 4:2:0 4:2:2 4:4:4

HSS

E

32*(frame_width_i

n_sb64 + 3)

32*(frame_width_i

n_sb64 + 3)

32*(frame_width_i

n_sb64 + 3)

32*(frame_width_i

n_sb64 + 3)

32*(frame_width_i

n_sb64 + 3)

32*(frame_width_i

n_sb64 + 3)

The following table indicates the buffer size of each buffer for the whole frame. These data will be used across

frames.

Mode

VP9

8 bit > 8 bits

4:2:0 4:2:2 4:4:4 4:2:0 4:2:2 4:4:4

Current

Motion

Vector

Tempora

l Buffer

(num

_width_in_SB *

num_height_in_SB

) * 9

(num

_width_in_SB *

num_height_in_SB

) * 9

(num

_width_in_SB *

num_height_in_SB

) * 9

(num

_width_in_SB *

num_height_in_SB

) * 9

(num

_width_in_SB *

num_height_in_SB

) * 9

(num

_width_in_SB *

num_height_in_SB

) * 9

Collocat

ed

Motion

Vector

Tempora

l Buffer

(num

_width_in_SB *

num_height_in_SB

) * 9

(num

_width_in_SB *

num_height_in_SB

) * 9

(num

_width_in_SB *

num_height_in_SB

) * 9

(num

_width_in_SB *

num_height_in_SB

) * 9

(num

_width_in_SB *

num_height_in_SB

) * 9

(num

_width_in_SB *

num_height_in_SB

) * 9

VP9

Probabili

ty Buffer

32 32 32 32 32 32

VP9

Segment

ID buffer

(per

frame)

(frame_width_in_s

b64 *

frame_height_in_s

b64

(frame_width_in_s

b64 *

frame_height_in_s

b64

(frame_width_in_s

b64 *

frame_height_in_s

b64

(frame_width_in_s

b64 *

frame_height_in_s

b64

(frame_width_in_s

b64 *

frame_height_in_s

b64

(frame_width_in_s

b64 *

frame_height_in_s

b64

Internal Media Rowstore table - If the internal Media Rowstore exists, driver should use the storage as the following

table indicates.

42 Doc Ref # IHD-OS-DG1-Vol 11-2.21

This is for HEVC VMM setting. FrameWidth means frame width in picture for single pipe mode or Tile width for

scalable mode.

HEVC Enable Setting Addr Setting

ArrayType Bitdepth LCU

Size

FrameWidth Meta/MV Deblock SAO HSAO VDEnc DAT DF SAO HSAO VDEnc

420/422 8/10/12 16 <= 4096 Y Y Y Y N 0 256 1280 2048 N/A

32/64 <= 4096 Y Y Y Y Y 0 256 1280 1792 1824

8/10/12 16 4097 - 8192 Y Y N N N 0 512 N/A N/A N/A

32/64 4097 - 8192 Y Y N N Y 0 256 N/A N/A 2304

444 8 16 <= 4096 Y Y Y Y Y 0 256 1024 1792 N/A

4097 - 8192 Y Y N Y N 0 512 N/A 2048 N/A

10 <= 4096 Y Y Y N N 0 256 1792 N/A N/A

4097 - 8192 Y N Y Y N 0 N/A 512 2048 N/A

12 <= 4096 Y Y Y N N 0 256 1792 N/A N/A

4097 - 8192 Y N Y Y N 0 N/A 256 1792 N/A

8 32/64 <= 4096 Y Y Y Y Y 0 256 1024 1536 1568

4097 - 8192 Y Y N Y Y 0 512 N/A 2048 2112

10 <= 4096 Y Y Y Y Y 0 256 1792 2304 2336

4097 - 8192 Y N Y Y Y 0 N/A 512 1536 1600

12 <= 4096 Y Y Y Y Y 0 128 1664 2304 2336

4097 - 8192 Y N Y Y Y 0 N/A 256 1536 1600

The following table is for VP9 VMM setting. FrameWidth means frame width in picture for Single Pipe mode or Tile

Width for Scalable Mode

VP9 Enable Setting Addr Setting

ArrayType Bitdepth LCU

Size

FrameWidth HVD Meta/MV Deblock VDENC HVD Meta/MV Deblock VDEnc

420 8 64 <= 4096 Y Y Y Y 0 64 384 1536

64 4097 - 8192 N N Y Y N/A N/A 0 2304

10/12 64 <= 4096 Y N Y Y 0 N/A 64 2368

64 4097 - 8192 Y Y N Y 0 128 N/A 768

422 8 64 <= 4096 Y Y Y Y 0 64 384 1536

64 4097 - 8192 N N Y Y N/A N/A 0 2304

10/12 64 <= 4096 N N Y N N/A N/A 0 N/A

64 4097 - 8192 Y Y N Y 0 128 N/A 768

444 8 64 <= 4096 Y Y Y Y 0 64 384 2112

64 4097 - 8192 Y Y N Y 0 128 N/A 768

10/12 64 <= 2048 Y Y Y Y 0 32 192 1920

64 2049 - 4096 Y Y N Y 0 128 N/A 768

64 4097 - 8192 Y Y N Y 0 128 N/A 768

Doc Ref # IHD-OS-DG1-Vol 11-2.21 43

VP9 Common Commands

Commands

HCP_PIPE_MODE_SELECT

HCP_SURFACE_STATE

HCP_PIPE_BUF_ADDR_STATE

HCP_IND_OBJ_BASE_ADDR_STATE

HCP_VP9_SEGMENT_STATE

HCP_VP9_PIC_STATE

HCP Common Commands

HCP Common Commands

HCP_PIC_STATE

HCP_TILE_STATE

HCP_REF_IDX_STATE

HCP_WEIGHTOFFSET_STATE

HCP_SLICE_STATE

HEVC_VP9_RDOQ_STATE

HCP_BSD_OBJECT

HCP_PAK_OBJECT

HCP_PAK_INSERT_OBJECT

HCP_PALETTE_INITIALIZER_STATE

HCP and VP9 Commands

HCP_BSD_OBJECT (triggers HW start)

HCP_VP9_PAK_OBJECT

Tile Size and CU Stream-out Records

TileSize Record for both HEVC and VP9 Codecs

Fields Bits Notes

Address DW0-

1[63:0]

Bitstream start address; baseAddr + Tile offset. Used for

stitching purpose in scalability mode. MBZ in single pipe

mode.

Length DW2[31:0] Bitstream length per tile; Includes header in first tile and tail

in last tile. Used for stitching purpose in scalability mode.

MBZ in single pipe mode.

Tile Size DW3[31:0] Tile Size(no header) used by HW for back annotation. Also

HuC uses for BRC purpose in scalability mode for both

hevc/vp9. MBZ in HEVC single pipe mode.

AddressOffset DW4[31:0] Cacheline Address to be Modified. Used by HW for back

44 Doc Ref # IHD-OS-DG1-Vol 11-2.21

Fields Bits Notes

annotation. MBZ in HEVC mode.

Offset DW5[5:0] Byte offset to be Modified. Used by HW for back annotation.

MBZ in HEVC mode.

Reserved DW5[31:6] MBZ

HCP_BITSTREAM_SE_BITCOUNT_FRAME DW6[31:0] Bitstream size for Syntax element per Tile (see the MMIO

register for details).

 valid only for HEVC in scalability mode and MBZ for VP9

HCP_CABAC_BIN_COUNT_FRAME DW7[31:0] Bitstream size for Bin count per Tile (see the MMIO register

for details).

 valid only in scalability mode

Reserved DW8[31:0] MBZ

HCP_IMAGE_STATUS_CONTROL DW9[31:0] Image Status Mask Control(see the MMIO register for

details). Only valid fields are Total-NumPass[11:8](hevc/vp9)

and LCUbitCountViolate[0](hevc only).The rest of the fields

are MBZ.

 valid only in scalability mode

HCP_QP_STATUS_COUNT DW10[31:0] QP Status count (see the MMIO register for details).

 valid only for HEVC in scalability mode and MBZ for VP9

HCP_SLICE_COUNT DW11[31:0] Slice count (see the MMIO register for details).

 valid only for HEVC in scalability mode and MBZ for VP9

Reserved DW12-15 MBZ

HEVC: Streamout0 cacheline is composed of 4 quarter cachelines, each containing information on CU

skip flag, coding block flag for the TUs in a PU, residual/coefficient bit count for a PU, total bit count for

CU, SB exceed limit flag. A typical streamout0 cacheline, therefore, has information on statistics for 4 PUs

and Super Block exceed limit flag.

Pak pipeline streamout enable bit, set by HCP_PIPE_MODE_SELECT command, enables or disables the

streamout.

Doc Ref # IHD-OS-DG1-Vol 11-2.21 45

Programming Note

Context: CU level statistics

Level Field Width Cacheline Comment

PU PU Skip Flag 1 qcacheline[0] Packed in Quarter Cacheline in PU format

SB SB exceed limit 1 qcacheline[1] Packed in Quarter Cacheline in PU format

(valid on last PU of SB)

 Reserved 14 qcacheline[15:2 Reserved

PU TU CBF Y/U/V 48 qcacheline[63:16] Packed in Quarter Cacheline in PU format

PU PU Coefficient Bit Count

(Only residual)

18 qcacheline[81:64] Packed in Quarter Cacheline in PU format

PU PU Bit Count (all PU Syntax) 18 qcacheline[113:96] Packed in Quarter Cacheline in PU format

 Reserved 14 qcacheline[127:114] Reserved

Programming Note

Context: .

HEVC Streamout 1: Per Tile Quarter Cacheline

Level Field Width Cacheline Comment

Tile Tile Bit Count (header + data + tail) 32 cacheline[31:0]

 Reserved(MBZ) 32 cacheline[63:32]

 TilePositionX[15:0] 16 cacheline[79:64]

 TilePositionY[15:0] 16 cacheline[95:80]

 Reserved(MBZ) 32 cacheline[127:96]

VP9: CU statistics record (individual PUs per record down to 8x8 only)

Fields Bits

Skip 3:0 Indicates Skip flag

 Group 4 4x4s -> 4 bits

InterMode 11:4 InterMode:

 0 NEARESTMV, 1 NEARMV, 2 ZEROMV, 3NEWMV

 Group 4 4x4s total 8 bits

Reserved 15:12

NZ coeff count 28:16 Number of non-zero coeffs; sum of YUV, 13bits

Reserved 31:29

NumBitsforCoeffs 47:32 Number of Bits for coefficients per block, 16bits

NumBitsforBlock 63:48 Number of Bits in block

46 Doc Ref # IHD-OS-DG1-Vol 11-2.21

VP9 Stream-in/Stream-out Probability Table

In Encoder mode, one table will be streamed out. SW can use it as the current frame probability update

and use as the probability table for future frame. This stream-out table will become the stream-in

probability table for current frame or future frame. The stream-out and stream-in probability tables have

exactly the same format.

Alignm

ent

New

Offs

et

Byt

es

Descripti

on

Keyfra

me

default

s

Inter

frame

defaults

Capture

At

DV_CNT

State

count

er

EBB

Addre

ss

Coefficient counter EBB Address

4x

4

(K

F)

4x4

(INTE

R)

8x

8

(K

F)

8x8

(INTE

R)

16x

16

(KF)

16x1

6

(INTE

R)

32x

32

(KF)

32x3

2

(INTE

R)

CL

aligned

0 1 tx_probs_

8x8

 [0] [0..0]

100 10

0

0 0 0 0 MODE

COUNT

ERS

(counts

tx)

0-17

 1 1 tx_probs_

8x8

 [1] [0..0]

66 66 0 1 1

Stream-in formats for creating compressed header

The following memory surfaces are input to PAK for Compressed Header coding

i. Prob Diff Surface

In Probability Diff Surface, there are 1805 8-bit Probability Diffs. Each of them corresponding to a

Probability Diff in Compressed Header syntax. Although, for a given compressed header, not all the

Probability Diff would be coded (depends on update flag), Probability Diff Surface is fully populated with

1805 entries (1805*8 / 512 = 29 cachelines). The 1805 8-bit Probability Diffs are expected to follow

Compressed Header syntax order and fully packed.

ii. Compressed Header Syntax Surface

Each of the Compressed header Coding element (described in (2)) is represented by a 4-bit field. These

4-bit fields follows Compressed Header Syntax. Each of the field has a valid, Bin_probDiff_select,

Prob_select, Bin as described in the table below.

 Description

Valid Set to 1 if this is a valid Bin OR ProbabilityDiff field to code; Set to 0 to skip coding this field

Bin_ProbDiff_select Set to 1 if Current field is a Bin (corresponding Prob, Bin are indicated by next 2 bits); Set to 0 if

Current field is Probability Diff (probability diff to be coded is located in probability surface -

ReMap)

Prob_Select If current field is Bin, set to 1 if prob is 252; set to 0 if prob is 128

Bin if current field is Bin, this is Bin value to be encoded

Doc Ref # IHD-OS-DG1-Vol 11-2.21 47

Compressed Header Syntax Surface is a fixed length surface. For syntax that should not be coded, valid

bit should be set to 0. Total length of Compressed Header syntax Surface has 4033 Coding elements

(16132 bits in 32 cachelines):

1805 Prob Diff and Prob Update flag

4 is_coeff_updated flag (per 4x4, 8x8, 16x16, 32x32)

5 control fields (MIN (tx_mode, ALLOW_32x32), tx_mode == TX_MODE_SELECT, use_compound_pred,

use_hybrid_pred)

VP9 PAK Quant Lookup Tables

Qindex

IQ_Scale FQ_Shift FQ_Quant

8b 10b 12b 8b 10b 12b 8b 10b 12b

DC AC DC AC DC AC DC AC DC AC DC AC DC AC DC AC DC AC

0 4 4 4 4 4 4 1 1 1 1 1 1 32768 32768 32768 32768 32768 32768

1 8 8 9 9 12 13 2 2 2 2 2 2 32768 32768 29127 29127 21845 20164

2 8 9 10 11 18 19 2 2 2 2 3 3 32768 29127 26214 23831 29127 27594

3 9 10 13 13 25 27 2 2 2 2 3 3 29127 26214 20164 20164 20971 19418

4 10 11 15 16 33 35 2 2 2 3 4 4 26214 23831 17476 32768 31775 29959

5 11 12 17 18 41 44 2 2 3 3 4 4 23831 21845 30840 29127 25575 23831

6 12 13 20 21 50 54 2 2 3 3 4 4 21845 20164 26214 24966 20971 19418

7 12 14 22 24 60 64 2 2 3 3 4 5 21845 18724 23831 21845 17476 32768

8 13 15 25 27 70 75 2 2 3 3 5 5 20164 17476 20971 19418 29959 27962

9 14 16 28 30 80 87 2 3 3 3 5 5 18724 32768 18724 17476 26214 24105

10 15 17 31 33 91 99 2 3 3 4 5 5 17476 30840 16912 31775 23045 21183

11 16 18 34 37 103 112 3 3 4 4 5 5 32768 29127 30840 28339 20360 18724

12 17 19 37 40 115 126 3 3 4 4 5 5 30840 27594 28339 26214 18236 16644

13 18 20 40 44 127 139 3 3 4 4 5 6 29127 26214 26214 23831 16513 30174

14 19 21 43 48 140 154 3 3 4 4 6 6 27594 24966 24385 21845 29959 27235

15 19 22 47 51 153 168 3 3 4 4 6 6 27594 23831 22310 20560 27413 24966

16 20 23 50 55 166 183 3 3 4 4 6 6 26214 22795 20971 19065 25266 22919

17 21 24 53 59 180 199 3 3 4 4 6 6 24966 21845 19784 17772 23301 21076

18 22 25 57 63 194 214 3 3 4 4 6 6 23831 20971 18396 16644 21620 19599

19 23 26 60 67 208 230 3 3 4 5 6 6 22795 20164 17476 31300 20164 18236

20 24 27 64 71 222 247 3 3 5 5 6 6 21845 19418 32768 29537 18893 16980

21 25 28 68 75 237 263 3 3 5 5 6 7 20971 18724 30840 27962 17697 31895

22 26 29 71 79 251 280 3 3 5 5 6 7 20164 18078 29537 26546 16710 29959

23 26 30 75 83 266 297 3 3 5 5 7 7 20164 17476 27962 25266 31536 28244

24 27 31 78 88 281 314 3 3 5 5 7 7 19418 16912 26886 23831 29852 26715

25 28 32 82 92 296 331 3 4 5 5 7 7 18724 32768 25575 22795 28339 25343

26 29 33 86 96 312 349 3 4 5 5 7 7 18078 31775 24385 21845 26886 24036

27 30 34 90 100 327 366 3 4 5 5 7 7 17476 30840 23301 20971 25653 22919

48 Doc Ref # IHD-OS-DG1-Vol 11-2.21

Qindex

IQ_Scale FQ_Shift FQ_Quant

8b 10b 12b 8b 10b 12b 8b 10b 12b

DC AC DC AC DC AC DC AC DC AC DC AC DC AC DC AC DC AC

28 31 35 93 105 343 384 3 4 5 5 7 7 16912 29959 22550 19972 24456 21845

29 32 36 97 109 358 402 4 4 5 5 7 7 32768 29127 21620 19239 23431 20867

30 32 37 101 114 374 420 4 4 5 5 7 7 32768 28339 20763 18396 22429 19972

31 33 38 105 118 390 438 4 4 5 5 7 7 31775 27594 19972 17772 21509 19152

32 34 39 109 122 405 456 4 4 5 5 7 7 30840 26886 19239 17189 20712 18396

33 35 40 113 127 421 475 4 4 5 5 7 7 29959 26214 18558 16513 19925 17660

34 36 41 116 131 437 493 4 4 5 6 7 7 29127 25575 18078 32017 19195 17015

35 37 42 120 136 453 511 4 4 5 6 7 7 28339 24966 17476 30840 18517 16416

36 38 43 124 140 469 530 4 4 5 6 7 8 27594 24385 16912 29959 17886 31655

37 38 44 128 145 484 548 4 4 6 6 7 8 27594 23831 32768 28926 17331 30615

38 39 45 132 149 500 567 4 4 6 6 7 8 26886 23301 31775 28149 16777 29589

39 40 46 136 154 516 586 4 4 6 6 8 8 26214 22795 30840 27235 32513 28630

40 41 47 140 158 532 604 4 4 6 6 8 8 25575 22310 29959 26546 31536 27776

41 42 48 143 163 548 623 4 4 6 6 8 8 24966 21845 29330 25731 30615 26929

42 43 49 147 168 564 642 4 4 6 6 8 8 24385 21399 28532 24966 29746 26132

43 43 50 151 172 580 660 4 4 6 6 8 8 24385 20971 27776 24385 28926 25420

44 44 51 155 177 596 679 4 4 6 6 8 8 23831 20560 27060 23696 28149 24708

45 45 52 159 181 611 698 4 4 6 6 8 8 23301 20164 26379 23172 27458 24036

46 46 53 163 186 627 716 4 4 6 6 8 8 22795 19784 25731 22550 26757 23431

47 47 54 166 190 643 735 4 4 6 6 8 8 22310 19418 25266 22075 26092 22826

48 48 55 170 195 659 753 4 4 6 6 8 8 21845 19065 24672 21509 25458 22280

49 48 56 174 199 674 772 4 4 6 6 8 8 21845 18724 24105 21076 24892 21732

50 49 57 178 204 690 791 4 4 6 6 8 8 21399 18396 23563 20560 24314 21210

51 50 58 182 208 706 809 4 4 6 6 8 8 20971 18078 23045 20164 23763 20738

52 51 59 185 213 721 828 4 4 6 6 8 8 20560 17772 22671 19691 23269 20262

53 52 60 189 217 737 846 4 4 6 6 8 8 20164 17476 22192 19328 22764 19831

54 53 61 193 222 752 865 4 4 6 6 8 8 19784 17189 21732 18893 22310 19395

55 53 62 197 226 768 884 4 4 6 6 8 8 19784 16912 21290 18558 21845 18978

56 54 63 200 231 783 902 4 4 6 6 8 8 19418 16644 20971 18157 21426 18600

57 55 64 204 235 798 920 4 5 6 6 8 8 19065 32768 20560 17848 21024 18236

58 56 65 208 240 814 939 4 5 6 6 8 8 18724 32263 20164 17476 20610 17867

59 57 66 212 244 829 957 4 5 6 6 8 8 18396 31775 19784 17189 20237 17531

60 57 67 215 249 844 976 4 5 6 6 8 8 18396 31300 19508 16844 19878 17189

61 58 68 219 253 859 994 4 5 6 6 8 8 18078 30840 19152 16578 19531 16878

62 59 69 223 258 874 1012 4 5 6 7 8 8 17772 30393 18808 32513 19195 16578

63 60 70 226 262 889 1030 4 5 6 7 8 9 17476 29959 18558 32017 18872 32577

64 61 71 230 267 904 1049 4 5 6 7 8 9 17189 29537 18236 31418 18558 31987

65 62 72 233 271 919 1067 4 5 6 7 8 9 16912 29127 18001 30954 18255 31447

Doc Ref # IHD-OS-DG1-Vol 11-2.21 49

Qindex

IQ_Scale FQ_Shift FQ_Quant

8b 10b 12b 8b 10b 12b 8b 10b 12b

DC AC DC AC DC AC DC AC DC AC DC AC DC AC DC AC DC AC

66 62 73 237 275 934 1085 4 5 6 7 8 9 16912 28728 17697 30504 17962 30925

67 63 74 241 280 949 1103 4 5 6 7 8 9 16644 28339 17403 29959 17678 30421

68 64 75 244 284 964 1121 5 5 6 7 8 9 32768 27962 17189 29537 17403 29932

69 65 76 248 289 978 1139 5 5 6 7 8 9 32263 27594 16912 29026 17154 29459

70 66 77 251 293 993 1157 5 5 6 7 8 9 31775 27235 16710 28630 16895 29001

71 66 78 255 297 1008 1175 5 5 6 7 8 9 31775 26886 16448 28244 16644 28556

72 67 79 259 302 1022 1193 5 5 7 7 8 9 31300 26546 32388 27776 16416 28126

73 68 80 262 306 1037 1211 5 5 7 7 9 9 30840 26214 32017 27413 32357 27708

74 69 81 266 311 1051 1229 5 5 7 7 9 9 30393 25890 31536 26973 31926 27302

75 70 82 269 315 1065 1246 5 5 7 7 9 9 29959 25575 31184 26630 31506 26929

76 70 83 273 319 1080 1264 5 5 7 7 9 9 29959 25266 30727 26296 31068 26546

77 71 84 276 324 1094 1282 5 5 7 7 9 9 29537 24966 30393 25890 30671 26173

78 72 85 280 328 1108 1299 5 5 7 7 9 9 29127 24672 29959 25575 30283 25830

79 73 86 283 332 1122 1317 5 5 7 7 9 9 28728 24385 29641 25266 29905 25477

80 74 87 287 337 1136 1335 5 5 7 7 9 9 28339 24105 29228 24892 29537 25134

81 74 88 290 341 1151 1352 5 5 7 7 9 9 28339 23831 28926 24600 29152 24818

82 75 89 293 345 1165 1370 5 5 7 7 9 9 27962 23563 28630 24314 28802 24492

83 76 90 297 349 1179 1387 5 5 7 7 9 9 27594 23301 28244 24036 28460 24192

84 77 91 300 354 1192 1405 5 5 7 7 9 9 27235 23045 27962 23696 28149 23882

85 78 92 304 358 1206 1422 5 5 7 7 9 9 26886 22795 27594 23431 27822 23596

86 78 93 307 362 1220 1440 5 5 7 7 9 9 26886 22550 27324 23172 27503 23301

87 79 94 310 367 1234 1457 5 5 7 7 9 9 26546 22310 27060 22857 27191 23029

88 80 95 314 371 1248 1474 5 5 7 7 9 9 26214 22075 26715 22610 26886 22764

89 81 96 317 375 1261 1491 5 5 7 7 9 9 25890 21845 26462 22369 26609 22504

90 81 97 321 379 1275 1509 5 5 7 7 9 9 25890 21620 26132 22133 26317 22236

91 82 98 324 384 1288 1526 5 5 7 7 9 9 25575 21399 25890 21845 26051 21988

92 83 99 327 388 1302 1543 5 5 7 7 9 9 25266 21183 25653 21620 25771 21746

93 84 100 331 392 1315 1560 5 5 7 7 9 9 24966 20971 25343 21399 25516 21509

94 85 101 334 396 1329 1577 5 5 7 7 9 9 24672 20763 25115 21183 25247 21277

95 85 102 337 401 1342 1595 5 5 7 7 9 9 24672 20560 24892 20919 25003 21037

96 87 104 343 409 1368 1627 5 5 7 7 9 9 24105 20164 24456 20510 24528 20623

97 88 106 350 417 1393 1660 5 5 7 7 9 9 23831 19784 23967 20116 24087 20213

98 90 108 356 425 1419 1693 5 5 7 7 9 9 23301 19418 23563 19737 23646 19819

99 92 110 362 433 1444 1725 5 5 7 7 9 9 22795 19065 23172 19373 23237 19451

100 93 112 369 441 1469 1758 5 5 7 7 9 9 22550 18724 22733 19021 22841 19086

101 95 114 375 449 1494 1791 5 5 7 7 9 9 22075 18396 22369 18682 22459 18735

102 96 116 381 458 1519 1824 5 5 7 7 9 9 21845 18078 22017 18315 22089 18396

103 98 118 387 466 1544 1856 5 5 7 7 9 9 21399 17772 21675 18001 21732 18078

50 Doc Ref # IHD-OS-DG1-Vol 11-2.21

Qindex

IQ_Scale FQ_Shift FQ_Quant

8b 10b 12b 8b 10b 12b 8b 10b 12b

DC AC DC AC DC AC DC AC DC AC DC AC DC AC DC AC DC AC

104 99 120 394 474 1569 1889 5 5 7 7 9 9 21183 17476 21290 17697 21385 17763

105 101 122 400 482 1594 1922 5 5 7 7 9 9 20763 17189 20971 17403 21050 17458

106 102 124 406 490 1618 1954 5 5 7 7 9 9 20560 16912 20661 17119 20738 17172

107 104 126 412 498 1643 1987 5 5 7 7 9 9 20164 16644 20360 16844 20422 16886

108 105 128 418 506 1668 2020 5 6 7 7 9 9 19972 32768 20068 16578 20116 16611

109 107 130 424 514 1692 2052 5 6 7 8 9 10 19599 32263 19784 32640 19831 32704

110 108 132 430 523 1717 2085 5 6 7 8 9 10 19418 31775 19508 32078 19542 32186

111 110 134 436 531 1741 2118 5 6 7 8 9 10 19065 31300 19239 31595 19273 31685

112 111 136 442 539 1765 2150 5 6 7 8 9 10 18893 30840 18978 31126 19011 31213

113 113 138 448 547 1789 2183 5 6 7 8 9 10 18558 30393 18724 30671 18755 30741

114 114 140 454 555 1814 2216 5 6 7 8 9 10 18396 29959 18477 30229 18497 30283

115 116 142 460 563 1838 2248 5 6 7 8 9 10 18078 29537 18236 29799 18255 29852

116 117 144 466 571 1862 2281 5 6 7 8 9 10 17924 29127 18001 29382 18020 29420

117 118 146 472 579 1885 2313 5 6 7 8 9 10 17772 28728 17772 28976 17800 29013

118 120 148 478 588 1909 2346 5 6 7 8 9 10 17476 28339 17549 28532 17576 28605

119 121 150 484 596 1933 2378 5 6 7 8 9 10 17331 27962 17331 28149 17358 28220

120 123 152 490 604 1957 2411 5 6 7 8 9 10 17050 27594 17119 27776 17145 27834

121 125 155 499 616 1992 2459 5 6 7 8 9 10 16777 27060 16810 27235 16844 27291

122 127 158 507 628 2027 2508 5 6 7 8 9 10 16513 26546 16545 26715 16553 26757

123 129 161 516 640 2061 2556 6 6 8 8 10 10 32513 26051 32513 26214 32561 26255

124 131 164 525 652 2096 2605 6 6 8 8 10 10 32017 25575 31956 25731 32017 25761

125 134 167 533 664 2130 2653 6 6 8 8 10 10 31300 25115 31476 25266 31506 25295

126 136 170 542 676 2165 2701 6 6 8 8 10 10 30840 24672 30954 24818 30997 24845

127 138 173 550 688 2199 2750 6 6 8 8 10 10 30393 24244 30504 24385 30517 24403

128 140 176 559 700 2233 2798 6 6 8 8 10 10 29959 23831 30012 23967 30053 23984

129 142 179 567 713 2267 2847 6 6 8 8 10 10 29537 23431 29589 23530 29602 23571

130 144 182 576 725 2300 2895 6 6 8 8 10 10 29127 23045 29127 23140 29177 23180

131 146 185 584 737 2334 2943 6 6 8 8 10 10 28728 22671 28728 22764 28752 22802

132 148 188 592 749 2367 2992 6 6 8 8 10 10 28339 22310 28339 22399 28351 22429

133 150 191 601 761 2400 3040 6 6 8 8 10 10 27962 21959 27915 22046 27962 22075

134 152 194 609 773 2434 3088 6 6 8 8 10 10 27594 21620 27548 21704 27571 21732

135 154 197 617 785 2467 3137 6 6 8 8 10 10 27235 21290 27191 21372 27202 21392

136 156 200 625 797 2499 3185 6 6 8 8 10 10 26886 20971 26843 21050 26854 21070

137 158 203 634 809 2532 3234 6 6 8 8 10 10 26546 20661 26462 20738 26504 20751

138 161 207 644 825 2575 3298 6 6 8 8 10 10 26051 20262 26051 20336 26061 20348

139 164 211 655 841 2618 3362 6 6 8 8 10 10 25575 19878 25614 19949 25633 19960

140 166 215 666 857 2661 3426 6 6 8 8 10 10 25266 19508 25191 19576 25219 19588

141 169 219 676 873 2704 3491 6 6 8 8 10 10 24818 19152 24818 19217 24818 19223

Doc Ref # IHD-OS-DG1-Vol 11-2.21 51

Qindex

IQ_Scale FQ_Shift FQ_Quant

8b 10b 12b 8b 10b 12b 8b 10b 12b

DC AC DC AC DC AC DC AC DC AC DC AC DC AC DC AC DC AC

142 172 223 687 889 2746 3555 6 6 8 8 10 10 24385 18808 24420 18872 24438 18877

143 174 227 698 905 2788 3619 6 6 8 8 10 10 24105 18477 24036 18538 24070 18543

144 177 231 708 922 2830 3684 6 6 8 8 10 10 23696 18157 23696 18196 23713 18216

145 180 235 718 938 2872 3748 6 6 8 8 10 10 23301 17848 23366 17886 23366 17905

146 182 239 729 954 2913 3812 6 6 8 8 10 10 23045 17549 23014 17586 23037 17604

147 185 243 739 970 2954 3876 6 6 8 8 10 10 22671 17260 22702 17296 22717 17313

148 187 247 749 986 2995 3941 6 6 8 8 10 10 22429 16980 22399 17015 22406 17028

149 190 251 759 1002 3036 4005 6 6 8 8 10 10 22075 16710 22104 16743 22104 16756

150 192 255 770 1018 3076 4069 6 6 8 8 10 10 21845 16448 21788 16480 21816 16492

151 195 260 782 1038 3127 4149 6 7 8 9 10 11 21509 32263 21454 32326 21461 32349

152 199 265 795 1058 3177 4230 6 7 8 9 10 11 21076 31655 21103 31714 21123 31729

153 202 270 807 1078 3226 4310 6 7 8 9 10 11 20763 31068 20789 31126 20802 31141

154 205 275 819 1098 3275 4390 6 7 8 9 10 11 20460 30504 20485 30559 20491 30573

155 208 280 831 1118 3324 4470 6 7 8 9 10 11 20164 29959 20189 30012 20189 30026

156 211 285 844 1138 3373 4550 6 7 8 9 10 11 19878 29433 19878 29485 19895 29498

157 214 290 856 1158 3421 4631 6 7 8 9 10 11 19599 28926 19599 28976 19616 28982

158 217 295 868 1178 3469 4711 6 7 8 9 10 11 19328 28435 19328 28484 19345 28490

159 220 300 880 1198 3517 4791 6 7 8 9 10 11 19065 27962 19065 28008 19081 28014

160 223 305 891 1218 3565 4871 6 7 8 9 10 11 18808 27503 18829 27548 18824 27554

161 226 311 906 1242 3621 4967 6 7 8 9 10 11 18558 26973 18517 27016 18533 27021

162 230 317 920 1266 3677 5064 6 7 8 9 10 11 18236 26462 18236 26504 18250 26504

163 233 323 933 1290 3733 5160 6 7 8 9 10 11 18001 25970 17982 26011 17977 26011

164 237 329 947 1314 3788 5256 6 7 8 9 10 11 17697 25497 17716 25536 17716 25536

165 240 335 961 1338 3843 5352 6 7 8 9 10 11 17476 25040 17458 25078 17462 25078

166 243 341 975 1362 3897 5448 6 7 8 9 10 11 17260 24600 17207 24636 17220 24636

167 247 347 988 1386 3951 5544 6 7 8 9 10 11 16980 24174 16980 24209 16985 24209

168 250 353 1001 1411 4005 5641 6 7 8 9 10 11 16777 23763 16760 23780 16756 23793

169 253 359 1015 1435 4058 5737 6 7 8 9 10 11 16578 23366 16529 23382 16537 23395

170 257 366 1030 1463 4119 5849 7 7 9 9 11 11 32640 22919 32577 22935 32585 22947

171 261 373 1045 1491 4181 5961 7 7 9 9 11 11 32140 22489 32109 22504 32101 22515

172 265 380 1061 1519 4241 6073 7 7 9 9 11 11 31655 22075 31625 22089 31647 22100

173 269 387 1076 1547 4301 6185 7 7 9 9 11 11 31184 21675 31184 21690 31206 21700

174 272 394 1090 1575 4361 6297 7 7 9 9 11 11 30840 21290 30783 21304 30776 21314

175 276 401 1105 1603 4420 6410 7 7 9 9 11 11 30393 20919 30366 20932 30366 20938

176 280 408 1120 1631 4479 6522 7 7 9 9 11 11 29959 20560 29959 20572 29966 20579

177 284 416 1137 1663 4546 6650 7 7 9 9 11 11 29537 20164 29511 20177 29524 20183

178 288 424 1153 1695 4612 6778 7 7 9 9 11 11 29127 19784 29101 19796 29101 19801

179 292 432 1170 1727 4677 6906 7 7 9 9 11 11 28728 19418 28679 19429 28697 19434

52 Doc Ref # IHD-OS-DG1-Vol 11-2.21

Qindex

IQ_Scale FQ_Shift FQ_Quant

8b 10b 12b 8b 10b 12b 8b 10b 12b

DC AC DC AC DC AC DC AC DC AC DC AC DC AC DC AC DC AC

180 296 440 1186 1759 4742 7034 7 7 9 9 11 11 28339 19065 28292 19075 28304 19081

181 300 448 1202 1791 4807 7162 7 7 9 9 11 11 27962 18724 27915 18735 27921 18740

182 304 456 1218 1823 4871 7290 7 7 9 9 11 11 27594 18396 27548 18406 27554 18411

183 309 465 1236 1859 4942 7435 7 7 9 9 11 11 27147 18040 27147 18049 27158 18052

184 313 474 1253 1895 5013 7579 7 7 9 9 11 11 26800 17697 26779 17706 26773 17709

185 317 483 1271 1931 5083 7723 7 7 9 9 11 11 26462 17367 26400 17376 26405 17378

186 322 492 1288 1967 5153 7867 7 7 9 9 11 11 26051 17050 26051 17058 26046 17060

187 326 501 1306 2003 5222 8011 7 7 9 9 11 11 25731 16743 25692 16752 25702 16754

188 330 510 1323 2039 5291 8155 7 7 9 9 11 11 25420 16448 25362 16456 25367 16458

189 335 520 1342 2079 5367 8315 7 8 9 10 11 12 25040 32263 25003 32279 25007 32283

190 340 530 1361 2119 5442 8475 7 8 9 10 11 12 24672 31655 24654 31670 24663 31673

191 344 540 1379 2159 5517 8635 7 8 9 10 11 12 24385 31068 24332 31083 24328 31086

192 349 550 1398 2199 5591 8795 7 8 9 10 11 12 24036 30504 24001 30517 24006 30521

193 354 560 1416 2239 5665 8956 7 8 9 10 11 12 23696 29959 23696 29972 23692 29972

194 359 571 1436 2283 5745 9132 7 8 9 10 11 12 23366 29382 23366 29395 23362 29395

195 364 582 1456 2327 5825 9308 7 8 9 10 11 12 23045 28826 23045 28839 23041 28839

196 369 593 1476 2371 5905 9484 7 8 9 10 11 12 22733 28292 22733 28304 22729 28304

197 374 604 1496 2415 5984 9660 7 8 9 10 11 12 22429 27776 22429 27788 22429 27788

198 379 615 1516 2459 6063 9836 7 8 9 10 11 12 22133 27280 22133 27291 22137 27291

199 384 627 1537 2507 6149 10028 7 8 9 10 11 12 21845 26757 21831 26768 21827 26768

200 389 639 1559 2555 6234 10220 7 8 9 10 11 12 21564 26255 21523 26265 21529 26265

201 395 651 1580 2603 6319 10412 7 8 9 10 11 12 21236 25771 21236 25781 21240 25781

202 400 663 1601 2651 6404 10604 7 8 9 10 11 12 20971 25305 20958 25314 20958 25314

203 406 676 1624 2703 6495 10812 7 8 9 10 11 12 20661 24818 20661 24827 20664 24827

204 411 689 1647 2755 6587 11020 7 8 9 10 11 12 20410 24350 20373 24358 20376 24358

205 417 702 1670 2807 6678 11228 7 8 9 10 11 12 20116 23899 20092 23907 20098 23907

206 423 715 1692 2859 6769 11437 7 8 9 10 11 12 19831 23464 19831 23472 19828 23470

207 429 729 1717 2915 6867 11661 7 8 9 10 11 12 19553 23014 19542 23021 19545 23019

208 435 743 1741 2971 6966 11885 7 8 9 10 11 12 19284 22580 19273 22587 19267 22586

209 441 757 1766 3027 7064 12109 7 8 9 10 11 12 19021 22162 19000 22170 19000 22168

210 447 771 1791 3083 7163 12333 7 8 9 10 11 12 18766 21760 18735 21767 18737 21765

211 454 786 1817 3143 7269 12573 7 8 9 10 11 12 18477 21345 18466 21351 18464 21350

212 461 801 1844 3203 7376 12813 7 8 9 10 11 12 18196 20945 18196 20951 18196 20950

213 467 816 1871 3263 7483 13053 7 8 9 10 11 12 17962 20560 17933 20566 17936 20565

214 475 832 1900 3327 7599 13309 7 8 9 10 11 12 17660 20164 17660 20170 17662 20169

215 482 848 1929 3391 7715 13565 7 8 9 10 11 12 17403 19784 17394 19790 17396 19788

216 489 864 1958 3455 7832 13821 7 8 9 10 11 12 17154 19418 17137 19423 17137 19422

217 497 881 1990 3523 7958 14093 7 8 9 10 11 12 16878 19043 16861 19048 16865 19047

Doc Ref # IHD-OS-DG1-Vol 11-2.21 53

Qindex

IQ_Scale FQ_Shift FQ_Quant

8b 10b 12b 8b 10b 12b 8b 10b 12b

DC AC DC AC DC AC DC AC DC AC DC AC DC AC DC AC DC AC

218 505 898 2021 3591 8085 14365 7 8 9 10 11 12 16611 18682 16602 18688 16600 18686

219 513 915 2054 3659 8214 14637 8 8 10 10 12 12 32704 18335 32672 18340 32680 18339

220 522 933 2088 3731 8352 14925 8 8 10 10 12 12 32140 17982 32140 17986 32140 17985

221 530 951 2123 3803 8492 15213 8 8 10 10 12 12 31655 17641 31610 17646 31610 17645

222 539 969 2159 3876 8635 15502 8 8 10 10 12 12 31126 17313 31083 17313 31086 17316

223 549 988 2197 3952 8788 15806 8 8 10 10 12 12 30559 16980 30545 16980 30545 16983

224 559 1007 2236 4028 8945 16110 8 8 10 10 12 12 30012 16660 30012 16660 30009 16662

225 569 1026 2276 4104 9104 16414 8 9 10 11 12 13 29485 32704 29485 32704 29485 32708

226 579 1046 2319 4184 9275 16734 8 9 10 11 12 13 28976 32078 28938 32078 28941 32082

227 590 1066 2363 4264 9450 17054 8 9 10 11 12 13 28435 31476 28399 31476 28405 31480

228 602 1087 2410 4348 9639 17390 8 9 10 11 12 13 27869 30868 27846 30868 27848 30872

229 614 1108 2458 4432 9832 17726 8 9 10 11 12 13 27324 30283 27302 30283 27302 30287

230 626 1129 2508 4516 10031 18062 8 9 10 11 12 13 26800 29720 26757 29720 26760 29723

231 640 1151 2561 4604 10245 18414 8 9 10 11 12 13 26214 29152 26204 29152 26201 29155

232 654 1173 2616 4692 10465 18766 8 9 10 11 12 13 25653 28605 25653 28605 25650 28608

233 668 1196 2675 4784 10702 19134 8 9 10 11 12 13 25115 28055 25087 28055 25082 28058

234 684 1219 2737 4876 10946 19502 8 9 10 11 12 13 24528 27526 24519 27526 24523 27529

235 700 1243 2802 4972 11210 19886 8 9 10 11 12 13 23967 26994 23950 26994 23946 26997

236 717 1267 2871 5068 11482 20270 8 9 10 11 12 13 23399 26483 23374 26483 23378 26485

237 736 1292 2944 5168 11776 20670 8 9 10 11 12 13 22795 25970 22795 25970 22795 25973

238 755 1317 3020 5268 12081 21070 8 9 10 11 12 13 22221 25477 22221 25477 22219 25480

239 775 1343 3102 5372 12409 21486 8 9 10 11 12 13 21648 24984 21634 24984 21632 24987

240 796 1369 3188 5476 12750 21902 8 9 10 11 12 13 21076 24510 21050 24510 21053 24512

241 819 1396 3280 5584 13118 22334 8 9 10 11 12 13 20485 24036 20460 24036 20463 24038

242 843 1423 3375 5692 13501 22766 8 9 10 11 12 13 19901 23580 19884 23580 19882 23582

243 869 1451 3478 5804 13913 23214 8 9 10 11 12 13 19306 23125 19295 23125 19293 23127

244 896 1479 3586 5916 14343 23662 8 9 10 11 12 13 18724 22687 18714 22687 18715 22689

245 925 1508 3702 6032 14807 24126 8 9 10 11 12 13 18137 22250 18127 22250 18128 22252

246 955 1537 3823 6148 15290 24590 8 9 10 11 12 13 17567 21831 17553 21831 17556 21832

247 988 1567 3953 6268 15812 25070 8 9 10 11 12 13 16980 21413 16976 21413 16976 21414

248 1022 1597 4089 6388 16356 25551 8 9 10 11 12 13 16416 21010 16412 21010 16412 21011

249 1058 1628 4236 6512 16943 26047 9 9 11 11 13 13 31714 20610 31685 20610 31686 20611

250 1098 1660 4394 6640 17575 26559 9 9 11 11 13 13 30559 20213 30545 20213 30547 20214

251 1139 1692 4559 6768 18237 27071 9 9 11 11 13 13 29459 19831 29440 19831 29438 19831

252 1184 1725 4737 6900 18949 27599 9 9 11 11 13 13 28339 19451 28333 19451 28332 19452

253 1232 1759 4929 7036 19718 28143 9 9 11 11 13 13 27235 19075 27230 19075 27227 19076

254 1282 1793 5130 7172 20521 28687 9 9 11 11 13 13 26173 18714 26163 18714 26162 18714

255 1336 1828 5347 7312 21387 29247 9 9 11 11 13 13 25115 18355 25101 18355 25102 18356

54 Doc Ref # IHD-OS-DG1-Vol 11-2.21

VP9 SB, CU/PU and TU Sizes - Encoder Only

CU/PU/TU Partitioning Configurations

SB size CU size min/max TU range

64x64 64x64 32x32..4x4

32x32 32x32..4x4

16x16 16x16..4x4

8x8 8x8..4x4

PU Options for a Given CU

Current CU size Possible CU sizes Allowed CU/PU partition types.

64x64 64x64 2Nx2N, 2NxN, Nx2N

32x32 2Nx2N, 2NxN, Nx2N

16x16 2Nx2N, 2NxN, Nx2N

8x8 2Nx2N, 2NxN, Nx2N, NxN

Definition of the VP9 CU Record Structure - Encoder Only

he following table defines the CU record structure as indirect data to the PAK Object Command. Entries

are DW based (4 bytes) and cache aligned. This memory surface is pointed to by the HCP Indirect CU

Object Base Address in the HCP_IND_OBJ_BASE_ADDR_STATE Command.

VP9 CU Record Structure Definition (Packed CU)

VP9 Compact CU Packet:

R0.7 31:21 Reserved MBZ

20 Modified Flag (should not be used by HW)

This bit is used by VME to alert kernel of modifications. SRM and FBR can modify the CU Bit Cost and

CU Errors.

0 = No modification to the CU Bit Cost and CU Error.

1 = Modifications to the CU Bit Cost or CU Error or both.

Note: HPM will set this to zero.

19 Reserved

18 interpred_comp1

Interpred comp mode for Part1

Doc Ref # IHD-OS-DG1-Vol 11-2.21 55

0: Single

1: Compound(ref_refframe1>intra)

17 Reserved

16 interpred_comp0

Interpred comp mode for Part0

0: Single

1: Compound(ref_refframe1>intra)

15 cu_pred_mode1

Pred mode for part1 in raster scan order

cu_pred_mode=intra means ref_refframe0=intra

0: Intra

1: Inter

14 cu_pred_mode0

Pred mode for part0 in raster scan order

cu_pred_mode=intra means ref_refframe0=intra

0: Intra

1: Inter

13:12 CU_part_mode

0: 2Nx2N,

1: 2NxN,

2: Nx2N,

3: NxN (8x8 only)

11:8 intra_chroma_mode[0]

0:DC_PRED

1:V_PRED

2:H_PRED

3:TM_PRED

4:D45_PRED

5:D135_PRED 6:D117_PRED 7:D153_PRED 8:D207_PRED

9:D63_PRED

10-15 Reserved

7:6 CU Size

0 = 8x8

1 = 16x16

2 = 32x32

3 = 64x64

5:4 Reserved

3:0 intra_mode[0]

56 Doc Ref # IHD-OS-DG1-Vol 11-2.21

Luma Intra mode for part0

0:DC_PRED

1:V_PRED

2:H_PRED

3:TM_PRED

4:D45_PRED

5:D135_PRED 6:D117_PRED 7:D153_PRED 8:D207_PRED

9:D63_PRED

R0.6 31:28 intra_chroma_mode[1]

Applicable for part1 of shapes > 8x8

0:DC_PRED

1:V_PRED

2:H_PRED

3:TM_PRED

4:D45_PRED

5:D135_PRED 6:D117_PRED 7:D153_PRED 8:D207_PRED

9:D63_PRED

10-15 Reserved

27:22 Reserved MBZ

21:18 Reserved MBZ

Format: U4

17:16 Reserved MBZ

15:12 intra_mode[3][3:0]

Luma pred mode for part3

0:DC_PRED

1:V_PRED

2:H_PRED

3:TM_PRED

4:D45_PRED

5:D135_PRED

6:D117_PRED

7:D153_PRED

8:D207_PRED

9:D63_PRED

11:10 Reserved

9:6 intra_mode[2][3:0]

Luma pred mode for part2

Doc Ref # IHD-OS-DG1-Vol 11-2.21 57

0:DC_PRED

1:V_PRED

2:H_PRED

3:TM_PRED

4:D45_PRED

5:D135_PRED

6:D117_PRED

7:D153_PRED

8:D207_PRED

9:D63_PRED

5:4 Reserved

3:0 intra_mode[1][3:0]

Luma pred mode for part1

0:DC_PRED

1:V_PRED

2:H_PRED

3:TM_PRED

4:D45_PRED

5:D135_PRED

6:D117_PRED

7:D153_PRED

8:D207_PRED

9:D63_PRED

R0.5 31:30 Reserved

29:28 MotionComp_flttype[1]

 0: EIGHTTAP

 1: EIGHTTAP_SMOOTH

 2: EIGHTTAP_SHARP

 3: BILINEAR

 HW will use this filtertype if SWITCHABLE=1 in pic state;

 Used for part1 of blocks > 8x8

27:26 Reserved

25:24 MotionComp_flttype[0]

 0: EIGHTTAP

 1: EIGHTTAP_SMOOTH

 2: EIGHTTAP_SHARP

 3: BILINEAR

 HW will use this filtertype if SWITCHABLE=1 in pic state;

58 Doc Ref # IHD-OS-DG1-Vol 11-2.21

 Used for part0

23 Reserved

22:20 SegmentIdx[1]

 Segment 0 to 7

 SegmentID for part1 of blocks > 8x8

19 Reserved

18:16 SegmentIdx[0]

 Segment 0 to 7

 SegmentID for part0 of blocks > 8x8

15 segmentPredFlag1

 0: Disable

 1: Enable

 Segment Prediction disable for Part1

14 segmentPredFlag0

 0: Disable

 1: Enable

 Segment Prediction disable for Part0

13:4 Reserved

3:2 TU_SIZE[1]

0 = 4x4

1 = 8x8

2 = 16x16

3 = 32x32

tu_size[2][1:0], tu_size[3][1:0] must be 0 (4x4)

1:0 TU_SIZE[0]

0 = 4x4

1 = 8x8

2 = 16x16

3 = 32x32

tu_size[2][1:0], tu_size[3][1:0] must be 0 (4x4)

R0.4 31:29 QuantRound1

Quantization Round value for Part1 (8x8 and below shapes will have the same round value)

In VDEnc mode, this parameter is set to the QuantRound0.

0:+1/16

1:+2/16

2:+3/16

3:+4/16

Doc Ref # IHD-OS-DG1-Vol 11-2.21 59

4:+5/16

5:+6/16(default)

6:+7/16

7:+8/16

28:26 QuantRound0

Quantization Round value for Part0 (8x8 and below shapes will have the same round value)

This parameter is equivalent to the RoundingSelect in the HEVC CU packet.

0:+1/16

1:+2/16

2:+3/16

3:+4/16

4:+5/16

5:+6/16(default)

6:+7/16

7:+8/16

25:14 Reserved

13:12 ref_refframe1[1]

frame1(backward)reference frame id for part0

HW uses if SegmentReferenceEnabled=0 in segment ID command

0:intra

1:last

2:golden

3:altref

Format = U2

11:10 Reserved

9:8 ref_refframe1[0]

frame1(forward)reference frame id for part0

HW uses if SegmentReferenceEnabled=0 in segment ID command

0:intra

1:last

2:golden

3:altref

Format = U2

7:6 Reserved

5:4 ref_refframe0[1]

frame0(forward)reference frame id for part1

HW uses if SegmentReferenceEnabled=0 in segment ID command

60 Doc Ref # IHD-OS-DG1-Vol 11-2.21

0:intra

1:last

2:golden

3:altref

Format = U2

3:2 Reserved

1:0 ref_refframe0[0]

frame0(forward)reference frame id for part0

HW uses if SegmentReferenceEnabled=0 in segment ID command

0:intra

1:last

2:golden

3:altref

Format = U2

R0.3 31:16 mvy_refframe1[1]

Frame1(Backward) MVy for part1

Format = S13.2 (2's comp)

15:0 mvx_refframe1[1]

Frame1(Backward) MVx for part1

Format = S13.2 (2's comp)

R0.2 31:16 mvy_refframe1[0]

Frame1(Backward) MVy for part0

Format = S13.2 (2's comp)

15:0 mvx_refframe1[0]

Frame1(Backward) MVx for part0

Format = S13.2 (2's comp)

R0.1 31:16 mvy_refframe0[1]

Frame0(Forward) MVy for part1

Format = S13.2 (2's comp)

15:0 mvx_refframe0[1]

Frame0(Forward) MVx for part1

Format = S13.2 (2's comp)

R0.0 31:16 mvy_refframe0[0]

Frame0(Forward) MVy for part0

Format = S13.2 (2's comp)

15:0 mvx_refframe0[0]

Frame0(Forward) MVx for part0

Format = S13.2 (2's comp)

Doc Ref # IHD-OS-DG1-Vol 11-2.21 61

Quant Scale and Filter Level Table

 Decode mode Encode BRC first pass, or no BRC

Encode HW multi-pass BRC -

Subsequent Passes

Determination of

base qindex

N/A Directly from PIC_STATE, base_qindex final_base_qindex =

 clip(0,255, base_qindex

(from PIC_STATE) +

 accumulated delta from

previous passes)

Determination of

inverse quant

scale of each

block

Directly from

SEGMENT_STATE

 final_qindex = clip(0,255,

 clip(0, 255, base_qindex

+ // from PIC_STATE

 segment_q_delta) + //

from SEGMENT_STATE

 chroma or AC delta //

from PIC_STATE)

 iq_lookup_table[final_qindex];

 final_qindex = clip(0,255,

 clip(0, 255,

final_base_qindex + // from

above

 segment_q_delta) + //

from SEGMENT_STATE

 chroma or AC delta //

from PIC_STATE)

 iq_lookup_table[final_qindex];

Determination of

forward quant

scale and shift of

each block

N/A fq_lookup_table[final_qindex]; fq_lookup_table[final_qindex];

Determination of

base filter level

N/A Directly from PIC_STATE (filter_level)

 final_base_filter_level =

 filter_level (from

PIC_STATE)

 final_base_filter_level =

 clip(0, 63, filter_level

(from PIC_STATE)

 + accumulated delta from

previous passes)

Determination of

final filter level

of each block

Directly from

SEGMENT_STATE

 mask = final_base_filter_level

> 31 ? -2 : -1;

 final_filter_level =

clip(0,63,

 clip(0,63,

 base_filter_level + //

from PIC_STATE

 segment_lf_delta) + //

from SEGMENT_STATE)

 (ref_delta & mask) + //

from PIC_STATE

 (mode_delta & mask) //

from PIC_STATE

);

 mask = final_base_filter_level

> 31 ? -2 : -1;

 final_filter_level =

clip(0,63,

 clip(0,63,

 final_base_filter_level

+ // from above

 segment_lf_delta) + //

from SEGMENT_STATE)

 (ref_delta & mask) + //

from PIC_STATE

 (mode_delta & mask) //

from PIC_STATE

);

When SW/HuC writes the uncompressed header for an encoded frame, it must downshift the

mode_delta and ref_delta by 1, if the final_base_filter_level > 31.

VP9 Allowed SB Size Encoder Only

The following table details the SB size allowed and the number of records per SB for the encoder.

Allowed SB Size - Encoder Only

VP9 SB Size Allowed Number of Records per SB

64x64 64

62 Doc Ref # IHD-OS-DG1-Vol 11-2.21

Note: HW will support partial SBs within a frame bourndary to a minimun CU8x8 granularity

HCP PAK Data Structure

The following documents HCP PAK Data Structure.

Tile Size and CU Stream-out Records

TileSize Record for both HEVC and VP9 Codecs

Fields Bits Notes

Address DW0-

1[63:0]

Bitstream start address; baseAddr + Tile offset. Used for

stitching purpose in scalability mode. MBZ in single pipe

mode.

Length DW2[31:0] Bitstream length per tile; Includes header in first tile and tail

in last tile. Used for stitching purpose in scalability mode.

MBZ in single pipe mode.

Tile Size DW3[31:0] Tile Size(no header) used by HW for back annotation. Also

HuC uses for BRC purpose in scalability mode for both

hevc/vp9. MBZ in HEVC single pipe mode.

AddressOffset DW4[31:0] Cacheline Address to be Modified. Used by HW for back

annotation. MBZ in HEVC mode.

Offset DW5[5:0] Byte offset to be Modified. Used by HW for back annotation.

MBZ in HEVC mode.

Reserved DW5[31:6] MBZ

HCP_BITSTREAM_SE_BITCOUNT_FRAME DW6[31:0] Bitstream size for Syntax element per Tile (see the MMIO

register for details).

 valid only for HEVC in scalability mode and MBZ for VP9

HCP_CABAC_BIN_COUNT_FRAME DW7[31:0] Bitstream size for Bin count per Tile (see the MMIO register

for details).

 valid only in scalability mode

Reserved DW8[31:0] MBZ

HCP_IMAGE_STATUS_CONTROL DW9[31:0] Image Status Mask Control(see the MMIO register for

details). Only valid fields are Total-NumPass[11:8](hevc/vp9)

and LCUbitCountViolate[0](hevc only).The rest of the fields

are MBZ.

 valid only in scalability mode

HCP_QP_STATUS_COUNT DW10[31:0] QP Status count (see the MMIO register for details).

 valid only for HEVC in scalability mode and MBZ for VP9

HCP_SLICE_COUNT DW11[31:0] Slice count (see the MMIO register for details).

 valid only for HEVC in scalability mode and MBZ for VP9

Reserved DW12-15 MBZ

Doc Ref # IHD-OS-DG1-Vol 11-2.21 63

HEVC: Streamout0 cacheline is composed of 4 quarter cachelines, each containing information on CU

skip flag, coding block flag for the TUs in a PU, residual/coefficient bit count for a PU, total bit count for

CU, SB exceed limit flag. A typical streamout0 cacheline, therefore, has information on statistics for 4 PUs

and Super Block exceed limit flag.

Pak pipeline streamout enable bit, set by HCP_PIPE_MODE_SELECT command, enables or disables the

streamout.

Programming Note

Context: CU level statistics

Level Field Width Cacheline Comment

PU PU Skip Flag 1 qcacheline[0] Packed in Quarter Cacheline in PU format

SB SB exceed limit 1 qcacheline[1] Packed in Quarter Cacheline in PU format

(valid on last PU of SB)

 Reserved 14 qcacheline[15:2 Reserved

PU TU CBF Y/U/V 48 qcacheline[63:16] Packed in Quarter Cacheline in PU format

PU PU Coefficient Bit Count

(Only residual)

18 qcacheline[81:64] Packed in Quarter Cacheline in PU format

PU PU Bit Count (all PU Syntax) 18 qcacheline[113:96] Packed in Quarter Cacheline in PU format

 Reserved 14 qcacheline[127:114] Reserved

Programming Note

Context: .

HEVC Streamout 1: Per Tile Quarter Cacheline

Level Field Width Cacheline Comment

Tile Tile Bit Count (header + data + tail) 32 cacheline[31:0]

 Reserved(MBZ) 32 cacheline[63:32]

 TilePositionX[15:0] 16 cacheline[79:64]

 TilePositionY[15:0] 16 cacheline[95:80]

 Reserved(MBZ) 32 cacheline[127:96]

VP9: CU statistics record (individual PUs per record down to 8x8 only)

Fields Bits

Skip 3:0 Indicates Skip flag

 Group 4 4x4s -> 4 bits

InterMode 11:4 InterMode:

 0 NEARESTMV, 1 NEARMV, 2 ZEROMV, 3NEWMV

 Group 4 4x4s total 8 bits

Reserved 15:12

NZ coeff count 28:16 Number of non-zero coeffs; sum of YUV, 13bits

64 Doc Ref # IHD-OS-DG1-Vol 11-2.21

Fields Bits

Reserved 31:29

NumBitsforCoeffs 47:32 Number of Bits for coefficients per block, 16bits

NumBitsforBlock 63:48 Number of Bits in block

Definition of the CU Record Structure- Encoder Only

The following table defines the CU record structure as indirect data to the PAK Object Command. Entries

are DW based (4 bytes) and cache aligned. This memory surface is pointed to by the HCP Indirect CU

Object Base Address in the HCP_IND_OBJ_BASE_ADDR_STATE Command.

CU Record Structure Definition

Intel restriction max 16 TU per CU, max 256 TUs in a CU.

Definition of the CU Record Structure for VME Interface - Encoder Only

DWord Bitfield Definition

R0.7 31 CU_qp sign

 Indicates sign bit for QP.

 Must be zero for 8bit mode

30:24 CU_qp

 Note: HPM will set this to zero. This is a pass through for FBR and SRM. Kernel needs to populate

this field before calling PAK.

 Magnitue of CU level QP.

 Valid range: 0 to 51 for 8bit mode

 -12 to 51 for 10bit mode

 -24 to 51 for 12bit mode

 QP can change at CU level

 Restriction: diff_cu_qp_delta_depth must be equal to either 0 or (lcu_size - min_cu_size)

23 zero_out_coefficients

 0: Do not force coefficients to zero for entire CU

 1: Force coefficients to zero for entire CU

This bit must be zero in VDenc mode

23 zero_out_coefficients_Y

 0: Do not force coefficients to zero in Luma block

 1: Force coefficients to zero in Luma block

22 IPCM_enable

If IPCM is enabled, then entire CU is IPCM predicted. Both PU and TU sizes should be same as CU

size. Cu_pred_mode is ignored when IPCM is enbled.

 1- enable IPCM

0-disable IPCM

Note: Supports 8b only

Doc Ref # IHD-OS-DG1-Vol 11-2.21 65

DWord Bitfield Definition

Note: Supports 8, 10 and 12bits.

 Note: HW ignores this bit for RhoDomain calculations so the statics will be slightly inaccurate.

21
Last CU of LCU Flag

Set to 1, if the current CU is the last one inside the current LCU (for VDENC only).

20 Modified Flag (should not be used by HW)

19:18 InterPred_IDC_ MV1

17:16 InterPred_IDC_ MV0

15 cu_pred_mode

14:12 CU_part_mode

Note: NxN CU_part_mode is used by RPM only in VME. It is used to generate predicted pixels

using different prediction modes per 4x4 sub-block. i.e each 4x4 sub-block can have its own

prediction mode.

Note: 2NxN and N2XN intra is only valid for VP9. VP9 supports 32x16, 16x32, 16x8 and 8x16 Intra

parititions.

 Luma Intra Mode indicates the intra prediction mode for 4x4_0. The additional prediction modes

are overloaded on R0.6 [23:0] in this case.

11 CU_transquant_bypass_flag

10:8 Chroma Intra Mode

0: DM (use Luma mode, from block 0 if NxN)

 1 : Reserved (supposedly to be defined for LM mode)

 2: Planar

 3: Vertical

 4: Horizontal

5: DC

Note: Also indicates Chroma Intra Mode for block0 for 4:2:2 and 4:4:4.

7:6 CU Size

5:0 Luma Intra Mode

R0.6 31:30
SCC CU Coding Mode (for VDENC only)

Bit 31:30 Definition

00 Not IBC and Not Palette

01 IBC

10 Palette

11 Illegal

29
Palette Transpose Flag (for VDENC only)

Set to 1, if the palette indices of the current CU are to be transposed.

66 Doc Ref # IHD-OS-DG1-Vol 11-2.21

DWord Bitfield Definition

28
Palette Transpose Flag (for VDENC only)

Set to 1 when there is at least one pixel is coded with escape code.

27:24 TU Count M1

 Note: Intel restriction max 16 TU per CU (however spec allows up to 256 TUs).

23:22 Reserved MBZ

21:18 Rounding Select

 This select is used to pick up the threshold table in the PAK for RhoDomain. It is also used for

quantization.This is generated based on CU type, rounding threshold and rounding offset in the

VDEnc.

 Note: This Rounding Select used after Quantization only when RhoDomain is ON in VDenc

Mode.

 Format: U4

17:12 Luma Intra Mode 4x4_3

 Final explicit Luma Intra Mode 4x4_1. Valid values 0..34

 Note: CU_part_mode==NxN

11:6 Luma Intra Mode 4x4_2

 Final explicit Luma Intra Mode 4x4_1. Valid values 0..34

 Note: CU_part_mode==NxN

5:0 Luma Intra Mode 4x4_1

R0.5 31:0 TU Size

 Note: HPM will set this to zero. This is a pass through for FBR and SRM. Kernel needs to populate

this field before calling PAK.

R0.4 31:16 TU_YUV_Transform_Skip

 0: TU transform skip flag is not set (normal transform)

 1: TU transform skip flag is set

 Note: HPM will set this to zero. This is a pass through for FBR and SRM. Kernel needs to populate

this field before calling PAK. UV flags are overloaded on Y

15:12 L1_MV1 RefID/0&Chroma Intra Mode1[14:12]

 Format = U4/U3

 overload Chroma Intra Mode if cu_pred_mode=Intra of block1 for 4:2:2 and 4:4:4

11:8 L1_MV0 RefID[11:8]/0&Chroma Intra Mode2[10:8]

 Format = U4/U3

 overload Chroma Intra Mode if cu_pred_mode=Intra of block2 for 4:2:2 and 4:4:4

7:4 L0_MV1 RefID[7:4]/0&Chroma Intra Mode3[6:4]

 Format = U4/U3

 overload Chroma Intra Mode if cu_pred_mode=Intra of block3 for 4:2:2 and 4:4:4

3:0 L0_MV0 RefID

R0.3 31:16 L1_MV1.Y

15:0 L1_MV1.X

R0.2 31:16 L1_MV0.Y

Doc Ref # IHD-OS-DG1-Vol 11-2.21 67

DWord Bitfield Definition

15:0 L1_MV0.X

R0.1 31:16 L0_MV1.Y

15:0 L0_MV1.X

R0.0 31:16
L0_MV0.Y

Programming Note

Intra MV Y for IBC

15:0
L0_MV0.X

Programming Note

Intra MV X for IBC

R0.0

 Exists if

 (CU_Pred_Mode=0,

IntraCU)

31:27 Reserved MBZ

26:24 Chroma Intra Mode second best

DM This is the chroma Intra mode that corresponds to the "Luma Intra Mode

second best" that is derived assuming the top or left neighbor is not available.

0: DM (use Luma mode, from block 0 if NxN)

1 : Reserved (supposedly to be defined for LM mode)

2: Planar

3: Vertical

4: Horizontal

 5: DC

23:18 Luma Intra Mode second best 4x4_3

Valid only when CU_part_mode==NxN.

 Valid values 0..34

17:12 Luma Intra Mode second best 4x4_2

 Valid only when CU_part_mode==NxN.

11:6 Luma Intra Mode second best 4x4_1

Valid only when CU_part_mode==NxN.

 Valid values 0..34

5:0 Luma Intra Mode second best

 When slices are dynamically terminated in the PAK, this Luma Intra Mode is used

for the CUs when only the left or only the top neighbor is available.

When both top and left neighbors are not available, PAK defaults to DC mode for

those CUs for both Luma and Chroma Intra modes.

 Valid values 0..34

68 Doc Ref # IHD-OS-DG1-Vol 11-2.21

Programming the CU Palette Map:

Code Name

(Command

Type)

Code[1:0]

=

Data[76:75]

End = Data[74] Valid[1:0]=

Data[73:72]

Payload[...]

REUSED

FLAG

00

Data[63:0]

REUSED

FLAG

00

Data[63:0]

NEW

COLORS

01

Max: 2 Colors per

clock.

Valid[1:0]=11 or 01

Valid[1:0]=00 means

No NEW COLORS at all

Data[71:36], Data[35:0]

36 bits/Pixel with 12 bits/component.

NEW

COLORS ...

01 End=1 on the

last New Colors

INDEX 10

Data[29:24], Data[21:16], Data[13:8], Data[5:0]

6 bits/INDEX (Max Palette Table size is 64).

4 INDEXes per clock in Raster order within a

CU: 4x1 after 4x1 ... till CU right edge.

Escape_Map[3:0]=Data[35:32]

INDEX ... 10 End=1 on the

last Index of CU

ESCAPE 11

Max: 2 Escapes per

clock.

Valid[1:0]=11 or 01

Valid[1:0]=00 means

No ESCAPE at all.

Data[71:36], Data[35:0]

36 bits/Pixel with 12 bits/component

Max number of ESCAPE = 25% of CU Pixels.

ESCAPE ... 11 End=1 on the

last Escape of

CU

Doc Ref # IHD-OS-DG1-Vol 11-2.21 69

HEVC LCU, CU, TU, and PU Sizes - Encoder Only

HEVC LCU/CU Partitioning Configurations

LCU size min CU size CU Depth Hierarchical Depth=CU Depth+1

64x64 64x64 0 1

 32x32 1 2

 16x16 2 3

 8x8 3 4

32x32 32x32 0 1

 16x16 1 2

 8x8 2 3

16x16 16x16 0 1

 8x8 1 2

8x8 8x8 X Not allowed in spec

HEVC PU Options for a Given CU

Current CU size (leaf node) min CU sizes (Pic State)

Allowed PU

partition

types.

64x64 (2Nx2N)

Must be a LCU

64x64
Skip : 2Nx2N

Intra : 2Nx2N,

NxN

Inter : 2Nx2N,

2NxN, Nx2N,

NxN

 32x32
Skip : 2Nx2N

Intra : 2Nx2N

(no NxN

defined in the

spec.)

Inter : 2Nx2N,

2NxN, Nx2N,

2NxnU,

2NxnD,

nLx2N, nRx2N

 16x16
Skip : 2Nx2N

Intra : 2Nx2N

(no NxN

70 Doc Ref # IHD-OS-DG1-Vol 11-2.21

Current CU size (leaf node) min CU sizes (Pic State)

Allowed PU

partition

types.

defined in the

spec.)

Inter : 2Nx2N,

2NxN, Nx2N,

2NxnU,

2NxnD,

nLx2N, nRx2N

 8x8
Skip : 2Nx2N

Intra : 2Nx2N

(no NxN

defined in the

spec.)

Inter : 2Nx2N,

2NxN, Nx2N,

2NxnU,

2NxnD,

nLx2N, nRx2N

32x32 (2Nx2N)

Can or is not a LCU

32x32
Skip : 2Nx2N

Intra : 2Nx2N,

NxN

Inter : 2Nx2N,

2NxN, Nx2N,

NxN

 16x16
Skip : 2Nx2N

Intra : 2Nx2N

Inter : 2Nx2N,

2NxN, Nx2N,

2NxnU,

2NxnD,

nLx2N, nRx2N

 8x8
Skip : 2Nx2N

Intra : 2Nx2N

Inter : 2Nx2N,

2NxN, Nx2N,

2NxnU,

2NxnD,

Doc Ref # IHD-OS-DG1-Vol 11-2.21 71

Current CU size (leaf node) min CU sizes (Pic State)

Allowed PU

partition

types.

nLx2N, nRx2N

16x16 (2Nx2N)

Can or is not a LCU

16x16
Skip : 2Nx2N

Intra : 2Nx2N,

NxN

Inter : 2Nx2N,

2NxN, Nx2N,

NxN

 8x8
Skip : 2Nx2N

Intra : 2Nx2N

Inter : 2Nx2N,

2NxN, Nx2N,

2NxnU,

2NxnD,

nLx2N, nRx2N

8x8 (2Nx2N)

Cannot be a LCU

8x8
Skip : 2Nx2N

Intra : 2Nx2N

and NxN

Inter : 2Nx2N,

2NxN, Nx2N

(both NxN

and AMP are

not allowed

for 8x8 inter

CU)

Note: In an 8x8 Inter CU NxN isn't allowed if the SPS parameter disable_inter_4x4 is 1. In Main profile

currently this flag is always 1.

U.D, L and R (Up, Down, Left and Right)

n = 1/4 or 3/4 .

72 Doc Ref # IHD-OS-DG1-Vol 11-2.21

HEVC TU Partitioning for a Given CU

CU

size

TU

size

TU

Depth

Max Depth=TU

Depth+1

PAK supported TU sizes and corresponding number of

TUs in CU

64x64 64x64 0 1 no 64x64 transform, so automatically breakdown into 4

32x32 TUs.

 32x32 1 2 number of TUs in CU = 4

 16x16 2 3 number of TUs in CU = 16

 8x8 3 4 this configuration is currently not supported.

 4x4 4 5 this configuration is currently not supported.

32x32 32x32 0 1 number of TUs in CU = 1

 16x16 1 2 number of TUs in CU = 4

 8x8 2 3 number of TUs in CU = 16

 4x4 3 4 this configuration is currently not supported.

16x16 16x16 0 1 number of TUs in CU = 1

 8x8 1 2 number of TUs in CU = 4

 4x4 2 3 number of TUs in CU = 16

8x8 8x8 0 1 number of TUs in CU = 1

 4x4 1 2 number of TUs in CU = 4

The actual level of partitioning is governed by

• MaxTUSize and MinTUSize in Pic State.

• max_transform_hierarchy_depth_inter <= 2 (intel restriction) DW4 bit 3:2 Pic State

• max_transform_hierarchy_depth_intra <= 2 (intel restriction) DW4 bit 1:0 Pic State

Allowed LCU Size - Encoder Only

The following table details the LCU size allowed and the number of records per LCU for the encoder.

LCU Size Allowed Fixed Number of Records per LCU

64x64 64

32x32 16

16x16 4

Note: 0.5 CL per CU record in VME mode and 1 CL per CU record in extENC mode.

HEVC/VP9 PAK Frame Statistics

PAK outputs frame level statistics for RhoDomain, SSE, slice size conformance features and LCU statistics.

The RhoDomain and Slice Size conformance parameters are exclusive only to HEVC. The SSE and LCU

statistics are for both HEVC and VP9.

HEVC Frame Statistics

Doc Ref # IHD-OS-DG1-Vol 11-2.21 73

SliceSizeConformance

DWord Bit Description

0 31:17 Reserved: MBZ

16 Slice Overflow Occured

Format: Enable

This field indicates that one or more slices in the current frame exceeded the Target size.

 When the actual slice size exceeds "Target slice size in Bytes", HW sets "Slice Overflow Occurred"

bit in the PAK Frame Statistics.

15:8 MaxFrameQP

This parameter indicates the maximum CU QP in the frame.

Format: U8

Valid Range is 0-63 for 10bit and 0-51 for 8bit hevc

7:0 MinFrameQP

This parameter indicates the minimum CU QP in the frame.

Format: U8

Valid Range is 0-63 for 10bit and 0-51 for 8bit hevc

1 31:0 Max Slice Size in Bytes

Format: U32

This parameter indicates the largest Slice in Bytes in the current frame.

2..3 31:0 Reserved: MBZ

74 Doc Ref # IHD-OS-DG1-Vol 11-2.21

VP9 Frame statistics

SSE Statistics

..33 63:48 Reserved: MBZ

47:0 Frame Luma SSE

MSB word of the Sum square Error statistics for the luma pixels in the current frame.

The internal 4x4 subblock SSE is 24-bits. This is accumulated across the frame for all 4x4s and

clamped to 48-bits.

Format: U48

34..35
63:48 Reserved: MBZ

47:0 Frame Chroma Cb SSE

Sum square Error statistics for Cb pixels in the current frame.

The internal 4x4 subblock SSE is 24-bits. This is accumulated across the frame for all 4x4s and

clamped to 48-bits.

 Format: U48

36..37
63:48 Reserved: MBZ

47:0 Frame Chroma Cr SSE

Sum square Error statistics for Cr pixels in the current frame.

The internal 4x4 subblock SSE is 24-bits. This is accumulated across the frame for all 4x4s and

clamped to 48-bits.

 Format: U48

38 31:16 Class0 Zone1 4X4 SUBBLKS SSE Count

This parameter indicates the count of the nu4x4 subblkser of macro-blocks in the current

frame whose Sum square Error (SSE) met the Class0 Zone1 SSE threshold requirements.

The output count is a multiple of 16. The value is internally » 4.

Format: U16

15:0 Class0 Zone0 4X4 SUBBLKS SSE Count

This parameter indicates the count of the nu4x4 subblkser of macro-blocks in the current

frame whose Sum square Error (SSE) met the Class0 Zone0 SSE threshold requirements.

The output count is a multiple of 16. The value is internally » 4.

Format: U16

39 31:16 Max Class0 4X4 SUBBLKS SSE

The maximum macro-block sum square error for the Y+U+V pixels for the macro-blocks that

Doc Ref # IHD-OS-DG1-Vol 11-2.21 75

were in Class 0.

This is clamped to 16-bits.

The internal 4x4 subblock SSE is 24-bits. It is » 4 before the threshold check for zone

classification and Max 4x4 SSE clamping.

Format: U16

15:0 Class0 Zone2 4X4 SUBBLKS SSE Count

This parameter indicates the count of the nu4x4 subblkser of macro-blocks in the current

frame whose Sum square Error (SSE) met the Class0 Zone2 SSE threshold requirements.

The output count is a multiple of 16. The value is internally » 4.

Format: U16

40-55 31:0

(Each)

SSE Statistics for Class1-8.

Class1-8 Zone0 4X4 SUBBLKS SSE Count

Class1-8 Zone0 4X4 SUBBLKS SSE Count

Class1-8 Zone0 4X4 SUBBLKS SSE Count

Max Class1-8 4X4 SUBBLKS SSE

SSE statistics for Class 1-8, see DW SSE Class 0 statistics for format.

56-63 31:0 Reserved: MBZ

HEVC Error Concealment

The HCP implements an error concealment policy, which is always enabled and cannot be disabled. The

objective is that the HCP will always complete a frame/field workload by either decoding the bit stream

normally until it finishes the workload or by concealing blocks until the slice or workload is completed. It

should never be allowed to hang.

Error concealment, implemented by the HCP hardware, is configured for each slice in the

HCP_BSD_OBJECT command. The following information in the HCP_BSD_OBJECT command is utilized for

error concealment.

• SliceStartCtbY, SliceStartCtbX: The current slice position specified in Ctb coordinates.

• NextSliceStartCtbY, NextSliceStartCtbX: The next slice position specified in Ctb coordinates. If

the current slice is the last slice in the picture, the next slice values are set to (0,0).

• LastSliceofPic: Indicates that the current slice is the last slice in the picture.

• slice_type: Indicates the picture type: I, P or B.

The host software will remove all extra slices in the picture. The HCP will not be given a workload that

includes extra slices beyond the picture. The last slice in the picture will always be marked by the host

software.

76 Doc Ref # IHD-OS-DG1-Vol 11-2.21

The host software will remove any overlapping slices in the picture. The HCP will not be given a workload

that includes overlapping slices in the picture.

A HCP_BSD_OBJECT command will include the current slice position and the next slice position. For non-

errored streams, it is guaranteed that the slice bit stream will be decoded by the HCP starting from the

current slice position through to the Ctb (inclusive) adjacent to the Ctb indicated by the next slice

position. HEVC Slice Decode for Non-errored Stream Cases illustrates the example of a non-errored

stream decode starting with XXX.

HEVC Slice Decode for Non-errored Stream Cases

For error stream cases where the next slice position does not align itself with the last successfully

decoded Ctb in the current slice, the HCP will conceal Ctbs from the last decoded Ctb in the current slice

through to the last Ctb prior to the Ctb indicated by the next slice position. If the error occurs such that

the current decoded Ctb cannot be decoded, the HCP will ensure that the current Ctb is written out by

any means before writing out concealed Ctbs for the remaining Ctbs in the current slice. In the case of

the last slice in a picture, the HCP will conceal Ctbs from the last decoded Ctb in the current slice through

to the last Ctb position in the picture indicated by the resolution of the picture in the HCP_PICT_STATE

command. HEVC Slice Decode for Missing Blocks in a Slice illustrates the case described.

HEVC Slice Decode for Missing Blocks in a Slice

Since the host software removes overlapping slices, the next slice position will never be equal to or less

than the current slice position.

Doc Ref # IHD-OS-DG1-Vol 11-2.21 77

A concealed Ctb for an I-slice is constructed by the HCP specifying the Intra_Planar prediction mode for

the Ctb.

A concealed Ctb for a P-slice is constructed by the HCP specifying the skip_flag.

A concealed Ctb for a B-slice is constructed by the HCP specifying the skip_flag.

HEVC Register Definitions

The Message Channel Interface is a read-only bus used to access the HCP and HUC status registers. All

registers are 32 bits where reserved bits return a value of zero and subtractive-decode is used to return

0x0000 for all register holes. The Unit ID is 28h. For HCP, the address range is 0x0001E900h to 0001E9FFh

and for HUC, the address range is 0x0000D000h to 0000D7FFh.

HCP Encoder Register Read/Write

Register Name Address

Tile-Based Engine OFF

(Reads at FRAME

boundary)

Tile-Based Engine ON

(Reads at TILE ROW

boundary)

HCP_BITSTREAM_BYTECOUNT_FRAME 8'hA0 Frame Byte Count per

frame

Accumulated Frame Byte

Count until current tile

HCP_BITSTREAM_BYTECOUNT_FRAME_NO_HDR 8'hA4 Frame Byte Count without

header per frame

Accumulated Frame Byte

Count without header until

current tile

HCP_BITSTREAM_SE_BITCOUNT_FRAME 8'hA8 Syntax element bit count

per frame

Accumulated Syntax

element bit count until

current tile

HCP_CABAC_BINCOUNT_FRAME 8'hAC Bin count per frame Accumulated Bin count until

current tile

HCP_CABAC_INSERTION_COUNT 8'hB0 Cabac Zero Word

insertion byte count per

frame

Cabac Zero Word insertion

byte count per frame.

 (only available at the last

tile of the frame)

HCP_MIN_FRAME_PADDING_COUNT 8'hB4 Min Frame Padding byte

count per frame

>Min Frame Padding byte

count per frame.

 (only available at the last

tile of the frame)

HCP_IMAGE_STATUS_MASK 8'hB8 Frame level Mask bits

(BRC Min, BRC Max, LCU

 Max mask bits)

>Frame level Mask bits

(BRC Min, BRC Max, LCU

Max mask bits).

 Updates every

HCP_PIC_STATE i.e. per tile

HCP_IMAGE_STATUS_CONTROL 8'hBC Frame level Status Control

bits. Cumulative Delta

 Qp, Frame

Underflow/Overflow, LCU

size exceed

>Some bits are updated

tile/frame level. Driver

updates

 Cumulative Delta Qp at the

start of every tile row.

78 Doc Ref # IHD-OS-DG1-Vol 11-2.21

Register Name Address

Tile-Based Engine OFF

(Reads at FRAME

boundary)

Tile-Based Engine ON

(Reads at TILE ROW

boundary)

 flag are reflected per

frame level.

 LCU size exceed flag

updates every tile. Frame

Underflow/Overflow

 updates only at last tile in a

frame.

HCP_QP_STATUS_COUNT0 8'hC0 Min and Max Qp from

HFQ per frame

Min and Max Qp per tile. (if

read at TILE ROW then last

TILE of

 the row's update will be

available)

HCP_QP_STATUS_COUNT1 8'hC4 Cumulative Qp from HFQ

per frame

Cumulative Qp per tile. (if

read at TILE ROW then last

TILE of

 the row's update will be

available)

HCP_SLICE_COUNT 8'hC8 Slice count per frame Slice count in a frame until

current tile

HCP_BITSTREAM_BYTECOUNT_TILE 8'hCC Tile Byte Count. Since read

happens at frame

boundary,

 it will reflect tile size of

the last tile in a frame

Current Tile Byte Count per

tile. (if read at TILE ROW

then last

 TILE of the row's update

will be available)

Register Attributes Description

Host Register Attributes gives the defined register tags and their description.

Host Register Attributes

Tag Name Description

R/W Read/Write Bit is read and writeable.

R/SW Read/Special Write Bit is readable. Write is only allowed once after a reset.

RO Read Only Bit is only readable, but writes have no effects.

WO Write Only Bit is only writeable, reads return zeros.

RV Reserved Bit is reserved and not visible. Reads will return 0, and writes have no effect.

NA Not Accessible This bit is not accessible.

HCP Decoder Register Map

This documents all HEVC Decoder MMIO Registers.

Doc Ref # IHD-OS-DG1-Vol 11-2.21 79

HCP Decoder Register Descriptions

The HCP implements the following MMIO registers. A description of the register including its address

and DWord descriptions are provided.

Column Title3

HCP Decode Status

HCP_CABAC_Status

HCP Last Position

HCP PMU Status

HCP Picture Checksum cIdx0

HCP Picture Checksum cIdx1

HCP Picture Checksum cIdx2

HCP_Picture_CRC

HCP Encoder Register Descriptions

Register

HCP_BIN_CT - HCP Frame BitStream BIN Count

HCP_BITSTREAMSE_BITCOUNT_FRAME - Reported Bitstream Output Bit Count for Syntax Elements Only

HCP_CABAC_BIN_COUNT_FRAME - Reported Bitstream Output CABAC Bin Count Register

HCP_CABAC_INSERTION_COUNT - Reported Bitstream Output CABAC Insertion Count

HCP_MINSIZE_PADDING_COUNT - Bitstream Output Minimal Size Padding Count Report Register

HCP_IMAGE_STATUS_CONTROL - HCP Image Status Control

HCP_QP_STATUS_COUNT - HCP Qp Status Count

HCP_UNIT_DONE - HCP Unit Done

HCP_IMAGE_STATUS_MASK - HCP Image Status Mask

HCP_SLICE_COUNT

Reported Bitstream Output Byte Count per Tile

80 Doc Ref # IHD-OS-DG1-Vol 11-2.21

Acronyms and Applicable Standards

Acronyms and Abbreviations

The table below defines acronyms and abbreviations used in this document.

Acronyms

Acronym Meaning

AAC Advanced Audio Coding -- part of the MPEG specification, AAC is the latest development in audio

compression. It provides higher-quality audio reproduction than MPEG-1 Layer 3 (MP3), while

requiring nearly 50% less data. It is defined in ISO/IEC 13818-7.

ADSL Asymmetrical Digital Subscriber Line -- an asymmetrical DSL technology that takes advantage of

the one-way nature of most multimedia communication, and provides much faster data rates for

downstream (to the subscriber) then the upstream.

API Application Programming Interface -- a set of routines used by an application program to request

and carry out low-level services performed by the operating system.

ARGB Alpha Red Green Blue -- color channel components.

ARIB Association of Radio Industries and Business -- designated by the Ministry of Public Management,

Home Affairs, Posts and Telecommunications (MPHPT) in Japan. ARIB members include

broadcasters, radio equipment manufacturers, telecommunication operators, and related

organizations.

ASP Advanced Simple Profile - MPEG4-2

ATSC ATSC Advanced Television Systems Committee - an organization in US that establishes and

promotes technical standards for advanced television systems, such as digital television (DTV).

BDU Bit-stream Data Unit

BIST Built In Self Test

BPP Bits Per Pixel

BSD Byte Stream Decoder

CA, CAM Conditional Access, Conditional Access Module - the removable descrambling module

implemented in digital cable or satellite television system. The data flows through the module,

which can have any proprietary scrambling algorithm implemented, yet maintaining system

interface compatibility. The CAMs are usually provided by the operators in the TV network.

CPU Central Processing Unit

DAA Direct Access Arrangement

DAC Digital-to-Analog Converter

DDA Digital Difference Analyzer

DDS Direct Digital Synthesizer

DPB Decoded Picture Buffer. This buffer holds the decoded pictures for reference and for output along

with the currently decoding picture. This differs from the DPB in the standard, which only holds the

decoded pictures for reference.

DVB Digital Video Broadcasting -- a set of open worldwide standards that define digital broadcasting

Doc Ref # IHD-OS-DG1-Vol 11-2.21 81

Acronym Meaning

using existing satellite, cable, and terrestrial infrastructures. It uses MPEG-2 specification as a

universal foundation and expands it with DVB data structures and processes DVB-compliant digital

broadcasting and equipment is widely available to consumers and is indicated with the DVB logo.

DVB-S Satellite television DVB standards, based on QPSK and 8-DPSK modulation.

DVB-T Terrestrial television DVB standards, based on 2k and 8k OFDM modulation.

DVD Digital Versatile Disc

DVD-R Recordable DVD. Since different disk formats are currently in use, including DVD-R,DVD+R, they are

collectively mentioned as DVD-R in this document

DVI Digital Visual Interface standard (EIA/CEA-861A). The standard defines a method for sending digital

video signals over DVI and OpenLDI interface specifications. The standard is fully backward

compatible with earlier DVI standards. New features include carrying auxiliary video information,

such as aspect ratio and native video format information.

DSL

xDSL

Digital Subscriber Line - transmission of data over copper telephone lines capable of bringing high-

bandwidth to subscribers. Many flavors of DSL are currently in use, which are collectively called

xDSL throughout the document.

DSP Digital Signal Processor

DST Destination

DWord A 32-bit word

ES Elementary Streams -- the raw output of an encoder, containing only what is necessary for a

decoder to approximate the original picture or audio.

FIFO First in First Out

FIR Finite Impulse Response

FPU Floating Point Unit

FW Firmware running on the decoder controller, as used in Volume 4 of the Olo River Plus Silicon EAS

IDR Instantaneous Decoding Refresh

IEEE 1394

1394

IEEE 1394 or iLink* or FireWire* An IEEE electronics industry standard for connecting multimedia

and computing Up to 63 devices can be attached to your PC via a single plug-and-socket

connection.

IEEE 802.11

802.11

The Institute for Electronics and Electrical Engineers (IEEE) wireless network specification. 802.11g

and 802.11a networks can transmit payload at the rates in excess 34Mbits/s and allow for the

wireless transmission at distances from several dozen to several hundred feet indoors.

IF Intermediate Frequency -- the fixed, relatively low-frequency carrier to which current programs are

ported by the tuner.

GMCH Graphics and Memory Control Hub -- a chip that connects the IA processor to memory and other

components in PC.

HDD Hard Disk Drive -- magnetic mass storage device used in media centers for audiovisual program

recording.

HDMI High Definition Multimedia Interface (HDMI). This interface is used between any audio/video

source, such as a set-top box, DVD player, or A/V receiver, and an audio or video monitor, such as a

DTV. HDMI supports standard, enhanced or high-definition video, plus multi-channel digital audio

on a single cable. The format transmits all ATSC HDTV standards and supports eight-channel digital

82 Doc Ref # IHD-OS-DG1-Vol 11-2.21

Acronym Meaning

audio (at up to a 192kHz sampling rate), with bandwidth to spare for future enhancements.

HDTV High-Definition Television -- HDTV specifically refers to the highest-resolution formats of the 18

total DTV formats, true HDTV is generally considered to be 1,080-line interlaced (1080i) or 720-line

progressive (720p).

HSR Hidden Surface Removal

HW Hardware

I/F Interface

IEEE IEEE 32-bit Floating Point number format representation

ISP Image Synthesis Processor -- A collective term to describe all components of the hidden surface

removal operation within the PowerVR architecture.

LOD Level Of Detail -- used in texturing calculations.

LSB Least Significant Bit

LUT Look-up table

MBAFF Block Adaptive Field Frame mode

MFD Multi-Format Decoder

MMU Memory Management Unit

MMMC Multi-port, Multi-channel Memory Controller

MSA Intel Micro Signal Architecture -- microprocessor architecture combining the features of

microcontroller and digital signal processor. MSA is used here as a synonym of the processor core

used in Olo River Plus

MSB Most Significant Bit

MPEG Motion Picture Experts Group - Organization that develops standards for digital video and digital

audio compression.

MPR Inter Prediction Module

NAL Network Abstraction Layer

NAL unit Syntax structure in a H.264 stream

NTSC National Television System Committee, North American 525-line analog broadcast TV standard.

NIM Network Interface Module - the integrated tuner and digital demodulator in the (satellite) TV

systems. The DVB NIMs output MPEG transport stream.

NOP No operation

OEM Original Equipment Manufacturer

OGL/OpenGL Open GL application programming interface

PAL Phase Alternation Line - TV standard used in Europe. PAL uses 625 lines per frame, a 25 frames per

second update rate and YUV color encoding. The number of visible pixels for PAL video is 768 x

576.

PCI Peripheral Component Interconnect bus, a bi-directional bus defined in PCI 2.x specification

PES Packetized Elementary Streams -- packetized streams are the ES streams arranged in data packets

with PES header starting every packet. The syntax of the ES and PES is defined in MPEG. See

definition for ES.

Doc Ref # IHD-OS-DG1-Vol 11-2.21 83

Acronym Meaning

PIP Picture In Picture display mode

POD Point of Deployment conditional access module -- the removable conditional access module

defined in the OpenCable* specification in US.

PPS Picture Parameter set

PTS Presentation time stamp

PVR Personal Video Recorder, also PDR or personal digital recorder -- an interactive TV-recording device

that records programs in digital format and allows users to search for/record shows based on type

(for instance all basketball games or all episodes of a particular program). Users can also pause,

rewind, stop, or fast-forward live programs with only a small time lag.

PWL Piece-wise Linear

PXD Pixel Decoder Module

RF Radio Frequency - usually, modulated carriers which can be directly received by the tuners of TVs or

radio receivers

RISC Reduced Instruction Set Computer

RHW Reciprocal Homogenous W -- W is a 3-D coordinate representation like X Y Z

RSB Row Store Buffer

RTL Register Transfer Language/Level

SEI Supplementary Enhancement Information

SIF Semaphore Interface Module

SIMD Single Instruction Multiple Data

SMPTE Society of Motion Picture and Television Engineers

SOC System on chip

SP Simple Profile - MPEG4-2

SPS Sequence Parameter set

SRC Source

SDTV Standard-Definition Television -- a digital television system that is similar to current analog TV

standards in picture resolution and aspect ratio. Typical SDTV resolution is 480i or 480p.

STB Set Top Box -- a device that effectively turns a television set into an interactive Internet device

and/or allows the television to receive and decode digital television (DTV) broadcasts.

TA Tile Accelerator

TS MPEG-2 Transport Stream -- a sequence of 188-byte packets carrying the multi-program

audiovisual data

TSP Texture Shading Processor -- a collective term to describe all components of the texture, shading

and pixel blending operations within the PowerVR architecture.

VCL Video Coded Layer

VCXO Voltage Controlled Crystal Oscillator

VGP/ VGP Lite Vertex Geometry Processor

VLC Variable length coded. This refers to the collection of coding techniques that are used in VC1, and

include CABAC, CAVLC and Exp-Golomb.

84 Doc Ref # IHD-OS-DG1-Vol 11-2.21

Acronym Meaning

VOL Video Object Layer

VOP Video Object Plane

WAN Wide Area Network

WSS Wide Screen Signaling

XDS Extended Data Services -- data services sending data in line 21/283 of the analog NTSC TV signal

XSI Intel(R) XScale(R) System Interconnect

X, Y, Z, W 3-D coordinate representations

YUV YUV texture format, primarily for video formats

VP9 Register Definitions

This section describes the VP9 Register Definitions as follows:

• Register Attributes Description

• VP9 Register Map

• VP9 Encoder Register Descriptions

Register Attributes Description

Host Register Attributes gives the defined register tags and their description.

Host Register Attributes

Tag Name Description

R/W Read/Write Bit is read and writeable.

R/SW Read/Special Write Bit is readable. Write is only allowed once after a reset.

RO Read Only Bit is only readable, but writes have no effects.

WO Write Only Bit is only writeable, reads return zeroes.

RV Reserved Bit is reserved and not visible. Reads will return 0, and writes have no effect.

NA Not Accessible This bit is not accessible.

VP9 Encoder Register Descriptions

HCP_IMAGE_STATUS_MASK - HCP Image Status Mask

HCP_IMAGE_STATUS_CONTROL - HCP Image Status Control

HCP_UNIT_DONE - HCP Unit Done

Doc Ref # IHD-OS-DG1-Vol 11-2.21 85

MFX Pipe

MFC_AVC_PAK_OBJECT Command

PAK Object Inline Data Description

The Inline Data includes all the required MB encoding states, constitute part of the Slice Data syntax

elements, MB Header syntax elements and their derivatives. It provides information for the following

operations:

1. Forward and Inverse Transform

2. Forward and Inverse Quantization

3. Advanced Rate Control (QRC)

4. MB Parameter Construction (MPC)

5. CABAC/CAVLC encoding

6. Bit stream packing

7. Intra and inter-Prediction decoding loop

8. Internal error handling

These state/parameter values may subject to change on a per-MB basis, and must be provided in each

MFC_AVC_PAK_OBJECT command. The values set for these variables are retained internally, until they are

reset by hardware Asynchronous Reset or changed by the next MFC_AVC_PAK_OBJECT command.

The inline data has been designed to match the DXVA 2.0, with the exception of the starting byte

(DW0:0-7) and the ending dword (DW7:0-31).

The Deblocker Filter Control flags (FilterInternalEdgesFlag, FilterTopMbEdgeFlag and

FilterLeftMbEdgesFlag) are generated by H/W, which are depending on MbaffFrameFlag, CurrMbAddr,

PicWidthInMbs and disable_deblocking_filter_idc states.

Current MB [x,y] address is not sent, it is assumed that the H/W will keep track of the MB count and

current MB position internally.

DWord Bit Description

3 31
ExtendedForm

This field specifies that LumaIntraMode and RefPicSelect are fully replicated in 4x4 and 8x8 sub-

blocks respectively. This non-DXVA form is used for optimal kernel performance.

 30 Reserved: MBZ

 29:24 Reserved

 23
Reserved : MBZ

(reserved for future use as ExternalMvBufFlag)

 22:20
MvFormat (Motion Vector Size). This field specifies the size and format of the output motion

86 Doc Ref # IHD-OS-DG1-Vol 11-2.21

DWord Bit Description

vectors.

This field is reserved (MBZ) when the IntraMbFlag = 1.

The valid encodings are:

000 = 0: No motion vector

100 = 8MV: Four 8x8 motion vector pairs

110 = 32MV: 16 4x4 motion vector pairs

Others are reserved.

(The following encodings are intended for future usages:

001 = 1MV: one 16x16 motion vector

010 = 2MV: One 16x16 motion vector pair

011 = 4MV: Four 8x8 motion vectors

101 = 16MV: 16 4x4 motion vectors

111 = Packed, number of MVs is given by PackedMvNum.)

 19
CbpDcY. This field specifies if the Luma DC sub-block is coded. Setting it to 0 will force PAK to zero

out the Luma sub-block. Otherwise, whether the sub-block is coded will be determined by the

quantization process.

1 – the 4x4 DC-only Luma sub-block of the Intra16x16 coded MB is present; it is still possible that all

DC coefficients are zero.

0 – no 4x4 DC-only Luma sub-block is present; either not in Intra16x16 MB mode or all DC

coefficients are zero.

 18
CbpDcU. This field specifies if the Chroma Cb DC sub-block is coded. Setting it to 0 will force PAK to

zero out the Luma sub-block. Otherwise, whether the sub-block is coded will be determined by the

quantization process.

1 – the 2x2 DC-only Chroma Cb sub-block of all coded MB (any type) is present; it is still possible

that all DC coefficients are zero.

0 – no 2x2 DC-only Chroma Cb sub-block is present; all DC coefficients are zero.

 17
CbpDcV. This field specifies if the Chroma Cb DC sub-block is coded. Setting it to 0 will force PAK to

zero out the Luma sub-block. Otherwise, whether the sub-block is coded will be determined by the

quantization process.

1 – the 2x2 DC-only Chroma Cr sub-block of all coded MB (any type) is present; it is still possible

that all DC coefficients are zero.

0 – no 2x2 DC-only Chroma Cr sub-block is present; all DC coefficients are zero.

 16
Reserved: MBZ

Doc Ref # IHD-OS-DG1-Vol 11-2.21 87

DWord Bit Description

(reserved for future use as ExternalResidBufFlag for turbo mode)

 15
Transform8x8Flag

This field indicates that 8x8 transform is used for the macroblock.

When it is set to 0, the current MB uses 4x4 transform. When it is set to 1, the current MB uses 8x8

transform. The transform_size_8x8_flag syntax element, if present in the output bitstream, is the

same as this field. However, whether transform_szie_8x8_flag is present or not in the output

bitstream depends on several other conditions.

This field is only allowed to be set to 1 for two conditions:

It must be 1 if IntraMbFlag = INTRA and IntraMbMode = INTRA_8x8

It may be 1 if IntraMbFlag = INTER and there is no sub partition size less than 8x8

Otherwise, this field must be set to 0.

0: 4x4 integer transform

1: 8x8 integer transform

14

FieldMbFlag

This field specifies the field polarity of the current macroblock, as the mb_field_decoding_flag syntax

element in AVC spec.

This field specifies whether current macroblock is coded as a field or frame macroblock in MBAFF

mode. It is exactly the same as FIELD_PIC_FLAG syntax element in non-MBAFF mode.

0 = Frame macroblock

 1 = Field macroblock

 13
IntraMbFlag

This field specifies whether the current macroblock is an Intra (I) macroblock. I_PCM is considered as

Intra MB.

For I-picture MB (IntraPicFlag =1), this field must be set to 1.

This flag must be set in consistent with the interpretation of MbType (inter or intra modes).

0: INTER (inter macroblock)

1: INTRA (intra macroblock)

 12:8
MbType5Bits

This field is encoded to match with the best macroblock mode determined as described in the next

section. It follows an unified encoding for inter and intra macroblocks according to AVC Spec.

 7
FieldMbPolarityFlag

This field indicates the field polarity of the current macroblock.

88 Doc Ref # IHD-OS-DG1-Vol 11-2.21

DWord Bit Description

Within an MbAff frame picture, this field may be different per macroblock and is set to 1 only for

the second macroblock in a MbAff pair if FieldMbFlag is set. Otherwise, it is set to 0.

Within a field picture, this field is set to 1 if the current picture is the bottom field picture.

Otherwise, it is set to 0. It is a constant for the whole field picture.

This field is reserved and MBZ for a progressive frame picture.

0 = Current macroblock is a field macroblock from the top field

1 = Current macroblock is a field macroblock from the bottom field

Programming Note: Here bits [26:24] (MbAffFieldFlag and FiedlMbPolarityFlag) match with bits

[10:8] of the Media Block Read message descriptor, simplifying the programming for message

generation, as when MbAffFieldFlag is “1”, kernels need to override the original “frame” surface

state set for MBAFF frame picture.

 6 Reserved: MBZ

5:4 IntraMbMode

This field is provided to carry information partially overlapped with MbType.

This field is only valid if IntraMbFlag = INTRA, otherwise, it is ignored by hardware..

 3 Reserved: MBZ

2 SkipMbFlag

By setting it to 1, this field forces an inter macroblock to be encoded as a skipped macroblock. It is

equivalent to mb_skip_flag in AVS spec, indicating that a macroblock is inferred as a P_Skip (or

B_Skip) in a P Slice (or B Slice). Hardware honors input MVs for motion prediction and forces CBP to

zero.

By setting it to 0, an inter macroblock will be coded as a normal inter macroblock. The macroblock

may still be coded as a skipped macroblock, according to the macroblock type conversion rules

described in the later sub sections.

This field can only be set to 1 for certain values of MbType. See details later.

This field is only valid for an inter macroblock. Hardware ignores this field for an intra macroblock.

0 = not a skipped macroblock

1 = is coded as a skipped macroblock

 1:0
InterMbMode

This field is provided to carry redundant information as that encoded in MbType.

This field is only valid if IntraMbFlag =0, otherwise, it is ignored by hardware.

4 31:24 Reserved for future MbYCnt expansion.

 23:16
MbYCnt (Vertical Origin). This field specifies the vertical origin of current macroblock in the

destination picture in units of macroblocks.

Doc Ref # IHD-OS-DG1-Vol 11-2.21 89

DWord Bit Description

 Format = U8 in unit of macroblock.

 15:8 Reserved for future MbXCnt expansion.

 31:16 Reserved

 15:8 Reserved for future MbXCnt expansion.

 15:8 Reserved

 7:0
MbXCnt (Horizontal Origin). This field specifies the horizontal origin of current macroblock in the

destination picture in units of macroblocks.

 Format = U8 in unit of macroblock.

5 31:24
Reserved for future CbpAcUV exopansion for 4.2.2. and 4.4.4

 For 4.2.2, [23:16] for U(Cb), and [31:24] for C(Cr).

 For 4.4.4, the field [31:16] is interpreted as CbpAdJ|CbpAcV for 16 sub-blocks.

 31:16
Cbp4x4V (Coded Block Pattern Cr)

 Only the lower 4 bits [3:0] are valid for 4:2:0. The 4x4 Cr sub-blocks are numbered as

 blk0 1 bit3 2

 blk2 3 bit1 0

 The cbpCr bit assignment is cbpCr bit [3 - X] for sub-block_num X.

 0 in a bit - indicates the corresponding 4x4 sub-block is not present (because all coefficient values

are zero), or force to zero for PAK.

 1 in a bit - indicates the corresponding 4x4 sub-block is present (although it is still possible to have

all its coefficients be zero - bad coding).

 For monochrome, this field is ignored.

 For 4.2.2, [23:16] for U(Cb), and [31:24] ignored.

 For 4.4.4, the definition is the same as for luma component: 1bit per 4x4 block.

 23:20
CbpAcV (Coded Block Pattern Cr)

 Only the lower 4 bits [3:0] are valid for 4:2:0. The 4x4 Cr sub-blocks are numbered as

 blk0 1 bit3 2

 blk2 3 bit1 0

 The cbpCr bit assignment is cbpCr bit [3 - X] for sub-block_num X.

 0 in a bit - indicates the corresponding 4x4 sub-block is not present (because all coefficient values

are zero), or force to zero for PAK.

 1 in a bit - indicates the corresponding 4x4 sub-block is present (although it is still possible to have

all its coefficients be zero - bad coding).

 For monochrome, this field is ignored.

90 Doc Ref # IHD-OS-DG1-Vol 11-2.21

DWord Bit Description

 19:16
Cbp4x4U (Coded Block Pattern Cb)

 Only the lower 4 bits [3:0] are valid for 4:2:0. The 4x4 Cb sub-blocks are numbered as

 blk0 1 bit3 2

 blk2 3 bit1 0

 The cbpCb bit assignment is cbpCb bit [3 - X] for sub-block_num X.

 0 in a bit - indicates the corresponding 4x4 sub-block is not present (because all coefficient values

are zero), or force to zero for PAK.

 1 in a bit - indicates the corresponding 4x4 sub-block is present (although it is still possible to have

all its coefficients be zero - bad coding).

 For monochrome, this field is ignored.

 15:0
Cbp4x4Y[bit 15:0] (Coded Block Pattern Y)

 For 4x4 sub-block (when Transform8x8flag = 0 or in intra16x16) :

 16-bit cbp, one bit for each 4x4 Luma sub-block (not including the DC 4x4 Luma block in

intra16x16) in a MB. The 4x4 Luma sub-blocks are numbered as

 blk0 1 4 5

bit15 14 11 10

 blk2 3 6 7

bit13 12 9 8

blk8 9 12 13

bit7 6 3 2

 blk10 11 14 15

bit5 4 1 0

 The cbpY bit assignment is cbpY bit [15 - X] for sub-block_num X.

 For 8x8 block (when Transform8x8flag = 1)

 Only the lower 4 bits [3:0] are valid; the remaining upper bits [15:4] are ignored. The 8x8 Luma

blocks are numbered as

 blk0 1 bit3 2

 blk2 3 bit1 0

 The cbpY bit assignment is cbpY bit [3 - X] for block_num X.

 0 in a bit - indicates the corresponding 8x8 block or 4x4 sub-block is not present (because all

coefficient values are zero), or force to zero for PAK.

 1 in a bit - indicates the corresponding 8x8 block or 4x4 sub-block is present (although it is still

possible to have all its coefficients be zero - bad coding).

Doc Ref # IHD-OS-DG1-Vol 11-2.21 91

DWord Bit Description

 15:0
Only the lower 4 bits [3:0] are valid for 4:2:0. The 4x4 Cb sub-blocks are numbered as

 blk0 1 bit3 2

 blk2 3 bit1 0

 The cbpCb bit assignment is cbpCb bit [3 - X] for sub-block_num X.

 0 in a bit - indicates the corresponding 4x4 sub-block is not present (because all coefficient values

are zero), or force to zero for PAK.

 1 in a bit - indicates the corresponding 4x4 sub-block is present (although it is still possible to have

all its coefficients be zero - bad coding).

 For monochrome, this field is ignored.

For 4.2.2, [7:0] for U(Cb), and [15:8] ignored.

 For 4.4.4, the definition is the same as for luma component: 1bit per 4x4 block.

6 31:28
Skip8x8Pattern

This field indicates whether each of the four 8x8 sub macroblocks is using the predicted MVs and

will not be explicitly coded in the bitstream (the sub macroblock will be coded as direct mode). It

contains four 1-bit subfields, corresponding to the 4 sub macroblocks in sequential order. The

whole macroblock may be actually coded as B_Direct_16x16 or B_Skip, according to the macroblock

type conversion rules described in a later sub section.

This field is only valid for a B slice. It is ignored by hardware for a P slice. Hardware also ignores this

field for an intra macroblock.

0 in a bit – Corresponding MVs are sent in the bitstream

1 in a bit – Corresponding MVs are not sent in the bitstream

 27
EnableCoeffClamp

1 = the magnitude of coefficients of the current MB will be clamped based on the clamping matrix

after quantization

0 = no clamping

 26
LastMbFlag

1 – the current MB is the last MB in the current Slice

0 – the current MB is not the last MB in the current SliceReserved MBZ.

 25
SkipMbConvDisable

This is a per-MB level control to enable and disable skip conversion. This field is ORed with

SkipConvDisable field. This field is only valid for a P or B slice. It must be zero for other slice types.

Rules are provided in Section Macroblock Type Conversion Rules

0 - Enable skip type conversion for the current macroblock

1 - Disable skip type conversion for the current macroblock

 24 Reserved MBZ.

92 Doc Ref # IHD-OS-DG1-Vol 11-2.21

DWord Bit Description

 23:16
Reserved. Ignored by HW, this field will be re-derived internally.

(was QpPrimeV. For 8-bit pixel data, QpCr is the same as QpPrimeCr, and it takes on a value in the

range of 0 to 51, positive integer.)

 15:8
Reserved. IIgnored by HW, this field will be re-derived internally.

(Was QpPrimeU. For 8-bit pixel data, QpCb is the same as QpPrimeCb, and it takes on a value in the

range of 0 to 51, positive integer.)

 7:0
QpPrimeY

This is the per-MB QP value specified for the current MB.

For 8-bit pixel data, QpY is the same as QpPrimeY, and it takes on a value in the range of 0 to 51,

positive integer.

Note: This value may differ from the actual codes, when HW QRC is on

7 to 9
31:0

Each

For intra macroblocks, definition of these fields are specified in Inline data subfields for an Intra

Macroblock.

For inter macroblocks, definition of these fields are specified in Inline data subfields for an Inter

Macroblock .

10 31:24
MaxSizeInWord

PAK should not exceed this budget accumulatively, otherwise it will trickle the PANIC mode.

 23:16
TargetSizeInWord

PAK should use this budget accumulatively to decide if it needs to limit the number of non-zero

coefficients.

 15:0

Lambda_Or_RoundingOffset

When TQEnb=1, this 16-bit unsigned value multiplied by 2 is used as a lambda for the rate-

distortion cost estimation in Trellis quantization (TQ). If the upper 4 bits are all set to 1 (0xFXXX),

TQ is disabled and the regular quantizer is used. Thus, the valid range is 0~0xEFFF.

When TQEnb=0 or the upper 4 bits are all set to 1, the lower 4-bit value indicates the rounding

precision (offset) for the regular quantizer

Value Name

0000b RoundInterEnable, RoundInter, RoundIntraEnable, and RoundIntra defined in

MFC_AVC_SLICE_STATE are used as rounding precision.

1000b +1/16

Doc Ref # IHD-OS-DG1-Vol 11-2.21 93

DWord Bit Description

1001b +2/16

1010b +3/16

1011b +4/16

1100b +5/16

1101b +6/16

1110b +7/16

1111b +8/16

The inline data content of Dwords 4 to 6 is defined either for intra prediction or for inter prediction, but

not both.

Inline data subfields for an Intra Macroblock

Dword Bit Description

7 31:16
LumaIntraMode[1]

Specifies the Luma Intra Prediction mode for four 4x4 sub-block of a MB, 4-bit each.

See the bit assignment table later in this section.

 15:0
LumaIntraMode[0]

Specifies the Luma Intra Prediction mode for four 4x4 sub-block, four 8x8 block or one intra16x16 of

a MB.

4-bit per 4x4 sub-block (Transform8x8Flag=0, Mbtype=0 and intraMbFlag=1) or 8x8 block

(Transform8x8Flag=1, Mbtype=0, MbFlag=1), since there are 9 intra modes.

4-bit for intra16x16 MB (Transform8x8Flag=0, Mbtype=1 to 24 and intraMbFlag=1), but only the

LSBit[1:0] is valid, since there are only 4 intra modes.

See the bit assignment table later in this section.

8 31:16
LumaIntraMode[3]

Specifies the Luma Intra Prediction mode for four 4x4 sub-block of a MB, 4-bit each.

See the bit assignment table later in this section.

 15:0
LumaIntraMode[2]

Specifies the Luma Intra Prediction mode for four 4x4 sub-block of a MB, 4-bit each.

94 Doc Ref # IHD-OS-DG1-Vol 11-2.21

Dword Bit Description

See the bit assignment later in this section.

9 31:8
Reserved : MBZ

(Reserved for encocder turbo mode IntraResidueDataSize, when this is not 0, optional residue data

are provided to the PAK; Reserved for decoder)

 7:0
IntraStruct

This field contains 6 bits for IntraPredAvailFlags[5:0] and 2 bits for ChromaIntraPredMode. The

IntraPredAvailFlags[4:0] (the lower 5 bits) have already included the effect of the

constrained_intra_pred_flag. See the diagram later for the definition of neighbor position around the

current MB or MB pair (in MBAFF mode).

1 – IntraPredAvailFlagY, indicates the values of samples of neighbor Y can be used in intra prediction

for the current MB.

0 – IntraPredAvailFlagY, indicates the values of samples of neighbor Y is not available for intra

prediction of the current MB.

IntraPredAvailFlag-A and -E can only be different from each other when constrained_intra_pred_flag

is equal to 1 and mb_field_decoding_flag is equal to 1 and the value of the mb_field_decoding_flag

for the macroblock pair to the left of the current macroblock is equal to 0 (which can only occur

when MbaffFrameFlag is equal to 1).

IntraPredAvailFlag-F is used only if

it is in MBAFF mode, i.e. MbaffFrameFlag = 1,

the current macroblock is of frame type, i.e. MbFieldFag = 0, and

the current macroblock type is Intra8x8, i.e.

 IntraMbFlag = INTRA, IntraMbMode = INTRA_8x8, and Transform8x8Flag = 1.

In any other cases IntraPredAvailFlag-A shall be used instead.

Bits IntraPredAvailFlags Definition

7
IntraPredAvailFlagF – F (Left 8th row (-1,7) neighbor)

6 IntraPredAvailFlagA – A (Left neighbor top half)

5 IntraPredAvailFlagE – E (Left neighbor bottom half)

4 IntraPredAvailFlagB – B (Top neighbor)

3 IntraPredAvailFlagC – C (Top right neighbor)

2 IntraPredAvailFlagD – D (Top left corner neighbor)

1:0 ChromaIntraPredMode – 2 bits to specify 1 of 4 chroma intra prediction modes, see the table

in later section.

Doc Ref # IHD-OS-DG1-Vol 11-2.21 95

Inline data subfields for an Inter Macroblock

DWord Bit Description

7 31:16 Reserved : MBZ

 15:8
SubMbPredMode (Sub-Macroblock Prediction Mode): If InterMbMode is INTER8x8, this field

describes the prediction mode of the sub-partitions in the four 8x8 sub-macroblock. It contains four

subfields each with 2-bits, corresponding to the four 8x8 sub-macroblocks in sequential order.

This field is derived from sub_mb_type for a BP_8x8 macroblock.

This field is derived from MbType for a non-BP_8x8 inter macroblock, and carries redundant

information as MbType).

If InterMbMode is INTER16x16, INTER16x8 or INTER8x16, this field carries the prediction modes of

the sub macroblock (one 16x16, two 16x8 or two 8x16). The unused bits are set to zero.

Bits [1:0]: SubMbPredMode[0]

Bits [3:2]: SubMbPredMode[1]

Bits [5:4]: SubMbPredMode[2]

Bits [7:6]: SubMbPredMode[3]

 7:0
SubMbShape (Sub Macroblock Shape)

This field describes the sub-block partitioning of each sub macroblocks (four 8x8 blocks). It contains

four subfields each with 2-bits, corresponding to the 4 fixed size 8x8 sub macroblocks in sequential

order.

This field is provided for MB with sub_mb_type equal to BP_8x8 only (B_8x8 and P_8x8 as defined in

DXVA). Otherwise, this field is ignored by hardware

Bits [1:0]: SubMbShape[0] – for 8x8 Block 0

Bits [3:2]: SubMbShape[1] – for 8x8 Block 1

Bits [5:4]: SubMbShape[2] – for 8x8 Block 2

Bits [7:6]: SubMbShape[3] – for 8x8 Block 3

Blocks of the MB is numbered as follows :

01

23

Each 2-bit value [1:0] is defined as :

00 – SubMbPartWidth=8, SubMbPartHeight=8

01 – SubMbPartWidth=8, SubMbPartHeight=4

10 – SubMbPartWidth=4, SubMbPartHeight=8

11 – SubMbPartWidth=4, SubMbPartHeight=4

8 31:24
RefPicSelect[0][3]

96 Doc Ref # IHD-OS-DG1-Vol 11-2.21

DWord Bit Description

Support up to 4 reference pictures per L0 direction, one per MB partition, if exists. See details in

later section. This field specifies the reference index into the Reference Picture List0 Table.

 23:16
RefPicSelect[0][2]

Support up to 4 reference pictures per L0 direction, one per MB partition, if exists. See details in

later section. This field specifies the reference index into the Reference Picture List0 Table.

 15:8
RefPicSelect[0][1]

Support up to 4 reference pictures per L0 direction, one per MB partition, if exists. See details in

later section. This field specifies the reference index into the Reference Picture List0 Table.

 7:0
RefPicSelect[0][0]

Support up to 4 reference pictures per L0 direction, one per MB partition, if exists. See details in

later section. This field specifies the reference index into the Reference Picture List0 Table.

9 31:24
RefPicSelect[1] [3]

Support up to 4 reference pictures per L1 direction, one per MB partition, if exists. See details in

later section. This field specifies the reference index into the Reference Picture List1 Table.

 23:16
RefPicSelect[1][2]

Support up to 4 reference pictures per L1 direction, one per MB partition, if exists. See details in

later section. This field specifies the reference index into the Reference Picture List1 Table.

 15:8
RefPicSelect[1][1]

Support up to 4 reference pictures per L1 direction, one per MB partition, if exists. See details in

later section. This field specifies the reference index into the Reference Picture List1 Table.

 7:0
RefPicSelect[1][0]

Support up to 4 reference pictures per L1 direction, one per MB partition, if exists. See details in

later section. This field specifies the reference index into the Reference Picture List1 Table.

Luma Intra Prediction Modes

Luma Intra Prediction Modes (LumaIntraPredModes) is defined in Definition of LumaIntraPredModes. It is

further categorized as Intra16x16PredMode (Definition of Intra16x16PredMode), Intra8x8PredMode

(Definition of Intra8x8PredMode) and Intra4x4PredMode (Definition of Intra4x4PredMode), operating on

16x16, 8x8 and 4x4 block sizes, respectively. The Figure illustrates the intra prediction directions

geometrically for the Intra4x4 prediction. When a macroblock is subdivided, the intra prediction is

performed for the subdivision in a predetermined order. For example, Numbers of Block4x4 in a 16x16

region shows the block order for Intra4x4 prediction. And Numbers of Block4x4 in an 8x8 region or

Doc Ref # IHD-OS-DG1-Vol 11-2.21 97

numbers of Block8x8 in a 16x16 region shows the block order of Block8x8 in a 16x16 region or Block4x4

in an 8x8 region.

Definition of LumaIntraPredModes

LumaIntraPredModes

[index] Intra16x16PredMode Intra8x8PredMode Intra4x4PredMode

Index Bit

MbType = [1…24]

Transform8x8Flag = 0

MbType = 0

Transform8x8Flag = 1

MbType = 0

Transform8x8Flag = 0

0 15:12 MBZ Block8x8 3 Block4x4 3 (0_0)

 11:8 MBZ Block8x8 2 Block4x4 2 (0_1)

 7:4 MBZ Block8x8 1 Block4x4 1 (0_2)

 3:0 Block16x16 Block8x8 0 Block4x4 0 (0_3)

1 15:12 MBZ MBZ Block4x4 7 (1_0)

 11:8 MBZ MBZ Block4x4 6 (1_1)

 7:4 MBZ MBZ Block4x4 5 (1_2)

 3:0 MBZ MBZ Block4x4 4 (1_3)

2 15:12 MBZ MBZ Block4x4 11 (2_0)

 11:8 MBZ MBZ Block4x4 10 (2_1)

 7:4 MBZ MBZ Block4x4 9 (2 2)

 3:0 MBZ MBZ Block4x4 8 (2_3)

3 15:12 MBZ MBZ Block4x4 15 (3_0)

 11:8 MBZ MBZ Block4x4 14 (3_1)

 7:4 MBZ MBZ Block4x4 13 (3_2)

 3:0 MBZ MBZ Block4x4 12 (3_3)

Definition of Intra16x16PredMode

Intra16x16PredMode Description

0 Intra_16x16_Vertical

1 Intra_16x16_Horizontal

2 Intra_16x16_DC

3 Intra_16x16_Plane

4 – 15 Reserved

Definition of Intra8x8PredMode

Intra8x8PredMode Description

0 Intra_8x8_Vertical

1 Intra_8x8_Horizontal

2 Intra_8x8_DC

3 Intra_8x8_Diagonal_Down_Left

98 Doc Ref # IHD-OS-DG1-Vol 11-2.21

Intra8x8PredMode Description

4 Intra_8x8_Diagonal_Down_Right

5 Intra_8x8_Vertical_Right

6 Intra_8x8_Horizontal_Down

7 Intra_8x8_Vertical_Left

8 Intra_8x8_Horizontal_Up

9 – 15 Reserved

Definition of Intra4x4PredMode

Intra4x4PredMode Description

0 Intra_4x4_Vertical

1 Intra_4x4_Horizontal

2 Intra_4x4_DC

3 Intra_4x4_Diagonal_Down_Left

4 Intra_4x4_Diagonal_Down_Right

5 Intra_4x4_Vertical_Right

6 Intra_4x4_Horizontal_Down

7 Intra_4x4_Vertical_Left

8 Intra_4x4_Horizontal_Up

9 – 15 Reserved

Intra_4x4 prediction mode directions

Doc Ref # IHD-OS-DG1-Vol 11-2.21 99

Numbers of Block4x4 in a 16x16 region

Numbers of Block4x4 in an 8x8 region or numbers of Block8x8 in a 16x16 region

Definition of Chroma Intra Prediction Mode

ChromaIntraPredMode

(intra_chroma_pred_mode)

Name of intra_chroma_pred_mode

0 Intra_Chroma_DC (prediction mode)

1 Intra_Chroma_Horizontal (prediction mode)

2 Intra_Chroma_Vertical (prediction mode)

3 Intra_Chroma_Plane (prediction mode)

100 Doc Ref # IHD-OS-DG1-Vol 11-2.21

Reference Indices defined for each MB partition type and Bit Assignment

 frame/field MB/Picture

MB partitioning 16x16 16x8 8x16 8x8

RefIdxL0/1[0] blk0 blk0 blk0 blk0 Bit 7:0

RefIdxL0/1[1] x blk1 blk1 blk1 Bit 15:8

RefIdxL0/1[2] x x x blk2 Bit 23:16

RefIdxL0/1[3] x x x blk3 Bit 31:24

MB Neighbor Availability in Intra-Prediction Modes (IntraPredAvailFlags)

Current MB is labelled as X. For non-MBAFF mode, 4 neighbors, A, B, C, D, are depicted in the following

picture and are defined as the following.

• MB D: top left neighbor of current MB X

• MB C: top right neighbor of current MB X

• MB B: top neighbor of current MB X

• MB A: left neighbor of the current MB X

mbAddrD

D

(top-left)

mbAddrB

 B

(top)

mbAddrC

 C

(top-right)

mbAddrA

A

(left)

X

CurrMbAddrX

N/A

N/A N/A N/A

For MBAFF mode, the current MB is labelled as X0 or X1, 4 neighbor pairs, A0/A1, B0/B1, C0/C1, D0/D1,

are depicted in the following picture and are defined as the following.

• MB D0: first MB of top left neighbor MB pair of current MB pair X0/X1

• MB D1: second MB of top left neighbor MB pair of current MB pair X0/X1

• MB C0: first MB of top right neighbor MB pair of current MB pair X0/X1

• MB C1: second MB of top right neighbor MB pair of current MB pair X0/X1

• MB B0: first MB of top neighbor MB pair of current MB pari X0/X1

• MB B1: second MB of top neighbor MB pair of current MB pari X0/X1

• MB A0: first MB of left neighbor MB pair of the current MB pair X0/X1

• MB A1: second MB of left neighbor MB pair of the current MB pair X0/X1

Doc Ref # IHD-OS-DG1-Vol 11-2.21 101

mbAddrD

D0

mbAddrB

B0

mbAddrC

C0

mbAddrD+1

D1

mbAddrB+1

B1

mbAddrC+1

C1

mbAddrA

A0

CurrMbAddrX

X0

or

N/A

mbAddrA+1

A1

CurrMbAddrX

X1

N/A

For a given macroblock X (or X0/X1), the 6 neighbor availability signals, namely, A, B, C, D, E, F, are

defined as the following.

• IntraPredAvailFlagF – F: (Single neighbor pixel at the left 8th row (-1,7)

• IntraPredAvailFlagA – A (Left neighbor top half pixel group)

• IntraPredAvailFlagE – E (Left neighbor bottom half pixel group)

• IntraPredAvailFlagB – B (Top neighbor pixel group)

• IntraPredAvailFlagC – C (Top right neighbor pixel group)

• IntraPredAvailFlagD – D (Top left corner neighbor pixel)

The following table depicts the generation of IntraPredAvailFlags[5:0] signals in a condensed form. It

should note that for most cases only one input neighbor signal is assigned for each condition. The

exception is in the four places for deriving left neighbor A and E where the neighbor is only available if

left neighbors (A0 and A1) are both available (A0&A1). Also note that F takes output value very similar to

that for A except the two “AND” conditions, where F is assigned to A1 instead of (A0&A1).

Definition of intra-prediction neighbor availability calculation in MBAFF mode

102 Doc Ref # IHD-OS-DG1-Vol 11-2.21

Output è
D B C A E F

Current X \

Neighbor Y

Y-

Frame

Y-

Field

Y-

Frame

Y-

Field

Y-

Frame

Y-

Field

Y-

Frame

Y-

Field

Y-

Frame

Y-

Field

Y-Frame Y-Field

X0

(Top)

X-Frame
D1 D1 B1 B1 C1 C1 A0 A0 &

A1

A0 A0 &

A1

A0 A1

X-Field
D1 D0 B1 B0 C1 C0 A0 A0 A1 A0 A0 A0

X1

(Bottom)

X-Frame
A0 A1 X0

N/A 0 0
A1 A0 &

A1

A1 A0 &

A1

A1 A1

X-Field
D1 D1 B1 B1 C1 C1 A0 A1 A1 A1 A0 A1

In Definition of intra-prediction neighbor availability calculation in MBAFF mode, X-Frame or X-Field

indicates the frame/field mode of the current MB; and Y-Frame or Y-Field indicates the corresponding

neighbor MB for the given neighbor location, being upper left (D) or left (A) for example. Therefore, “Y-”

takes the selected neighbor MB name as in the output cell in the same column. For example, for output

D, if X1 is a frame MB, Y = A, if X1 is a field MB, Y = D.

For non-MBAFF mode, as A0=A1, B0=B1, C0=C1 and D0=D1, the neighbor assignment is degenerated

into the following simple table. Here, E is assigned to the same as A and F is forced to 0.

Definition of intra-prediction neighbor availability calculation in non-MBAFF mode

Output è
D B C A E F

X D0 B0 C0 A0 A0 0

To further explain the neighbor assignment rules in Definition of intra-prediction neighbor availability

calculation in MBAFF mode, the following table provides description for each condition. Please note that

this table is informative as it provides redundant information as in Definition of intra-prediction neighbor

availability calculation in MBAFF mode.

Detailed explanation of intra-prediction neighbor availability calculation in MBAFF mode

Doc Ref # IHD-OS-DG1-Vol 11-2.21 103

Current

MB

Current

MB Field

Neighbor

MB Field

Neighbor

MB Select

(Y=?)

Neighbor Avail

Result

(OUTPUT) Description

 D

X0 X-Frame Y-Frame D D1
Top Frame MB uses [-1,-1] = D_31, thus D1

only, regardless D frame or field pair (Top) X-Frame Y-Field D D1

 X-Field Y-Frame D D1
Top Field MB uses [-1,-2] = D_30, thus if D is

frame pair, takes D1 (D1_14 pixel), and if D is

field pair, takes D0 (D0_15 pixel)

 X-Field Y-Field D D0

X1 X-Frame Y-Frame A A0
Bottom Frame MB uses [-1,15] = A_15, thus

A0 (A0_15 pixel) if A is a frame pair, or A1

(A1_7 pixel), if A is a field pair

(Bottom) X-Frame Y-Field A A1

 X-Field Y-Frame D D1
Bottom Field MB uses [-1,-1] = D_31, thus D1

only, regardless D frame or field pair X-Field Y-Field D D1

 B

X0 X-Frame Y-Frame B B1
Top Frame MB uses [0…15,-1] = B_31, thus

B1 only, regardless B frame or field pair (Top) X-Frame Y-Field B B1

 X-Field Y-Frame B B1
Top Field MB uses [0…15,-2] = B_30, thus if B

is frame pair, takes B1 (B1_14 row), and if B is

field pair, takes B0 (B0_15 row)

 X-Field Y-Field B B0

X1 X-Frame Y-Frame X X0 Bottom Frame MB uses [0…15,15], thus X0

(X0_15 row)

(Bottom) X-Frame Y-Field X n/a Note: X0 and X1 must have the same field

type, this row is n/a.

 X-Field Y-Frame B B1
Bottom Field MB uses [0…15,-1] = B_31, thus

B1 only, regardless B frame or field pair X-Field Y-Field B B1

 C

X0 X-Frame Y-Frame C C1 Top Frame MB uses [16…23,-1] = C_31, thus

C1 only, regardless C frame or field pair (Top) X-Frame Y-Field C C1

 X-Field Y-Frame C C1 Top Field MB uses [16…23,-2] = C_30, thus if

C is frame pair, takes C1 (C1_14 row), and if C

is field pair, takes C0 (C0_15 row)
 X-Field Y-Field C C0

X1 X-Frame Y-Frame n/a 0 Bottom Frame MB doesn’t have left-top

neighbor by definition, thus forced to 0 (Bottom) X-Frame Y-Field n/a 0

 X-Field Y-Frame C C1 Bottom Field MB uses [16…23,-1] = C_31,

thus C1 only, regardless C frame or field pair X-Field Y-Field C C1

104 Doc Ref # IHD-OS-DG1-Vol 11-2.21

 A

X0 X-Frame Y-Frame A A0 First Half of Top Frame MB uses [-1,0…7],

thus A0 if A is a frame pair; but is only avail if

both A0 and A1 are avail if A is a field pair

due to the mix

(Top) X-Frame Y-Field A A0&A1

 X-Field Y-Frame A A0 First Half of Top Field MB uses [-1,0..2..4..14],

thus take A0 (if A is frame pair, takes A0 even

lines, and if A is field pair, takes A0 first half)
 X-Field Y-Field A A0

X1 X-Frame Y-Frame A A1 First Half of Bottom Frame MB uses [-

1,16…23], thus A1 if A is a frame pair; but is

only avail if both A0 and A1 are avail if A is a

field pair due to the mix

(Bottom) X-Frame Y-Field A A0&A1

 X-Field Y-Frame A A0 First Half of Bottom Field MB uses [-

1,1..3..15], thus take A0 (if A is frame pair,

takes A0 odd lines, and if A is field pair, takes

A1 first half)

 X-Field Y-Field A A1

 E

X0 X-Frame Y-Frame A A0 Second Half of Top Frame MB uses [-1,8…15],

thus A0 if A is a frame pair; but is only avail if

both A0 and A1 are avail if A is a field pair

due to the mix

(Top) X-Frame Y-Field A A0&A1

 X-Field Y-Frame A A1 Second Half of Top Field MB uses [-

1,16..18..30], thus take A1 (if A is frame pair,

takes A1 even lines, and if A is field pair,

takes A0 second half)

 X-Field Y-Field A A0

X1 X-Frame Y-Frame A A1 Second Half of Bottom Frame MB uses [-

1,24…31], thus A1 if A is a frame pair; but is

only avail if both A0 and A1 are avail if A is a

field pair due to the mix

(Bottom) X-Frame Y-Field A A0&A1

 X-Field Y-Frame A A1 Second Half of Bottom Field MB uses [-

1,17..19..31], thus takes A1 (if A is frame pair,

takes A1 odd lines, and if A is field pair, takes

A1 second half)

 X-Field Y-Field A A1

 F

X0 X-Frame Y-Frame A A0 Top Frame MB uses [-1,7] = A_7 (odd

location), thus A0 if A is frame pair and A1 if

field pair
(Top) X-Frame Y-Field A A1

 X-Field Y-Frame A A0 Top Field MB uses [-1,14] = A_14 (even

location), thus A0 regardless A frame or field

pair
 X-Field Y-Field A A0

X1 X-Frame Y-Frame A A1 Bottom Frame MB uses [-1,23] = A_23 (odd

location), thus A1 regardless A frame or field

pair
(Bottom) X-Frame Y-Field A A1

 X-Field Y-Frame A A0 Bottom Field MB uses [-1,15] = A_15 (odd

Doc Ref # IHD-OS-DG1-Vol 11-2.21 105

Current

MB

Current

MB Field

Neighbor

MB Field

Neighbor

MB Select

(Y=?)

Neighbor Avail

Result

(OUTPUT) Description

 D

 X-Field Y-Field A A1 location), thus A0 if A is frame pair and A1 if

A is field pair

Macroblock Type for Intra Cases

MbType follows two different tables according to whether the macroblock is an inter or intra macroblock

according to IntraMbFlag.

For an intra macroblock, MbType, as defined in MbType definition for Intra Macroblock, carries

redundant information as IntraMbMode. The notation I_16x16_x_y_z used in the table, ‘x’ is

Intra16x16LumaPredMode, ‘y’ is ChromaCbpInd, and ‘z’ is LumaCbpInd, as defined in Sub field definition

used by MbType for a macroblock with Intra16x16 prediction.

MbType definition for Intra Macroblock

Macroblock Type MbType

I_4x4 0

I_8x8 0

I_16x16_0_0_0 1

I_16x16_1_0_0 2

I_16x16_2_0_0 3

I_16x16_3_0_0 4

I_16x16_0_1_0 5

I_16x16_1_1_0 6

I_16x16_2_1_0 7

I_16x16_3_1_0 8

I_16x16_0_2_0 9

I_16x16_1_2_0 Ah

I_16x16_2_2_0 Bh

I_16x16_3_2_0 Ch

I_16x16_0_0_1 Dh

I_16x16_1_0_1 Eh

I_16x16_2_0_1 Fh

I_16x16_3_0_1 10h

I_16x16_0_1_1 11h

I_16x16_1_1_1 12h

I_16x16_2_1_1 13h

I_16x16_3_1_1 14h

106 Doc Ref # IHD-OS-DG1-Vol 11-2.21

I_16x16_0_2_1 15h

I_16x16_1_2_1 16h

I_16x16_2_2_1 17h

I_16x16_3_2_1 18h

I_PCM 19h (used by HW)

Note: MbType here is identical as specified in DXVA 2.0.

For Intra_16x16 modes, the 5 bits of value (MbType – 1) have the following meanings.

Sub field definition used by MbType for a macroblock with Intra16x16 prediction

Bits Description

4
LumaCbpInd – Luma Coded Block Pattern Indicator

0 means none of the luma blocks are coded. 1 means that at least one luma block is coded.

0 = SUBMODE_I16_L_0

1 = SUBMODE_I16_L_NZ

In VME output, this field is forced to be 1 before adding 1 in Intra_16x16 mode.

3:2
ChromaCbpInd – Chroma Coded Block Pattern Indicator

00 means none of chroma blocks are coded. 01 means that only the chroma DC block is coded, but all AC

blocks are not coded. 10 means that at least one AC chroma block is coded.

00 = SUBMODE_I16_C_0

01 = SUBMODE_I16_C_DC

10 = SUBMODE_I16_C_NZ

11 = Reserved

In VME output, this field is forced to be 10 before adding 1 in Intra_16x16 mode.

Programming Note: Adding 1 to MbType by VME hardware may have carry in to this field. But as ‘11’ is

reserved, the carry-in doesn’t propagate into bit 4 or higher. This allows software to update MbType, if

desired, using the redundant LumaIntraPredModes information.

1:0
Intra16x16PredMode – Intra16x16 Prediction Mode

These two bits carries redundant (identical) information as that in LumaIntraPredModes[0][0].

0 = SUBMODE_I16_VER

1 = SUBMODE_I16_HOR

2 = SUBMODE_I16_DC

3 = SUBMODE_I16_PLANE

Doc Ref # IHD-OS-DG1-Vol 11-2.21 107

IntraMbMode definition

IntraMbMode [1:0] Description Supported by VME? Used by PAK?

0 INTRA_16x16 (redundant with MbType) Yes Ignored

1 INTRA_8x8 Yes Yes

2 INTRA_4x4 Yes Yes

3 IPCM (redundant with MbType) No Ignored

As an alternative representation, MbType is logically the same as the following, except the I_PCM and

I_NxN (i.e. I_4x4 and I_8x8) cases:

• 24 types of 16x16 intra modes: A+B+C+D:(1h – 18h)

MBTYPE_INTRA_16x16 1hA

• 4 Intra16x16 modes:

SUBMODE_I16_VER 0B

 SUBMODE_I16_HOR 1B

 SUBMODE_I16_DC 2B

 SUBMODE_I16_PLN 3B

• 3 Chroma Cbp indices:

SUBMODE_I16_C_0 0C

 SUBMODE_I16_C_DC 4C

 SUBMODE_I16_C_NZ 8C

• 2 Luma Cbp indices:

SUBMODE_I16_L_0 0D

 SUBMODE_I16_L_NZ ChD

Macroblock Type for Inter Cases

Sub-Macroblock Prediction Mode, SubMbPredMode, indicates the prediction mode for the sub-

partitions. Prediction mode specifies prediction direction being forward (from L0), backward (from L1) or

bi-directional (from both L0 and L1). Its meaning depends on InterMbMode. Definition of

SubMbPredMode[i] provides the definition of the field.

• If InterMbMode is INTER16x16, only SubMbPredMode[0] is valid, it describes the prediction mode

of the 16x16 macroblock. The other entries are set to zero by hardware.

• For AVC, SubMbPredMode[0] contains redundant information as encoded in MbType parameter.

• Note: SubMbPredMode[1]-[3] are intentionally set to zero to allow a simple LUT to derive MbType

as described later.

108 Doc Ref # IHD-OS-DG1-Vol 11-2.21

• If InterMbMode is INTER16x8, and INTER8x16, only the first two entries SubMbPredMode[0] and

SubMbPredMode[1] are valid, describing the sub-macroblock prediction mode.

• For AVC, SubMbPredMode[0]/[1] contains redundant information as encoded in MbType

parameter.

• Note: SubMbPredMode[2]-[3] are intentionally set to zero to allow a simple LUT to derive MbType

as described later.

• If InterMbMode is INTER8x8, each entry of SubMbPredMode describes the prediction mode of the

sub-partition of an 8x8 sub-macroblock.

• For AVC, SubMbPredMode can be derived from sub_mb_type field for BP_8x8 macroblocks as

defined in AVC spec.

• Note on Direct Sub-macroblock Prediction Mode: Direct prediction is not conveyed through

SubMbPredMode, instead, it is carried through Direct8x8Pattern.

InterMbMode definition

MbSkipFlag InterMbMode Description

0 0 INTER16x16

0 1 INTER16x8

0 2 INTER8x16

0 3 INTER8x8

1 0 PSKIP/BSKIP16x16*

1 3 BSKIP

1 1, 2 Reserved

Used by PAK Ignored by PAK

* BSKIP16x16 is an optional non-standard but equivalent optimization.

Definition of SubMbPredMode based on InterMbMode

SubMbPredMode INTER16x16 INTER16x8 INTER8x16 INTER8x8

Bit MbType = [1…3] MbType = [16h] MbType = [4…15h] MbType = [16h]

7:6 MBZ MBZ MBZ Block8x8 3

5:4 MBZ MBZ MBZ Block8x8 2

3:2 MBZ Block16x8 1 Block8x16 1 Block8x8 1

1:0 Block16x16 Block16x8 0 Block8x16 0 Block8x8 0

 Ignored by PAK Ignored by PAK Ignored by PAK Used by PAK

Doc Ref # IHD-OS-DG1-Vol 11-2.21 109

Definition of SubMbPredMode[i]

SubMbPredMode Description InterMbMode VME Output MvCountPred Notes

0 Pred_L0 All Yes 1 P or B Slice

1 Pred_L1 All Yes 1 B Slice Only

2 BiPred All Yes 2 B Slice Only

3 Reserved Reserved Reserved Reserved Reserved

Sub-Macroblock Shape, SubMbShape[i], for i = 0…3, describes the shape of the sub partitions of the 8x8

sub-macroblock of a BP_8x8 macroblock. This field is only valid if InterMBMode is INTER8x8. They are

defined in Definition of SubMbShape for an 8x8 region of a BP_8x8 macroblock (including BSKIP,

BDIRECT). The parameters can be derived from sub_mb_type field as defined in AVC spec.

Note: These fields must be correctly set even for Direct or Skip 8x8 cases, the individual B_Direct_8x8

block is flagged by the Direct8x8Pattern variable.

Definition of SubMbShape for an 8x8 region of a BP_8x8 macroblock (including BSKIP, BDIRECT)

 Description

SubMbShape NumSubMbPart SubMbPartWidth SubMbPartHeight MvCountShape

0 1 8 8 1

1 2 8 4 2

2 2 4 8 2

3 4 4 4 4

For an inter macroblock, MbType, carries redundant information as InterMbMode and SubMbPredMode.

The next table provides the typical inter macroblock types and the following table Additional MbType

definition with Direct/Skip for Inter Macroblock provides that with skip and direct modes. The definition

of MbType for both P slice and B slice is the same and is equivalent to that for mb_type of a B slice in the

AVC spec. As direct mode is indicated using a separate field Direct8x8Pattern, 0 is reserved for MbType.

Here, MVCount is the number of motion vectors actually encoded in the bitstream. It is informative. For a

BP_8x8 or equivalent Skip/Direct macroblock, MVCount is the sum of the following term for the four 8x8

sub macroblock (with i = 0…3):

MvCountShape[i] * MvCountPred[i] * MvCountDirect[i]

where MvCountShape[i] is block count for sub macroblock [i], MvCountPred[i] is the motion vector count

for each block of sub macroblock[i], and MvCountDirect[i] is the multipler for direct mode for B Slice,

indicating whether motion vectors are coded or not. It must be set to 1 for P slice. For B Slice,

MvCountDirect[i] = !Direct8x8Pattern[i], which is 0 for a sub macroblock coded as direct mode and 1

otherwise.

In the tables, “DC” stands for “Don’t Care” as PAK hardware ignores these fields.

MbType definition for Inter Macroblock (and MbSkipflag = 0)

110 Doc Ref # IHD-OS-DG1-Vol 11-2.21

Macroblock Type MbType MbSkipFlag Direct8x8Pattern SubMbShape SubMbPredMode MVCount

Reserved 0 - - - - -

BP_L0_16x16 1 0 0 DC DC 1

B_L1_16x16 2 0 0 DC DC 1

B_Bi_16x16 3 0 0 DC DC 2

BP_L0_L0_16x8 4 0 0 DC DC 2

BP_L0_L0_8x16 5 0 0 DC DC 2

B_L1_L1_16x8 6 0 0 DC DC 2

B_L1_L1_8x16 7 0 0 DC DC 2

B_L0_L1_16x8 8 0 0 DC DC 2

B_L0_L1_8x16 9 0 0 DC DC 2

B_L1_L0_16x8 0Ah 0 0 DC DC 2

B_L1_L0_8x16 0Bh 0 0 DC DC 2

B_L0_Bi_16x8 0Ch 0 0 DC DC 3

B_L0_Bi_8x16 0Dh 0 0 DC DC 3

B_L1_Bi_16x8 0Eh 0 0 DC DC 3

B_L1_Bi_8x16 0Fh 0 0 DC DC 3

B_Bi_L0_16x8 10h 0 0 DC DC 3

B_Bi_L0_8x16 11h 0 0 DC DC 3

B_Bi_L1_16x8 12h 0 0 DC DC 3

B_Bi_L1_8x16 13h 0 0 DC DC 3

B_Bi_Bi_16x8 14h 0 0 DC DC 4

B_Bi_Bi_8x16 15h 0 0 DC DC 4

BP_8x8 16h 0 != Fh vary vary Sum

Reserved 17h-1Fh - - - - -

Doc Ref # IHD-OS-DG1-Vol 11-2.21 111

Additional MbType definition with Direct/Skip for Inter Macroblock

Macroblock Type

MbTy

pe

Xfr

m

8x8

MbSkipF

lag

Direct8x8Pat

tern

SubMbSh

ape

SubMbPred

Mode

MvCo

unt Notes

P_Skip_16x16 1 - 1 DC DC DC 0 Skipped

macroblock.

Motion

compensation like

P_L0_16x16

B_Skip_16x16_4MV

Pair

16h

Var

y 1 Fh 0 vary 0

Skipped

macroblock.

Motion

compensation like

B_8x8 with 8x8

subblocks, when

direct_8x8_inferen

ce_flag is set to 1

B_Skip_16x16_16M

VPair

16h 0 1 Fh FFh vary 0 Skipped

macroblock.

Motion

compensation like

B_8x8 with 4x4

subblocks, when

direct_8x8_inferen

ce_flag is set to 0

B_Direct_16x16_4M

VPair

16h var

y

0 Fh 0 vary 0 MbType coded as

B_Direct_16x16.

Motion

compensation like

B_8x8 with 8x8

subblocks, when

direct_8x8_inferen

ce_flag is set to 1

B_Direct_16x16_16

MVPair

16h 0 0 Fh FFh vary 0 MbType coded as

B_Direct_16x16.

Motion

compensation like

B_8x8 with 4x4

subblocks, when

direct_8x8_inferen

ce_flag is set to 0

People might notice that B_DIRECT_16x16 and B_SKIP are mapped on BP_8x8 for AVC decoding interface

in IT mode as the motion compensation operation for both modes are the same as BP_8x8. According to

AVC Spec, motion vectors for B_DIRECT_16x16 and B_SKIP are derived from temporally co-located

112 Doc Ref # IHD-OS-DG1-Vol 11-2.21

macroblock on an 8x8 sub macroblock basis if direct_8x8_inference_flag is set to 1 or on a 4x4 block

basis if it is set to 0. For each sub macroblock or block, SubMbPredMode is derived, thus can any of the

valid numbers. Motion vectors may also be different. In spatial direct mode, the motion vectors are

subject to spatial neighbor macroblocks as well as co-located macroblock. The spatial prediction is based

on the neighbor macroblocks, so the same spatial predicted motion vector applies to all sub

macroblocks or blocks. However, under certain conditions, temporal predictor may replace (colZeroFlag)

the spatial predictor for a given sub macroblock or block. Thus the motion vectors may differ.

In MbType definition for Inter Macroblock (and MbSkipflag = 0), the macroblock type names for major

partitions nicely follow forms BP_MbPredMode_MbShape (like BP_L0_16x16) and

B_MbPredMode0_MbPredMode1_MbShape (like B_L0_Bi_16x8). For minor partitions it is fixed as

BP_MbShape as BP_8x8.

However, in Additional MbType definition with Direct/Skip for Inter Macroblock the macroblock types for

Skip and Direct modes does not follow the same rule. The third field in P_Skip_16x16 or B_Direct_16x16_x

indicates that “Skip” or “Direct” applies to the entire 16x16 macroblock, even though MbShape is 8x8 as

that in BP_8x8. In order to distinguish the SubMbShape being 8x8 or 4x4 for B_Skip and B_Direct, the

fourth field is added. 4MVPair indicates upto 4 MV pairs are presented with SubMbShape equals to 0;

and 16MVPair indicates up to 16 MV pairs are presented with SubMbShape equals to FFh.Also note that

P_8x8ref0 is not specified in PAK input interface, it is up to hardware to detect and choose its packing

format based on number of reference indices and reference index for the given macroblock.

Macroblock Type Conversion Rules

For improved coding efficiency the PAK hardware has the capability to convert macroblock types to use

more efficiency coding modes such as DIRECT and SKIP. For an inter macroblock or a sub macroblock

coded as DIRECT, no motion vector is needed in the bitstream for the macroblock or sub macroblock. If a

macroblock is coded as SKIP, it only consumes one SKIP bit (no motion vector, no coefficients are coded).

And infomaton about the macroblock is ‘inferred’ according to the rules stated in the AVC Spec.

As the input to PAK, the following signals can convey the information regarding DIRECT and SKIP:

• MbSkipFlag

• Direct8x8Pattern

• CodecBlockPattern (CbpY, CbpCb, CbpCr)

Such conversion can be enabled or disabled through the SLICE_STATE fields DirectConvDisable and

SkipConvDisable as well as the in line command field MbSkipConvDisable.

A P slice doesn’t support direct mode, it only supports P_Skip, which is equivalent to a 16_16_L0

prediction. Other prediction types cannot be converted to P_Skip. The following table describes the

macroblock type conversion rules for a P slice. Here CBP = CbpY/CbpCb/CbpCr are the final computed

results after quantization by the hardware. Note that hardware honors the input CbpY/CbpCb/CbpCr

fields – if the value corresponding to a block is set to zero, the resulting CBP is also zero. The output

mb_skip_flag and mb_type are the symbols coded in the bitstream as defined in the AVC spec. “DC”

stands for “Don’t care”, “T” for “True”.

Doc Ref # IHD-OS-DG1-Vol 11-2.21 113

Note that the internal condition of MV==MVP is subject to the precise rules stated in the AVC Spec as

quoted below. Note that there are exceptions for P_Skip from the normal motion vector prediction rules.

Derivation process for luma motion vectors for skipped macroblocks in P and SP slices

This process is invoked when mb_type is equal to P_Skip.

Outputs of this process are the motion vector mvL0 and the reference index refIdxL0.

The reference index refIdxL0 for a skipped macroblock is derived as follows.

refIdxL0 = 0. (8-168)

For the derivation of the motion vector mvL0 of a P_Skip macroblock type, the following applies.

– The process specified in subclause 8.4.1.3.2 is invoked with mbPartIdx set equal to 0, subMbPartIdx set

equal to 0, currSubMbType set equal to "na", and listSuffixFlag set equal to 0 as input and the output is

assigned to mbAddrA, mbAddrB, mvL0A, mvL0B, refIdxL0A, and refIdxL0B.

– The variable mvL0 is specified as follows.

– If any of the following conditions are true, both components of the motion vector mvL0 are set equal

to 0.

– mbAddrA is not available

– mbAddrB is not available

– refIdxL0A is equal to 0 and both components of mvL0A are equal to 0

– refIdxL0B is equal to 0 and both components of mvL0B are equal to 0

– Otherwise, the derivation process for luma motion vector prediction as specified in subclause 8.4.1.3 is

invoked with mbPartIdx = 0, subMbPartIdx = 0, refIdxL0, and currSubMbType = "na" as inputs and the

output is assigned to mvL0.

NOTE – The output is directly assigned to mvL0, since the predictor is equal to the actual motion vector.

Macroblock type conversion rule for an inter macroblock in a P slice

114 Doc Ref # IHD-OS-DG1-Vol 11-2.21

Input Internal Output Notes

Macroblock

Type

SkipConvDisable

||

SkipConvDisable CBP

MV

==

MVP MbAffSkipAllowed mb_skip_flag mb_type

P_Skip_16x16 DC DC DC 1 1 - Forced to P_Skip;

Hardware will force

CBP to zero and also

ignore

SkipConvDisable

control. Hardware

doesn’t check for

MV==MVP error

condition

P_Skip_16x16 DC DC DC 0 0 0 Reverse convert to

P_L0_16x16;

Hardware will force

CBP to zero but

reversely convert

MbType as

P_L0_16x16 once it

determines that Skip

is not allowed.

BP _16x16_L0 0 0 T 1 1 - Converted to P_Skip.

Even input doesn’t

provide skip hint,

hardware can

performance the

optimization by

detecting CBP and

MV==MVP

condition.

BP _16x16_L0 0 0 T 0 0 0 Reverse back to

P_L0_16x16;

Hardware will

reverse back to

P_L0_16x16 even

Skip conditions are

met once it

determines that Skip

is not allowed.

BP _16x16_L0 1 0 T T 0 0 Still coded as

P_L0_16x16 = 0.

A B slice supports both direct and skip modes. The following table describes the macroblock type

conversion rules for a B slice. Hardware does not verify MV==MVP condition for a Skip/Direct

macroblock in a B Slice as no DMV is performed by hardware.

Doc Ref # IHD-OS-DG1-Vol 11-2.21 115

Macroblock type conversion rule for an inter macroblock in a B slice

Input Internal Output Notes

Macroblock Type

SkipConvDi

sable ||

SkipConvDi

sable

DirectConvDi

sable

CB

P

MV

==

MV

P

MbAffSkipAll

owed

mb_skip_

flag

mb_ty

pe

B_Skip_8x8

B_Skip_4x4

DC DC DC n/a 1 1 - Forced to

B_Skip;

Hardware

will force

CBP to zero

and also

ignore

SkipConvDi

sable

control.

B_Skip_8x8

B_Skip_4x4

DC DC DC n/a 0 0 0 REVERSE

convert to

B_Direct_16

x16;

Hardware

will force

CBP to zero

and also

reverse

convert to

B_Direct_16

x16 when it

discovers

Skip is not

allowed.

B_Direct_16x16_4MVPair/

16MVPair

0 0 0 n/a 1 1 - Converted

to B_Skip.

Hardware

first

converts to

B_Direct_16

x16 and

then further

to B_Skip if

CBP = 0.

B_Direct_16x16_4MVPair/

16MVPair

0 0 0 n/a 0 0 0 Converted

to

B_Direct_16

x16.

Hardware

116 Doc Ref # IHD-OS-DG1-Vol 11-2.21

Input Internal Output Notes

Macroblock Type

SkipConvDi

sable ||

SkipConvDi

sable

DirectConvDi

sable

CB

P

MV

==

MV

P

MbAffSkipAll

owed

mb_skip_

flag

mb_ty

pe

first

converts to

B_Direct_16

x16 and

stop there

as it

discovers

Skip is not

allowed

even

CBP=0.

B_Direct_16x16_4MVPair/

16MVPair

1 0 0 n/a DC 0 0 Converted

to

B_Direct_16

x16.

Hardware

converts to

B_Direct_16

x16 and

stops there

even

though CBP

= 0 as input

disallows

Skip

conversion.

B_Direct_16x16_4MVPair/

16MVPair

DC 0 NZ n/a DC 0 0 Converted

to

B_Direct_16

x16.

Hardware

converts to

B_Direct_16

x16 and

stops there

because

CBP != 0.

B_Direct_16x16_4MVPair/

16MVPair

DC 1 DC n/a DC 0 16h
Stay as

B_8x8.

Hardware

stays at

Doc Ref # IHD-OS-DG1-Vol 11-2.21 117

Input Internal Output Notes

Macroblock Type

SkipConvDi

sable ||

SkipConvDi

sable

DirectConvDi

sable

CB

P

MV

==

MV

P

MbAffSkipAll

owed

mb_skip_

flag

mb_ty

pe

B_8x8 and

codes each

sub

macroblock

s even all

are direct.

The internal signal MbAffSkipAllowed is added to deal with a restriction on the frame/field flag

(MbFieldFlag) which is unique to MBAFF. MbAffSkipAllowed is always set to 1 in non-MBAFF modes. In

MBAFF mode, a macroblock pair may be both skipped only if its MbFieldFlag is the same as its available

neighbor macroblock pair A or B if A or B is available (in that order), or is not 0 if A/B are both not

available. Otherwise, one of the macroblocks in the pair must be coded.

To reduce the burden on software, PAK hardware handles the above restriction correctly. For the first MB

in a pair, MbAffSkipAllowed is always set to 1. Therefore, hardware allows converting the first MB to Skip

if skip conversion is enabled. For the second MB in a pair, hardware sets MbAffSkipAllowed to 0 if the

following is true:

• The current MB Pair has different MbFieldFlag than its available neighbor A or B if A or B is

available, or is not 0 if A/B are both not available

• And the first MB is coded as a SKIP (could be forced or converted)

Otherwise, it sets MbAffSkipAllowed to 1. As MbAffSkipAllowed is to 0 for the above condition, hardware

will disallow Skip mode for the second MB. If the input signal forces it to Skip, hardware performs

reverse-convertion to code it as P_L0_16x16 or B_Direct_16x16 with CBP = 0 for a macroblock in a P or B

Slice. This means that hardware is able to correct the programming mistake by software. If the

macroblock is not forced to skip, hardware simply disallows Skip conversion.

Software still has an option to disallow Skip Conversion on a per-MB basis using the MbSkipConvDisable

control field in the inline command.

MFX Architecture

This section and the following sections of Media VDBOX contain the referential documentation on the

Multi-Format Codecs, or MFX for those series of chips.

MFX Introduction

Multi-Format Codec (MFX) Engine is the hardware fixed function pipeline for decode and encoding. It

includes multi-format decoding (MFD) and multi-format encoding (MFC).

118 Doc Ref # IHD-OS-DG1-Vol 11-2.21

MFC Overview

Multi-Format Codec (MFX) Engine is the hardware fixed function pipeline for decode and encoding. It

includes multi-format decoding (MFD) and multi-format encoding (MFC).

Note: MFC only supports AVC (H.264).

Many decoding function blocks in MFD such as VIP, VMC, IQT, etc, are also used in encoding mode. Two

blocks, FTQ and BSE, are encoding only.

The encoding process is partitioned across host software, the GPE engine, and the MFX engine. The

generation of transport layer, sequence layer, picture layer, and slice header layer must be done in the

host software. GP hardware is responsible for compressing from Slice Data Layer down to all macro-

block and block layers. Specifically, GPE w/ VME acceleration is for motion vector estimation, motion

estimation, and code decision.

The VME(Video Motion Estimation) is located next to all image processing units, such as DN (denoise) and DI

(deinterlace) in sampler in GPE. MFX is for final bit packing and reconstructed picture generation.

The VME(Video Motion Estimation) is located next to all image processing units, such as DN (denoise) in

GPE. MFX is for final bit packing and reconstructed picture generation.

MFC is operated concurrently with and independently from the GPE (3D/Media) pipeline with a separate

command streamer. The two parallel engines have similar command protocol. They can be executed in

parallel with different context. For encoding, motion search, MB mode decision, and rate control are

performed using GPE pipeline resources.

Doc Ref # IHD-OS-DG1-Vol 11-2.21 119

MFC is implemented to achieve the following objectives:

• Compliant with next generation high definition optical video disc requirements, with sufficient

performance headroom:

• Support AVC 4:2:0 Main Profile and High Profile only (8-bit only), up to Level 4.1 resolution

and up to 40 mbps bitstream. With sufficient duty cycles, higher bit rate contents can also be

encoded. There is no support for Baseline, Extended, or High-10 Profiles.

• Performance requirements with MFX core frequency above 667MHz:

• Real-time performance with 20% duty cycle or less.

• Support concurrent decoding of two active HD bitstreams of different formats (for example,

one AVC and one VC1 HD bitstream) and one active HD encoding.

As the result of this hardware partitioning, VPP and ENC are always running in GPE, and PAK is what runs

exactly in MFC.

PAK - residue packing and entropy coding, including block transformation, quantization, data prediction,

bitrate tuning and reference decoding. It delivers final packed bitstream and decoded key-frame

reference:

• As the same as ENC, PAK is invoked on a Slice boundary; a single call of VPP can lead to multiple

calls for PAK.

• Rate control is inside ENC and PAK only, not in VPP.

• PAK must always perform with reconstructed reference picture.

There is a general dependency of the three operation pipelines. Semaphores are inserted either

according to frames or slices. The main CS will also be notified when the decoded reference is ready for

the next frame set to be encoded. The detailed discussion will be found in a later section.

Host software is responsible for encoding the transport stream and all the sequence, picture, and slice

layer/header in the bit-stream; the MFC system is responsible for compressing from Slice Data Layer

down to all macro-block and block layers.

Sample Algorithmic Flow

Assuming all the hardware components are given, there are infinite usage possibilities left with intention

for software to decide according to its own application needs depending upon the balanced requirement

of coding speed, frame latency, power-consumption, and video quality, and depending upon the usage

modes and user preferences (such as low-frame-rate-high-frame-quality vs. high-frame-rate-low-frame-

quality).

The last part of this chapter, we illustrate a generic sample to show how a compression algorithm can be

implemented to use our hardware.

Step 1. Application or driver initializes the encoder with desired configuration, including speed, quality,

targeted bit-rate, input video info, and output format and restrictions.

Step 2. VPP - Application or driver feeds VPP one frame at a time in coded order with specified frame or

field type, as well as transcoding informations: motion vectors, coded complexity (i.e. bit size).

120 Doc Ref # IHD-OS-DG1-Vol 11-2.21

 It will perform denoising and deblocking based on original and targeted bit-rate, and output additional

 4 spatial variances and 2 temporal variances for each macroblock as well as the whole frame.

Step 3. ENC - Application or driver feeds ENC one coding slice buffer at a time including all VPP output.

The frame level data is accessible to all slices.

a. Encoding setup unit (ESE) will set picture level quality parameters (including LUTs, and other

costing functions) and set target bit-budget (TBB) and maximal bit-budget (MBB) to each

macroblock based on rate-control (RC) scheme implemented. For B-frames, it will also make ME

searching mode decision (either Fast, Slow or Uni-directional).

b. Loop over all macroblocks: calculate searching center (MVP) perform individual ME and IE (MEE).

Multi-thread may be designed for HW according to a zigzag order for minimal dependency issue.

c. ENC make microblock level code decision (CD) outputs macroblock type, intra-mode, motion-

vectors, distortions, as well as TBBs and MBBs.

Step 4. PAK - Application or driver feeds PAK one array of coded macroblocks covering a slice at a time,

including all ENC output. Original frame buffer and reconstructed reference frame buffers are also

available for PAK to access.

a. PAK may create bitstreams for all sequence, gop, picture, and slice level headers prior the first

macroblock.

b. Loop over all macroblocks, accurate prediction block is constructed for either inter- or intra-

predictions (VMC & VIP). If MB distortion is less than some predetermined threshold, for a B slice

this step can be skipped as well as the Steps (c)-(e) and jump directly to Step (f); for a key slice the

prediction calculated here will be directly used as the reference thus it jumps to Step (e) after this

step.

c. Differencing the predicted block from the original block derives the residue block. Forward

transformation and quantization (FTQ) is performed. For B slice, it will jump to Step (f) right after.

For other types of slice, Steps (d) and (e) can be performed in a thread in parallel with Step (f) and

beyond.

d. This is for accurate construction of reference pictures. Inverse quantization and inverse

transformation (IQT) are performed and added to the predictions to have the decoded blocks.

e. ILDB is applied accordingly to the reconstructed blocks.

f. Meanwhile macroblock codes: including its configuration info (types and modes), motion info

(motion vectors and reference ids), and residual info (quantized coefficients), are collected for

packing (BSE) in the following sub-steps:

i. Code clean-up (in MPR). Check and verify Mbtype and Cbps, use Skip or Zero respectively if

one can. In principal, when there are equivalent codes, use the simple one.

ii. Drop dependency (in MPR). Calculate relative codes from the absolute codes by associate

them with neighborhood information. All neighborhood correlations are solved in this step.

iii. Unify symbols (in SEC). Translate relative codes into symbols, and table or context indices

that are independent of the concept of syntax type.

iv. Entropy coding (VLE) on symbols.

Doc Ref # IHD-OS-DG1-Vol 11-2.21 121

g. Parsing bitstream data in RBSP form (in VLE), and output to application or driver.

h. By the end of each picture, write out the accurate actual data size to designate buffer for ENC to

access.

Synchronization Mechanism

Encoding of a video stream can be broken down to three major steps (as explained in the previous

section):

1. VPP: video-stream pre-processing

2. ENC: encoding, that is, code decision of inter-MVs and intra-modes

3. PAK: bit-stream packing

a. residual calculation, transformation, and quantization

b. code bit-stream packing

c. reference generation of keyframes

This section describes an architectural solution to map the first two steps in the GFX engine and the last

step in the MFX engine. Since this mapping involves two OS-visible engines, managing them in parallel

under one application is similar to the solution in earlier generations. Each engine has its own command

streamers and has mechanisms to synchronize at required levels as described in the next sub-section.

Above three steps of encoding have dependencies in processing based on

i. functional pipeline order, i.e. on a given frame, VPP needs to be performed first, then ENC,

then PAK and finally MFD (Multi-Format Decoding) for key reference frame generation.

ii. I-frames are key frames for P and B, they have to be first in every pipe-stage.

iii. P-frames are key frames for B frames and therefore P frames are processed first before the

dependent B frames

iv. GFX Engine is time slice to work on either VPP or ENC frame as we discussed in the previous

chapter.

v. PAK + MFD are executed on the same frame in the MFX engine by macro-block level

pipelining within a slice. It should be noted that for the sake of simplicity, an entire frame

(potentially multiple slices) are processed in the corresponding engine and no smaller

granularity of switching is allowed between the functional pipeline stages.

Three steps of the encoding can be interleaved on two engines in the following way on a frame by frame

basis.

122 Doc Ref # IHD-OS-DG1-Vol 11-2.21

Command Stream Synchronization

Restrictions

MFC implementation is subject to the following limitations.

• Context switching within MFC and with Graphics Engine occurs only at frame boundary to

minimize the amount of information that needs to be tracked and maintained.

MFD Overview

When used for decoding, we also refer to the MFX Engine as the MFD Engine.

The Multi-Format Decoder (MFD) is a hardware fixed function pipeline for decoding the three video

codec format and one image compression codec format: AVC (H.264), VC-1, MPEG2, and JPEG.

• Compliant with next generation high definition optical video disc requirements, with sufficient

performance headroom:

o Support AVC 4:2:0 Main and High (8-bit only) Profile only (no support for Baseline, Extended

and High-10 Profiles), up to Level 5.1 (max 983,040 MB/s, max 36,864 MB/frame, and at most

one dimension can reach 4K pixel) resolution and up to 40 mbps bitstream. With sufficient

duty cycles, higher bit rate contents can also be decoded.

▪ Allow a B-picture (frame or field) as a reference picture

• Support MVC 4:2:0 Stereoscopic Progressive Profile only, up to Level 5.1 (max 983,040 MB/s per

view, max 36,864 MB/frame per view, and at most one dimension can reach 4K pixel) resolution

and up to 40 mbps bitstream. With sufficient duty cycles, higher bit rate contents can also be

decoded.

o Support VC1 4:2:0 Simple, Main and Advanced Profiles, up to Level 4 (max 491,520 MB/s and

max 16,384 MB/frame; max only one dimension will be at 4K pixel) resolution and up to 40

mbps bitstream. With sufficient duty cycles, higher bit rate contents can also be decoded.

▪ Allow a B-field as a reference picture only in interlaced field decoding, no other

modes.

Doc Ref # IHD-OS-DG1-Vol 11-2.21 123

o Support MPEG2 HD Main Profile (4:2:0), up to High Level (1920x1152 pixels) and up to 80

mbps bitstream. With sufficient duty cycles, higher bit rate contents can also be decoded. No

support for SNR and spatial-scalability.

▪ Does not support B-picture as a reference picture.

o Support Baseline JPEG with five choma types (4:0:0, 4:1:1, 4:2:2, 4:2:0, and 4:4:4. No support

for Extended DCT-based mode, Progressive mode, Loseless mode, nor Hierarchical mode.

▪ H/W support 64Kx64K, but Surface State can support only up to 16kx16k

Features Supported Unsupported

Coding processes
Baseline sequential mode:

• 8-bit pixel

precision of source

images

• loadable 2 AC and

2 DC Huffman

tables

• 3 loadable

quantization

matrix for Y, U, V

• Interleaved and

non-interleaved

Scans

• Single and

multiple Scans

Extended DCT-based mode, Lossless, Hierarchical modes:

More than 8 bit pixel resolution, progressive mode, arithmetic

coding, 4 AC and 4 DC Huffman tables (extended mode),

predictive process (lossless), multiple frames (hierarchical)

Number of image

channels
1 for grey image

3 for Y, Cb, Cr color

image

4-th channel (usually alpha blending image)

Image resolution Arbitrary image size up to

16K * 16K

Larger than 16K * 16K (64K * 64K is max. in the JPEG standard)

Chroma

subsampling ratio
Chroma 4:0:0 (grey

image)

Chroma 4:1:1

Chroma 4:2:0

Chroma horizontal 4:2:2

Chroma vertical 4:2:2

Chroma 4:4:4

Any other arbitrary ratio, e.g., 3:1 subsampled chroma

Additional feature

(post-processing)

Image rotation:

90/180/270 degrees

124 Doc Ref # IHD-OS-DG1-Vol 11-2.21

o H/W does not impose restriction on picture frame aspect ratio, but is bounded by a max 256

MBs (4096 pixels) per dimension programmable at the H/W interface specifications.

▪ For example, supporting HD video resolution 1920x1080/60i, 1920x1080/24p,

1280x720/60p

• Performance requirements with MFX core frequency above 1GHz

o Real-time performance around 10% duty cycle

o Support concurrently decoding of at least two active HD bitstreams of different formats (For

example, one AVC and one VC1 HD bitstream)

• The parsing of transport layer and sequence layer is not performed in this hardware, and is

required to be done in the host software.

• The MFD hardware pipeline is operated concurrently with and independently from the Graphics

(3D/Media) pipeline with separate command streamer. The two parallel engines are designed with

the similar command protocol. They can be executed in parallel with different context.

• Local storages and buffers along the hardware pipeline are kept at minimum. For example, there is

no on-die row-store memory. They are resided on the system memory. MFD is designed to hide

the memory access latency (in both the row stores and in the motion compensation units) in

maximizing its decoding throughput.

• Support the following operating modes:

o VLD mode - operation starts from entropy decoding of the compressed bit stream (parsing

Slice Header and Slice Data Layer in AVC , Picture layer, Slice layer and MB Layer in VC-1, and

MB-layer in MPEG2), all the way, to the reconstruction of display picture, including in-loop

and out-loop deblocking, if any.

▪ Streamout mode - a new feature of the VLD mode in assisting transcoding during

decoding. Selected uncompressed data (e.g. per MB MV information) will be sent out

to the EU and the ME engine for encoding into a different format or for the purpose of

transcaling and transrating. In addition, the uncompressed result may continue to be

processed by the rest of pipeline as in VLD mode to generate the display picture for

transcoding. That is, while intermediate data are streaming out to the memory, the

MFD Engine continues its decoding as usual.

▪ Streamout mode - a new feature of the VLD mode in assisting transcoding during

decoding. Selected uncompressed data (e.g. per MB MV information) will be sent out

to the EU and the ME engine (resided on the Sampler of the 3D Gx Pipeline) for

encoding into a different format or for the purpose of transcaling and transrating. In

addition, the uncompressed result may continue to be processed by the rest of

pipeline as in VLD mode to generate the display picture for transcoding. That is, while

intermediate data are streaming out to the memory, the MFD Engine continues its

decoding as usual.

▪ For JPEG, only VLD mode is supported (No IT mode). Host software decodes Frame

and Scan layers (down to Scan header in the JPEG bit stream syntax) and sends all the

corresponding information and Scan payload to the MFD hardware pipeline.

Doc Ref # IHD-OS-DG1-Vol 11-2.21 125

o IT mode - when host software has already performed all the bit stream parsing of the

compressed data and packaging the uncompressed result into a specific format (as a

sequence of per-MB record) stored in memory. The hardware pipeline will fetch one MB

record at a time and perform the rest of the decoding process as in VLD mode

o Host software (Application) is responsible for parsing and decoding all the transport and

program layers, and all sequence layers. These parameters are passed to Driver and

forwarded to H/W as needed through different STATE commands. Host software is also

responsible for separating non-video data (audio, meta and user data) from sending to H/W.

▪ MFD Engine is only responsible for macro-block and block layers decoding, plus

certain level of header decoding. For AVC MFD starts decoding from Slice Header; for

VC1, MFD starts decoding from Picture Header, and for MPEG2 decoding starts from

MB Layer only.

▪ For JPEG, MFD is responsible for ECS and block layers decoding.

• Support bitstream formats (compressed video data) for each codec

o AVC - 2 formats

o MVC - 2 formats

▪ DXVA2 MVC Short Slice Format

▪ DXVA2 AVC Long Slice Format Specification (exactly the same as AVC)

o VC1 - 2 formats

▪ Fully compliant to Picture Parameter and Slice Control Parameter interface definition

o MPEG2

▪ MB Layer only, according to DXVA 1 Specification

o JPEG

▪ ECS Layer

• The MFX codec is designed to be a stateless engine, that it does not retain any history of settings

(states) for the encoding/decoding process of a picture. Hence, driver must issue the full set of

MFX picture state command sequence prior to process each new picture. In addition, driver must

issue the full set of Slice state command sequence prior to process a slice.

o In particularly, RC6 always happens between frame boundaries. So at the beginning of every

frame, all state information needs to be programmed. There is no state information as part

of media context definition.

• To activate the AVC deblocker logic for incoming uncompressed 4:2:0-only video stream, one can

pack the uncompressed video stream to compliant with the IPCM MB data format (including ILDB

control information) and feed them into the MFD engine in IT mode. Since the MFD Engine is in

IPCM mode, transformation, inter and intra processing are all inactive.

Start Code Detection and removal are done in the CPU, but the Start Code Emulation Prevention Byte is

detected and removed by the front-end logic in the MFD. The bitstream format for each codec and for

each mode is specified in this document.

Codec specific information are based on the following released documents from third parties:

126 Doc Ref # IHD-OS-DG1-Vol 11-2.21

• Draft of Version 4 of H.264/AVC (ITU-T Recommendation H.264 and ISO/IEC 14496-10 (MPEG-4

part 10) Advanced Video Coding); JVT-O205d1.doc; dated 2005-05-30

• Final Draft SMPTE Standard: VC1 Compressed Video Bitstream Format and Decoding Process,

SMPTE 421M, dated 2006-1-6; PDF file.

• MPEG2 Recommendation ITU T H.262 (1995 E), ISO/IEC 13818-2: 1995 (E); doc file.

• Digital Compression and Coding of Continuous-tone Still Images, ITU-T Rec. T.81 and ISO/IEC

10918-1: Requirements and guidelines September 18 1992; itu-t81[1].pdf

MFD Memory Interface

The Memory Arbitrator follows the pre-defined arbitration policy (as indicated in the following listing P0

to P11, in which P0 is the highest priority) to select the next memory request to service, then it will

perform the TLB translation (translation to physical address in memory), and make the actual request to

memory.

The Memory Arbitration unit is also responsible for capturing the return data from memory (read

request) and forward it to the appropriate unit along the MFD Engine.

• Read streams: (all 64B requests)

• Commands for BSD : linear (including indirect data) (P0)

• Indirect DMA (P1)

• Row store for BSD: linear (P5)

• Row store for MPR: linear (P6)

• MC ref cache fetch : tiled (P2)

• Intra row store: linear (P9)

• ILDB row store: linear (P10)

• Write streams: (all 64B requests)

• Row store write for BSD: linear and can avoid partial writes (P3)

• Row store write for MPR: linear and can avoid partial writes (P4)

• Intra row store write: linear and can avoid partial writes (P7)

• ILDB row store write: linear and can avoid partial writes (P8)

• Final dest writes: tiled and can potentially be partial, two ways to avoid these partials: 1)

either write garbage and buffers are aligned or 2) read-modify writes for dribble end of line

cases (P11)

MFD Codec-Specific Commands

MFD hardware pipeline supports 3 different codec standards : AVC, VC1 and MPEG2. To make the

interface flexible, each codec is designed with its own set of commands.

There are two categories of commands for each codec format : one set for VLD mode and one set for IT

mode.

Doc Ref # IHD-OS-DG1-Vol 11-2.21 127

MFX State Model

The parallel video engine (PVE) supports two state delivery models: inline state model and indirect state

model. For inline state model, the state commands (*_STATE) can be issued in batch buffers or ring

buffers directly preceding object commands (*_OBJECT). In the indirect state model, the state commands

are not placed in the batch buffers or ring buffers. Instead Indirect State Buffers provide state

information (in the form of the above-mentioned state commands) for the MFX pipeline. See

MFX_STATE_POINTER for more details.

VCS (aka BCS) handles the difference of the two state delivery models. Therefore, the MFX pipeline

always sees the state commands in both models. However, MFX hardware supports additional context

save/restore of 'dynamic states'. Dynamic states are the internal signals that are persistent. This could be

the CABAC context for macroblock encoding.

MFX State Model

The MFX codec is designed to be a stateless engine, that it does not retain any history of settings (states)

for the encoding/decoding process of a picture. Hence, driver must issue the full set of MFX picture state

command sequence prior to process each new picture. In addition, driver must issue the full set of Slice

state command sequence prior to process a slice.

In particular, RC6 always happens between frame boundaries. So, at the beginning of every frame, all

state information needs to be programmed. There is no state information as part of media context

definition.

128 Doc Ref # IHD-OS-DG1-Vol 11-2.21

MFX Interruptability Model

MFX encoding and the encoding pipeline do not support interruption. All operations are frame based.

Interrupts can only occur between frames; the driver will submit all the states at the beginning of each

frame. Any state kept across frames is in MMIO registers that should be read between frames.

Software submits without any knowledge of where the parser head pointer is located. Also, there is a

non-deterministic amount of time for the new context to reach the command streamer. However, the

state model for the MFX engine requires software to know exactly what state the pipeline is in at all

times. This introduces cases where a preemption could occur during or after a state change without

software ever knowing the state saved out to memory on the context switch.

Also, preemption is only allowed during the last macroblock in a row. Hardware cannot always perform a

context switch when the new context is seen by the hardware. To avoid a switch during an invalid

macroblock and to keep the state synchronized with software, there are two commands available that are

used. MI_ARB_ON_OFF disables and enables preemption while MFX_WAIT ensures the context switch, if

needed, preempts during macroblock execution. Below illustrates an example assuming VC1 VLD mode.

Command Ring/Batch Notes

MI_ARB_ON_OFF = OFF Disable preemption

S1 Inline or indirect state cmd 1

S2 Inline or indirect state cmd 2

S3 Inline or indirect state cmd 3

XXXX_OBJECT Slice

MI_ARB_ON_OFF = ON Enable preemption

MFX_WAIT Allow preemption to occur while XXXX_OBJECT executes

MI_ARB_ON_OFF = OFF Since arbitration is off again, state commands are allowed below

S4 Inline or indirect state cmd 4

S5 Inline or indirect state cmd 5

S6 Inline or indirect state cmd 6

XXXX_OBJECT Slice

MI_ARB_ON_OFF = ON Enable preemption

MFX_WAIT Allow preemption to occur while XXXX_OBJECT executes

MI_ARB_ON_OFF = OFF Since arbitration is off again, state commands are allowed below

Note that store DW commands may execute inside the preemption enabling window if needed.

Decoder Input Bitstream Formats

AVC Bitstream Formats - DXVA Short

Bitstream Buffer Address starts after the 3-byte start code, i.e. starts (and includes) at the NAL Header

Byte. This byte must not be included in the Emulation Byte Detection Process.

Doc Ref # IHD-OS-DG1-Vol 11-2.21 129

AVC Bitstream Formats - DXVA Long

Bitstream Buffer Address starts after the 3-byte start code, i.e. starts (and includes) at the NAL Header

Byte. This byte must not be included in the Emulation Byte Detection Process. Application will provide

the Slice Header Skip Byte count (not including any possible Emulation Prevention Byte).

VC1 Bitstream Formats - Intel Long

Bitstream starts right at the MB layer, with any emulation byte crossing the header and MB layer being

removed by application and the data length is adjusted.

MPEG2 Bitstream Formats - DXVA1

Bitstream buffer starts right at the very first MB data.

JPEG Bitstream Formats - Intel

Bitstream buffer starts right at the very first MCU data of each Scan.

The indirect data start address in MFD_JPEG_BSD_OBJECT specifies the starting Graphics Memory address

of the bitstream data that follows the Scan header. It provides the byte address for the first MCU of the

Scan. Different from MFD_MPEG2_BSD_OBJECT command, First MCU Bit Offset does not need to be

specified because it is always set to zero.

Indirect data buffer for a Scan

The indirect data length in MFD_JPEG_BSD_OBJECT provides the length in bytes of the bitstream data for

the Scan excluding Scan header. It includes the first byte of the first macroblock and the last byte of the

last macroblock in the Scan. The Figure illustrates these parameters for a slice data.

Concurrent Multiple Video Stream Decoding Support

The natural place for switching across multiple streams is at the Slice boundary. Each Slice is a self-

sustained unit of compressed video data and has no dependency with its neighbors (except for the

Deblocking process). In addition, there is no interruptability within a Slice. However, when ILDB is

invoked, the processing of some MBs will require neighbor MB information that crosses the Slice

130 Doc Ref # IHD-OS-DG1-Vol 11-2.21

boundary. Hence, to limit the buffering requirement, in this version of hardware design, stream switching

can only be performed at the picture boundary instead.

MFX Codec Commands Summary

DWord Bit Description

0 31:29 Instruction Type = GFXPIPE = 3h

28:16 3D Instruction Opcode = PIPELINE_SELECT

 GFXPIPE[28:27 = 1h, 26:24 = 1h, 23:16 = 04h] (Single DW, Non-pipelined)

15:1 Reserved: MBZ

0 Pipeline Select

0: 3D pipeline is selected

 1: Media pipeline is selected

Pipeline Type (28:27) Opcode (26:24) Sub Opcode (23:16) Command Definition Chapter

VC1 State

2h 5h 0h VC1_BSD_PIC_STATE VC1 BSD

2h 5h 1h Reserved n/a

2h 5h 2h Reserved n/a

2h 5h 3h VC1_BSD_BUF_BASE_STATE VC1 BSD

2h 5h 4h Reserved n/a

2h 5h 5h-7h Reserved n/a

VC1 Object

2h 5h 8h VC1_BSD_OBJECT VC1 BSD

2h 5h 9h-FFh Reserved n/a

Pipeline Type (28:27) Opcode (26:24) Sub Opcode (23:16) Command Definition Chapter

2h 6h 2h-7h Reserved N/A

Object

2h 6h 9h-FFh Reserved N/A

Note that it is possible for a command to appear in both IMAGE and SLICE state buffer, e.g. QM_STATE

for JPEG can be issued at frame level or scan/slice level.

Doc Ref # IHD-OS-DG1-Vol 11-2.21 131

Pipelin

e Type

(28:27)

Opcode

(26:24)

SubopA

(23:21)

Subop

B

(20:16) Command

Chapte

r

Recommende

d Indirect

State Pointer

Map

Interruptable

?

 MFX

Commo

n

Common

2h 0h 0h 0h MFX_PIPE_MODE_SELECT MFX IMAGE No

2h 0h 0h 1h MFX_SURFACE_STATE MFX IMAGE No

2h 0h 0h 2h MFX_PIPE_BUF_ADDR_STATE MFX IMAGE No

2h 0h 0h 3h MFX_IND_OBJ_BASE_ADDR_STA

TE

MFX IMAGE No

2h 0h 0h 4h MFX_BSP_BUF_BASE_ADDR_STA

TE

MFX IMAGE No

2h 0h 0h 6h MFX_ STATE_POINTER MFX IMAGE No

2h 0h 0h 7h MFX_QM_STATE MFX IMAGE/SLICE No

2h 0h 0h 8h MFX_FQM_STATE MFX IMAGE No

2h 0h 0h 9h MFX_DBK_OBJECT MFX IMAGE No

2h 0h 0h A-1Eh Reserved n/a n/a No

 MFX

Commo

n

Dec

2h 0h 1h 0-8h Reserved n/a n/a n/a

2h 0h 1h 9h MFD_ IT_OBJECT MFX n/a No

2h 0h 1h A-1Fh Reserved n/a n/a n/a

 MFX

Commo

n

Enc

2h 0h 2h 0-7Fh Reserved n/a n/a n/a

2h 0h 2h 8h MFX_PAK_INSERT_OBJECT MFX n/a No

2h 0h 2h 9h Reserved n/a n/a n/a

2h 0h 2h Ah MFX_STITCH_OBJECT MFX n/a No

2h 0h 2h B-1Fh Reserved n/a n/a n/a

 AVC/

MVC

Common

(State)

2h 1h 0h 0h MFX_AVC_IMG_STATE MFX IMAGE n/a

2h 1h 0h 1h Reserved n/a n/a n/a

2h 1h 0h 2h MFX_AVC_DIRECTMODE_STATE MFX SLICE n/a

2h 1h 0h 3h MFX_AVC_SLICE_STATE MFX SLICE n/a

2h 1h 0h 4h MFX_AVC_REF_IDX_STATE MFX SLICE n/a

132 Doc Ref # IHD-OS-DG1-Vol 11-2.21

Pipelin

e Type

(28:27)

Opcode

(26:24)

SubopA

(23:21)

Subop

B

(20:16) Command

Chapte

r

Recommende

d Indirect

State Pointer

Map

Interruptable

?

2h 1h 0h 5h MFX_AVC_WEIGHTOFFSET_STAT

E

MFX SLICE n/a

2h 1h 0h 9 Reserved n/a n/a n/a

2h 1h 0h D-1Fh Reserved n/a n/a n/a

 AVC/

MVC

Dec

2h 1h 1h 0-5h Reserved MFX n/a n/a

2h 1h 1h 6h MFD_AVC_DPB_STATE MFX IMAGE n/a

2h 1h 1h 7h MFD_AVC_SLICEADDR_OBJECT MFX n/a n/a

2h 1h 1h 8h MFD_AVC_BSD_OBJECT MFX n/a No

2h 1h 1h 9-1Fh Reserved n/a n/a n/a

 AVC/

MVC

Enc

2h 1h 2h 0-8h Reserved n/a n/a n/a

2h 1h 2h 9h MFC_AVC_PAK_OBJECT MFX n/a No

2h 1h 2h A-1Fh Reserved n/a n/a n/a

 AVC/

MVC

Extensio

n

 VC1 Common

 (State)

2h 2h 0h 0h Reserved n/a n/a n/a

2h 2h 0h 1h MFX_VC1_PRED_PIPE_STATE MFX IMAGE n/a

2h 2h 0h 2h MFX_VC1_DIRECTMODE_STATE MFX SLICE n/a

2h 2h 0h 3-1Fh Reserved n/a n/a n/a

 VC1 Dec

2h 2h 1h 0h MFD_VC1_SHORT_PIC_STATE MFX IMAGE n/a

2h 2h 1h 1h MFD_VC1_LONG_PIC_STATE MFX IMAGE n/a

2h 2h 1h 2-7h Reserved n/a n/a n/a

2h 2h 1h 8h MFD_VC1_BSD_OBJECT MFX n/a No

2h 2h 1h 9-1Fh Reserved n/a n/a n/a

 VC1 Enc

2h 2h 2h 0-1Fh Reserved n/a n/a n/a

 MPEG2 Common

 (State)

2h 3h 0h 0h MFX_MPEG2_PIC_STATE MFX IMAGE n/a

2h 3h 0h 1-1Fh Reserved n/a n/a n/a

Doc Ref # IHD-OS-DG1-Vol 11-2.21 133

Pipelin

e Type

(28:27)

Opcode

(26:24)

SubopA

(23:21)

Subop

B

(20:16) Command

Chapte

r

Recommende

d Indirect

State Pointer

Map

Interruptable

?

 MPEG2 Dec

2h 3h 1h 1-7h Reserved n/a n/a n/a

2h 3h 1h 8h MFD_MPEG2_BSD_OBJECT MFX n/a No

2h 3h 1h 9-1Fh Reserved n/a n/a n/a

 MPEG2 Enc

2h 3h 2h 0-2h Reserved n/a n/a n/a

2h 3h 2h 3h MFC_MPEG2_PAK_OBJECT

2h 3h 2h 3-8h Reserved

2h 3h 2h 9h MFC_MPEG2_SLICEGROUP_STAT

E

2h 3h 2h A-1Fh Reserved

 VP8 Common

 (State)

2h 4h 0h 0h MFX_VP8_PIC_STATE MFX IMAGE n/a

 VP8 Dec

2h 4h 1h 8h MFD_VP8_BSD_OBJECT MFX IMAGE No

 VP8 Enc

2h 4h 2h Reserved

 JPEG Common

2h 7h 0h 0h MFX_JPEG_PIC_STATE MFX IMAGE No

2h 7h 0h 1h Reserved n/a n/a n/a

2h 7h 0h 2h MFX_JPEG_HUFF_TABLE_STATE MFX IMAGE No

2h 7h 0h 3-1Fh Reserved n/a n/a n/a

 JPEG Common

2h 7h 0h 0h MFX_JPEG_PIC_STATE MFX IMAGE No

2h 7h 0h 1h Reserved n/a n/a n/a

2h 7h 0h 2h MFX_JPEG_HUFF_TABLE_STATE MFX IMAGE No

2h 7h 0h 3-1Fh Reserved n/a n/a n/a

 JPEG Dec

2h 7h 1h 1-7h Reserved MFX n/a n/a

2h 7h 1h 8h MFD_JPEG_BSD_OBJECT MFX MCU No

2h 7h 1h 9-1Fh Reserved MFX n/a n/a

 JPEG Enc

2h 7h 2h 0-1Fh Reserved MFX n/a n/a

134 Doc Ref # IHD-OS-DG1-Vol 11-2.21

MMIO Space Registers

Range Start Range End Unit owner

00002000 00002FFF Render/Generic Media Engine

00004000 00004FFF Render/Generic Media Graphics Memory Arbiter

00005000 0000517F

00006000 00007FFF Reserved

00012000 000123FF MFX Control Engine (Video Command Streamer)

00012400 00012FFF Media Units (VIN unit)

00014000 00014FFF MFX Memory Arbiter

00022000 00022FFF Blitter Engine

00024000 00024FFF Blitter Memory Arbiter

00030000 0003FFFF Reserved

00100000 00107FFF Fence Registers

00140000 0017FFFF MCHBAR (SA)

Memory Interface Command Map

04h Opcode (28:23) MI_FLUSH

MFX Decoder Commands Sequence

The MFX codec is designed to be a stateless engine, that it does not retain any history of settings (states)

for the encoding/decoding process of a picture. Hence, driver must issue the full set of MFX picture state

command sequence prior to process each new picture. In addition, driver must issue the full set of Slice

state command sequence prior to process a slice.

In particular, RC6 always happens between frame boundaries. So at the beginning of every frame, all

state information needs to be programmed. There is no state information as part of media context

definition

Examples for AVC

The following gives a sample command sequence programmed by a driver

a) For Intel or DXVA2 AVC Long Slice Bitstream Format

MFX_PIPE_MODE_SELECT

MFX_SURFACE_STATE

MFX_PIPE_BUF_ADDR_STATE

MFX_IND_OBJ_BASE_ADDR_STATE

MFX_BSP_BUF_BASE_ADDR_STATE

MFX_QM_STATE

Doc Ref # IHD-OS-DG1-Vol 11-2.21 135

VLD mode: MFX_AVC_PICID_STATE

MFX_AVC_IMG_STATE

MFX_AVC_DIRECTMODE_STATE

MFX_AVC_REF_IDX_STATE

MFX_AVC_WEIGHTOFFSET_STATE

MFX_AVC_SLICE_STATE

VLD mode: MFD_AVC_BSD_OBJECT

IT mode: MFD_IT_OBJECT

MI_FLUSH

b) For DXVA2 AVC Short Slice Bitstream Format (for VLD mode only)

MFX_PIPE_MODE_SELECT

MFX_SURFACE_STATE

MFX_PIPE_BUF_ADDR_STATE

MFX_IND_OBJ_BASE_ADDR_STATE

MFX_BSP_BUF_BASE_ADDR_STATE

MFD_AVC_DPB_STATE

VLD mode: MFX_AVC_PICID_STATE

MFX_AVC_IMG_STATE

MFX_QM_STATE

MFX_AVC_DIRECTMODE_STATE

VLD mode : MFD_AVC_SLICEADDR_OBJECT

VLD mode: MFD_AVC_BSD_OBJECT

VLD mode : MFD_AVC_BSD_SLICEADDR_OBJECT

VLD mode: MFD_AVC_BSD_OBJECT

... repeat these four commands N-1 times for a N-slice picture

VLD mode: MFD_AVC_BSD_OBJECT (for the last slice of the picture)

MI_FLUSH

136 Doc Ref # IHD-OS-DG1-Vol 11-2.21

Examples for VC1

The following gives a sample command sequence programmed by a driver

a) For Intel Proprietary Long Bitstream Format

MFX_VC1_DIRECTMODE_STATE

MFX_VC1_PRED_PIPE_STATE

MFX_VC1_LONG_PIC_STATE

VLD mode: MFD_VC1_BSD_OBJECT

IT mode: MFD_IT_OBJECT

MI_FLUSH

b) For DXVA2 VC1 Compliant Bitstream Format (for VLD mode only)

MFX_VC1_DIRECTMODE_STATE

MFX_VC1_PRED_PIPE_STATE

MFX_VC1_SHORT_PIC_STATE

VLD mode: MFD_VC1_BSD_OBJECT

MI_FLUSH

c) For DXVA2 VC1 Compliant Bitstream Format (for VLD mode only), and field pair picture

Batch buffer for top-field

states....

Slice_objs...

MI_flush

store register immediate (if VC1 short format with interlaced field pic)

MI_flush

Batch buffer for bottom field

load register immediate (if VC1 short format with interlaced field pic)

MI_flush

states....

Slice_objs...

MI_flush

Doc Ref # IHD-OS-DG1-Vol 11-2.21 137

Examples for JPEG

The following gives a sample command sequence programmed by a driver

Programmed once at the start of decoding

MFX_PIPE_MODE_SELECT

MFX_PIPE_SURFACE_STATE

MFX_IND_OBJ_BASE_ADDR_STATE

MFX_PIPE_BUF_ADDR_STATE

MFX_JPEG_PIC_STATE

Programmed at the start of Frame or Scan (These commands can be sent multiple times either before

MFX_JPEG_PIC_STATE or before MFD_JPEG_BSD_OBJECT)

MFX_JPEG_HUFF_TABLE

MFX_QM_STATE

Programmed per Scan (These commands can be sent multiple times depending on each bit stream)

MFD_JPEG_ BSD_OBJECT

MI_FLUSH

MFX Encoder Commands Sequence (Examples)

Example of AVC Encoder

Example of MVC Encoder

Example of MPEG2 Encoder

Example of VP8 Encoder

Example of JPEG Encoder

138 Doc Ref # IHD-OS-DG1-Vol 11-2.21

MFX Pipe Common Commands

MFX Commands are organized into groups based on their scope of functioning. There are Pipeline

Common state commands that are common to all codecs (encoder and decoder) and is applicable to the

processing of one full frame/field. There are also individual codec Common state commands that are

common to both encoder and decoder of that particular codec. These latter common state commands,

some are applicable at the processing of one full frame/field, and some are applicable at the processing

of an individual slice level.

MFX_WAIT

MFX_STATE_POINTER

MFX_PIPE_MODE_SELECT

The Encoder Pipeline Modes of Operation (Per Frame):

1. PAK Mode: VCS-command driven, setup by driver. Like the IT mode of decoder, it is executed on a per-MB

basis. Hence, each PAK Object command corresponds to coding of only one MB.

a. Normal Mode (including transcoding): receive per-MB control and data (MV, mb_type, cbp, etc.). It generates

the output compressed bitstream as well as the reconstructed reference pictures, one MB at a time, for later use.

Encoder StreamOut Mode: to provide per-MB, per-Slice and per-Frame coding result and information

(statistics) to the Host, Video Preprocessing Unit and ENC Unit to enhance their operations.

The Decoder Pipeline Modes of Operation (Per Frame):

1. VLD Mode: The output from the BSD (weight&offset/coeff/motion vectors record) can be sent in part (as

specified) and to the remaining fixed function hardware pipeline to complete the decoding processing. The

driver specifies through MFD commands of what to send out from the BSD unit and where to send the BSD

output.

a. For transcoding (including transrating and transcaling), part of the BSD output (a series of per-MB record) can

be sent to memory for further processing to encode into a difference output format. This function is named as

StreamOut. When StreamOut is active, not all MB information needs to be sent, only MVs and selective MB

coding information.

2. IT Mode: In this mode, the BSD is not invoked. Instead host performs all the bitstream decoding and parsing;

and the result are saved into memory in a specific per-MB record format. The MFD Engine VCS reads in

these records one at time and finish the rest of the decoding (IT, MC, IntraPred and ILDB).

MB information is organized into two indirect data buffers, one for MVs and one for residue coefficients.

As such, two indirect base address pointers are defined.

MFX_SURFACE_STATE

MFX_PIPE_BUF_ADDR_STATE

MFX_IND_OBJ_BASE_ADDR_STATE

MFX_BSP_BUF_BASE_ADDR_STATE

MFX_PAK_INSERT_OBJECT

MFX_STITCH_OBJECT

MFX_QM_STATE

Doc Ref # IHD-OS-DG1-Vol 11-2.21 139

Bits 31:24 23:16 15:8 7:0

Dword 1 QuantMatrix[0][3] QuantMatrix[0][2] QuantMatrix[0][1] QuantMatrix[0][0]

Dword 2 QuantMatrix[0][7] QuantMatrix[0][6] QuantMatrix[0][5] QuantMatrix[0][4]

Dword 3 QuantMatrix[1][3] QuantMatrix[1][2] QuantMatrix[1][1] QuantMatrix[1][0]

...

Dword 16 QuantMatrix[7][7] QuantMatrix[7][6] QuantMatrix[7][5] QuantMatrix[7][4]

MFX_FQM_STATE

This is a frame-level state. Reciprocal Scaling Lists are always sent from the driver regardless whether

they are specified by an application or the default/flat lists are being used. This is done to save the ROM

(to store the default matrices) inside the PAK Subsystem. Hence, the driver is responsible for determining

the final set of scaling lists to be used for encoding the current slice, based on the AVC Spec (Fall-Back

Rules A and B). For encoding, there is no need to send the qm_list_flags[i], i=0 to7 and qm_present_flag

to the PAK, since Scaling Lists syntax elements are encoded above Slice Data Layer.

FQM Reciprocal Scaling Lists elements are 16-bit each, conceptually equal to 1/ScaleValue. QM matrix

elements are 8-bit each, equal to ScaleValue. However, in AVC spec., the Reciprocal Scaling Lists

elements are not exactly equal to one-over of the corresponding Scaling Lists elements. The numbers are

adjusted to simplify hardware implementation.

For all the description below, a scaling list set contains 6 4x4 scaling lists (or forward scaling lists) and 2

8x8 scaling lists (or forward scaling lists).

In MFX PAK mode, PAK needs both forward Q scaling lists and IQ scaling lists. The IQ scaling lists are

sent as in MFD in raster scan order as shown in MFX_AVC_QM_STATE. But the Forward Q scaling lists are

sent in transport form, i.e. column-wise raster order (column-by-column) to simplify the H/W.

Precisely, if the reciprocal forward scaling matrix is F[4][4], then the 16 word of the matrix will be set as

the following:

For JPEG encoder, 16-bit precision is used for each element 1/QM matrix. The 32 DWords are used for 64 QM

elements with the following data structure:

 Bits 15:0 Bits 31:16

DWord1 1/QM[0][0] 1/QM[1][0]

DWord2 1/QM[2][0] 1/QM[3][0]

DWord3 1/QM[4][0] 1/QM[5][0]

DWord4 1/QM[6][0] 1/QM[7][0]

DWord5 1/QM[0][1] 1/QM[1][1]

DWord6 1/QM[2][1] 1/QM[3][1]

DWord7 1/QM[4][1] 1/QM[5][1]

DWord8 1/QM[6][1] 1/QM[7][1]

...

DWord31 1/QM[4][7] 1/QM[5][7]

DWord32 1/QM[6][7] 1/QM[7][7]

140 Doc Ref # IHD-OS-DG1-Vol 11-2.21

Bitplane Buffer

Bitplane coding is used in seven different cases in VC-1, although not all the seven syntax elements are

present in the same picture header at the same time. The following list shows which syntax elements are

coded as bitplanes in each picture header:

Progressive I and BI picture headers in AP: ACPRED, OVERFLAGS

 Field interlace I and BI picture headers in AP: ACPRED, OVERFLAGS

 Frame interlace I and BI picture headers in AP: FIELDTX, ACPRED, OVERFLAGS

Frame interlace P picture headers in AP: SKIPMB

 Progressive P picture headers in SP and MP: MVTYPEMB, SKIPMB

 Progressive P picture headers in AP: MVTYPEMB, SKIPMB

Field interlace B picture headers in AP: FORWARDMB

 Frame interlace B picture headers in AP: DIRECTMB, SKIPMB

 Progressive B picture headers in AP: DIRECTMB, SKIPMB

 Progressive B picture headers in MP: DIRECTMB, SKIPMB

There are also seven different modes of coding the bitplane information. Except when the bitplane is

coded in raw mode, the bitplane is decoded by the host and provided to the hardware in the bitplane

buffer.

Since at most three bitplanes are encoded in any picture header, instead of using a complete byte for

signaling the values of all the seven possible bitplanes for each MB, a more efficient approach is used

with each byte divided in two nibbles and each nibble carries the data of up to four bitplanes for one MB.

PictureType Bits 3, 7 Bit 2, 6 Bits 1, 5 Bits 0, 4

I or BI 0 OVERFLAGS ACPRED FIELDTX

P 0 MVTYPEMB SKIPMB 0

B 0 FORWARDMB SKIPMB DIRECTMB

The bytes containing the above defined nibbles are stored in the bitplane buffer in raster scan order. The

bitplane buffer is a linear buffer with a buffer pitch (as defined by Bitplane Buffer Pitch field in

VC1_BSD_PIC_STATE command). When the number of macroblock in a row is odd, the last byte of the

row containing the last macroblock in bits 0-3. The first macroblock of the next row starts at the next

pitch offset from the first macroblock of the current row.

The bitplane buffer structure must be sent once per picture only if there is one or more syntax elements

coded as bitplanes in the picture header.

Doc Ref # IHD-OS-DG1-Vol 11-2.21 141

Video Codecs

The following sections contain the various registers for video codec support. Specifically, the codec types

supported are:

Supported Codec Types

Advanced Video Coding (AVC)/ H.264/MPEG-4 Part 10 (MVC)

MPEG-2 (H.222/H.262) -- Used in Digital Video Broadcast and DVDs

VC1 -- SMPTE 421M, known informally as VC-1

VP8 -- Video compression format

JPEG and MJPEG -- A video format in which video gram or interlaced field of a digital

video sequence is compressed separately as a JPEG image

Other Codec Functions

Internal Media Rowstore table - An internal Media Rowstore Storage is added to reduce memory

read/write to save power. If the internal Media Rowstore exists, driver should use the storage as the

following table indicates.

AVC/VC1/MPEG2/JPEG/VP8 Decoder/Encoder:

[BSD is bitstream decoder rowstore; MPR is Motion Prediction rowstore; IP is Intra Prediction rowstore; VLF is loop

filter rowstore; VDE is VDENC rowstore]

Codec Mode

Frame

Width BSD MPR IP VLF VDENC

BSD

Addr

MPR

Addr

IP

Addr

VLF

ADDR

VDENC

ADDR

VDENC

AVC

Frame <= 4k N Y Y Y Y 0 256 512 768 0

Field/Mbaff <= 4k N Y Y N Y 0 512 1024 N/A 0

VC1 Dec N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

MPEG2 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

JPEG N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

VP8 <= 4k Y N Y Y Y 0 N/A 256 512 1536

AVC (H.264)

AVC Common Commands

MFX Commands are organized into groups based on their scope of functioning. There are Pipeline

Common state commands that are common to all codecs (encoder and decoder) and is applicable to the

processing of one full frame/field. There are also individual codec Common state commands that are

common to both encoder and decoder of that particular codec. These latter common state commands,

some are applicable at the processing of one full frame/field, and some are applicable at the processing

of an individual slice level.

MFX_AVC_IMG_STATE

142 Doc Ref # IHD-OS-DG1-Vol 11-2.21

A new command is added to support MPEG transport stream encapsulation of AVC bitstream in Encoder

mode. This command should be used only when MPEG transport stream is needed.

MFX_MPEG_TS_CONTROL

MAX_QP_DELTA: Maximum QP delta is the Magnitude of QP delta between passes.

MAX_QP_DELTA is selected such that cumulative QP over all possible passes shouldn't exceed 51.

Example Configurations:

MAX Number of Passes MAX_QP_DELTA

4 0xc

5 0xa

6 0x8

7 0x7

Commands

MFX_AVC_DIRECTMODE_STATE
MFX_AVC_REF_IDX_STATE
MFX_AVC_WEIGHTOFFSET_STATE

AVC Decoder Commands

These are decoder-only commands. They provide the pointer to the compressed input bitstream to be

decoded.

MFD_AVC_DPB_STATE

NOTE modified from DXVA2 - The values in RefFrameList and UsedForReference_Flag are the primary means by

which the H/W can determine whether the corresponding entries in RefFrameList, POCList, LTSTFrameNumList, and

Non-ExistingFrame_Flag should be considered valid for use in the decoding process of the current picture or not.

When RefFrameList[i] is marked to be invalid, the values of POCList[i][0], POCList[i][1], LTSTFrameNumList[i],

UsedForReference_Flag[i], and Non-ExistingFrame_Flag[i] must all be equal to 0. When UsedForReference_Flag[i] =

0, the value of RefFrameList[i] must be marked invalid.

MFD_AVC_SLICEADDR

MFD_AVC_BSD_OBJECT

Inline Data Description for MFD_AVC_BSD_Object

MFD_AVC_PICID_STATE

NOTE 1: In AVC short format, PictureIDList has one-to-one corresponding to LongTermFrame_Flag list, Non-

ExistingFrame_flag list, UsedForReference_Flag list, FrameNumList list in MFD_AVC_DPB_STATE.

NOTE 2: PictureIDList is only used to identify reference picture across frames. Hardware will convert the

picture in the RefFrameList to PictureID before writing out DMV data and convert back to RefFrameList

Index after reading out DMV data. The reference pictures and their orders in the RefFrameList can be

changed across frames.

Doc Ref # IHD-OS-DG1-Vol 11-2.21 143

Session Decoder StreamOut Data Structure

When StreamOut is enabled, per MB intermediated decoded data (MVs, mb_type, MB qp, etc.) are sent

to the memory in a fixed record format (and of fixed size). The per-MB records must be written in a strict

raster order and with no gap (i.e. every MB regardless of its mb_type and slice type, must have an entry

in the StreamOut buffer). Therefore, the consumer of the StreamOut data can offset into the StreamOut

Buffer (StreamOut Data Destination Base Address) using individual MB addresses.

A StreamOut Data record format is detailed as follows:

DWord Bit Description

0
23 Reserved MBZ

22-20 EdgeFilterFlag (AVC) / OverlapSmoothFilter (VC1)

19-17
CodedPatterDC (for AVC only, 111b for others)

This field indicates whether DC coefficients are sent.

1 bit each for Y, U and V.

16 Reserved MBZ

15
Transform8x8Flag

When it is set to 0, the current MB uses 4x4 transform. When it is set to 1, the current MB uses

8x8 transform.

The transform_szie_8x8_flag syntax element, if present in the output bitstream, is the same as this

field.

However, whether transform_szie_8x8_flag is present or not in the output bitstream depends on

several conditions:

This field is only allowed to be set to 1 for two conditions:

It must be 1 if IntraMbFlag = INTRA and IntraMbMode = INTRA_8x8

It may be 1 if IntraMbFlag = INTER and there is no sub partition size less than 8x8

Otherwise, this field must be set to 0.

0: 4x4 integer transform 1: 8x8 integer transform

14
MbFieldFlagMbFieldFlag

This field specifies whether current macroblock is coded as a field or frame macroblock in MBAFF

mode.

This field is exactly the same as FIELD_PIC_FLAG syntax element in non-MBAFF mode.

Same as the mb_field_decoding_flag syntax element in AVC spec.

>0 = Frame macroblock

 1 = Field macroblock

144 Doc Ref # IHD-OS-DG1-Vol 11-2.21

DWord Bit Description

13
IntraMbFlag

This field specifies whether the current macroblock is an Intra (I) macroblock.

I_PCM is considered as Intra MB.

For I-picture MB (IntraPicFlag =1), this field must be set to 1.

This flag must be set in consistent with the interpretation of MbType (inter or intra modes).

0: INTER (inter macroblock)

1: INTRA (intra macroblock)

12-8 MbType5Bits

 This field is encoded to match with the best macroblock mode determined as described in the

next section. It follows AVC encoding for inter and intra macroblocks.<

7 MbPolarity

 FieldMB Polarity - vctrl_vld_top_field AVC

6 Reserved MBZ

5:4 IntraMbMode

 This field is provided to carry information partially overlapped with MbType.

 This field is only valid if IntraMbFlag = INTRA, otherwise, it is ignored by hardware.

3 Reserved MBZ

2 MbSkipFlag

 Reserved MBZ (DXVA Encoder). HW (VDSunit) doesn't have skip MB info.

 It sets to 1 if any of the sub-blocks is inter, uses predicted MVs, and skips sending MVs explicitly

in the code stream. Currently H/W can provide this flag and is defaulted to 0 always.

1:0 InterMbMode

 This field is provided to carry redundant information as that in MbType. It also carries additional

information such as skip.

 This field is only valid if IntraMbFlag =INTER, otherwise, it is ignored by hardware.

1
31:16 MbYCnt (Vertical Origin).

 This field specifies the vertical origin of current macroblock in the destination picture in units of

macroblocks.

 Format = U8 in unit of macroblock.

15:0 MbXCnt (Horizontal Origin).

 This field specifies the horizontal origin of current macroblock in the destination picture in units

of macroblocks.

 Format = U8 in unit of macroblock.

2
31 Conceal MB Flag.

 This field specifies if the current MB is a conceal MB, use in AVC/VC1/MPEG2 mode.

30 Last MB of the Slice Flag.

 This field indicate the current MB is a last MB of the slice. Use in AVC/VC1/MPEG2 mode.

29:24 Reserved

23:20 CbpAcV

 0 in a bit - indicates the corresponding 8x8 block or 4x4 sub-block is not present (because all

Doc Ref # IHD-OS-DG1-Vol 11-2.21 145

DWord Bit Description

coefficient values are zero)

 1 in a bit - indicates the corresponding 8x8 block or 4x4 sub-block is present (although it is still

possible to have all its coefficients be zero - bad coding).

19:16 CbpAcU

 0 in a bit - indicates the corresponding 8x8 block or 4x4 sub-block is not present (because all

coefficient values are zero)

 1 in a bit - indicates the corresponding 8x8 block or 4x4 sub-block is present (although it is still

possible to have all its coefficients be zero - bad coding).

15:0 CbpAcY

 0 in a bit - indicates the corresponding 8x8 block or 4x4 sub-block is not present (because all

coefficient values are zero)

 1 in a bit - indicates the corresponding 8x8 block or 4x4 sub-block is present (although it is still

possible to have all its coefficients be zero - bad coding).

 Bit15=Y0Sub0, Bit0=Y3Sub3

3
31:28 Skip8x8Pattern /> This field indicates whether each of the four 8x8 sub macroblocks is using the

predicted MVs and will not be explicitly coded in the bitstream (the sub macroblock will be coded

as direct mode). It contains four 1-bit subfields, corresponding to the 4 sub macroblocks in

sequential order. The whole macroblock may be actually coded as B_Direct_16x16 or B_Skip,

according to the macroblock type conversion rules described in a later sub section.

 This field is only valid for a B slice. It is ignored by hardware for a P slice. Hardware also ignores

this field for an intra macroblock.

 0 in a bit - Corresponding MVs are sent in the bitstream

 1 in a bit - Corresponding MVs are not sent in the bitstream

27:25 Reserved

24:16 NzCoefCountMB - all coded coefficients input including AC/DC blocks in current MB.

 Range 0 to 384 (9 bits)

15:8
MbClock16 - MB compute clocks in 16-clock unit.

7 mbz (AVC) / QScaleType (MPEG2)

6:0
QpPrimeY (AVC) / QScaleCode (MPEG2)

The luma quantization index. This is the per-MB QP value specified for the current MB.

4 to 6 31:0

 Each

For intra macroblocks, definition of these fields are specified in 1

 For inter macroblocks, definition of these fields are specified in 2

7
31:24 Reserved

23:20
MvFieldSelect (Ref polarity top or bottom bits) for VC1 and MPEG2

vcp_vds_mvdataR[162:159] VC1

vmd_vds_mt_vert_fld_selR[3:0] MPEG2

19:12 Reserved

11:10 SubBlockCodeType V

 (If 8x8, 8x4, 4x8, 4x4 type)

146 Doc Ref # IHD-OS-DG1-Vol 11-2.21

DWord Bit Description

9:8 SubBlockCodeType U

 (specifies 8x8, 8x4, 4x8, 4x4 type) VC1

7:6 SubBlockCodeType Y3

 (specifies 8x8, 8x4, 4x8, 4x4 type) VC1

5:4 SubBlockCodeType Y2

 (specifies 8x8, 8x4, 4x8, 4x4 type) VC1

3:2 SubBlockCodeType Y1

 (specifies 8x8, 8x4, 4x8, 4x4 type) VC1

1:0 SubBlockCodeType Y0

 (specifies 8x8, 8x4, 4x8, 4x4 type) VC1

Inter Cases

8
31:16 MvFwd[0].y - y-component of the forward motion vector of the 1 8x8 or 1 4x4 subblock

15:0 MvFwd[0].x - x-component of the forward motion vector of the 1 8x8 or 1 4x4 subblock

9 31:0 MvBck[0] - the backward motion vector of the 1 8x8 or 1 4x4 subblock

10 31:0 MvFwd[1] - the forward motion vector of the 2 8x8 or 4 4x4 subblock

11 31:0 MvBck[1] - the backward motion vector of the 2 8x8 or 4 4x4 subblock

12 31:0 MvFwd[2] - the forward motion vector of the 3 8x8 or 8 4x4 subblock

13 31:0 MvBck[2] - the backward motion vector of the 3 8x8 or 8 4x4 subblock

14 31:0 MvFwd[3] - the forward motion vector of the 4 8x8 or 12 4x4 subblock

15 31:0 MvBck[3]> - the backward motion vector of the 4th 8x8 or 12 4x4 subblock

8 to 15 31:0 Reserved MBZ

Inline data subfields for an Intra Macroblock

DWord Bit Description

4 31:16
LumaIndraPredModes[1]

Specifies the Luma Intra Prediction mode for four 4x4 sub-block of a MB, 4-bit each.

AVC: See the bit assignment table later in this section.

VC1: MBZ.

MPEG2: MBZ.

15:0
LumaIndraPredModes[0]

Specifies the Luma Intra Prediction mode for four 4x4 sub-block, four 8x8 block or one intra16x16

of a MB.

4-bit per 4x4 sub-block (Transform8x8Flag=0, Mbtype=0 and intraMbFlag=1) or 8x8 block

(Transform8x8Flag=1, Mbtype=0, MbFlag=1), since there are 9 intra modes.

4-bit for intra16x16 MB (Transform8x8Flag=0, Mbtype=1 to 24 and intraMbFlag=1), but only the

LSBit[1:0] is valid, since there are only 4 intra modes.

Doc Ref # IHD-OS-DG1-Vol 11-2.21 147

DWord Bit Description

AVC: See the bit assignment table later in this section.

VC1: MBZ.

MPEG2: MBZ.

5

AVC

 INTRA

31:16
LumaIndraPredModes[3]

Specifies the Luma Intra Prediction mode for four 4x4 sub-block of a MB, 4-bit each.

AVC: See the bit assignment table later in this section.

VC1: MBZ.

MPEG2: MBZ.

15:0
LumaIndraPredModes[2]

Specifies the Luma Intra Prediction mode for four 4x4 sub-block of a MB, 4-bit each.

AVC: See the bit assignment later in this section.

VC1: MBZ.

MPEG2: MBZ.

6 31:8 Reserved (Reserved for encoder turbo mode IntraResidueDataSize, when this is not 0, optional

residue data are provided to the PAK; Reserved for decoder)

7:0
MbIntraStruct

The IntraPredAvailFlags[4:0] have already included the effect of the constrained_intra_pred_flag. See

the diagram later for the definition of neighbors position around the current MB or MB pair (in

MBAFF mode).

1 - IntraPredAvailFlagX, indicates the values of samples of neighbor X can be used in intra

prediction for the current MB.

0 - IntraPredAvailFlagX, indicates the values of samples of neighbor X is not available for intra

prediction of the current MB.

IntraPredAvailFlag-A and -E can only be different from each other when constrained_intra_pred_flag

is equal to 1 and mb_field_decoding_flag is equal to 1 and the value of the mb_field_decoding_flag

for the macroblock pair to the left of the current macroblock is equal to 0 (which can only occur

when MbaffFrameFlag is equal to 1).

IntraPredAvailFlag-F is used only if

o it is in MBAFF mode, i.e. MbaffFrameFlag = 1,

o the current macroblock is of frame type, i.e. MbFieldFag = 0, and

o the current macroblock type is Intra8x8,

 that is, IntraMbFlag = INTRA, IntraMbMode = INTRA_8x8, and Transform8x8Flag = 1.

In any other cases IntraPredAvailFlag-A shall be used instead.

148 Doc Ref # IHD-OS-DG1-Vol 11-2.21

DWord Bit Description

Bits IntraPredAvailFlags[4:0] Definition

7 IntraPredAvailFlagF - F (Left 8th row (-1,7) neighbor)

6 IntraPredAvailFlagA - A

 (Left neighbor top half)

5 IntraPredAvailFlagE - E

 (Left neighbor bottom half)

4 IntraPredAvailFlagB - B

 (Top neighbor)

3 IntraPredAvailFlagC - C

 (Top right neighbor)

2 IntraPredAvailFlagD - D

 (Top left corner neighbor)

1:0 ChromaIntraPredMode -

 2 bits to specify 1 of 4 chroma intra prediction mode, see the table in later section.

Inline data subfields for an Inter Macroblock

DWord Bit Description

4 31:24 Reserved: MBZ (DXVA Decoder)

23:16 Reserved: MBZ (DXVA Decoder)

15:8
SubMbPredModes[bit 7:0] (Sub Macroblock Prediction Mode)

This field describes the prediction mode of the sub macroblocks (four 8x8 blocks). It contains four

subfields each with 2-bits, corresponding to the 4 fixed size 8x8 sub macroblocks in sequential

order.

This field is provided for MB with sub_mb_type equal to BP_8x8 only (B_8x8 and P_8x8 as defined in

DXVA)

This field is derived from MbType for a non-BP_8x8 inter macroblock, and carries redundant

information as MbType)

Bits [1:0]: SubMbPredMode[0] - for 8x8 Block 0

Bits [3:2]: SubMbPredMode[1] - for 8x8 Block 1

Bits [5:4]: SubMbPredMode[2] - for 8x8 Block 2

Bits [7:6]: SubMbPredMode[3] - for 8x8 Block 3

Blocks of the MB is numbered as follows :

0 1

2 3

Each 2-bit value [1:0] is defined as :

00 - Pred_L0

Doc Ref # IHD-OS-DG1-Vol 11-2.21 149

DWord Bit Description

01 - Pred_L1

10 - BiPred

For VC1:

Bits [1:0]: "00"= Y0 Forward only, "01"= Y0 Backward only, "10"= Y0 Bi direction

Bits [3:2]: SubMbPredMode[1] - for 8x8 Block 1

Bits [5:4]: SubMbPredMode[2] - for 8x8 Block 2

Bits [7:6]: SubMbPredMode[3] - for 8x8 Block 3

7:0
SubMbShape[bit 7:0] (Sub Macroblock Shape)

This field describes the sub-block partitioning of each sub macroblocks (four 8x8 blocks). It contains

four subfields each with 2-bits, corresponding to the 4 fixed size 8x8 sub macroblocks in sequential

order.

This field is provided for MB with sub_mb_type equal to BP_8x8 only (B_8x8 and P_8x8 as defined in

DXVA)

This field is forced to 0 for a non-BP_8x8 inter macroblock, and effectively carries redundant

information as MbType).

Bits [1:0]: SubMbShape[0] - for 8x8 Block 0

Bits [3:2]: SubMbShape[1] - for 8x8 Block 1

Bits [5:4]: SubMbShape[2] - for 8x8 Block 2

Bits [7:6]: SubMbShape[3] - for 8x8 Block 3

Blocks of the MB is numbered as follows:

0 1

2 3

Each 2-bit value [1:0] is defined as:

00 - SubMbPartWidth=8, SubMbPartHeight=8

01 - SubMbPartWidth=8, SubMbPartHeight=4

10 - SubMbPartWidth=4, SubMbPartHeight=8

11 - SubMbPartWidth=4, SubMbPartHeight=4

For VC-1, This field indicates the transformation types used for luma components, 2 bits for each

8x8.

5 31:24
Frame Store ID L0[3]

Support up to 4 Frame store ID per L0 direction, one per MB partition, if exists. See details in later

section. This field specifies the frame Store ID into the Reference Picture List0 Table.

Bit 7: Must Be One: (This is reserved for control fields in future extension, when reference index are

150 Doc Ref # IHD-OS-DG1-Vol 11-2.21

DWord Bit Description

generated instead of frame store ID)

1: indicate it is in Frame store ID format.

0: indicate it is in Reference Index format.

Bit 6:5: reserved MBZ

Bit 4:0: Frame store index or Frame Store ID (Bit 4:1 is used to form the binding table index in intel

implementation)

23:16
Frame Store ID L0[2]

Support up to 4 Frame store ID per L0 direction, one per MB partition, if exists. See details in later

section. This field specifies the frame Store ID into the Reference Picture List0 Table.

Bit 7: Must Be One: (This is reserved for control fields in future extension, when reference index are

generated instead of frame store ID)

1: indicate it is in Frame store ID format.

0: indicate it is in Reference Index format.

Bit 6:5: reserved MBZ

Bit 4:0: Frame store index or Frame Store ID (Bit 4:1 is used to form the binding table index in intel

implementation)

15:8
Frame Store ID L0[1]

Support up to 4 Frame store ID per L0 direction, one per MB partition, if exists. See details in later

section. This field specifies the frame Store ID into the Reference Picture List0 Table.

Bit 7: Must Be One: (This is reserved for control fields in future extension, when reference index are

generated instead of frame store ID)

1: indicate it is in Frame store ID format.

0: indicate it is in Reference Index format.

Bit 6:5: reserved MBZ

Bit 4:0: Frame store index or Frame Store ID (Bit 4:1 is used to form the binding table index in intel

implementation).

7:0
Frame Store ID L0[0]

Support up to 4 Frame store ID per L0 direction, one per MB partition, if exists. See details in later

section. This field specifies the frame Store ID into the Reference Picture List0 Table.

Bit 7: Must Be One: (This is reserved for control fields in future extension, when reference index are

generated instead of frame store ID)

1: indicate it is in Frame store ID format.

0: indicate it is in Reference Index format.

Doc Ref # IHD-OS-DG1-Vol 11-2.21 151

DWord Bit Description

Bit 6:5: reserved MBZ

Bit 4:0: Frame store index or Frame Store ID (Bit 4:1 is used to form the binding table index in intel

implementation)

6 31:24
Frame Store ID L1[3]

Support up to 4 Frame store ID per L0 direction, one per MB partition, if exists. See details in later

section. This field specifies the frame Store ID into the Reference Picture List0 Table.

Bit 7: Must Be One: (This is reserved for control fields in future extension, when reference index are

generated instead of frame store ID)

1: indicate it is in Frame store ID format.

0: indicate it is in Reference Index format.

Bit 6:5: reserved MBZ

Bit 4:0: Frame store index or Frame Store ID (Bit 4:1 is used to form the binding table index in intel

implementation)

23:16
Frame Store ID L1[2]

Support up to 4 Frame store ID per L0 direction, one per MB partition, if exists. See details in later

section. This field specifies the frame Store ID into the Reference Picture List0 Table.

Bit 7: Must Be One: (This is reserved for control fields in future extension, when reference index are

generated instead of frame store ID)

1: indicate it is in Frame store ID format.

0: indicate it is in Reference Index format.

Bit 6:5: reserved MBZ

Bit 4:0: Frame store index or Frame Store ID (Bit 4:1 is used to form the binding table index in intel

implementation)

15:8
Frame Store ID L1[1]

Support up to 4 Frame store ID per L0 direction, one per MB partition, if exists. See details in later

section. This field specifies the frame Store ID into the Reference Picture List0 Table.

Bit 7: Must Be One: (This is reserved for control fields in future extension, when reference index are

generated instead of frame store ID)

1: indicate it is in Frame store ID format.

0: indicate it is in Reference Index format.

Bit 6:5: reserved MBZ

Bit 4:0: Frame store index or Frame Store ID (Bit 4:1 is used to form the binding table index in intel

implementation)

152 Doc Ref # IHD-OS-DG1-Vol 11-2.21

DWord Bit Description

7:0
Frame Store ID L1[0]

Support up to 4 Frame store ID per L0 direction, one per MB partition, if exists. See details in later

section. This field specifies the frame Store ID into the Reference Picture List0 Table.

Bit 7: Must Be One: (This is reserved for control fields in future extension, when reference index are

generated instead of frame store ID)

1: indicate it is in Frame store ID format.

0: indicate it is in Reference Index format.

Bit 6:5: reserved MBZ

Bit 4:0: Frame store index or Frame Store ID (Bit 4:1 is used to form the binding table index in intel

implementation)

AVC Encoder PAK Commands

Each PAK Commands is composed of a command op-code DW and one or more command data DWs

(inline data). The size of each command is specified as part of the op-code DW. Most of the commands

have fixed size, except some are allowed to be of variable length.

There is an inherent order of executing MFC PAK commands that driver must follow.

MFC_AVC_PAK_OBJECT

PAK Object Inline Data Description

The Inline Data includes all the required MB encoding states, constitute part of the Slice Data syntax

elements, MB Header syntax elements and their derivatives. It provides information for the following

operations:

1. Forward and Inverse Transform

2. Forward and Inverse Quantization

3. Advanced Rate Control (QRC)

4. MB Parameter Construction (MPC)

5. CABAC/CAVLC encoding

6. Bit stream packing

7. Intra and inter-Prediction decoding loop

8. Internal error handling

These state/parameter values may subject to change on a per-MB basis, and must be provided in each

MFC_AVC_PAK_OBJECT command. The values set for these variables are retained internally, until they are

reset by hardware Asynchronous Reset or changed by the next MFC_AVC_PAK_OBJECT command.

The inline data has been designed to match the DXVA 2.0, with the exception of the starting byte

(DW0:0-7) and the ending dword (DW7:0-31).

Doc Ref # IHD-OS-DG1-Vol 11-2.21 153

The Deblocker Filter Control flags (FilterInternalEdgesFlag, FilterTopMbEdgeFlag and

FilterLeftMbEdgesFlag) are generated by H/W, which are depending on MbaffFrameFlag, CurrMbAddr,

PicWidthInMbs and disable_deblocking_filter_idc states.

Current MB [x,y] address is not sent, it is assumed that the H/W will keep track of the MB count and

current MB position internally.

DWord Bit Description

3 30 Reserved: MBZ

19
CbpDcY. This field specifies if the Luma DC sub-block is coded. Setting it to 0 will force PAK to zero

out the Luma sub-block. Otherwise, whether the sub-block is coded will be determined by the

quantization process.

1 - the 4x4 DC-only Luma sub-block of the Intra16x16 coded MB is present; it is still possible that all

DC coefficients are zero.

0 - no 4x4 DC-only Luma sub-block is present; either not in Intra16x16 MB mode or all DC

coefficients are zero.

Programming Note

Context: PAK Object Inline Data Description - CbpDcY

When Reference Mb: IPCM or inferred IPCM, current mb: base mode flag = 1 and svc slice state:

TcoeffLvlPredFlag = 1 ; all bits in CbpDcY, CbpDcU, CbpDcV, Cbp4x4Y[15:0], Cbp4x4V[15:0] and

Cbp4x4U[15:0] must set to 1's.

18
CbpDcU. This field specifies if the Chroma Cb DC sub-block is coded. Setting it to 0 will force PAK

to zero out the Luma sub-block. Otherwise, whether the sub-block is coded will be determined by

the quantization process.

1 - the 2x2 DC-only Chroma Cb sub-block of all coded MB (any type) is present; it is still possible

that all DC coefficients are zero.

0 - no 2x2 DC-only Chroma Cb sub-block is present; all DC coefficients are zero.

Programming Note

Context: PAK Object Inline Data Description

When Reference Mb: IPCM or inferred IPCM, current mb: base mode flag = 1 and svc slice state:

TcoeffLvlPredFlag = 1 ; all bits in CbpDcY, CbpDcU, CbpDcV, Cbp4x4Y[15:0], Cbp4x4V[15:0] and

Cbp4x4U[15:0] must set to 1's.

17
CbpDcV. This field specifies if the Chroma Cb DC sub-block is coded. Setting it to 0 will force PAK

to zero out the Luma sub-block. Otherwise, whether the sub-block is coded will be determined by

the quantization process.

1 - the 2x2 DC-only Chroma Cr sub-block of all coded MB (any type) is present; it is still possible

that all DC coefficients are zero.

0 - no 2x2 DC-only Chroma Cr sub-block is present; all DC coefficients are zero.

154 Doc Ref # IHD-OS-DG1-Vol 11-2.21

DWord Bit Description

Programming Note

Context: PAK Object Inline Data Description

When Reference Mb: IPCM or inferred IPCM, current mb: base mode flag = 1 and svc slice state:

TcoeffLvlPredFlag = 1 ; all bits in CbpDcY, CbpDcU, CbpDcV, Cbp4x4Y[15:0], Cbp4x4V[15:0] and

Cbp4x4U[15:0] must set to 1's.

16 Reserved: MBZ

 (reserved for future use as ExternalResidBufFlag for turbo mode)

15
Transform8x8Flag

This field indicates that 8x8 transform is used for the macroblock.

When it is set to 0, the current MB uses 4x4 transform. When it is set to 1, the current MB uses 8x8

transform. The transform_size_8x8_flag syntax element, if present in the output bitstream, is the

same as this field. However, whether transform_szie_8x8_flag is present or not in the output

bitstream depends on several other conditions.

This field is only allowed to be set to 1 for two conditions:

It must be 1 if IntraMbFlag = INTRA and IntraMbMode = INTRA_8x8

It may be 1 if IntraMbFlag = INTER and there is no sub partition size less than 8x8

Otherwise, this field must be set to 0.

Programming Note

Context: PAK Inline Object Data Description

When SvcSliceState TcoeffLvlPredFlag=1, and AvcImgState EntropyCodingFlag is 1(CABAC), this

field cannot be 1.

0: 4x4 integer transform

1: 8x8 integer transform

14
FieldMbFlag

This field specifies the field polarity of the current macroblock, as the mb_field_decoding_flag syntax

element in AVC spec.

This field specifies whether current macroblock is coded as a field or frame macroblock in MBAFF

mode. It is exactly the same as FIELD_PIC_FLAG syntax element in non-MBAFF mode.

0 = Frame macroblock

 1 = Field macroblock

13
IntraMbFlag

This field specifies whether the current macroblock is an Intra (I) macroblock. I_PCM is considered as

Intra MB.

Doc Ref # IHD-OS-DG1-Vol 11-2.21 155

DWord Bit Description

For I-picture MB (IntraPicFlag =1), this field must be set to 1.

This flag must be set in consistent with the interpretation of MbType (inter or intra modes).

0: INTER (inter macroblock)

1: INTRA (intra macroblock)

12:8
MbType5Bits

This field is encoded to match with the best macroblock mode determined as described in the next

section. It follows a unified encoding for inter and intra macroblocks according to AVC Spec.

7
FieldMbPolarityFlag

This field indicates the field polarity of the current macroblock.

Within an MbAff frame picture, this field may be different per macroblock and is set to 1 only for

the second macroblock in a MbAff pair if FieldMbFlag is set. Otherwise, it is set to 0.

Within a field picture, this field is set to 1 if the current picture is the bottom field picture.

Otherwise, it is set to 0. It is a constant for the whole field picture.

This field is reserved and MBZ for a progressive frame picture.

0 = Current macroblock is a field macroblock from the top field

1 = Current macroblock is a field macroblock from the bottom field

Programming Note: Here bits [26:24] (MbAffFieldFlag and FiedlMbPolarityFlag) match with bits [10:8]

of the Media Block Read message descriptor, simplifying the programming for message generation, as

when MbAffFieldFlag is "1", kernels need to override the original "frame" surface state set for MBAFF

frame picture.

6 MB Reserved: Inter MB converted to IPCM.

This field is for HW purposes only.

 SW should not use it.

5:4
IntraMbMode

This field is provided to carry information partially overlapped with MbType.

This field is only valid if IntraMbFlag = INTRA, otherwise, it is ignored by hardware.

3 Reserved: MBZ

2
SkipMbFlag

By setting it to 1, this field forces an inter macroblock to be encoded as a skipped macroblock. It is

equivalent to mb_skip_flag in AVS spec, indicating that a macroblock is inferred as a P_Skip (or

B_Skip) in a P Slice (or B Slice). Hardware honors input MVs for motion prediction and forces CBP to

zero.

By setting it to 0, an inter macroblock will be coded as a normal inter macroblock. The macroblock

may still be coded as a skipped macroblock, according to the macroblock type conversion rules

156 Doc Ref # IHD-OS-DG1-Vol 11-2.21

DWord Bit Description

described in the later sub sections.

This field can only be set to 1 for certain values of MbType. See details later.

This field is only valid for an inter macroblock. For intra MB (bit 13 of this DW set to one), this bit

must be set to zero.

0 = not a skipped macroblock

1 = is coded as a skipped macroblock

1:0
InterMbMode

This field is provided to carry redundant information as that encoded in MbType.

This field is only valid if IntraMbFlag =0, otherwise, it is ignored by hardware.

4 31:16
Cbp4x4Y[bit 15:0] (Coded Block Pattern Y)

 For 4x4 sub-block (when Transform8x8flag = 0 or in intra16x16) :

 16-bit cbp, one bit for each 4x4 Luma sub-block (not including the DC 4x4 Luma block in

intra16x16) in a MB. The 4x4 Luma sub-blocks are numbered as

blk0 1 4 5

bit15 14 11 10

lk2 3 6 7

bit13 12 9 8

blk8 9 12 13

bit7 6 3 2

blk10 11 14 15

bit5 4 1 0

The cbpY bit assignment is cbpY bit [15 - X] for sub-block_num X.

 For 8x8 block (when Transform8x8flag = 1)

 Only the lower 4 bits [3:0] are valid; the remaining upper bits [15:4] are ignored. The 8x8 Luma

blocks are numbered as

 blk0 1 bit3 2

 blk2 3 bit1 0

The cbpY bit assignment is cbpY bit [3 - X] for block_num X.

 0 in a bit - indicates the corresponding 8x8 block or 4x4 sub-block is not present (because all

coefficient values are zero), or force to zero for PAK.

1 in a bit - indicates the corresponding 8x8 block or 4x4 sub-block is present (although it is still

possible to have all its coefficients be zero - bad coding).

Doc Ref # IHD-OS-DG1-Vol 11-2.21 157

DWord Bit Description

Programming Note

Context: PAK Object Inline Data Description

When Reference Mb: IPCM or inferred IPCM, current mb: base mode flag = 1 and svc slice state:

TcoeffLvlPredFlag = 1 ; all bits in CbpDcY, CbpDcU, CbpDcV, Cbp4x4Y[15:0], Cbp4x4V[15:0] and

Cbp4x4U[15:0] must set to 1's.

4 15:8
MbYCnt (Vertical Origin). This field specifies the vertical origin of current macroblock in the

destination picture in units of macroblocks.

 Format = U8 in unit of macroblock.

7:0
MbXCnt (Horizontal Origin). This field specifies the horizontal origin of current macroblock in the

destination picture in units of macroblocks.

 Format = U8 in unit of macroblock.

5 31:16
Cbp4x4V (Coded Block Pattern Cr)

 Only the lower 4 bits [3:0] are valid for 4:2:0. The 4x4 Cr sub-blocks are numbered as

 blk0 1 bit3 2

 blk2 3 bit1 0

 The cbpCr bit assignment is cbpCr bit [3 - X] for sub-block_num X.

 0 in a bit - indicates the corresponding 4x4 sub-block is not present (because all coefficient values

are zero), or force to zero for PAK.

 1 in a bit - indicates the corresponding 4x4 sub-block is present (although it is still possible to have

all its coefficients be zero - bad coding).

 For monochrome, this field is ignored.

 For 4.2.2, [23:16] for U(Cb), and [31:24] ignored.

 For 4.4.4, the definition is the same as for luma component: 1bit per 4x4 block.

Programming Note

Context: PAK Object Inline Data Description

When Reference Mb: IPCM or inferred IPCM, current mb: base mode flag = 1 and svc slice state:

TcoeffLvlPredFlag = 1 ; all bits in CbpDcY, CbpDcU, CbpDcV, Cbp4x4Y[15:0], Cbp4x4V[15:0] and

Cbp4x4U[15:0] must set to 1's.

5 15:0
Cbp4x4U (Coded Block Pattern Cb)

 Only the lower 4 bits [3:0] are valid for 4:2:0. The 4x4 Cb sub-blocks are numbered as

 blk0 1 bit3 2

 blk2 3 bit1 0

158 Doc Ref # IHD-OS-DG1-Vol 11-2.21

DWord Bit Description

 The cbpCb bit assignment is cbpCb bit [3 - X] for sub-block_num X.

 0 in a bit - indicates the corresponding 4x4 sub-block is not present (because all coefficient values

are zero), or force to zero for PAK.

 1 in a bit - indicates the corresponding 4x4 sub-block is present (although it is still possible to have

all its coefficients be zero - bad coding).

 For monochrome, this field is ignored.

 For 4.2.2, [7:0] for U(Cb), and [15:8] ignored.

 For 4.4.4, the definition is the same as for luma component: 1bit per 4x4 block.

Programming Note

Context: PAK Object Inline Data Description

When Reference Mb: IPCM or inferred IPCM, current mb: base mode flag = 1 and svc slice state:

TcoeffLvlPredFlag = 1 ; all bits in CbpDcY, CbpDcU, CbpDcV, Cbp4x4Y[15:0], Cbp4x4V[15:0] and

Cbp4x4U[15:0] must set to 1's.

6 31:28
Skip8x8Pattern

This field indicates whether each of the four 8x8 sub macroblocks is using the predicted MVs and

will not be explicitly coded in the bitstream (the sub macroblock will be coded as direct mode). It

contains four 1-bit subfields, corresponding to the 4 sub macroblocks in sequential order. The

whole macroblock may be actually coded as B_Direct_16x16 or B_Skip, according to the macroblock

type conversion rules described in a later sub section.

This field is only valid for a B slice. It is ignored by hardware for a P slice. Hardware also ignores this

field for an intra macroblock.

0 in a bit - Corresponding MVs are sent in the bitstream

1 in a bit - Corresponding MVs are not sent in the bitstream

27
EnableCoeffClamp

1 = the magnitude of coefficients of the current MB will be clamped based on the clamping matrix

after quantization

0 = no clamping

26
LastMbFlag

1 - the current MB is the last MB in the current Slice

0 - the current MB is not the last MB in the current Slice - Reserved MBZ.

25
SkipMbConvDisable

This is a per-MB level control to enable and disable skip conversion. This field is ORed with

SkipConvDisable field. This field is only valid for a P or B slice. It must be zero for other slice types.

Rules are provided in Section Macroblock Type Conversion Rules.

Doc Ref # IHD-OS-DG1-Vol 11-2.21 159

DWord Bit Description

0 - Enable skip type conversion for the current macroblock

1 - Disable skip type conversion for the current macroblock

24 Reserved MBZ.

23:16 Reserved. Ignored by HW, this field will be re-derived internally.

 (was QpPrimeV. For 8-bit pixel data, QpCr is the same as QpPrimeCr, and it takes on a value in the

range of 0 to 51, positive integer.)

15:8 Reserved. Ignored by HW, this field will be re-derived internally.

 (Was QpPrimeU. For 8-bit pixel data, QpCb is the same as QpPrimeCb, and it takes on a value in

the range of 0 to 51, positive integer.)

7:0
QpPrimeY

This is the per-MB QP value specified for the current MB.

For 8-bit pixel data, QpY is the same as QpPrimeY, and it takes on a value in the range of 0 to 51,

positive integer.

Programming Note

Context: PAK Object Inline Data Description

This value may differ from the actual codes, when HW QRC is on

7 .. 9
31:0

Each

For intra macroblocks, definition of these fields are specified in Inline data subfields for an Intra

Macroblock.

For inter macroblocks, definition of these fields are specified in Inline data subfields for an Inter

Macroblock.

10 31:24
MaxSizeInWord

PAK should not exceed this budget accumulatively, otherwise it will trickle the PANIC mode.

23:16
TargetSizeInWord

PAK should use this budget accumulatively to decide if it needs to limit the number of non-zero

coefficients.

15:0
Lambda_Or_RoundingOffset

When TQEnb=1, in MFX_AVC_IMG_STATE, this 16-bit unsigned value multiplied by 2 is used as a

lambda for the rate-distortion cost estimation in Trellis quantization (TQ). If the upper 4 bits are all

set to 1 (0xFXXX), TQ is disabled and the regular quantizer is used. Thus, the valid range is

0~0xEFFF. When TQ is enabled per MB, the TQR in MFC_AVC_IMG_STATE is used for rounding

quantization coefficients.

When TQEnb=0 or the upper 4 bits are all set to 1, the lower 4-bit value indicates the rounding

precision (offset) for the regular quantizer. The values ranging 0001b ~ 0111 are reserved.

160 Doc Ref # IHD-OS-DG1-Vol 11-2.21

DWord Bit Description

Value Name

0000b RoundInterEnable, RoundInter, RoundIntraEnable, and RoundIntra defined in

MFC_AVC_SLICE_STATE are used as rounding precision.

1000b +1/16

1001b +2/16

1010b +3/16

1011b +4/16

1100b +5/16

1101b +6/16

1110b +7/16

1111b +8/16

Format: U16

VDEnc Mode Inline data (For PAK Standalone validation)

12 31:16
MV Y

The value of the y component of this motion vector for FWD block 0.

15:0
MV X

The value of the x component of this motion vector for FWD block 0.

13 31:16
MV Y

The value of the y component of this motion vector for FWD block 1.

15:0
MV X

The value of the x component of this motion vector for FWD block 1.

14 31:16
MV Y

The value of the y component of this motion vector for FWD block 2.

15:0
MV X

The value of the x component of this motion vector for FWD block 2.

15 31:16
MV Y

The value of the y component of this motion vector for FWD block 3.

15:0
MV X

The value of the x component of this motion vector for FWD block 3.

Doc Ref # IHD-OS-DG1-Vol 11-2.21 161

16 31:16
MV Y

The value of the y component of this motion vector for BWD block 0.

15:0
MV X

The value of the x component of this motion vector for BWD block 0.

17 31:16
MV Y

The value of the y component of this motion vector for BWD block 1.

15:0
MV X

The value of the x component of this motion vector for BWD block 1.

18 31:16
MV Y

The value of the y component of this motion vector for BWD block 2.

15:0
MV X

The value of the x component of this motion vector for BWD block 2.

19 31:16
MV Y

The value of the y component of this motion vector for BWD block 3.

15:0
MV X

The value of the x component of this motion vector for BWD block 3.

20 31:16
LumaIntraMode[1]

Specifies the Luma Intra Prediction mode for four 4x4 sub-block of a MB, 4-bit each.

15:0
LumaIntraMode[0]

Specifies the Luma Intra Prediction mode for four 4x4 sub-block, four 8x8 block or one intra16x16 of a

MB.

4-bit per 4x4 sub-block (Transform8x8Flag=0, Mbtype=0 and intraMbFlag=1) or 8x8 block

(Transform8x8Flag=1, Mbtype=0, MbFlag=1), since there are 9 intra modes.

4-bit for intra16x16 MB (Transform8x8Flag=0, Mbtype=1 to 24 and intraMbFlag=1), but only the

LSBit[1:0] is valid, since there are only 4 intra modes.

21 31:16
LumaIntraMode[3]

Specifies the Luma Intra Prediction mode for four 4x4 sub-block of a MB, 4-bit each.

15:0
LumaIntraMode[2]

162 Doc Ref # IHD-OS-DG1-Vol 11-2.21

Specifies the Luma Intra Prediction mode for four 4x4 sub-block of a MB, 4-bit each.

22 31:16
Minimal Distortion

This field contains the overall distortion for the source block associated with the winning MbType, which

could be one of intra or inter modes.

15:0
SkipRawDistortion

This field contains Skip Raw Distortion which may be used by software to further refine the skip decision.

23 31:16
InterRawDistortion

This field provides the Inter Raw Distortion (Sad/Haar) for the current macroblock.

15:0
BestIntraRawDistortion

This field contains the best IntraRawDistortion (Sad/Haar) for the current macroblock. The IntraMBMode

will indicate if this is a16x16/8x8/4x4 distortion.

Inline data for LumaIntraMode

ExtendedForm

0 or 1 0 0 1 1

Intra4x4 Intra8x8 Intra16x16 Intra8x8 Intra16x16

DW4 - 31:28 Block 7 - - - Block 0

DW4 - 27:24 Block 6 - - - Block 0

DW4 - 23:20 Block 5 - - - Block 0

DW4 - 19:16 Block 4 - - - Block 0

DW4- 15:12 Block 3 - - - Block 0

DW4 - 11:8 Block 2 - - - Block 0

DW4 - 7:4 Block 1 - - - Block 0

DW4 - 3:0 Block 0 - - - Block 0

DW5 - 31:28 Block 15 - - - Block 0

DW5 - 27:24 Block 14 - - - Block 0

DW5 - 23:20 Block 13 - - - Block 0

DW5 - 19:16 Block 12 - - - Block 0

DW5 - 15:12 Block 11 - - - Block 0

DW5- 11:8 Block 10 - - - Block 0

DW5 - 7:4 Block 9 - - - Block 0

DW5 - 3:0 Block 8 - - - Block 0

Doc Ref # IHD-OS-DG1-Vol 11-2.21 163

vctrl_pred_mode[63:0]
(vctrl_it_lumaintrapredmode3[15:0] & vctrl_it_lumaintrapredmode2[15:0] &

vctrl_it_lumaintrapredmode1[15:0] & vctrl_it_lumaintrapredmode0[15:0]) :

vctrl_pred_mode_noextend[63:0]

vctrl_pred_mode_noextend[63:0]
(vctrl_INTRA_vld_16x16mode & vctrl_it_Transform8x8Flag) ?

vctrl_pred_mode_noextend_4x4[63:0] :

vctrl_pred_mode_noextend_16x16[63:0] :

vctrl_pred_mode_noextend_8x8[63:0] :

vctrl_pred_mode_noextend_4x4[63:0]

vctrl_pred_mode_noextend_16x16[63:0]
vctrl_it_lumaintrapredmode0[3:0] & vctrl_it_lumaintrapredmode0[3:0] &

vctrl_it_lumaintrapredmode0[3:0] & vctrl_it_lumaintrapredmode0[3:0] &

vctrl_it_lumaintrapredmode0[3:0] & vctrl_it_lumaintrapredmode0[3:0] &

vctrl_it_lumaintrapredmode0[3:0] & vctrl_it_lumaintrapredmode0[3:0] &

vctrl_it_lumaintrapredmode0[3:0] & vctrl_it_lumaintrapredmode0[3:0] &

vctrl_it_lumaintrapredmode0[3:0] & vctrl_it_lumaintrapredmode0[3:0] &

vctrl_it_lumaintrapredmode0[3:0] & vctrl_it_lumaintrapredmode0[3:0] &

vctrl_it_lumaintrapredmode0[3:0] & vctrl_it_lumaintrapredmode0[3:0]

vctrl_pred_mode_noextend_8x8[63:0]
"h000" & vctrl_it_lumaintrapredmode0[15:12] &

"h000" & vctrl_it_lumaintrapredmode0[11:8] &

"h000" & vctrl_it_lumaintrapredmode0[7:4] &

"h000" & vctrl_it_lumaintrapredmode0[3:0]

vctrl_pred_mode_noextend_4x4[63:0] vctrl_it_lumaintrapredmode3[15:0] & vctrl_it_lumaintrapredmode2[15:0] &

vctrl_it_lumaintrapredmode1[15:0] & vctrl_it_lumaintrapredmode0[15:0]

164 Doc Ref # IHD-OS-DG1-Vol 11-2.21

Inline data for RefPicSelect

ExtendedForm

0 0 0 0 or 1 1 1 1

16x16 16x8 8x16 8x8 16x16 16x8 8x16

DW8 - 31:24 - - - L0 blk3 L0 blk0 - L0 blk1

DW8 - 23:16 - - - L0 blk2 L0 blk0 - L0 blk0

DW8 - 15:8 - L0 blk1 L0 blk1 L0 blk1 L0 blk0 - L0 blk1

DW8 - 7:0 L0 blk0 L0 blk0 L0 blk0 L0 blk0 L0 blk0 - L0 blk0

DW9 - 31:24 - - - L1 blk3 L1 blk0 - L1 blk1

DW9 - 23:16 - - - L1 blk2 L1 blk0 - L1 blk0

DW9 - 15:8 - L1 blk1 L1 blk1 L1 blk1 L1 blk0 - L1 blk1

DW9 - 7:0 L1 blk0 L1 blk0 L1 blk0 L1 blk0 L1 blk0 - L1 blk0

The inline data content of Dwords 4 to 6 is defined either for intra prediction or for inter prediction, but

not both.

Inline data subfields for an Intra Macroblock

Dword Bit Description

7 31:16
LumaIntraMode[1]

Specifies the Luma Intra Prediction mode for four 4x4 sub-block of a MB, 4-bit each.

See the bit assignment table later in this section.

15:0
LumaIntraMode[0]

Specifies the Luma Intra Prediction mode for four 4x4 sub-block, four 8x8 block or one intra16x16 of

a MB.

4-bit per 4x4 sub-block (Transform8x8Flag=0, Mbtype=0 and intraMbFlag=1) or 8x8 block

(Transform8x8Flag=1, Mbtype=0, MbFlag=1), since there are 9 intra modes.

4-bit for intra16x16 MB (Transform8x8Flag=0, Mbtype=1 to 24 and intraMbFlag=1), but only the

LSBit[1:0] is valid, since there are only 4 intra modes.

See the bit assignment table later in this section.

8 31:16
LumaIntraMode[3]

Specifies the Luma Intra Prediction mode for four 4x4 sub-block of a MB, 4-bit each.

See the bit assignment table later in this section.

15:0
LumaIntraMode[2]

Specifies the Luma Intra Prediction mode for four 4x4 sub-block of a MB, 4-bit each.

See the bit assignment later in this section.

Doc Ref # IHD-OS-DG1-Vol 11-2.21 165

Dword Bit Description

9 31:8 Reserved: MBZ

 (Reserved for encocder turbo mode IntraResidueDataSize, when this is not 0, optional residue

data are provided to the PAK; Reserved for decoder)

7:0
IntraStruct

This field contains 6 bits for IntraPredAvailFlags[5:0] and 2 bits for ChromaIntraPredMode. The

IntraPredAvailFlags[4:0] (the lower 5 bits) have already included the effect of the

constrained_intra_pred_flag. See the diagram later for the definition of neighbor position around the

current MB or MB pair (in MBAFF mode).

1 - IntraPredAvailFlagY, indicates the values of samples of neighbor Y can be used in intra prediction

for the current MB.

0 - IntraPredAvailFlagY, indicates the values of samples of neighbor Y is not available for intra

prediction of the current MB.

IntraPredAvailFlag-A and -E can only be different from each other when constrained_intra_pred_flag

is equal to 1 and mb_field_decoding_flag is equal to 1 and the value of the mb_field_decoding_flag

for the macroblock pair to the left of the current macroblock is equal to 0 (which can only occur

when MbaffFrameFlag is equal to 1).

IntraPredAvailFlag-F is used only if

• It is in MBAFF mode, that is, MbaffFrameFlag = 1

• The current macroblock is of frame type, that is, MbFieldFag = 0

• The current macroblock type is Intra8x8, that is, IntraMbFlag = INTRA, IntraMbMode =

INTRA_8x8, and Transform8x8Flag = 1

In any other cases IntraPredAvailFlag-A shall be used instead.

Bits IntraPredAvailFlags Definition

7
IntraPredAvailFlagF - F (Left 8th row (-1,7) neighbor)

6
IntraPredAvailFlagA - A (Left neighbor top half)

5
IntraPredAvailFlagE - E (Left neighbor bottom half)

4
IntraPredAvailFlagB - B (Top neighbor)

3
IntraPredAvailFlagC - C (Top right neighbor)

2
IntraPredAvailFlagD - D (Top left corner neighbor)

1:0
ChromaIntraPredMode - 2 bits to specify 1 of 4 chroma intra prediction modes, see the

table in later section.

166 Doc Ref # IHD-OS-DG1-Vol 11-2.21

Inline data subfields for an Inter Macroblock

DWord Bit Description

7 31:16 Reserved: MBZ

15:8
SubMbPredMode (Sub-Macroblock Prediction Mode): If InterMbMode is INTER8x8, this field

describes the prediction mode of the sub-partitions in the four 8x8 sub-macroblock. It contains four

subfields each with 2-bits, corresponding to the four 8x8 sub-macroblocks in sequential order.

This field is derived from sub_mb_type for a BP_8x8 macroblock.

This field is derived from MbType for a non-BP_8x8 inter macroblock, and carries redundant

information as MbType).

If InterMbMode is INTER16x16, INTER16x8 or INTER8x16, this field carries the prediction modes of

the sub macroblock (one 16x16, two 16x8 or two 8x16). The unused bits are set to zero.

Bits [1:0]: SubMbPredMode[0]

Bits [3:2]: SubMbPredMode[1]

Bits [5:4]: SubMbPredMode[2]

Bits [7:6]: SubMbPredMode[3]

7:0
SubMbShape (Sub Macroblock Shape)

This field describes the sub-block partitioning of each sub macroblocks (four 8x8 blocks). It contains

four subfields each with 2-bits, corresponding to the 4 fixed size 8x8 sub macroblocks in sequential

order.

This field is provided for MB with sub_mb_type equal to BP_8x8 only (B_8x8 and P_8x8 as defined in

DXVA). Otherwise, this field is ignored by hardware

Bits [1:0]: SubMbShape[0] - for 8x8 Block 0

Bits [3:2]: SubMbShape[1] - for 8x8 Block 1

Bits [5:4]: SubMbShape[2] - for 8x8 Block 2

Bits [7:6]: SubMbShape[3] - for 8x8 Block 3

Blocks of the MB is numbered as follows :

01

23

Each 2-bit value [1:0] is defined as :

00 - SubMbPartWidth=8, SubMbPartHeight=8

01 - SubMbPartWidth=8, SubMbPartHeight=4

10 - SubMbPartWidth=4, SubMbPartHeight=8

11 - SubMbPartWidth=4, SubMbPartHeight=4

8 31:24
RefPicSelect[0][3]

Doc Ref # IHD-OS-DG1-Vol 11-2.21 167

DWord Bit Description

Support up to 4 reference pictures per L0 direction, one per MB partition, if exists. See details in

later section. This field specifies the reference index into the Reference Picture List0 Table.

23:16
RefPicSelect[0][2]

Support up to 4 reference pictures per L0 direction, one per MB partition, if exists. See details in

later section. This field specifies the reference index into the Reference Picture List0 Table.

15:8
RefPicSelect[0][1]

Support up to 4 reference pictures per L0 direction, one per MB partition, if exists. See details in

later section. This field specifies the reference index into the Reference Picture List0 Table.

7:0
RefPicSelect[0][0]

Support up to 4 reference pictures per L0 direction, one per MB partition, if exists. See details in

later section. This field specifies the reference index into the Reference Picture List0 Table.

9 31:24
RefPicSelect[1] [3]

Support up to 4 reference pictures per L1 direction, one per MB partition, if exists. See details in

later section. This field specifies the reference index into the Reference Picture List1 Table.

For P- picture these bits must be set to zero.

23:16
RefPicSelect[1][2]

Support up to 4 reference pictures per L1 direction, one per MB partition, if exists. See details in

later section. This field specifies the reference index into the Reference Picture List1 Table.

For P- picture these bits must be set to zero.

15:8
RefPicSelect[1][1]

Support up to 4 reference pictures per L1 direction, one per MB partition, if exists. See details in

later section. This field specifies the reference index into the Reference Picture List1 Table.

For P- picture these bits must be set to zero.

7:0
RefPicSelect[1][0]

Support up to 4 reference pictures per L1 direction, one per MB partition, if exists. See details in

later section. This field specifies the reference index into the Reference Picture List1 Table.

For P- picture these bits must be set to zero.

168 Doc Ref # IHD-OS-DG1-Vol 11-2.21

Luma Intra Prediction Modes

Luma Intra Prediction Modes (LumaIntraPredModes) is defined in Definition of LumaIntraPredModes. It is

further categorized as Intra16x16PredMode, Intra8x8PredMode and Intra4x4PredMode, operating on

16x16, 8x8 and 4x4 block sizes, respectively. illustrates the intra prediction directions geometrically for

the Intra4x4 prediction. When a macroblock is subdivided, the intra prediction is performed for the

subdivision in a predetermined order. For example, Numbers of Block4x4 in a 16x16 region shows the

block order for Intra4x4 prediction, and Numbers of Block4x4 in an 8x8 region or numbers of Block8x8 in

a 16x16 region shows the block order of Block8x8 in a 16x16 region or Block4x4 in an 8x8 region.

Definition of LumaIntraPredModes

LumaIntraPredModes

[index] Intra16x16PredMode Intra8x8PredMode Intra4x4PredMode

Index Bit

MbType = [1...24]

Transform8x8Flag = 0

MbType = 0

Transform8x8Flag = 1

MbType = 0

Transform8x8Flag = 0

0 15:12 MBZ
Block8x8 3 Block4x4 3 (0_0)

 11:8 MBZ
Block8x8 2 Block4x4 2 (0_1)

 7:4 MBZ
Block8x8 1 Block4x4 1 (0_2)

 3:0
Block16x16 Block8x8 0 Block4x4 0 (0_3)

1 15:12 MBZ MBZ
Block4x4 7 (1_0)

 11:8 MBZ MBZ
Block4x4 6 (1_1)

 7:4 MBZ MBZ
Block4x4 5 (1_2)

 3:0 MBZ MBZ
Block4x4 4 (1_3)

2 15:12 MBZ MBZ
Block4x4 11 (2_0)

 11:8 MBZ MBZ
Block4x4 10 (2_1)

 7:4 MBZ MBZ
Block4x4 9 (2 2)

 3:0 MBZ MBZ
Block4x4 8 (2_3)

3 15:12 MBZ MBZ
Block4x4 15 (3_0)

 11:8 MBZ MBZ
Block4x4 14 (3_1)

Doc Ref # IHD-OS-DG1-Vol 11-2.21 169

LumaIntraPredModes

[index] Intra16x16PredMode Intra8x8PredMode Intra4x4PredMode

Index Bit

MbType = [1...24]

Transform8x8Flag = 0

MbType = 0

Transform8x8Flag = 1

MbType = 0

Transform8x8Flag = 0

 7:4 MBZ MBZ
Block4x4 13 (3_2)

 3:0 MBZ MBZ
Block4x4 12 (3_3)

Definition of Intra16x16PredMode

Intra16x16PredMode Description

0
Intra_16x16_Vertical

1
Intra_16x16_Horizontal

2
Intra_16x16_DC

3
Intra_16x16_Plane

4 - 15 Reserved

Definition of Intra8x8PredMode

Intra8x8PredMode Description

0
Intra_8x8_Vertical

1
Intra_8x8_Horizontal

2
Intra_8x8_DC

3
Intra_8x8_Diagonal_Down_Left

4
Intra_8x8_Diagonal_Down_Right

5
Intra_8x8_Vertical_Right

6
Intra_8x8_Horizontal_Down

7
Intra_8x8_Vertical_Left

8
Intra_8x8_Horizontal_Up

9 - 15 Reserved

170 Doc Ref # IHD-OS-DG1-Vol 11-2.21

Definition of Intra4x4PredMode

Intra4x4PredMode Description

0
Intra_4x4_Vertical

1
Intra_4x4_Horizontal

2
Intra_4x4_DC

3
Intra_4x4_Diagonal_Down_Left

4
Intra_4x4_Diagonal_Down_Right

5
Intra_4x4_Vertical_Right

6
Intra_4x4_Horizontal_Down

7
Intra_4x4_Vertical_Left

8
Intra_4x4_Horizontal_Up

9 - 15 Reserved

Intra_4x4 prediction mode directions

Doc Ref # IHD-OS-DG1-Vol 11-2.21 171

Numbers of Block4x4 in a 16x16 region

Numbers of Block4x4 in an 8x8 region or numbers of Block8x8 in a 16x16 region

172 Doc Ref # IHD-OS-DG1-Vol 11-2.21

Definition of Chroma Intra Prediction Mode

ChromaIntraPredMode

 (intra_chroma_pred_mode) Name of intra_chroma_pred_mode

0 Intra_Chroma_DC (prediction mode)

1 Intra_Chroma_Horizontal (prediction mode)

2 Intra_Chroma_Vertical (prediction mode)

3 Intra_Chroma_Plane (prediction mode)

Reference Indices Defined for Each MB Partition Type and Bit Assignment

 frame/field MB/Picture

MB partitioning 16x16 16x8 8x16 8x8

RefIdxL0/1[0] blk0 blk0 blk0 blk0 Bit 7:0

RefIdxL0/1[1] x blk1 blk1 blk1 Bit 15:8

RefIdxL0/1[2] x x x blk2 Bit 23:16

RefIdxL0/1[3] x x x blk3 Bit 31:24

MB Neighbor Availability in Intra-Prediction Modes (IntraPredAvailFlags)

Current MB is labelled as X. For non-MBAFF mode, 4 neighbors, A, B, C, D, are depicted in the following

picture and are defined as the following.

• MB D: top left neighbor of current MB X

• MB C: top right neighbor of current MB X

• MB B: top neighbor of current MB X

• MB A: left neighbor of the current MB X

mbAddrD

D

(top-left)

mbAddrB

B

(top)

mbAddrC

C

(top-right)

mbAddrA

A

(left)

CurrMbAddrX

X

N/A

N/A N/A N/A

For MBAFF mode, the current MB is labelled as X0 or X1, 4 neighbor pairs, A0/A1, B0/B1, C0/C1, D0/D1,

are depicted in the following picture and are defined as the following.

• MB D0: first MB of top left neighbor MB pair of current MB pair X0/X1

Doc Ref # IHD-OS-DG1-Vol 11-2.21 173

• MB D1: second MB of top left neighbor MB pair of current MB pair X0/X1

• MB C0: first MB of top right neighbor MB pair of current MB pair X0/X1

• MB C1: second MB of top right neighbor MB pair of current MB pair X0/X1

• MB B0: first MB of top neighbor MB pair of current MB pari X0/X1

• MB B1: second MB of top neighbor MB pair of current MB pari X0/X1

• MB A0: first MB of left neighbor MB pair of the current MB pair X0/X1

• MB A1: second MB of left neighbor MB pair of the current MB pair X0/X1

mbAddrD

D0

mbAddrB

B0

mbAddrC

C0

mbAddrD+1

D1

mbAddrB+1

B1

mbAddrC+1

C1

mbAddrA

A0

CurrMbAddrX

X0

or

N/A

mbAddrA+1

A1

CurrMbAddrX

X1

N/A

For a given macroblock X (or X0/X1), the 6 neighbor availability signals, namely, A, B, C, D, E, F, are

defined as the following.

• IntraPredAvailFlagF - F (Single neighbor pixel at the left 8th row (-1,7)

• IntraPredAvailFlagA - A (Left neighbor top half pixel group)

• IntraPredAvailFlagE - E (Left neighbor bottom half pixel group)

• IntraPredAvailFlagB - B (Top neighbor pixel group)

• IntraPredAvailFlagC - C (Top right neighbor pixel group)

• IntraPredAvailFlagD - D (Top left corner neighbor pixel)

The following table depicts the generation of IntraPredAvailFlags[5:0] signals in a condensed form. It

should note that for most cases only one input neighbor signal is assigned for each condition. The

exception is in the four places for deriving left neighbor A and E where the neighbor is only available if

left neighbors (A0 and A1) are both available (A0&A1). Also note that F takes output value very similar to

that for A except the two "AND" conditions, where F is assigned to A1 instead of (A0&A1).

174 Doc Ref # IHD-OS-DG1-Vol 11-2.21

Table: Definition of intra-prediction neighbor availability calculation in MBAFF mode

Output => D B C A E F

Current X \

Neighbor Y

Y-

Frame

Y-

Field

Y-

Frame

Y-

Field

Y-

Frame

Y-

Field

Y-

Frame

Y-

Field

Y-

Frame

Y-

Field

Y-

Frame

Y-

Field

X0

 (Top)

X-Frame D1 D1 B1 B1 C1 C1 A0 A0 &

A1

A0 A0 &

A1

A0 A1

X-Field D1 D0 B1 B0 C1 C0 A0 A0 A1 A0 A0 A0

X1

(Bottom)
X-Frame A0 A1 X0 N/A 0 0 A1

A0 &

A1

A1
A0 &

A1

A1 A1

X-Field D1 D1 B1 B1 C1 C1 A0 A1 A1 A1 A0 A1

In the table below, Definition of intra-prediction neighbor availability calculation in MBAFF mode, X-

Frame or X-Field indicates the frame/field mode of the current MB; and Y-Frame or Y-Field indicates the

corresponding neighbor MB for the given neighbor location, being upper left (D) or left (A) for example.

Therefore, "Y-" takes the selected neighbor MB name as in the output cell in the same column. For

example, for output D, if X1 is a frame MB, Y = A, if X1 is a field MB, Y = D.

For non-MBAFF mode, as A0=A1, B0=B1, C0=C1 and D0=D1, the neighbor assignment is degenerated

into the following simple table. Here, E is assigned to the same as A and F is forced to 0.

Table: Definition of intra-prediction neighbor availability calculation in non-MBAFF mode

Output => D B C A E F

X D0 B0 C0 A0 A0 0

To further explain the neighbor assignment rules in Definition of intra-prediction neighbor availability

calculation in MBAFF mode, the following table provides description for each condition. Please note that

this table is informative as it provides redundant information as in Definition of intra-prediction

neighbor availability calculation in MBAFF mode.

Table: Detailed explanation of intra-prediction neighbor availability calculation in MBAFF mode

Current

MB

Current

MB Field

Neighbor

MB Field

Neighbor

MB Select

(Y=?)

Neighbor Avail

Result

(OUTPUT) Description

D

X0

 (Top)

X-Frame Y-Frame D D1 Top Frame MB uses [-1,-1] = D_31, thus D1

only, regardless D frame or field pair X-Frame Y-Field D D1

X-Field Y-Frame D D1 Top Field MB uses [-1,-2] = D_30, thus if D is

frame pair, takes D1 (D1_14 pixel), and if D is

field pair, takes D0 (D0_15 pixel)
X-Field Y-Field D D0

X1

 (Bottom)

X-Frame Y-Frame A A0 Bottom Frame MB uses [-1,15] = A_15, thus

A0 (A0_15 pixel) if A is a frame pair, or A1

(A1_7 pixel), if A is a field pair
X-Frame Y-Field A A1

Doc Ref # IHD-OS-DG1-Vol 11-2.21 175

Current

MB

Current

MB Field

Neighbor

MB Field

Neighbor

MB Select

(Y=?)

Neighbor Avail

Result

(OUTPUT) Description

D

X-Field Y-Frame D D1 Bottom Field MB uses [-1,-1] = D_31, thus D1

only, regardless D frame or field pair X-Field Y-Field D D1

B

X0

 (Top)

X-Frame Y-Frame B B1 Top Frame MB uses [0...15,-1] = B_31, thus B1

only, regardless B frame or field pair X-Frame Y-Field B B1

X-Field Y-Frame B B1 Top Field MB uses [0...15,-2] = B_30, thus if B

is frame pair, takes B1 (B1_14 row), and if B is

field pair, takes B0 (B0_15 row)
X-Field Y-Field B B0

X1

 (Bottom)

X-Frame Y-Frame X X0 Bottom Frame MB uses [0...15,15], thus X0

(X0_15 row)

X-Frame Y-Field X n/a Note: X0 and X1 must have the same field

type, this row is n/a.

X-Field Y-Frame B B1 Bottom Field MB uses [0...15,-1] = B_31, thus

B1 only, regardless B frame or field pair X-Field Y-Field B B1

C

X0

 (Top)

X-Frame Y-Frame C C1 Top Frame MB uses [16...23,-1] = C_31, thus

C1 only, regardless C frame or field pair X-Frame Y-Field C C1

X-Field Y-Frame C C1 Top Field MB uses [16...23,-2] = C_30, thus if

C is frame pair, takes C1 (C1_14 row), and if C

is field pair, takes C0 (C0_15 row)
X-Field Y-Field C C0

X1

 (Bottom)

X-Frame Y-Frame n/a 0 Bottom Frame MB doesn't have left-top

neighbor by definition, thus forced to 0 X-Frame Y-Field n/a 0

X-Field Y-Frame C C1 Bottom Field MB uses [16...23,-1] = C_31,

thus C1 only, regardless C frame or field pair X-Field Y-Field C C1

A

X0

 (Top)

X-Frame Y-Frame A A0 First Half of Top Frame MB uses [-1,0...7],

thus A0 if A is a frame pair; but is only avail if

both A0 and A1 are avail if A is a field pair

due to the mix

X-Frame Y-Field A A0&A1

X-Field Y-Frame A A0 First Half of Top Field MB uses [-1,0..2..4..14],

thus take A0 (if A is frame pair, takes A0 even

lines, and if A is field pair, takes A0 first half)
X-Field Y-Field A A0

X1

 (Bottom)

X-Frame Y-Frame A A1 First Half of Bottom Frame MB uses [-

1,16...23], thus A1 if A is a frame pair; but is

only avail if both A0 and A1 are avail if A is a

field pair due to the mix

X-Frame Y-Field A A0&A1

X-Field Y-Frame A A0 First Half of Bottom Field MB uses [-

176 Doc Ref # IHD-OS-DG1-Vol 11-2.21

Current

MB

Current

MB Field

Neighbor

MB Field

Neighbor

MB Select

(Y=?)

Neighbor Avail

Result

(OUTPUT) Description

D

X-Field Y-Field A A1 1,1..3..15], thus take A0 (if A is frame pair,

takes A0 odd lines, and if A is field pair, takes

A1 first half)

E

X0

 (Top)

X-Frame Y-Frame A A0 Second Half of Top Frame MB uses [-1,8...15],

thus A0 if A is a frame pair; but is only avail if

both A0 and A1 are avail if A is a field pair

due to the mix

X-Frame Y-Field A A0&A1

X-Field Y-Frame A A1 Second Half of Top Field MB uses [-

1,16..18..30], thus take A1 (if A is frame pair,

takes A1 even lines, and if A is field pair,

takes A0 second half)

X-Field Y-Field A A0

X1

 (Bottom)

X-Frame Y-Frame A A1 Second Half of Bottom Frame MB uses [-

1,24...31], thus A1 if A is a frame pair; but is

only avail if both A0 and A1 are avail if A is a

field pair due to the mix

X-Frame Y-Field A A0&A1

X-Field Y-Frame A A1 Second Half of Bottom Field MB uses [-

1,17..19..31], thus takes A1 (if A is frame pair,

takes A1 odd lines, and if A is field pair, takes

A1 second half)

X-Field Y-Field A A1

F

X0

 (Top)

X-Frame Y-Frame A A0 Top Frame MB uses [-1,7] = A_7 (odd

location), thus A0 if A is frame pair and A1 if

field pair
X-Frame Y-Field A A1

X-Field Y-Frame A A0 Top Field MB uses [-1,14] = A_14 (even

location), thus A0 regardless A frame or field

pair
X-Field Y-Field A A0

X1

 (Bottom)

X-Frame Y-Frame A A1 Bottom Frame MB uses [-1,23] = A_23 (odd

location), thus A1 regardless A frame or field

pair
X-Frame Y-Field A A1

X-Field Y-Frame A A0 Bottom Field MB uses [-1,15] = A_15 (odd

location), thus A0 if A is frame pair and A1 if

A is field pair
X-Field Y-Field A A1

Macroblock Type for Intra Cases

MbType follows two different tables according to whether the macroblock is an inter or intra

macroblock according to IntraMbFlag.

For an intra macroblock, MbType, as defined in MbType definition for Intra Macroblock, carries

redundant information as IntraMbMode. The notation I_16x16_x_y_z used in the table, 'x' is

Doc Ref # IHD-OS-DG1-Vol 11-2.21 177

Intra16x16LumaPredMode, 'y' is ChromaCbpInd, and 'z' is LumaCbpInd, as defined in Sub field definition

used by MbType for a macroblock with Intra16x16 prediction.

MbType definition for Intra Macroblock

Macroblock Type MbType

I_4x4 0

I_8x8 0

I_16x16_0_0_0 1

I_16x16_1_0_0 2

I_16x16_2_0_0 3

I_16x16_3_0_0 4

I_16x16_0_1_0 5

I_16x16_1_1_0 6

I_16x16_2_1_0 7

I_16x16_3_1_0 8

I_16x16_0_2_0 9

I_16x16_1_2_0 Ah

I_16x16_2_2_0 Bh

I_16x16_3_2_0 Ch

I_16x16_0_0_1 Dh

I_16x16_1_0_1 Eh

I_16x16_2_0_1 Fh

I_16x16_3_0_1 10h

I_16x16_0_1_1 11h

I_16x16_1_1_1 12h

I_16x16_2_1_1 13h

178 Doc Ref # IHD-OS-DG1-Vol 11-2.21

Macroblock Type MbType

I_16x16_3_1_1 14h

I_16x16_0_2_1 15h

I_16x16_1_2_1 16h

I_16x16_2_2_1 17h

I_16x16_3_2_1 18h

I_PCM 19h (used by HW)

Note: MbType here is identical as specified in DXVA 2.0.

For Intra_16x16 modes, the 5 bits of value (MbType - 1) have the following meanings.

Sub field definition used by MbType for a macroblock with Intra16x16 prediction

Bits Description

4
LumaCbpInd - Luma Coded Block Pattern Indicator

0 means none of the luma blocks are coded. 1 means that at least one luma

block is coded.

0 = SUBMODE_I16_L_0

1 = SUBMODE_I16_L_NZ

In VME output, this field is forced to be 1 before adding 1 in Intra_16x16 mode.

3:2
ChromaCbpInd - Chroma Coded Block Pattern Indicator

00 means none of chroma blocks are coded. 01 means that only the chroma DC

block is coded, but all AC blocks are not coded. 10 means that at least one AC

chroma block is coded.

00 = SUBMODE_I16_C_0

01 = SUBMODE_I16_C_DC

10 = SUBMODE_I16_C_NZ

11 = Reserved

In VME output, this field is forced to be 10 before adding 1 in Intra_16x16 mode.

Programming Note: Adding 1 to MbType by VME hardware may have carry in to

this field. But as '11' is reserved, the carry-in doesn't propagate into bit 4 or higher.

This allows software to update MbType, if desired, using the redundant

LumaIntraPredModes information.

1:0
Intra16x16PredMode - Intra16x16 Prediction Mode

Doc Ref # IHD-OS-DG1-Vol 11-2.21 179

Bits Description

These two bits carries redundant (identical) information as that in

LumaIntraPredModes[0][0].

0 = SUBMODE_I16_VER

1 = SUBMODE_I16_HOR

2 = SUBMODE_I16_DC

3 = SUBMODE_I16_PLANE

IntraMbMode definition

IntraMbMode [1:0] Description Supported by VME? Used by PAK?

0
INTRA_16x16 (redundant with MbType)

Yes Ignored

1
INTRA_8x8

Yes Yes

2
INTRA_4x4

Yes Yes

3
IPCM (redundant with MbType)

No Ignored

As an alternative representation, MbType is logically the same as the following, except the I_PCM and

I_NxN (i.e. I_4x4 and I_8x8) cases:

• 24 types of 16x16 intra modes: A+B+C+D: (1h - 18h)

MBTYPE_INTRA_16x16 1h A

o 4 Intra16x16 modes:

SUBMODE_I16_VER 0 B

SUBMODE_I16_HOR 1 B

SUBMODE_I16_DC 2 B

SUBMODE_I16_PLN 3 B

o 3 Chroma Cbp indices:

SUBMODE_I16_C_0 0 C

SUBMODE_I16_C_DC 4 C

SUBMODE_I16_C_NZ 8 C

o 2 Luma Cbp indices:

SUBMODE_I16_L_0 0 D

SUBMODE_I16_L_NZ Ch D

180 Doc Ref # IHD-OS-DG1-Vol 11-2.21

Macroblock Type for Inter Cases

Sub-Macroblock Prediction Mode, SubMbPredMode, indicates the prediction mode for the sub-

partitions. Prediction mode specifies prediction direction being forward (from L0), backward (from L1) or

bi-directional (from both L0 and L1). Its meaning depends on InterMbMode. Definition of

SubMbPredMode[i] provides the definition of the field.

• If InterMbMode is INTER16x16, only SubMbPredMode[0] is valid, it describes the prediction mode

of the 16x16 macroblock. The other entries are set to zero by hardware.

o For AVC, SubMbPredMode[0] contains redundant information as encoded in MbType

parameter.

o Note: SubMbPredMode[1]-[3] are intentionally set to zero to allow a simple LUT to derive

MbType as described later.

• If InterMbMode is INTER16x8, and INTER8x16, only the first two entries SubMbPredMode[0] and

SubMbPredMode[1] are valid, describing the sub-macroblock prediction mode.

o For AVC, SubMbPredMode[0]/[1] contains redundant information as encoded in MbType

parameter.

o Note: SubMbPredMode[2]-[3] are intentionally set to zero to allow a simple LUT to derive

MbType as described later.

• If InterMbMode is INTER8x8, each entry of SubMbPredMode describes the prediction mode of the

sub-partition of an 8x8 sub-macroblock.

o For AVC, SubMbPredMode can be derived from sub_mb_type field for BP_8x8

macroblocks as defined in AVC spec.

o Note on Direct Sub-macroblock Prediction Mode: Direct prediction is not conveyed through

SubMbPredMode, instead, it is carried through Direct8x8Pattern.

InterMbMode definition

MbSkipFlag InterMbMode Description

0 0 INTER16x16

0 1 INTER16x8

0 2 INTER8x16

0 3 INTER8x8

1 0 PSKIP/BSKIP16x16*

1 3 BSKIP

1 1, 2 Reserved

Used by PAK Ignored by PAK

* BSKIP16x16 is an optional non-standard but equivalent optimization.

Doc Ref # IHD-OS-DG1-Vol 11-2.21 181

Definition of SubMbPredMode based on InterMbMode

SubMbPredMode INTER16x16 INTER16x8 INTER8x16 INTER8x8

Bit MbType = [1...3] MbType = [16h] MbType = [4...15h] MbType = [16h]

7:6 MBZ MBZ MBZ Block8x8 3

5:4 MBZ MBZ MBZ Block8x8 2

3:2 MBZ Block16x8 1 Block8x16 1 Block8x8 1

1:0 Block16x16 Block16x8 0 Block8x16 0 Block8x8 0

 Ignored by PAK Ignored by PAK Ignored by PAK Used by PAK

Definition of SubMbPredMode[i]

SubMbPredMode Description InterMbMode VME Output MvCountPred Notes

0
Pred_L0 All Yes 1 P or B Slice

1
Pred_L1 All Yes 1 B Slice Only

2
BiPred All Yes 2 B Slice Only

3 Reserved Reserved Reserved Reserved Reserved

Sub-Macroblock Shape, SubMbShape[i], for i = 0...3, describes the shape of the sub partitions of the 8x8

sub-macroblock of a BP_8x8 macroblock. This field is only valid if InterMBMode is INTER8x8. They are

defined in Definition of SubMbShape for an 8x8 region of a BP_8x8 macroblock (including BSKIP,

BDIRECT). The parameters can be derived from sub_mb_type field as defined in AVC spec.

Note: These fields must be correctly set even for Direct or Skip 8x8 cases, the individual B_Direct_8x8

block is flagged by the Direct8x8Pattern variable.

Definition of SubMbShape for an 8x8 region of a BP_8x8 macroblock (including BSKIP, BDIRECT)

 Description

SubMbShape NumSubMbPart SubMbPartWidth SubMbPartHeight MvCountShape

0
1 8 8 1

1
2 8 4 2

2
2 4 8 2

3
4 4 4 4

For an inter macroblock, MbType, carries redundant information as InterMbMode and SubMbPredMode.

MbType definition for Inter Macroblock (and MbSkipflag = 0) provides the typical inter macroblock types

and Additional MbType definition with Direct/Skip for Inter Macroblock provides that with skip and

direct modes. The definition of MbType for both P slice and B slice is the same and is equivalent to that

182 Doc Ref # IHD-OS-DG1-Vol 11-2.21

for mb_type of a B slice in the AVC spec. As direct mode is indicated using a separate field

Direct8x8Pattern, 0 is reserved for MbType.

Here, MVCount is the number of motion vectors actually encoded in the bitstream. It is informative. For a

BP_8x8 or equivalent Skip/Direct macroblock, MVCount is the sum of the following term for the four 8x8

sub macroblock (with i = 0...3):

MvCountShape[i] * MvCountPred[i] * MvCountDirect[i]

where MvCountShape[i] is block count for sub macroblock [i], MvCountPred[i] is the motion vector count

for each block of sub macroblock[i], and MvCountDirect[i] is the multipler for direct mode for B Slice,

indicating whether motion vectors are coded or not. It must be set to 1 for P slice. For B Slice,

MvCountDirect[i] = !Direct8x8Pattern[i], which is 0 for a sub macroblock coded as direct mode and 1

otherwise.

In the tables, "DC" stands for "Don't Care" as PAK hardware ignores these fields.

MbType definition for Inter Macroblock (and MbSkipflag = 0)

Macroblock Type MbType MbSkipFlag Direct8x8Pattern SubMbShape SubMbPredMode MVCount

Reserved 0 - - - - -

BP_L0_16x16 1 0 0 DC DC 1

B_L1_16x16 2 0 0 DC DC 1

B_Bi_16x16 3 0 0 DC DC 2

BP_L0_L0_16x8 4 0 0 DC DC 2

BP_L0_L0_8x16 5 0 0 DC DC 2

B_L1_L1_16x8 6 0 0 DC DC 2

B_L1_L1_8x16 7 0 0 DC DC 2

B_L0_L1_16x8 8 0 0 DC DC 2

B_L0_L1_8x16 9 0 0 DC DC 2

B_L1_L0_16x8 0Ah 0 0 DC DC 2

B_L1_L0_8x16 0Bh 0 0 DC DC 2

B_L0_Bi_16x8 0Ch 0 0 DC DC 3

B_L0_Bi_8x16 0Dh 0 0 DC DC 3

B_L1_Bi_16x8 0Eh 0 0 DC DC 3

B_L1_Bi_8x16 0Fh 0 0 DC DC 3

B_Bi_L0_16x8 10h 0 0 DC DC 3

B_Bi_L0_8x16 11h 0 0 DC DC 3

B_Bi_L1_16x8 12h 0 0 DC DC 3

B_Bi_L1_8x16 13h 0 0 DC DC 3

B_Bi_Bi_16x8 14h 0 0 DC DC 4

B_Bi_Bi_8x16 15h 0 0 DC DC 4

BP_8x8 16h 0 != Fh vary vary Sum

Doc Ref # IHD-OS-DG1-Vol 11-2.21 183

Macroblock Type MbType MbSkipFlag Direct8x8Pattern SubMbShape SubMbPredMode MVCount

Reserved 17h-1Fh - - - - -

Additional MbType definition with Direct/Skip for Inter Macroblock

Macroblock Type

Mb

Typ

e

Xfr

m

 8x8

MbSki

p

 Flag

Direct8x

8

 Pattern

SubM

b

 Shape

SubMb

PredMod

e

MvCoun

t Notes

P_Skip_16x16 1 - 1 DC DC DC 0 Skipped macroblock.

Motion compensation

like P_L0_16x16

B_Skip_16x16_4MVPair 16h vary 1 Fh 0 vary 0 Skipped macroblock.

Motion compensation

like B_8x8 with 8x8

subblocks, when

direct_8x8_inference_fl

ag is set to 1

B_Skip_16x16_16MVPair 16h 0 1 Fh FFh vary 0 Skipped macroblock.

Motion compensation

like B_8x8 with 4x4

subblocks, when

direct_8x8_inference_fl

ag is set to 0

B_Direct_16x16_4MVPai

r

16h vary 0 Fh 0 vary 0 MbType coded as

B_Direct_16x16. Motion

compensation like B_8x8

with 8x8 subblocks,

when

direct_8x8_inference_fl

ag is set to 1

B_Direct_16x16_16MVP

air

16h 0 0 Fh FFh vary 0 MbType coded as

B_Direct_16x16. Motion

compensation like B_8x8

with 4x4 subblocks,

when

direct_8x8_inference_fl

ag is set to 0

People might notice that B_DIRECT_16x16 and B_SKIP are mapped on BP_8x8 for AVC decoding interface

in IT mode as the motion compensation operation for both modes are the same as BP_8x8. According to

AVC Spec, motion vectors for B_DIRECT_16x16 and B_SKIP are derived from temporally co-located

macroblock on an 8x8 sub macroblock basis if direct_8x8_inference_flag is set to 1 or on a 4x4 block

basis if it is set to 0. For each sub macroblock or block, SubMbPredMode is derived, thus can any of the

valid numbers. Motion vectors may also be different. In spatial direct mode, the motion vectors are

subject to spatial neighbor macroblocks as well as co-located macroblock. The spatial prediction is based

on the neighbor macroblocks, so the same spatial predicted motion vector applies to all sub

184 Doc Ref # IHD-OS-DG1-Vol 11-2.21

macroblocks or blocks. However, under certain conditions, temporal predictor may replace (colZeroFlag)

the spatial predictor for a given sub macroblock or block. Thus the motion vectors may differ.

In MbType definition for Inter Macroblock (and MbSkipflag = 0), the macroblock type names for major

partitions nicely follow forms BP_MbPredMode_MbShape (like BP_L0_16x16) and

B_MbPredMode0_MbPredMode1_MbShape (like B_L0_Bi_16x8). For minor partitions it is fixed as

BP_MbShape as BP_8x8.

However, in Additional MbType definition with Direct/Skip for Inter Macroblock the macroblock types for

Skip and Direct modes does not follow the same rule. The third field in P_Skip_16x16 or B_Direct_16x16_x

indicates that "Skip" or "Direct" applies to the entire 16x16 macroblock, even though MbShape is 8x8 as

that in BP_8x8. In order to distinguish the SubMbShape being 8x8 or 4x4 for B_Skip and B_Direct, the

fourth field is added. 4MVPair indicates upto 4 MV pairs are presented with SubMbShape equals to 0;

and 16MVPair indicates up to 16 MV pairs are presented with SubMbShape equals to FFh.Also note that

P_8x8ref0 is not specified in PAK input interface, it is up to hardware to detect and choose its packing

format based on number of reference indices and reference index for the given macroblock.

Macroblock Type Conversion Rules

For improved coding efficiency the PAK hardware has the capability to convert macroblock types to use

more efficiency coding modes such as DIRECT and SKIP. For an inter macroblock or a sub macroblock

coded as DIRECT, no motion vector is needed in the bitstream for the macroblock or sub macroblock. If a

macroblock is coded as SKIP, it only consumes one SKIP bit (no motion vector, no coefficients are coded).

And infomaton about the macroblock is 'inferred' according to the rules stated in the AVC Spec.

As the input to PAK, the following signals can convey the information regarding DIRECT and SKIP:

• MbSkipFlag

• Direct8x8Pattern

• CodecBlockPattern (CbpY, CbpCb, CbpCr)

Such conversion can be enabled or disabled through the SLICE_STATE fields DirectConvDisable and

SkipConvDisable as well as the in line command field MbSkipConvDisable.

A P slice doesn't support direct mode, it only supports P_Skip, which is equivalent to a 16_16_L0

prediction. Other prediction types cannot be converted to P_Skip. The following table describes the

macroblock type conversion rules for a P slice. Here CBP = CbpY/CbpCb/CbpCr are the final computed

results after quantization by the hardware. Note that hardware honors the input CbpY/CbpCb/CbpCr

fields - if the value corresponding to a block is set to zero, the resulting CBP is also zero. The output

mb_skip_flag and mb_type are the symbols coded in the bitstream as defined in the AVC spec. DC stands

for Don't care, T for True.

Note that the internal condition of MV==MVP is subject to the precise rules stated in the AVC Spec as

quoted below. Note that there are exceptions for P_Skip from the normal motion vector prediction rules.

Derivation process for luma motion vectors for skipped macroblocks in P and SP slices

This process is invoked when mb_type is equal to P_Skip.

Outputs of this process are the motion vector mvL0 and the reference index refIdxL0.

Doc Ref # IHD-OS-DG1-Vol 11-2.21 185

The reference index refIdxL0 for a skipped macroblock is derived as follows.

refIdxL0 = 0. (8-168)

For the derivation of the motion vector mvL0 of a P_Skip macroblock type, the following applies.

- The process specified in subclause 8.4.1.3.2 is invoked with mbPartIdx set equal to 0, subMbPartIdx set

equal to 0, currSubMbType set equal to "na", and listSuffixFlag set equal to 0 as input and the output is

assigned to mbAddrA, mbAddrB, mvL0A, mvL0B, refIdxL0A, and refIdxL0B.

- The variable mvL0 is specified as follows.

- If any of the following conditions are true, both components of the motion vector mvL0 are set equal to

0.

- mbAddrA is not available

- mbAddrB is not available

- refIdxL0A is equal to 0 and both components of mvL0A are equal to 0

- refIdxL0B is equal to 0 and both components of mvL0B are equal to 0

- Otherwise, the derivation process for luma motion vector prediction as specified in subclause 8.4.1.3 is

invoked with mbPartIdx = 0, subMbPartIdx = 0, refIdxL0, and currSubMbType = "na" as inputs and the

output is assigned to mvL0.

NOTE - The output is directly assigned to mvL0, since the predictor is equal to the actual motion vector.

Macroblock type conversion rule for an inter macroblock in a P slice

Input Internal Output

Notes
Macroblock

Type

SkipConvDisable

||

SkipConvDisable CBP

MV

==

MVP MbAffSkipAllowed mb_skip_flag mb_type

P_Skip_16x16 DC DC DC 1 1 - Forced to P_Skip;

Hardware will force

CBP to zero and also

ignore

SkipConvDisable

control. Hardware

doesn't check for

MV==MVP error

condition

P_Skip_16x16 DC DC DC 0 0 0 Reverse convert to

P_L0_16x16;

Hardware will force

CBP to zero but

reversely convert

MbType as

P_L0_16x16 once it

determines that Skip

is not allowed.

186 Doc Ref # IHD-OS-DG1-Vol 11-2.21

Input Internal Output

Notes
Macroblock

Type

SkipConvDisable

||

SkipConvDisable CBP

MV

==

MVP MbAffSkipAllowed mb_skip_flag mb_type

BP _16x16_L0 0 0 T 1 1 - Converted to P_Skip.

Even input doesn't

provide skip hint,

hardware can

performance the

optimization by

detecting CBP and

MV==MVP

condition.

BP _16x16_L0 0 0 T 0 0 0 Reverse back to

P_L0_16x16;

Hardware will

reverse back to

P_L0_16x16 even

Skip conditions are

met once it

determines that Skip

is not allowed.

BP _16x16_L0 1 0 T T 0 0 Still coded as

P_L0_16x16 = 0.

A B slice supports both direct and skip modes. The following table describes the macroblock type

conversion rules for a B slice. Hardware does not verify MV==MVP condition for a Skip/Direct

macroblock in a B Slice as no DMV is performed by hardware.

Macroblock type conversion rule for an inter macroblock in a B slice

Input Internal Output

Notes

Macroblock Type

SkipConvDi

sable ||

SkipConvDi

sable

DirectConvDi

sable

CB

P

MV

==

MV

P

MbAffSkipAll

owed

mb_skip_

flag

mb_ty

pe

B_Skip_8x8

B_Skip_4x4

DC DC DC n/a 1 1 - Forced to

B_Skip;

Hardware

will force

CBP to zero

and also

ignore

SkipConvDi

sable

control.

Doc Ref # IHD-OS-DG1-Vol 11-2.21 187

Input Internal Output

Notes

Macroblock Type

SkipConvDi

sable ||

SkipConvDi

sable

DirectConvDi

sable

CB

P

MV

==

MV

P

MbAffSkipAll

owed

mb_skip_

flag

mb_ty

pe

B_Skip_8x8

B_Skip_4x4

DC DC DC n/a 0 0 0 REVERSE

convert to

B_Direct_16

x16;

Hardware

will force

CBP to zero

and also

reverse

convert to

B_Direct_16

x16 when it

discovers

Skip is not

allowed.

B_Direct_16x16_4MVPair/

16MVPair

0 0 0 n/a 1 1 - Converted

to B_Skip.

Hardware

first

converts to

B_Direct_16

x16 and

then further

to B_Skip if

CBP = 0.

B_Direct_16x16_4MVPair/

16MVPair

0 0 0 n/a 0 0 0 Converted

to

B_Direct_16

x16.

Hardware

first

converts to

B_Direct_16

x16 and

stop there

as it

discovers

Skip is not

allowed

even

CBP=0.

B_Direct_16x16_4MVPair/ 1 0 0 n/a DC 0 0 Converted

188 Doc Ref # IHD-OS-DG1-Vol 11-2.21

Input Internal Output

Notes

Macroblock Type

SkipConvDi

sable ||

SkipConvDi

sable

DirectConvDi

sable

CB

P

MV

==

MV

P

MbAffSkipAll

owed

mb_skip_

flag

mb_ty

pe

16MVPair to

B_Direct_16

x16.

Hardware

converts to

B_Direct_16

x16 and

stops there

even

though CBP

= 0 as input

disallows

Skip

conversion.

B_Direct_16x16_4MVPair/

16MVPair

DC 0 NZ n/a DC 0 0 Converted

to

B_Direct_16

x16.

Hardware

converts to

B_Direct_16

x16 and

stops there

because

CBP != 0.

B_Direct_16x16_4MVPair/

16MVPair

DC 1 DC n/a DC 0 16h
Stay as

B_8x8.

Hardware

stays at

B_8x8 and

codes each

sub

macroblock

s even all

are direct.

The internal signal MbAffSkipAllowed is added to deal with a restriction on the frame/field flag

(MbFieldFlag) which is unique to MBAFF. MbAffSkipAllowed is always set to 1 in non-MBAFF modes. In

MBAFF mode, a macroblock pair may be both skipped only if its MbFieldFlag is the same as its available

neighbor macroblock pair A or B if A or B is available (in that order), or is not 0 if A/B are both not

available. Otherwise, one of the macroblocks in the pair must be coded.

Doc Ref # IHD-OS-DG1-Vol 11-2.21 189

To reduce the burden on software, PAK hardware handles the above restriction correctly. For the first MB

in a pair, MbAffSkipAllowed is always set to 1. Therefore, hardware allows converting the first MB to Skip

if skip conversion is enabled. For the second MB in a pair, hardware sets MbAffSkipAllowed to 0 if the

following is true:

• The current MB Pair has different MbFieldFlag than its available neighbor A or B if A or B is

available, or is not 0 if A/B are both not available

• And the first MB is coded as a SKIP (could be forced or converted)

Otherwise, it sets MbAffSkipAllowed to 1. As MbAffSkipAllowed is to 0 for the above condition, hardware

will disallow Skip mode for the second MB. If the input signal forces it to Skip, hardware performs

reverse-convertion to code it as P_L0_16x16 or B_Direct_16x16 with CBP = 0 for a macroblock in a P or B

Slice. This means that hardware is able to correct the programming mistake by software. If the

macroblock is not forced to skip, hardware simply disallows Skip conversion.

Software still has an option to disallow Skip Conversion on a per-MB basis using the MbSkipConvDisable

control field in the inline command.

Indirect Data Description

For each macroblock, an ENC-PAK data set consists of two types of data blocks: indirect MV data block

and inline MB information.

The indirect MV data block may be in two modes: unpackedmode and packed-size mode.

Unpacked Motion Vector Data Block

Unpacked Motion Vector Data Block

In the unpacked mode, motion vectors are expanded (or duplicated) to either bidirectional 8x8 8MV

major partition format, or bidirectional 4x4 32MV format. Thus either 32 bytes or 128 bytes is assigned to

each MB.

Motion Vector block contains motion vectors in an intermediate format that is partially expanded

according to the sub- macroblock size. During the expansion, a place that does not contain a motion

vector is filled by replicating the relevant motion vector according to the following motion vector

replication rules. If the relevant motion vector doesn't exist (for the given L0 or L1), it is zero filled.

Motion Vector Replication Rules:

• Rule #1

o #1.1: For L0 MV, for any sub-macroblock or sub-partition where there is at least one

motion vector

▪ If L0 inter prediction exists, the corresponding L0 MV is used

▪ Else it must be zero

o #1.2: For L1 MV, for any sub-macroblock or sub-partition where there is at least one

motion vector

190 Doc Ref # IHD-OS-DG1-Vol 11-2.21

▪ If L1 inter prediction exists, the corresponding L1 MV is used

▪ Else it must be zero

• For a macroblock with a 16x16, 16x8 or 8x16 sub-macroblock, MvSize = 8. The eight MV fields

follow Rule #1.

o The 16x16 is broken down into 4 8x8 sub-macroblocks. The 16x16 MVs (after rule #1) are

replicated into all 8x8 blocks.

o For an 8x16 partition, each 8x16 is broken down into 2 8x8 stacking vertically. The 8x16

MVs (after rule #1) are replicated into both 8x8 blocks.

o For a 16x8 partition, each 16x8 is broken down into 2 8x8 stacking horizontally. The 16x8

MVs (after rule #1) are replicated into both 8x8 blocks.

• For macroblock with sub-macroblock of 8x8 without minor partition (SubMbShape[0...3] = 0),

MvSize = 8, (e.g. mb_type equal to P_8x8, P_8x8ref0, or B_8x8)

o There is no motion vector replication

• For macroblock with sub-macroblock of 8x8 with at least one minor partition (if any

SubMbShape[i] != 0), MvSize = 32, (e.g. mb_type equal to P_8x8, P_8x8ref0, or B_8x8)

o For an 8x8 sub-partition, the 8x8 MVs (after rule #1) is replicated into all the four 4x4

blocks.

o For an 4x8 sub-partition within an 8x8 partition, each 4x8 is broken down into 2 4x4

stacking vertically. The 4x8 MVs (after rule #1) are replicated into both 4x4 blocks.

o For an 8x4 sub-partition within an 8x8 partition, each 8x4 is broken down into 2 4x4

stacking horizontally. The 8x4 MVs (after rule #1) are replicated into both 4x4 blocks.

o For a 4x4 sub-partition within an 8x8 partition, each 4x4 has its own MVs (after rule #1).

Motion Vector block and MvSize

DWord Bit

MvSize

 8 32

W1.0
31:16

MV_Y0_L0.y MV_Y0_0_L0.y

 15:0
MV_Y0_L0.x MV_Y0_0_L0.x

W1.1
31:16

MV_Y0_L1.y MV_Y0_0_L1.y

 15:0
MV_Y0_L1.x MV_Y0_0_L1.x

W1.2
31:0

MV_Y1_L0 MV_Y0_1_L0

W1.3
31:0

MV_Y1_L1 MV_Y0_1_L1

Doc Ref # IHD-OS-DG1-Vol 11-2.21 191

DWord Bit

MvSize

 8 32

W1.4
31:0

MV_Y2_L0 MV_Y0_2_L1

W1.5
31:0

MV_Y2_L1 MV_Y0_2_L0

W1.6
31:0

MV_Y3_L0 MV_Y0_3_L0

W1.7
31:0

MV_Y3_L1 MV_Y0_3_L1

W2.0
31:0

n/a MV_Y1_0_L1

W2.1
31:0

n/a MV_Y1_0_L0

W2.2
31:0

n/a MV_Y1_1_L1

W2.3
31:0

n/a MV_Y1_1_L0

W2.4
31:0

n/a MV_Y1_2_L1

W2.5
31:0

n/a MV_Y1_2_L0

W2.6
31:0

n/a MV_Y1_3_L0

W2.7
31:0

n/a MV_Y1_3_L1

W3.0
31:0

n/a MV_Y2_0_L1

W3.1
31:0

n/a MV_Y2_0_L0

W3.2
31:0

n/a MV_Y2_1_L1

W3.3
31:0

n/a MV_Y2_1_L0

W3.4
31:0

n/a MV_Y2_2_L1

W3.5
31:0

n/a MV_Y2_2_L0

W3.6
31:0

n/a MV_Y2_3_L0

W3.7
31:0

n/a MV_Y2_3_L1

W4.0
31:0

n/a MV_Y3_0_L1

192 Doc Ref # IHD-OS-DG1-Vol 11-2.21

DWord Bit

MvSize

 8 32

W4.1
31:0

n/a MV_Y3_0_L0

W4.2
31:0

n/a MV_Y3_1_L1

W4.3
31:0

n/a MV_Y3_1_L0

W4.4
31:0

n/a MV_Y3_2_L1

W4.5
31:0

n/a MV_Y3_2_L0

W4.6
31:0

n/a MV_Y3_3_L0

W4.7
31:0

n/a MV_Y3_3_L1

The motion vector(s) for a given sub-macroblock or a sub-partition are uniquely placed in the output

message as shown by the non-duplicate fields in Motion Vector duplication by sub-macroblocks for a

16x16 macroblock, whereas the 8x8 column is for 4x(8x8) partition without minor shape and Motion

Vector duplication by sub-partitions for the first 8x8 sub-macroblock Y0 if any Y0-Y3 contains minor

shape (Y1_ to Y3_ have the same format in W2 to W4).

MV_Yx_L0 and MV_Yx_L1 may be present individually or both. If one is not present, the corresponding

field must be zero. Subsequently, the duplicated fields will be zero as well.

Motion Vector duplication by sub-macroblocks for a 16x16 macroblock, whereas the 8x8 column

is for 4x(8x8) partition without minor shape

DWord Bit

16x16 16x8 8x16 8x8

W1.0
31:16

MV_Y0_L1

(A)

MV_Y0_L1 (A) MV_Y0_L1 MV_Y

0_L1

 15:0
MV_Y0_L0

(A)

MV_Y0_L0 (A) MV_Y0_L0 MV_Y

0_L0

W1.1
31:16

Duplicate

(A)

Duplicate (A) MV_Y1_L1 MV_Y

1_L1

 15:0
Duplicate

(A)

Duplicate (A) MV_Y1_L0 MV_Y

1_L0

W1.2
31:16

Duplicate

(A)

MV_Y2_L1 (B) Duplicate (A) MV_Y

2_L1

Doc Ref # IHD-OS-DG1-Vol 11-2.21 193

DWord Bit

16x16 16x8 8x16 8x8

 15:0
Duplicate

(A)

MV_Y2_L0 (B) Duplicate (A) MV_Y

2_L0

W1.3
31:16

Duplicate

(A)

Duplicate (B) Duplicate (B) MV_Y

3_L1

 15:0
Duplicate

(A)

Duplicate (B) Duplicate (B) MV_Y

3_L0

Motion Vector duplication by sub-partitions for the first 8x8 sub-macroblock Y0 if any Y0-Y3

contains minor shape (Y1_ to Y3_ have the same format in W2 to W4)

DWord Bit

8x8 8x4 4x8 4x4

W1.0
31:16

MV_Y0_L1 MV_Y0_0_L1 (A) MV_Y0_0_L1 (A) MV_Y0_0_L1

 15:0
MV_Y0_L0 MV_Y0_0_L0 (A) MV_Y0_0_L0 (A) MV_Y0_0_L0

W1.1
31:16

Duplicate (A) Duplicate (A) MV_Y0_1_L1 (B) MV_Y0_1_L1

 15:0
Duplicate (A) Duplicate (A) MV_Y0_1_L0 (B) MV_Y0_1_L0

W1.2
31:16

Duplicate (A) MV_Y0_2_L1 (B) Duplicate (A) MV_Y0_2_L1

 15:0
Duplicate (A) MV_Y0_2_L0 (B) Duplicate (A) MV_Y0_2_L0

W1.3
31:16

Duplicate (A) Duplicate (B) Duplicate (B) MV_Y0_3_L0

 15:0
Duplicate (A) Duplicate (B) Duplicate (B) MV_Y0_3_L1

194 Doc Ref # IHD-OS-DG1-Vol 11-2.21

Packed-Size Motion Vector Data Block

In the packed case, no redundant motion vectors are sent. So the number of motion vectors sent, as

specified by MvQuantity is the same as the motion vectors that will be packed (MvPacked).

The following tables are for information only. Fields like MvQuantity and MvPacked are not required

interface fields.

MbSkipFlag MbType Description Mv

Quantity

MvSize (Minimal MvSize)

1 1 P_Skip_16x16 0 8 1

0 1 BP_L0_16x16 1 8 1

0 2 B_L1_16x16 1 8 1

0 3 B_Bi_16x16 2 8 2

0 4 BP_L0_L0_16x8 2 8 4

0 5 BP_L0_L0_8x16 2 8 4

0 6 B_L1_L1_16x8 2 8 8

0 7 B_L1_L1_8x16 2 8 8

0 8 B_L0_L1_16x8 2 8 8

0 9 B_L0_L1_8x16 2 8 8

0 0Ah B_L1_L0_16x8 2 8 8

0 0Bh B_L1_L0_8x16 2 8 8

0 0Ch B_L0_Bi_16x8 3 8 8

0 0Dh B_L0_Bi_8x16 3 8 8

0 0Eh B_L1_Bi_16x8 3 8 8

0 0Fh B_L1_Bi_8x16 3 8 8

0 10h B_Bi_L0_16x8 3 8 8

0 11h B_Bi_L0_8x16 3 8 8

0 12h B_Bi_L1_16x8 3 8 8

0 13h B_Bi_L1_8x16 3 8 8

0 14h B_Bi_Bi_16x8 4 8 8

0 15h B_Bi_Bi_8x16 4 8 8

0 16h
BP_8x8 ^34

8 or 32 8 or 32

Doc Ref # IHD-OS-DG1-Vol 11-2.21 195

When MbType = 22, BP_8x8, take the sum of four individual 8x8 subblocks

Direct8x8Pattern SubMb

Shape

SubMb

PredMode

Description Mv

Quantity

Mv

Size

(Min MvSize)

OR OR OR

ADD ADD ADD

1 0 0
P_Skip_8x8

 B_Direct_L0_8x8

 (B-Skip_ L0_8x8)

0 2 1

1 0 1
B_Direct_L1_8x8

 (B-Skip_ L1_8x8)

0 2 1

1 0 2
B_Direct_Bi_8x8

 (B-Skip_ Bi_8x8)

0 2 2

1 3 0
P_Skip_4x4

 B_Direct_L0_4x4

 (B-Skip_ L0_4x4)

0 8 4

1 3 1
B_Direct_L1_4x4

 (B-Skip_ L1_4x4)

0 8 4

1 3 2
B_Direct_Bi_4x4

 (B-Skip_ Bi_4x4)

0 8 8

0 0 0 BP_L0_8x8 1 2 1

0 0 1 B_L1_8x8 1 2 1

0 0 2 B_BI_8x8 2 2 2

0 1 0 BP_L0_8x4 2 8 4

0 1 1 B_L1_8x4 2 8 4

0 1 2 B_BI_8x4 4 8 8

0 2 0 BP_L0_4x8 2 8 4

0 2 1 B_L1_4x8 2 8 4

0 2 2 B_BI_4x8 4 8 8

0 3 0 BP_L0_4x4 4 8 4

0 3 1 B_L1_4x4 4 8 4

0 3 2 B_BI_4x4 8 8 8

196 Doc Ref # IHD-OS-DG1-Vol 11-2.21

Macroblock Level Rate Control

The QRC (Quantization Rate Control) unit receives data from BSP (Bit Serial Packer) and VIN (Video In)

and generates adjustments to QP values across macroblocks.

QRC can be logically partitioned into two units as shown below.

Macroblock level rate control is handled by the RC logic and the quantization logic.

Doc Ref # IHD-OS-DG1-Vol 11-2.21 197

The signals QPmod and panic are generated by the RC logic based on data feedback from BSP. A

flowchart of the RC logic is given below.

198 Doc Ref # IHD-OS-DG1-Vol 11-2.21

Theory of Operation Overview

BSP will generate a byte estimate for each macroblock packed. Additionally, the user will specify a target

and max size per macroblock. The running sum of these signals (actual, target, max) creates "curves"

which are used to identify when QP adjustments are necessary (see figure below). Three more curves are

symmetrically generated by QRC (upper_midpt, lower_midpt, sum_min) from target and max. The values

of target and max are specified by the user will dictate the shape of these curves.

 The difference between sum_actual and sum_target (called 'bytediff') identifies the margin of error

between the target and actual sizes. The difference between the current bytediff and the previously

calculated bytediff represents the rate of change in this margin over time. The sign of this rate is used to

identify if the correction is trending in the appropriate direction (towards bytediff = 0).

Doc Ref # IHD-OS-DG1-Vol 11-2.21 199

QPmod

Each macroblock will have a requested QP (which could vary across macroblocks or remain constant).

QPmod is to be added to the QP requested. QPmod will be positive when the target was under-

predicted and negative when the target is over-predicted.

QPmod is incremented or decremented when internal counters (called 'over' and 'under') reach tripping

points (called 'grow' and 'shrink'). For each MB processed and based on which region (1-6) sum_actual

falls in, various amounts of points are added to either counters. If over exceeds grow, QPmod is

incremented whereas if under exceeds shrink, QPmod is decremented.

To dampen the effect of repeated changes in the same direction, an increase in resistance for that

direction and decrease in resistance for the complementary direction occurs (called 'grow_resistance' and

'shrink_resistance'). This resistance is added to grow or shrink, which then requires more points to trip

the next correction in that direction.

The user can specify guard-bands that limit the amount QPmod can be modified. QPmod cannot exceed

QPmax_pos_mod or become less than -QPmax_neg_mod_abs.

Triggering

The RC unit begins to modify QPmod occurs only when it is triggered.

Three levels of triggering exist: always, gentle, loose. Always means that RC will be active once

sum_actual reaches regions 3 or 4. Gentle will trigger RC once sum_actual reaches regions 2 or 5. Loose

waits to trigger RC when sum_actual reaches regions 1 or 6.

RC will deactivate (triggered = false) once sum_actual begins to track sum_target over a series of

macroblocks. Specifically, the sign of the rate of change for bytediff is monitored over a window of

200 Doc Ref # IHD-OS-DG1-Vol 11-2.21

macroblocks. When the sum of these signs over the window falls within a tolerance value (called 'stable'),

triggered will reset to false.

Panic

When enabled, panic mode will occur whenever sum_actual reaches region 1 and will remain so until

sum_actual reaches region 4. When panicking, all macroblocks will be quantized with QP = MB(n).QP +

QPmax_pos_mod, clamped to 51.

User Controls

This unit achieves a large flexibility by allowing the user to define various key parameters. At the per-

macroblock level, the values of target and max are specified and will create various shapes of curves that

sum_actual will be compared against.

Per-slice, the user can specify the triggering sensitivity and the tolerance required to disable the trigger.

Additionally, the user can enable panic detection.

The point values assigned to each of the 6 regions are exposed to the user which allow for asymmetrical

control for over and under predictions amongst other things. Additionally, the user can specify the initial

values of grow and shrink along with the resistance values applied when correction is invoked.

Lastly, the maximum and minimum values for QPmod are also exposed to the user.

Doc Ref # IHD-OS-DG1-Vol 11-2.21 201

AVC Encoder MBAFF Support

1. Algorithm

Prediction of current macroblock motion vector is possible from neighboring macroblocks

mbAddrA/mbAddrD/mbAddrB/mbAddrC/mbAddrA+1/mbAddrD+1/mbAddrB+1/mbAddrC+1.

The selection of these macroblocks depends on coding type(field/frame) of current macroblock

pair and the coding of neighboring macroblock pair.

Selection of these macroblock pairs is described in detail in following sections.

1.1 Selection of Top LeftMB pair: The selection of Top Left MB pair depends on coding type of

current and also top left macroblock pair.

1.2 Selection of LeftMB pair: The selection of Left MB pair depends on coding type of current

and also left macroblock pair.

1.3 Selection of Top MB pair: The selection of Top MB pair depends on coding type of current

and also top macroblock pair.

1.4 Selection of Top RightMB pair: The selection of Top Right MB pair depends on coding type

of current and also top right macroblock pair.

1.5 Motion Vector and refIdx Scaling: Motion vectors and reference index of neighboring

macroblocks (mbAddrA/mbAddrB/mbAddrC/mbAddrD) should be scaled before using them into

prediction equations. Again the scaling depends on coding type of current and neighboring

macroblock pair which is described as follows,

• If the current macroblock is a field macroblock and the macroblock mbAddrN is a frame

macroblock ...

 mvLXN[1] = mvLXN[1] / 2 (8-214)

 refIdxLXN = refIdxLXN * 2 (8-215)

• Otherwise, if the current macroblock is a frame macroblock and the macroblock mbAddrN is

a field macroblock ...

 mvLXN[1] = mvLXN[1] * 2 (8-216)

 refIdxLXN = refIdxLXN / 2 (8-217)

• Otherwise, the vertical motion vector component mvLXN[1] and the reference index

refIdxLXN remain unchanged.

202 Doc Ref # IHD-OS-DG1-Vol 11-2.21

MPEG-2

MPEG2 Common Commands

MFX Commands are organized into groups based on their scope of functioning. There are Pipeline

Common state commands that are common to all codecs (encoder and decoder) and is applicable to the

processing of one full frame/field. There are also individual codec Common state commands that are

common to both encoder and decoder of that particular codec. These latter common state commands,

some are applicable at the processing of one full frame/field, and some are applicable at the processing

of an individual slice level.

MFX_MPEG2_PIC_STATE

MPEG2 Decoder Commands

These are decoder-only commands. They provide the pointer to the compressed input bitstream to be

decoded.

MFD_MPEG2_BSD_OBJECT

MFD_MPE2_BSD_OJBECT Inline Data Description

Indirect Data Description

The indirect data start address in MFD_MPEG2_BSD_OBJECT specifies the starting Graphics Memory

address of the bitstream data that follows the slice header. It provides the byte address for the first

macroblock of the slice. Together with the First Macroblock Bit Offset field in the inline data, it provides

the bit location of the macroblock within the compressed bitstream.

The indirect data length in MFD_MPEG2_BSD_OBJECT provides the length in bytes of the bitstream data

for this slice. It includes the first byte of the first macroblock and the last non-zero byte of the last

macroblock in the slice. Specifically, the zero-padding bytes (if present) and the next start-code are

excluded. Hardware ignores the contents after the last non-zero byte. The image below, Indirect data

buffer for a slice illustrates these parameters for a slice data.

Indirect data buffer for a slice

Doc Ref # IHD-OS-DG1-Vol 11-2.21 203

MPEG2 Encoder PAK Commands

The MFC_MPEG2_PAK_INSERT_OBJECT Command is identical to the MFC_AVC_PAK_INSERT_OBJECT

command as described in this document.

The MFC_MPEG2_STITCH_OBJECT Command is identical as MFC_AVC_STITCH_OBJECT command as

described in this document.

MFC_MPEG2_SLICEGROUP_STATE

MFC_MPEG2_PAK_OBJECT

PAK Object Inline Data Description - MPEG-2

The Inline Data includes all the required MB encoding states, constitute part of the Slice Data syntax

elements, MB Header syntax elements and their derivatives. It provides information for the following

operations:

1. Forward and Inverse Transform

2. Forward and Inverse Quantization

3. Advanced Rate Control (QRC)

4. MB Parameter Construction (MPC)

5. VLC encoding

6. Bit stream packing

7. Internal error handling

These state/parameter values may subject to change on a per-MB basis, and must be provided in each

MFC_MPEG2_PAK_OBJECT command. The values set for these variables are retained internally, until they

are reset by hardware Asynchronous Reset or changed by the next MFC_MPEG2_PAK_OBJECT command.

The inline data has been designed to match AVC MB structure for efficient transcoding.

Current MB [x,y] address is not sent, it is assumed that the H/W will keep track of the MB count and

current MB position internally.

DWord Bit Description

1 31:27 Reserved: MBZ

22-

20
MvFormat (Motion Vector Size). This field specifies the size and format of the input motion

vectors.

This field is reserved (MBZ) when the IntraMbFlag = 1.

The valid encodings are:

011 = Unpacked: Two motion vector pairs

Others are reserved.

(The following encodings are intended for other formats:

001 = 1MV: one 16x16 motion vector

204 Doc Ref # IHD-OS-DG1-Vol 11-2.21

DWord Bit Description

010 = 2MV: One 16x16 motion vector pair

011 = 4MV: Four 8x8 motion vectors, or Two 16x8 motion vector pairs

100 = 8MV: Four 8x8 motion vector pairs

101 = 16MV: 16 4x4 motion vectors

110 = 32MV: 16 4x4 motion vector pairs

111 = Packed, number of MVs is given by packedMvNum.)

19
CbpDcY. This field specifies if the Luma DC coded. Must be 1 for MPEG-2.

18
CbpDcU. This field specifies if the Chroma Cb DC coded. Must be 1 for MPEG-2.

17
CbpDcV. This field specifies if the Chroma Cb DC coded. Must be 1 for MPEG-2.

16 Reserved: MBZ

15
TransformFlag

Used to indicate transformation type for MPEG-2.

0 = Frame DCT transformation

 1 = Field DCT transformation

14
FieldMbFlag

For MPEG-2, this flag is set to 1 if

either the picture is in field type

or the MB is INTER of field type, i.e. split into two 16x8 field blocks.

13
IntraMbFlag

This field specifies whether the current macroblock is an Intra (I) macroblock.

For I-picture MB (IntraPicFlag =1), this field must be set to 1.

This flag must be set in consistent with the interpretation of MbType (inter or intra modes).

0: INTER (inter macroblock)

1: INTRA (intra macroblock)

12:8
MbType

This field is encoded to match with the best macroblock mode determined as described in the next

section. It follows an unified encoding for inter and intra macroblocks according to MFX Encoding

reference as shown in Figure A.

7:3 Reserved : MBZ

Doc Ref # IHD-OS-DG1-Vol 11-2.21 205

DWord Bit Description

2
SkipMbFlag

By setting it to 1, this field forces an inter macroblock to be encoded as a skipped macroblock. It is

equivalent to mb_skip_flag in AVS spec, Hardware honors input MVs for motion prediction and

forces CBP to zero.

By setting it to 0, an inter macroblock will be coded as a normal inter macroblock. The macroblock

may still be coded as a skipped macroblock, according to the macroblock type conversion rules

described in the later sub sections.

This field can only be set to 1 for certain values of MbType. See details later.

This field is only valid for an inter macroblock. Hardware ignores this field for an intra macroblock.

0 = not a skipped macroblock

1 = is coded as a skipped macroblock

Note: When this flag is set to 1, the correct MVs are assumed for HW decoder to generate decoded

reconstruction frame.

1:0
InterMbMode

This field is provided to carry redundant information as that encoded in MbType.

This field is only valid if IntraMbFlag =0, otherwise, it is ignored by hardware.

2 31:16
MbYCnt (Vertical Origin). This field specifies the vertical origin of current macroblock in the

destination picture in units of macroblocks.

Format = U16 in unit of macroblock.

15:0
MbXCnt (Horizontal Origin). This field specifies the horizontal origin of current macroblock in the

destination picture in units of macroblocks.

Format = U16 in unit of macroblock.

3 31:24
MaxSizeInWord

PAK should not exceed this budget accumulatively, otherwise it will trickle the PANIC mode.

23:16
TargetSizeInWord

PAK should use this budget accumulatively to decide if it needs to limit the number of non-zero

coefficients.

15:13
MBZ

12:0
Cbp - Coded Block Pattern. This field specifies whether blocks are present or not.

Format = 6-bit mask (or 8-bit, & 12-bit, for 422 and 444).

Bit 11: Y0Bit 10: Y1Bit 9: Y2Bit 8: Y3

206 Doc Ref # IHD-OS-DG1-Vol 11-2.21

DWord Bit Description

Bit 7: Cb4Bit 6: Cr5Bits 0-5: MBZ

4 31
LastMbInSlice - the last MB in a slice.

30
FirstMbInSlice - the first slice in a slice, it requires slice header insertion.

29:28
MBZ

27
EnableCoeffClamp

1 = the magnitude of coefficients of the current MB will be clamped based on the clamping matrix

after quantization

0 = no clamping

26
LastMbInSG

1 - the current MB is the last MB in the current slice group.

25
MbSkipConvDisable

This is a per-MB level control to enable and disable skip conversion. This field is ORed with

SkipConvDisable field. This field is only valid for a P or B slice. It must be zero for other slice types.

Rules are provided in Macroblock Type Conversion Rules.

0 - Enable skip type conversion for the current macroblock

1 - Disable skip type conversion for the current macroblock

24
FirstMbInSG

1 - the current MB is the last MB in the current slice group.

23:20
MBZ

19:16
MvFieldSelect - Motion Vertical Field Select. A bit-wise representation of a long [2][2] array as

defined in Section 6.3.17.2 of the ISO/IEC 13818-2 (see also Section 7.6.4).

Bit MVector[r] MVector[s] MotionVerticalFieldSelect Index

16 0 0 0

17 0 1 1

18 1 0 2

19 1 1 3

Format = MC_MotionVerticalFieldSelect.

0 = The prediction is taken from the top reference field.

1 = The prediction is taken from the bottom reference field.

Doc Ref # IHD-OS-DG1-Vol 11-2.21 207

DWord Bit Description

15:5
MBZ Reserved

4:0
QpScaleCode

5 31:16
MV[0][0].y - the y coordinate of the first forward MV

if Mv[0][0] n/a:

if Mv[1][0] available, it MUST be set to the same value as Mv[1][0].

else it MUST be set to the value 0

15:0
MV[0][0].x - the x coordinate of the first forward MV

if Mv[0][0] n/a:

if Mv[1][0] available, it MUST be set to the same value as Mv[1][0].

else it MUST be set to the value 0

6 31:0
MV[1][0] - the first backward MV

if Mv[1][0] n/a: it MUST be set to the same value as Mv[0][0]

7 31:0
MV[0][1] - the second forward MV

if Mv[0][1] n/a:

if Mv[1][1] available, it MUST be set to the same value as Mv[1][1].

else it MUST be set to the same value as Mv[0][0]

8 31:0
MV[1][1] - the second backward MV

if Mv[1][1] n/a: it MUST be set to the same value as Mv[1][0]

The mapping between MPEG-2 spec and MfxMbCode can be achieved according to the following:

1) Renamed variables with identical meaning:

MPEG-2 Spec MFX API Value

macroblock_quant MbQuantPresent
0 or 1

macroblock_intra IntraMbFlag
0 or 1

dct_type Transform8x8Flag
0 or 1

macroblock_pattern Cbp8x8
remapped

2) Macroblock type remapping:

208 Doc Ref # IHD-OS-DG1-Vol 11-2.21

 B-spec Entry MPEG-2 Spec

Fram

e

Type

Mb

Typ

e

Intra

Mb

 Flag

Ski

p

Mb

Fla

g

Mb

Typ

e

5Bit

s

Fiel

d

 Mb

Fla

g

Inter

 Mb

Mod

e

macroblock_i

ntra

motion_type_

bit0

motion_type_

bit1

motion_forw

ard

motion_backw

ard

IPB Intra 1
0 1Ah 0/1 - 1 - - - -

P

 B

B

Skip
0

1 01h

02h

03h

0/1 0 0 - -
1

0

1

0

1

1

P 0-

MV*

0 0 01h 0/1 0 0 - - 0 0

P

Fram

e

Fram

e

type

0 0 01h 0 0 0 0 1 1 0

P

Fram

e

Field

type

0 0 04h 1 1 0 1 0 1 0

P

Fram

e

dual

prim

e

0 0 19h 0 0 0 1 1 1 0

P

Field

One

16x1

6

0 0 01h 1 0 0 1 0 1 0

P

Field

Two

16x8

0 0 04h 1 1 0 0 1 1 0

P

Field

dual

prim

e

0 0 19h 1 0 0 1 1 1 0

B

Fram

e

Fram

e

type

0 0
01h

02h

03h

0 0 0 0 1
1

0

1

0

1

1

B

Fram

Field

type

0 0
04h

 06h

1 1 0 1 0
1

0

0

1

Doc Ref # IHD-OS-DG1-Vol 11-2.21 209

 B-spec Entry MPEG-2 Spec

Fram

e

Type

Mb

Typ

e

Intra

Mb

 Flag

Ski

p

Mb

Fla

g

Mb

Typ

e

5Bit

s

Fiel

d

 Mb

Fla

g

Inter

 Mb

Mod

e

macroblock_i

ntra

motion_type_

bit0

motion_type_

bit1

motion_forw

ard

motion_backw

ard

e 14h 1 1

B

Field

One

16x1

6

0 0
01h

02h

03h

1 0 0 1 0
1

0

1

0

1

1

B

Field

Two

16x8

0 0
04h

 06h

14h

1 1 0 0 1
1

0

1

0

1

1

• Notice that there is no special way to indicate 0 motion vector case for P frame. It is for PAK to

handle internally by checking up the motion vector values.

• Notice also, the MbType5bits is adapted from AVC DXVA macroblock types. It may seem awkward

from MPEG-2 perspective, but provides a common VME interface for us for simpler HW design and

help the advanced transcoding solution.

210 Doc Ref # IHD-OS-DG1-Vol 11-2.21

MFX HW Interface and DXVA Conversion

Map DXVA to HW BSpec

Location

Dword

HW

BSPEC

BYTE MPEG-2 DXVA

DW0

0 MbMode

0.0-1 0[0-1] InterMbMode see (A)

0.2 0[2] SkipMbFlag <-MBskipsFollowing

0.3 0[3] mbz

0.4-0.5 0[4-5] IntraMbMode IntraMacroblock

0.6 0[6] mbz

0.7 0[7] FieldMbPolarity derived

1 MbType

1.0-1.4 0[8-12] MbType5Bits see (A)

1.5 0[13] IntraMbFlag IntraMacroblock

1.6 0[14] FieldMbFlag see (A)

1.7 0[15] TransformFlag FieldResidual

2 MbFlag

2.0 0[16] ResidDataFlag HostResDiff

2.1 0[17] CbpDcV PAK control

2.2 0[18] CbpDcU PAK control

2.3 0[19] CbpDcY PAK control

2.4-2.6 0[20-22] MvFormat = 3, derived

2.7 0[23] mbz

3 0[24-31] PackedMvNum see (A)

DW1

4-5 1[0-15] MbXCnt wMBaddress

6-7 1[16-31] MbYCnt wMBaddress

DW2

8 2[0-7] bNumCoef[0]

8.0-8.5 2[0-5] mbz

8.6-8.7 2[6-7] CbpAcUV PAK control

9 2[8-11] CbpAcY PAK control

 2[12-15] mbz

10 2[16-23] TargetedSzInWord

Doc Ref # IHD-OS-DG1-Vol 11-2.21 211

Location

Dword

HW

BSPEC

BYTE MPEG-2 DXVA

11 2[24-31] MaxSzInWord

DW3

12 Qscale derived

12.0-6 3[0-6] QScaleCode

12.7 3[7] QScaleType

13 3[8-15] mbz

14 3[16-19] MvFieldSelect MvertFieldSel

 3[20-23] mbz

15 MbExtFlag

15.0 3[24] mbz

15.1 3[25] SkipMvConvDisable

15.2 3[26] LastMbFlag PAK control

15.3 3[27] EnableCoeffClamp PAK control

15.4-5 3[28-29] MbScanMethod MBscanMethod

15.6 3[30] NewSliceFlag PAK control

15.7 3[31] EndSliceFlag PAK control

DW4-7

16-32 4-7[all] MV[2][2][2] MVector[4][2]

(A): Set InterMbMode, MbType5bits, FieldMbFlag, and PackedMvNum from DXVA parameters:

 if(IntraMacroblock) return (TYPE_INTRA);

 else if(MotionType==3){ // dual prime

 MbType5bits = 0x19; FieldMbFlag = 0; InterMbMode = 0; PackedMvNum = 2; return

(DUAL_PRIME);

 }

 else{

 IsFieldFrame = a PicState derivative; switch(MotionType+IsFieldFrame{

 case 1: // Two 16x8 field in Frame Frame

 case 3: // Two 16x8 field in Field Frame

 FieldMbFlag = 1; InterMbMode= 1; switch(MotionForward |Motionbackward «1)){

 case 1:

 MbType5bits = 4; PackedMvNum = 2; break;

 case 2:

 MbType5bits = 6; PackedMvNum = 2; break;

 case 3:

 MbType5bits = 0x14; PackedMvNum = 4; break;

 }

 break;

 case 2: // 16x16 block in either case

 FieldMbFlag = IsFieldFrame; InterMbMode = 0;

switch(MotionForward|(Motionbackward«1)){

 case 1:

 MbType5bits = 1; PackedMvNum = 1; break;

 case 2:

 MbType5bits = 2; PackedMvNum = 1; break;

 case 3:

212 Doc Ref # IHD-OS-DG1-Vol 11-2.21

 MbType5bits = 3; PackedMvNum = 2; break;

 }

 break;

 }

 }

Map HW Bspec to DXVA

Location BSPEC

BYTE DXVA MPEG-2

0-1 wMBaddress = MbYCnt*MbW + MbXCnt

2-3 wMBtype

2.0 IntraMacroblock = IntraMbFlag

2.1 MotionForward see (B)

2.2 MotionBackward see (B)

2.3 Motion4MV VC-1 only, MBZ for Mpeg-2

2.4 Reserved

2.5 FieldResidual = TranformFlag

2.6-2.7 MBscanMethod = MbScanMethod

3.0-3.1 MotionType see (B)

3.2 HostResDiff = ResidDataFlag

3.3 Reserved

3.4-3.7 MvertFieldSel = MvFieldSelect

4 MBskipsFollowing count SkipMbFlag

5-7 MBdataLocation n/a

8-9 wPatternCode = CbpAcY|UV

10-15 bNumCoef[6] n/a

16-32 MVector[4][2] = MV[2][2][2]

(B): Set MBtype and MotionType from Bspec interface

 if(MbIntraFlag) return (TYPE_INTRA);

 else {

 if(MbType5Bits&8) { // dual prime

 MotionForward = 1;

 MotionBackward = 0;

 MotionType = 3;

 return (DUAL_PRIME);

 }

 else {

 // redundant: InterMbMode = !!(MbType5Bits&4);

 if(InterMbMode) {

 MotionForward = !(MbType5Bits&2);

 MotionBackward = !!(MbType5Bits&0x12);

 }

Doc Ref # IHD-OS-DG1-Vol 11-2.21 213

 else {

 MotionForward = (MbType5Bits&1);

 MotionBackward = !!(MbType5Bits&2);

 }

 MotionType = 2-(InterMbMode^FieldMbFlag);

 // equivalently the 2 bits are:

 // MotionType0 = (InterMbMode^FieldMbFlag);

 // MotionType1 = ~MotionType0;

 return (TYPE_INTER);

 }

 }

Video Codec VC-1

This section describes support for the open video compression standard VC-1, which is the common

name for SMPTE 421M approved on April 3, 2006.

VC1 Common Commands

MFX Commands are organized into groups based on their scope of functioning. There are Pipeline

Common state commands that are common to all codecs (encoder and decoder) and is applicable to the

processing of one full frame/field. There are also individual codec Common state commands that are

common to both encoder and decoder of that particular codec. These latter common state commands,

some are applicable at the processing of one full frame/field, and some are applicable at the processing

of an individual slice level.

MFX_VC1_PRED_PIPE_STATE

MFX_VC1_DIRECTMODE_STATE

VC1 Decoder Commands

These are decoder-only commands. They provide the pointer to the compressed input bitstream to be

decoded.

MFD_VC1_LONG_PIC_STATE

AltPQuantConfig and AltPQuantEdgeMask are derived based on the following variables: DQUANT,

DQUANTFRM, DQPROFILE, DQSBEDGE, DQDBEDGE, and DQBILEVEL defined in the VC1 standard, as

shown in the following table.

214 Doc Ref # IHD-OS-DG1-Vol 11-2.21

Definition of AltPQuantConfig and AltPQuantEdgeMask

Inputs Outputs

Description DQUANT

DQUANT

 FRM

DQ

PROFILE

DQDB

 EDGE

DQSB

EDGE

DQBI

LEVEL

AltPQuant

 Config

AltPQuant

EdgeMask

0 - - - - - 00b 0000b
No AltPQuant

1 0 - - - - 00b 0000b No AltPQuant

1 1 11b - - 0 10b 0000b All MBs are different with

MQDIFF and ABSMQ

1 1 11b - - 1 11b 0000b All MBs may switch with 1-bit

MQDIFF

2 - - - - - 01b 1111b All edge MBs

1 1 00b - - - 01b 1111b All edge MBs

1 1 01b 00b - - 01b 0011b Left and top MBs

1 1 01b 01b - - 01b 0110b Top and right MBs

1 1 01b 10b - - 01b 1100b Right and bottom MBs

1 1 01b 11b - - 01b 1001b Bottom and left MBs

1 1 10b - 00b - 01b 0001b Left MBs

1 1 10b - 01b - 01b 0010b Top MBs

1 1 10b - 10b - 01b 0100b Right MBs

1 1 10b - 11b - 01b 1000b Bottom MBs

MFD_VC1_SHORT_PIC_STATE

Intel HW does not use the MVMODE and MVMODE2 provided at the revised DXVA2 VC1 VLD interface,

instead, HW will decode them directly from the bitstream picture header.

MFD_VC1_BSD_OBJECT

For VC1, a slice/picture is always started with MB x position equal to 0. Hence, no need to include in the

Object Command.

Handling Emulation Bytes

In general, VC1 BSD unit is capable of handling emulation prevention bytes. However, there is a corner

case that requires host software's intervention. Host software needs to overwrite the emulation byte if it

overlaps the macroblock layer decode and there is not enough information for the hardware to detect

the emulation byte.

The emulation bytes might have an overlap between the picture states and the first macroblock data. If

the emulation bytes are 0x00 0x000x03 0x00 and the macroblock data starts in the middle of byte1

(0x00), then the host software needs to overwrite the 0x03 byte location with the previous byte (0x00)

and change the byte offset accordingly. The hardware wouldn't know what the 1st byte was and will miss

this 0x03 removal.

Doc Ref # IHD-OS-DG1-Vol 11-2.21 215

JPEG and MJPEG

JPEG Decoder Commands

Following are JPEG Decoder Commands:

MFD_JPEG_BSD_OBJECT

MFX_JPEG_PIC_STATE command is used for both encoding and decoding. Note the duplicate bits and

the "Exists If" rows that specify what the bits represent for Encoder and Decoder.

MFX_JPEG_PIC_STATE

For JPEG decoding, the following program note is informative.

For Rotation, it is important to note that rotation of 90 or 270 degrees also requires exchanging

FrameWidthlnBlksMinus1 with FrameHeightlnBlksMinus1 in the command. In addition, the rotation

of 90 or 270 degrees also requires transportation of the quantization matrix will be transposed into the

position (y, x).

Chroma type is determined by the values of horizontal and vertical sampling factors of the components

(Hi and Vi where i is a component id) in the Frame header as shown in the following table.

 H1 H2 H3 V1 V2 V3

0: YUV400 r Not available Not available r Not available Not available

1: YUV420 2 1 1 2 1 1

2: YUV422H_2Y 2 1 1 1 1 1

3: YUV444 1 1 1 1 1 1

4: YUV411 4 1 1 1 1 1

5: YUV422V_2Y 1 1 1 2 1 1

6: YUV422H_4Y 2 1 1 2 2 2

7: YUV422V_4Y 2 2 2 2 1 1

For YUV400, the value of V1 can be 1, 2, or 3 and will be same as the value of H1, and the Minimum

coded unit (MCU) is one 8x8 block. For the other chroma formats, if non-interleaved data, the MCU is

one 8x8 block. For interleaved data, the MCU is the sequence of block units defined by the sampling

factors of the components.

For example, the following figures show the MCU structures of interleaved data and the decoding order

of blocks in the MCU:

422H_2Y

422H_4Y

216 Doc Ref # IHD-OS-DG1-Vol 11-2.21

422V_2Y

422V_4Y

If picture width X in the Frame header is not a multiple of 8, the decoding process needs to extend the

number of columns to complete the right-most sample blocks. If the component is to be interleaved, the

decoding process needs to extend the number of samples by one or more additional blocks so that the

number of blocks is an integer multiple of Hi. In other words, "The number of blocks in width" in the

table should be an integer multiple of (8xH1). Similarly, if picture height Y in the Frame header is not a

multiple of 8, the decoding process needs to extend the number of lines to complete bottom-most

block-row. If the component is to be interleaved, the decoding process also needs to extend the number

of lines by one or more additional block-rows so that the number of block-row is an integer multiple of

(8xV1). For example, if non-interleaved YUV411 with X=270, then "The number of blocks in width" shall

be (270 + 7) / 8 = 34, where "/" is integer division. Therefore, FrameWidthlnBlksMinus1 is set to 33.

However, for interleaved data, "The number of blocks in width" shall be ((270 + 31) / 32) x 4 = 36.

Therefore, FrameWidthlnBlksMinus1 is set to 35.

VertUpSamplingEnb is used to convert an input chroma420 to an output chroma422 in the surface

format of YUY2 or UYVY. To enable this flag, the input should be interleaved Scan, InputFormatYUV

should be set to YUV420, and OutputFormatYUV should be set to YUY2 or UYVY. Vertical 2:1 up-

sampling is only applied to chroma blocks where each line of 8x8 block pixels is replicated to make 8x16

U/V blocks. For example:

Doc Ref # IHD-OS-DG1-Vol 11-2.21 217

VertDownSamplingEnb is used to convert an input chroma422 to an output chroma420 in the surface

format NV12. To enable this flag, the input should be interleaved Scan, InputFormatYUV should be set to

YUV422H_2Y or YUV422H_4Y, and OutputFormatYUV should be set to NV12. Combined with

AvgDownSampling flag, the following table and figures show the down-sampling methods.

VertDownSamplingEnb AvgDownSampling Down-Sampling Methods

0 0 or 1 No down-sampling.

1 0
Drop every other line:

1 1
Average vertically neighboring two pixels:

218 Doc Ref # IHD-OS-DG1-Vol 11-2.21

VertDownSamplingEnb AvgDownSampling Down-Sampling Methods

The recent history forJPEG Decoder Commands are described in the following:

• InputFormat is the same, and should be programmed the same.

• If the InputFormat is YUV400 or YUV444 or YUV411, then output cannot be NV12, YUY2 or UYVY, it

has to be planar (like legacy). But for 420 and 422 InputFormat, there's a choice of having Planar,

NV12, YUY2 or UYVY OutputFormat (new addition). And the surface state should be programmed

accordingly.

• Refer "Output Format YUV" field for more details.

MFX_JPEG_HUFF_TABLE_STATE

JPEG Encoder Commands

JPEG Encoder Command Sequence:

Commands

MFX_PIPE_MODE_SELECT

MFX_SURFACE_STATE

MFX_PIPE_BUF_ADDR_STATE

MFX_IND_OBJ_BASE_ADDR_STATE

MFX_JPEG_PIC_STATE

MFX_FQM_STATE (One each for Luma, CB and CR)

MFC_JPEG_ HUFF_TABLE_STATE(Huffman table 0 and 1 need two commands to be issued).

MFC_JPEG_SCAN_OBJECT

MFX_PAK_INSERT_OBJECT (Multiple commands can be given based on the need)

Doc Ref # IHD-OS-DG1-Vol 11-2.21 219

Following are JPEG Encoder Commands:

MFX_JPEG_PIC_STATE command is used for both encoding and decoding. Note the duplicate bits and the "Exists If"

rows that specify what the bits represent for Encoder and Decoder.

MFX_JPEG_PIC_STATE

Programming Note: For completion of partial MCUs in JPEG encoding, it is important to note the

following:

If the image's dimensions are not an exact multiple of the MCU size, the encoded data should include

padding to round up to the next complete MCU, which is called completion of partial MCU. If the

number of lines is not aligned with MCU structure (not a multiple of MCU size, i.e. 8, 16, 32), the

encoding process needs to extend the number of lines to complete the bottom-most MCU-row.

Similarly, if the number of samples per line is not aligned with MCU structure, the encoding process

needs to extend the number of columns to complete the right-most sample MCUs. JPEG standard

recommends that any incomplete MCUs be completed by replication of the right-most column and the

bottom line of each component Y, U, and V.

The following equations are used to set the command for encoding partial MCUs.

FrameWidthlnBlksMinus1 = (((X + (H1 *8 -1)) / (H1 *8)) * H1) - 1

FrameHeightlnBlksMinus1 = (((Y + (V1*8 -1)) / (V1*8)) * V1) - 1

 For YUV400,

 PixelsInHoriLastMCU = X % 8

 PixelsInVertLastMCU = Y % 8

 For YUV420,

 PixelsInHoriLastMCU = X % 16 if X % 2 = 0, ((X % 16) + 1) % 16 if X % 2 = 1

 PixelsInVertLastMCU = Y % 16 if Y % 2 = 0, ((Y % 16) + 1) % 16 if Y % 2 = 1

 For YUV422H_2Y,

 PixelsInHoriLastMCU = X % 16 if X % 2 = 0, ((X % 16) + 1) % 16 if X % 2 = 1

 PixelsInVertLastMCU = Y % 8

 X: the number of samples per line in Y-image

 Y: the number of lines in Y-image

 H1: horizontal sampling factor of Y-image in the Frame header

 V1: vertical sampling factor of Y-image in the Frame header

Note that PixelsInHoriLastMCU=0 does not mean the num of pixels in the right-most MCUs = 0, but

does mean that the right-most MCUs are fully filled with pixels, i.e., not a partial MCU.

For example, for input image dimension 17x26 pixels and an interleaved Scan, the following equations

and the table show how to set the command for each OutputMcuStructure.

220 Doc Ref # IHD-OS-DG1-Vol 11-2.21

 YUV400 YUV420 YUV422H_2Y

MCU size of Y 8x8 16x16 16x8

MCU size of U and V 8x8 8x8 8x8

H1 and V1 1, 1 2, 2 2, 1

FrameWidthlnBlksMinus1 2 3 3

FrameHeightlnBlksMinus1 3 3 3

PixelsInHoriLastMCU 1 2 2

PixelsInVertLastMCU 2 10 2

MFC_JPEG_SCAN_OBJECT

The JPEG standard Table K.5 shows the real table of code length and code word as follows:

MFC_JPEG_ HUFF_TABLE_STATE

Run/Size Code length Code word

0/0 (EOB) 4 1010

0/1 2 00

0/2 2 01

0/3 3 100

0/4 4 1011

0/5 5 11010

0/6 7 1111000

0/7 8 11111000

0/8 10 1111110110

0/9 16 1111111110000010

0/A 16 1111111110000011

It is not necessary to send Run/size in the command as driver will send the increasing order of run/size.

Each symbol aligns to a DWord with the following byte structure. Each DWord (a group of 4 bytes)

contains Byte0 for Code length, Byte1 and Byte2 for Code word, and Byte3 for dummy.

Doc Ref # IHD-OS-DG1-Vol 11-2.21 221

Driver will program to always send 12 pairs of Code length and Code Word in DC coefficient table and

162 pairs in AC coefficient table. When a Huffman table contains valid full entries of Run/Size, all the

Code word and Code length will not be zero. If a Huffman table is customized or optimized, the table can

contain smaller set of Code length and Code Word, i.e., the number of entries of the real Huffman table

will be less than 12 for DC, or less than 162 for AC. For the customized Huffman table, driver will set the

missing entry (Run/Size) to Code length = 0 and Code word = 0.

MFX_PAK_INSERT_OBJECT

More Decoder and Encoder

MFD IT Mode Decode Commands

These are decoder-only commands to support the IT-mode specified in DXVA interface.

MFD_IT_OBJECT

Common Indirect IT-COEFF Data Structure

Transform-domain residual data block in AVC-IT, VC1-IT and MPEG2-IT mode follows the same data

structure.

The indirect IT-COEFF data start address in MFD_IT_OBJECT command specifies the doubleword aligned

address of the first non-zero DCT coefficient of the first block of the macroblock. Only the non-zero

coefficients are present in the data buffer and they are packed in the 8x8 block sequence of Y0, Y1, Y2,

Y3, Cb4 and Cr5, as shown in Structure of the IDCT Compressed Data Buffer. When an 8x8 block is further

subdivided into 4x4 subblocks, the coefficients, if present, are organized in the subblock order. The

smallest subblock division is referred to as a transform block. The indirect IT-COEFF data length in the

command includes all the non-zero coefficients for the macroblock. It must be doubleword aligned.

222 Doc Ref # IHD-OS-DG1-Vol 11-2.21

Structure of the IDCT Compressed Data Buffer

Each non-zero coefficient in the indirect data buffer is contained in a doubleword-size data structure

consisting of the coefficient index, end of block (EOB) flag and the fixed-point coefficient value in 2's

compliment form. As shown in Structure of a transform-domain residue unit, index is the row major

'raster' index of the coefficient within a transform block (please note that it is not converted to 8x8 block

basis). A coefficient is a 16-bit value in 2's complement.

Structure of a transform-domain residue unit

DWord Bit Description

0 31:16
Transform-Domain Residual (coefficient) Value. This field contains the value of the non-zero

transform-domain residual data in 2's compliment.

 15:7 Reserved: MBZ

 6:1
Index. This field specifies the raster-scan address (raw address) of the coefficient within the

transform block. For a coefficient at Cartesian location (row, column) = (y, x) in a transform block of

width W, Index is equal to (y * W + x). For example, coefficient at location (row, column) = (0, 0) in a

4x4 transform block has an index of 0; that at (2, 3) has an index of 2*4 + 3 = 11.

The valid range of this field depends on the size of the transform block.

Format = U6

Range = [0, 63]

 0
EOB (End of Block). This field indicates whether the transform-domain residue is the last one of

the current transform block.

Allowed transform block dimensions per coding standard

Transform Block Dimension AVC VC1 MPEG2

8x8 Yes Yes Yes

8x4 No Yes No

4x8 No Yes No

4x4 Yes Yes No

Doc Ref # IHD-OS-DG1-Vol 11-2.21 223

For AVC, there is intra16x16 mode, in which the DC Luma coefficients of all 4x4 sub-blocks within the

current MB are sent separately in its own 4x4 Luma block. As such, only 15 coefficients remains in each of

the 16 4x4 Luma blocks.

Inline Data Description in AVC-IT Mode

The Inline Data includes all the required MB decoding states, extracted primarily from the Slice Data, MB

Header and their derivatives. It provides information for the following operations:

1. Inverse Quantization

2. Inverse Transform

3. Intra and inter-Prediction decoding operations

4. Internal error handling

IT Mode supports only packed MV data as specified in the DXVA spec.

These state/parameter values may subject to change on a per-MB basis, and must be provided in each

MFD_IT_OBJECT command. The values set for these variables are retained internally, until they are reset

by hardware Asynchronous Reset or changed by the next MFC_AVC_PAK_OBJECT command.

The inline data has been designed to match the DXVA 2.0, with the exception of the starting byte

(DW0:0-7) and the ending dword (DW7:0-31).

The Deblocker Filter Control flags (FilterInternalEdgesFlag, FilterTopMbEdgeFlag and

FilterLeftMbEdgesFlag) are generated by H/W, which are depending on MbaffFrameFlag, CurrMbAddr,

PicWidthInMbs and disable_deblocking_filter_idc states.

Current MB [x,y] address is not sent, it is assumed that the H/W will keep track of the MB count and

current MB position internally.

DWord Bit Description

0 31:24
MvQuantity

Specify the number of MVs (in unit of motion vector, 4 bytes each) to be fetched for motion

compensation operation.

Decoder IT mode only supports packed MV format (DXVA). This field specifies the exact number

of MVs present for the current MB.

For a P-Skip MB, there is still 1 MV being sent (Skip MV is sent explicitly); for a B-Direct/Skip MB,

there are 2 MVs being sent.

For an Intra-MB, MvQuantity is set to 0.

MvQuantity = 0, signifies there is no MV indirect data for the current MB.

This field must be set in consistent with Indirect MV Data Length, so as not to exceed its

bound

Unsigned.

 23:20 Reserved MBZ (DXVA)

224 Doc Ref # IHD-OS-DG1-Vol 11-2.21

DWord Bit Description

 19
DcBlockCodedYFlag

1 - the 4x4 DC-only Luma sub-block of the Intra16x16 coded MB is present; it is still possible

that all DC coefficients are zero.

0 - no 4x4 DC-only Luma sub-block is present; either not in Intra16x16 MB mode or all DC

coefficients are zero.

 18
DcBlockCodedCbFlag

For 4:2:0 case :

1 - the 2x2 DC-only Chroma Cb sub-block of all coded MB (any type) is present; it is still

possible that all DC coefficients are zero.

0 - no 2x2 DC-only Chroma Cb sub-block is present; all DC coefficients are zero.

 17
DcBlockCodedCrFlag

For 4:2:0 case :

1 - the 2x2 DC-only Chroma Cr sub-block of all coded MB (any type) is present; it is still possible

that all DC coefficients are zero.

0 - no 2x2 DC-only Chroma Cr sub-block is present; all DC coefficients are zero.

 16 Reserved MBZ (DXVA)

 15
Transform8x8Flag

0: indicates the current MB is coded with 4x4 transform and therefore the luma residuals are

presented in 4x4 blocks.

1: indicates the current MB is coded with 8x8 transform and therefore the luma residuals are

presented in 8x8 blocks.

Same as the transform_szie_8x8_flag syntax element in AVC spec.

 14
MbFieldFlag

This field specifies whether current macroblock is coded as a field or frame macroblock in

MBAFF mode.

1 = Field macroblock

0 = Frame macroblock

This field is exactly the same as FIELD_PIC_FLAG syntax element in non-MBAFF mode.

Same as the mb_field_decoding_flag syntax element in AVC spec.

 13
IntraMbFlag

This field specifies whether the current macroblock is an Intra (I) macroblock.

0 - not an intra MB

Doc Ref # IHD-OS-DG1-Vol 11-2.21 225

DWord Bit Description

1 - is an intra MB

I_PCM is considered as Intra MB.

For I-picture MB (IntraPicFlag =1), this field must set to 1.

This flag must be set in consistent with the interpretation of MbType (inter or intra modes).

 12:8
MbType

This field carries the Macroblock Type. The meaning depends on IntraMbFlag.

If IntraMbFlag is 1, this field is the intra macroblock type as defined in MbType definition for

Intra Macroblock .

If IntraMbFlag is 0, this field is the inter macroblock type as defined in the first two columns of

MbType definition for Inter Macroblock (and MbSkipflag = 0). All macroblock types in a P Slice

are mapped into the corresponding types in a B Slice. Skip and Direct modes are converted into

its corresponding processing modes.

Programming note: It is exactly matched with that of DXVA 2.0.

 7
FieldMbPolarityFlag

This field indicates the field polarity of the current macroblock.

Within a MbAff frame picture, this field may be different per macroblock and is set to 1 only for

the second macroblock in a MbAff pair if FieldMbFlag is set. Otherwise, it is set to 0.

Within a field picture, this field is set to 1 if the current picture is the bottom field picture.

Otherwise, it is set to 0. It is a constant for the whole field picture.

This field is only valid for MBAFF frame picture. It is reserved and set to 0 for a progressive

frame picture or a field picture.

0 = Current macroblock is a field macroblock from the top field (first in a MBAFF pair)

1 = Current macroblock is a field macroblock from the bottom field (second in a MBAFF pair)

 6
IsLastMB

1 - the current MB is the last MB in the current Slice

0 - the current MB is not the last MB in the current Slice

 5-4 Reserved MBZ (Intel encoder)

 3:0 Reserved MBZ (DXVA Decoder)

1 31:16
CbpY[bit 15:0] (Coded Block Pattern Y)

For 4x4 sub-block (when Transform8x8flag = 0 or in intra16x16) :

16-bit cbp, one bit for each 4x4 Luma sub-block (not including the DC 4x4 Luma block in

intra16x16) in a MB. The 4x4 Luma sub-blocks are numbered as

../../../../Content/m12/vdbox/MacroblockTypeforIntraCases.htm#_Ref171145925
../../../../Content/m12/vdbox/MacroblockTypeforIntraCases.htm#_Ref171145925
../../../../Content/m12/vdbox/MacroblockTypeforInterCases.htm#_Ref201446865

226 Doc Ref # IHD-OS-DG1-Vol 11-2.21

DWord Bit Description

blk0 1 4 5 bit15 14 11 10

blk2 3 6 7 bit13 12 9 8

blk8 9 12 13 bit7 6 3 2

blk10 11 14 15 bit 5 4 1 0

The cbpY bit assignment is cbpY bit [15 - X] for sub-block_num X.

For 8x8 block (when Transform8x8flag = 1)

Only the lower 4 bits [3:0] are valid; the remaining upper bits [15:4] are ignored. The 8x8 Luma

blocks are numbered as

blk0 1 bit3 2

blk2 3 bit1 0

The cbpY bit assignment is cbpY bit [3 - X] for block_num X.

0 in a bit - indicates the corresponding 8x8 block or 4x4 sub-block is not present (because all

coefficient values are zero)

1 in a bit - indicates the corresponding 8x8 block or 4x4 sub-block is present (although it is still

possible to have all its coefficients be zero - bad coding).

 15:8
VertOrigin (Vertical Origin). This field specifies the vertical origin of current macroblock in the

destination picture in units of macroblocks.

For field macroblock pair in MBAFF frame, the vertical origins for both macroblocks should be

set as if they were located in corresponding field pictures. For example, for field macroblock pair

originated at (16, 64) pixel location in an MBAFF frame picture, the Vertical Origin for both

macroblocks should be set as 2 (macroblocks). Whether the current macroblock is the

first/second (top/bottom) in a MBAFF pair is specified by FieldMbPolarityFlag.

The macroblocks with (VertOrigin, HorzOrigin) must be delivered in the strict order as coded

in the bitstream (raster order for progressive frame or field pictures and MBAFF pair order for

MBAFF pictures). No gap is allowed. Otherwise, hardware behavior is undefined.

Format = U8 in unit of macroblock.

 7:0
HorzOrigin (Horizontal Origin). This field specifies the horizontal origin of current macroblock

in the destination picture in units of macroblocks.

Format = U8 in unit of macroblock.

2 31:16
CbpCr (Coded Block Pattern Cr 4:2:0-only)

Only the lower 4 bits [3:0] are valid; the remaining upper bits [15:4] are ignored (only valid for

4:2:2 and 4:4:4). The 4x4 Chroma Cr sub-blocks are numbered as

blk0 1 bit3 2

blk2 3 bit1 0

Doc Ref # IHD-OS-DG1-Vol 11-2.21 227

DWord Bit Description

The cbpCr bit assignment is cbpCr bit [3 - X] for sub-block_num X.

0 in a bit - indicates the corresponding 4x4 sub-block is not present (because all coefficient

values are zero)

1 in a bit - indicates the corresponding 4x4 sub-block is present (although it is still possible to

have all its coefficients be zero - bad coding).

For monochrome, this field is ignored.

 15-0
CbpCb (Coded Block Pattern Cb 4:2:0-only)

Only the lower 4 bits [3:0] are valid; the remaining upper bits [15:4] are ignored (only valid for

4:2:2 and 4:4:4). The 4x4 Chroma Cb sub-blocks are numbered as

blk0 1 bit3 2

blk2 3 bit1 0

The cbpCb bit assignment is cbpCb bit [3 - X] for sub-block_num X.

0 in a bit - indicates the corresponding 4x4 sub-block is not present (because all coefficient

values are zero)

1 in a bit - indicates the corresponding 4x4 sub-block is present (although it is still possible to

have all its coefficients be zero - bad coding).

For monochrome, this field is ignored.

3 31:24
Reserved MBz

 23:16
QpPrimeCr

Driver is responsible for deriving the QpPrimeCr from QpPrimeY.

For 8-bit pixel data, QpCr is the same as QpPrimeCr, and it takes on a value in the range of 0 to

51, positive integer.

 15:8
QpPrimeCb

Driver is responsible for deriving the QpPrimeCb from QpPrimeY.

For 8-bit pixel data, QpCb is the same as QpPrimeCb, and it takes on a value in the range of 0 to

51, positive integer.

 7:0
QpPrimeY

This is the per-MB QP value specified for the current MB.

For 8-bit pixel data, QpY is the same as QpPrimeY, and it takes on a value in the range of 0 to

51, positive integer.

4 to 6
31:0 For intra macroblocks, definition of these fields are specified in Inline data subfields for an Intra

Macroblock

228 Doc Ref # IHD-OS-DG1-Vol 11-2.21

DWord Bit Description

Each For inter macroblocks, definition of these fields are specified in Inline data subfields for an Inter

Macroblock

Indirect Data Format in AVC-IT Mode

Indirect data in AVC-IT mode consist of Motion Vectors, Transform-domain Residue (Coefficient) and

ILDB control data. All three data records have variable size. Size of each Motion Vector record is

determined by the MvQuantity value as shown in Indirect MV record size in AVC-IT mode. ILDB control

record is fixed at the same size for all MBs in a picture. Coefficient data record is variable size per MB,

since it may only consist of non-zero coefficients.

Each MV is represented in 4 bytes, in the form of

• Lower 2 bytes : horizontal MVx component in q-pel units

• Upper 2 bytes : vertical MVy component in q-pel units

• Integer distance is measured in unit of samples in the frame or field grid position.

• Chroma MVs are not sent and are derived in the H/W.

Indirect MV record size in AVC-IT mode

Macroblock Type MVQuant

BP_L0_16x16 1

B_L1_16x16 1

B_Bi_16x16 2

BP_L0_L0_16x8 2

BP_L0_L0_8x16 2

B_L1_L1_16x8 2

B_L1_L1_8x16 2

B_L0_L1_16x8 2

B_L0_L1_8x16 2

B_L1_L0_16x8 2

B_L1_L0_8x16 2

B_L0_Bi_16x8 3

Doc Ref # IHD-OS-DG1-Vol 11-2.21 229

Macroblock Type MVQuant

B_L0_Bi_8x16 3

B_L1_Bi_16x8 3

B_L1_Bi_8x16 3

B_Bi_L0_16x8 3

B_Bi_L0_8x16 3

B_Bi_L1_16x8 3

B_Bi_L1_8x16 3

B_Bi_Bi_16x8 4

B_Bi_Bi_8x16 4

BP_8x8 Sum

For macroblock type of BP_8x8, MvQuant takes the sum of value MvQ[i] of the four individual 8x8 sub

macroblocks.

SubMbShape[i] SubMbPredMode[i] Description MvQ[i]

0 0 BP_L0_8x8 1

0 1 B_L1_8x8 1

0 2 B_BI_8x8 2

1 0 BP_L0_8x4 2

1 1 B_L1_8x4 2

1 2 B_BI_8x4 4

2 0 BP_L0_4x8 2

2 1 B_L1_4x8 2

2 2 B_BI_4x8 4

3 0 BP_L0_4x4 4

3 1 B_L1_4x4 4

3 2 B_BI_4x4 8

230 Doc Ref # IHD-OS-DG1-Vol 11-2.21

Indirect data Deblocking Filter Control block in AVC-IT mode:

AVC Deblocker Control Data record has a fixed size for each MB in a picture and is 12 Dwords in size.

DWord Bit Description

0 31:24 Reserved : MBZ (DXVA Decoder)

23
FilterTopMbEdgeFlag

22
FilterLeftMbEdgeFlag

21
FilterInternal4x4EdgesFlag

20
FilterInternal8x8EdgesFlag

19
FieldModeAboveMbFlag

18
FieldModeLeftMbFlag

17
FieldModeCurrentMbFlag

16
MbaffFrameFlag (DXVA Decoder reserved bit)

15:8
VertOrigin Current MB y position (address)

7:0
HorzOrigin Current MB x position (address)

1 31:30
bS_h13 2-bit boundary strength for internal top horiz 4-pixel edge 3

29:28
bS_h12 2-bit boundary strength for internal top horiz 4-pixel edge 2

27:26
bS_h11 2-bit boundary strength for internal top horiz 4-pixel edge 1

25:24
bS_h10 2-bit boundary strength for internal top horiz 4-pixel edge 0

23:22
bS_v33 2-bit boundary strength for internal right vert 4-pixel edge 3

21:20
bS_v23 2-bit boundary strength for internal right vert 4-pixel edge 2

19:18
bS_v13 2-bit boundary strength for internal right vert 4-pixel edge 1

17:16
bS_v03 2-bit boundary strength for internal right vert 4-pixel edge 0

15:14
bS_v32 2-bit boundary strength for internal mid vert 4-pixel edge 3

Doc Ref # IHD-OS-DG1-Vol 11-2.21 231

DWord Bit Description

13:12
bS_v22 2-bit boundary strength for internal mid vert 4-pixel edge 2

11:10
bS_v12 2-bit boundary strength for internal mid vert 4-pixel edge 1

9:8
bS_v02 2-bit boundary strength for internal mid vert 4-pixel edge 0

7:6
bS_v31 2-bit boundary strength for internal left vert 4-pixel edge 3

5:4
bS_v21 2-bit boundary strength for internal left vert 4-pixel edge 2

3:2
bS_v11 2-bit boundary strength for internal left vert 4-pixel edge 1

1:0
bS_v01 2-bit boundary strength for internal left vert 4-pixel edge 0

2 31:28
bS_v30_0 4-bit boundary strength for Left0 4-pixel edge 3 (MSbit is wasted)

17:24
bS_v20_0 4-bit boundary strength for Left0 4-pixel edge 2 (MSbit is wasted)

23:20
bS_v10_0 4-bit boundary strength for Left0 4-pixel edge 1 (MSbit is wasted)

19:16
bS_v00_0 4-bit boundary strength for Left0 4-pixel edge 0 (MSbit is wasted)

15:14
bS_h33 2-bit boundary strength for internal bot horiz 4-pixel edge 3

13:12
bS_h32 2-bit boundary strength for internal bot horiz 4-pixel edge 2

11:10
bS_h31 2-bit boundary strength for internal bot horiz 4-pixel edge 1

9:8
bS_h30 2-bit boundary strength for internal bot horiz 4-pixel edge 0

7:6
bS_h23 2-bit boundary strength for internal mid horiz 4-pixel edge 3

5:4
bS_h22 2-bit boundary strength for internal mid horiz 4-pixel edge 2

3:2
bS_h21 2-bit boundary strength for internal mid horiz 4-pixel edge 1

1:0
bS_h20 2-bit boundary strength for internal mid horiz 4-pixel edge 0

3 31:28
bS_h03_0 4-bit boundary strength for Top0 4-pixel edge 3 (MSbit is wasted)

27:24
bS_h02_0 4-bit boundary strength for Top0 4-pixel edge 2 (MSbit is wasted)

232 Doc Ref # IHD-OS-DG1-Vol 11-2.21

DWord Bit Description

23:20
bS_h01_0 4-bit boundary strength for Top0 4-pixel edge 1 (MSbit is wasted)

19:16
bS_h00_0 4-bit boundary strength for Top0 4-pixel edge 0 (MSbit is wasted)

15:12
bS_v03 4-bit boundary strength for Left1 4-pixel edge 3 (MSbit is wasted)

11:8
bS_v02 4-bit boundary strength for Left1 4-pixel edge 2 (MSbit is wasted)

7:4
bS_v01 4-bit boundary strength for Left1 4-pixel edge 1 (MSbit is wasted)

3:0
bS_v00 4-bit boundary strength for Left1 4-pixel edge 0 (MSbit is wasted)

4 31:24
bIndexBinternal_Y Internal index B for Y

23:16
bIndexAinternal_Y Internal index A for Y

15:12
bS_h03_1 4-bit boundary strength for Top1 4-pixel edge 3 (MSbit is wasted)

11:8
bS_h02_1 4-bit boundary strength for Top1 4-pixel edge 2 (MSbit is wasted)

7:4
bS_h01_1 4-bit boundary strength for Top1 4-pixel edge 1 (MSbit is wasted)

3:0
bS_h00_1 4-bit boundary strength for Top1 4-pixel edge 0 (MSbit is wasted)

5 31:24
bIndexBleft1_Y

23:16
bIndexAleft1_Y

15:8
bIndexBleft0_Y

7:0
bIndexAleft0_Y

6 31:24
bIndexBtop1_Y

23:16
bIndexAtop1_Y

15:8
bIndexBtop0_Y

7:0
bIndexAtop0_Y

7 31:24
bIndexBleft0_Cb

Doc Ref # IHD-OS-DG1-Vol 11-2.21 233

DWord Bit Description

23:16
bIndexAleft0_Cb

15:8
bIndexBinternal_Cb

7:0
bIndexAinternal_Cb

8 31:24
bIndexBtop0_Cb

23:16
bIndexAtop0_Cb

15:8
bIndexBleft1_Cb

7:0
bIndexAleft1_Cb

9 31:24
bIndexBinternal_Cr

23:16
bIndexAinternal_Cr

15:8
bIndexBtop1_Cb

7:0
bIndexAtop1_Cb

10 31:24
bIndexBleft1_Cr

23:16
bIndexAleft1_Cr

15:8
bIndexBleft0_Cr

7:0
bIndexAleft0_Cr

11 31:24
bIndexBtop1_Cr

23:16
bIndexAtop1_Cr

15:8
bIndexBtop0_Cr

7:0
bIndexAtop0_Cr

234 Doc Ref # IHD-OS-DG1-Vol 11-2.21

Inline Data Description in VC1-IT Mode

DWord Bits Description

+0 31:28
MvFieldSelect. A bit-wise representation indicating which field in the reference frame is used as

the reference field for current field. It's only used in decoding interlaced pictures.

This field is valid for non-intra macroblock only.

Bit Description

28 Forward predict of current frame/field or TOP field of interlace frame, or block

0 in 4MV mode.

29 Backward predict of current frame/field or TOP field of interlace frame, or

forward predict for block 1 in 4MV mode.

30 Forward predict of BOTTOM field of interlace frame, or block 2 in 4MV mode.

31 Backward predict of BOTTOM field of interlace frame, or forward predict for

block 3 in 4MV mode.

Each corresponding bit has the following indication.

0 = The prediction is taken from the top reference field.

1 = The prediction is taken from the bottom reference field.

 27
Reserved. MBZ

 26
MvFieldSelectChroma . This field specifies the polarity of reference field for chroma blocks when

their motion vector is derived in Motion4MV mode for interlaced (field) picture.

Non-intra macroblock only. This field is derived from MvFieldSelect.

0 = The prediction is taken from the top reference field.

1 = The prediction is taken from the bottom reference field.

 25:24
MotionType - Motion Type

For frame picture, a macroblock may only be either 00 or 10.

For interlace picture, a macroblock may be of any motion types. It can be 01 if and only if DctType is

1.

This field is 00 if and only if IntraMacroblock is 1.

00 = Intra

01 = Field Motion.

10 = Frame Motion or no motion.

Others = Reserved.

Doc Ref # IHD-OS-DG1-Vol 11-2.21 235

DWord Bits Description

 23
Reserved. MBZ

 22
MvSwitch. This field specifies whether the prediction needs to be switched from forward to

backward or vice versa for single directional prediction for top and bottom fields of interlace frame

B macroblocks.

0 = No directional prediction switch from top field to bottom field

1 = Switch directional prediction from top field to bottom field

 21
DctType. This field specifies whether the residual data is coded as field residual or frame residual

for interlaced picture. This field can be 1 only if MotionType is 00 (intra) or 01 (field motion).

For progressive picture, this field must be set to '0', i.e. all macrobalcoks are frame macroblock.

0 = Frame residual type.

1 = Field residual type.

 20
OverlapTransform. This field indicates whether overlap smoothing filter should be performed on I-

block boundaries.

0 = No overlap smoothing filter.

1 = Overlap smoothing filter performed.

 19
Motion4MV. This field indicates whether current macroblock a progressive P picture uses 4 motion

vectors, one for each luminance block.

It's only valid for progressive P-picture decoding. Otherwise, it is reserved and MBZ. For example,

with MotionForward is 0, this field must also be set to 0.

0 = 1MV-mode.

1 = 4MV-mode.

 18
MotionBackward. This field specifies whether the backward motion vector is active for B-picture.

This field must be 0 if Motion4MV is 1 (no backward motion vector in 4MV-mode).

0 = No backward motion vector.

1 = Use backward motion vector(s).

 17
MotionForward. This field specifies whether the forward motion vector is active for P and B

pictures.

0 = No forward motion vector.

1 = Use forward motion vector(s).

 16
IntraMacroblock. This field specifies if the current macroblock is intra-coded. When set, Coded

Block Pattern is ignored and no prediction is performed (i.e., no motion vectors are used).

236 Doc Ref # IHD-OS-DG1-Vol 11-2.21

DWord Bits Description

For field motion, this field indicates whether the top field of the macroblock is coded as intra.

0 = Non-intra macroblock.

1 = Intra macroblock.

 15:12
LumaIntra8x8Flag - Luma Intra 8x8 Flag

This field specifies whether each of the four 8x8 luminance blocks are intra or inter coded when

Motion4MV is set to 4MV-Mode.

Each bit corresponds to one block. "0" indicates the block is inter coded and '1' indicates the block

is intra coded.

When Motion4MV is not 4MV-Mode, this field is reserved and MBZ.

Bit 15: Y0

Bit 14: Y1

Bit 13: Y2

Bit 12: Y3

 11:6
CBP - Coded Block Pattern

This field specifies whether the 8x8 residue blocks in the macroblock are present or not.

Each bit corresponds to one block. "0" indicates residue block isn't present, "1" indicates residue

block is present.

Note: For each block in an intra-coded macroblock or an intra-coded block in a P macroblock in

4MV-Mode, the corresponding CBP must be 1. Subsequently, there must be at least one coefficient

(this coefficient might be zero) in the indirect data buffer associated with the bock (i.e. residue block

must be present).

Bit 11: Y0

Bit 10: Y1

Bit 9: Y2

Bit 8: Y3

Bit 7: Cb4

Bit 6: Cr5

 5
ChromaIntraFlag - Derived Chroma Intra Flag

This field specifies whether the chroma blocks should be treated as intra blocks based on motion

vector derivation process in 4MV mode.

0 = Chroma blocks are not coded as intra.

1 = Chroma blocks are coded as intra

Doc Ref # IHD-OS-DG1-Vol 11-2.21 237

DWord Bits Description

 4
LastRowFlag - Last Row Flag

This field indicates that the current macroblock belongs to the last row of the picture.

This field may be used by the kernel to manage pixel output when overlap transform is on.

0 = Not in the last row

1 = In the last row

3
LastMBInRow - This field indicates the last MB in row flag.

2:0
Reserved. MBZ

+1 32:26
Reserved. MBZ

 25:24
OSEdgeMaskChroma

This field contains the overscan edge mask for the Chroma blocks.

The left edge masks are hardware and the top edge masks are used by the kernel software.

Bit 24: Top edge of block Cb/Cr

Bit 25: Left edge of block Cb/Cr

 23:16
OSEdgeMaskLuma

This field contains the overscan edge mask for the Luma blocks.

The left edge masks are hardware and the top edge masks are used by the kernel software.

Bit 16: Top edge of block Y0

Bit 17: Top edge of block Y1

Bit 18: Top edge of block Y2

Bit 19: Top edge of block Y3

Bit 20: Left edge of block Y0

Bit 21: Left edge of block Y1

Bit 22: Left edge of block Y2

Bit 23: Left edge of block Y3

Programming Note: In order to create 8 predication bits from each edge mask bit, software may first

create a 0, 1 vector by using a shr instruction with a step shift vector like 0, 1, 2, 3 (e.g. using

immediate of type :v. Then each 0 or 1 of the LSB can be repeated by an and instruction to create 8

bits to the flag register. Alternatively, this can be achieved with one and instruction using a CURBE

constant map of bit 0 and bit 1 mask.

 15:8
VertOrigin - Vertical Origin

238 Doc Ref # IHD-OS-DG1-Vol 11-2.21

DWord Bits Description

In unit of macroblocks relative to the current picture (frame or field).

 7:0
HorzOrigin - Horizontal Origin

In unit of macroblocks.

+2 31:16
MotionVector[0].Vert

 15:0
MotionVector[0].Horz

+3 31:0
MotionVector[1]

+4 31:0
MotionVector[2]

+5 31:0
MotionVector[3]

+6 31:0
MotionVectorChroma

This field is not valid for a field motion in an interlaced frame picture where 4 MVs for chroma

blocks.

Notes: This field is derived from MotionVector[3:0] as described in the following section.

+7 31:24
Subblock Code for Y3

The following subblock coding definition applies to all 6 subblock coding bytes. Bits 7:6 are

reserved.

Subblock Partitioning

(Bits [1:0])

Specify Transform uses for

an 8x8 block

Subblock Present

(0 means not present, 1 means present)

Bits

[1:0] Meaning Bit 2 Bit 3 Bit 4 Bit 5

00 Single 8x8 block (sb0) Sb0 Don't care Don't care Don't care

01 Two 8x4 subblocks

(sb0-1)

Sb1 (bot) Sb0 (top) Don't care Don't care

10 Two 4x8 subblocks

(sb0-1)

Sb1 (right) Sb0 (left) Don't care Don't care

11 Four 4x4 subblocks

(sb0-3)

Sb3 (lower

right)

Sb2 (lower

left)

Sb1 (upper

right)

Sb0 (upper

left)

 23:16
Subblock Code for Y2

 15:8
Subblock Code for Y1

Doc Ref # IHD-OS-DG1-Vol 11-2.21 239

DWord Bits Description

 7:0
Subblock Code for Y0

+8 31:16
Reserved. MBZ

 15:8
Subblock Code for Cr

 7:0
Subblock Code for Cb

+9 31:24
ILDB control data for block Y3

 23:16
ILDB control data for block Y2

 15:8
ILDB control data for block Y1

 7:0
ILDB control data for block Y0

+10 31:16
Reserved

 15:8
ILDB control data for Cr block

 7:0
ILDB control data for Cb block

Indirect Data Format in VC1-IT Mode

VC1-IT mode only contains IT-COEFF indirect data which is described in Common Indirect IT-COEFF Data

Structure.

Inline Data Description in MPEG2-IT Mode

The content in this command is similar to that in the MEDIA_OBJECT command in IS mode described in

the Media Chapter.

Each MFD_IT_OBJECT command corresponds to the processing of one macroblock. Macroblock

parameters are passed in as inline data and the non-zero DCT coefficient data for the macroblock is

passed in as indirect data.

Inline data in MPEG2-IT Mode depicts the inline data format. Inline data starts at dword 7 of

MFD_IT_OBJECT command. There are 7 dwords total.

../../../../Content/m12/vdbox/CommonIndirectITCOEFFDataStructure.htm#_Ref170126306
../../../../Content/m12/vdbox/CommonIndirectITCOEFFDataStructure.htm#_Ref170126306

240 Doc Ref # IHD-OS-DG1-Vol 11-2.21

Inline data in MPEG2-IT Mode

DWord Bit Description

+0 31:28
Motion Vertical Field Select. A bit-wise representation of a long [2][2] array as defined in Section

6.3.17.2 of the ISO/IEC 13818-2 (see also Section 7.6.4).

Bit MVector[r] MVector[s] MotionVerticalFieldSelect Index

28 0 0 0

29 0 1 1

30 1 0 2

31 1 1 3

Format = MC_MotionVerticalFieldSelect.

0 = The prediction is taken from the top reference field.

1 = The prediction is taken from the bottom reference field.

 27 Reserved (was Second Field)

 26 Reserved. (HWMC mode)

 25:24
Motion Type. When combined with the destination picture type (field or frame) this Motion Type

field indicates the type of motion to be applied to the macroblock. See ISO/IEC 13818-2 Section

6.3.17.1, Tables 6-17, 6-18. In particular, the device supports dual-prime motion prediction (11) in

both frame and field picture type.

Format = MC_MotionType

Value

Destination = Frame

Picture_Structure = 11

Destination = Field

Picture_Structure != 11

'00' Reserved Reserved

'01' Field Field

'10' Frame 16x8

'11' Dual-Prime Dual-Prime

 23:22 Reserved. (Scan method)

 21
DCT Type. This field specifies the DCT type of the current macroblock. The kernel should ignore this

field when processing Cb/Cr data. See ISO/IEC 13818-2 Section 6.3.17.1. This field is zero if Coded

Block Pattern is also zero (no coded blocks present).

0 = MC_FRAME_DCT (Macroblock is frame DCT coded).

1 = MC_FIELD_DCT (Macroblock is field DCT coded).

 20 Reserved (was Overlap Transform - H261 Loop Filter).

 19 Reserved (was 4MV Mode - H263/WMV)

 18
Macroblock Motion Backward. This field specifies if the backward motion vector is active. See

Doc Ref # IHD-OS-DG1-Vol 11-2.21 241

DWord Bit Description

ISO/IEC 13818-2 Tables B-2 through B-4.

0 = No backward motion vector.

1 = Use backward motion vector(s).

 17
Macroblock Motion Forward. This field specifies if the forward motion vector is active. See ISO/IEC

13818-2 Tables B-2 through B-4.

0 = No forward motion vector.

1 = Use forward motion vector(s).

 16
Macroblock Intra Type. This field specifies if the current macroblock is intra-coded. When set,

Coded Block Pattern is ignored and no prediction is performed (i.e., no motion vectors are used).

See ISO/IEC 13818-2 Tables B-2 through B-4.

0 = Non-intra macroblock.

1 = Intra macroblock.

 15:12
Reserved : MBZ

 11:6
Coded Block Pattern. This field specifies whether blocks are present or not.

Format = 6-bit mask.

Bit 11: Y0

Bit 10: Y1

Bit 9: Y2

Bit 8: Y3

Bit 7: Cb4

Bit 6: Cr5

5:4 Reserved. (Quantization Scale Code)

3 LastMBInRow - This field indicates the last MB in each row.

2:0 Reserved: MBZ

+1 31:16
Reserved : MBZ

 15:8
VertOrigin - Vertical Origin

In unit of macroblocks relative to the current picture (frame or field).

7:0
HorzOrigin - Horizontal Origin

In unit of macroblocks.

+2 31:16
Motion Vectors - Field 0, Forward, Vertical Component. Each vector component is a 16-bit

242 Doc Ref # IHD-OS-DG1-Vol 11-2.21

DWord Bit Description

two's-complement value. The vector is relative to the current macroblock location. According to

ISO/IEC 13818-2 Table 8, the valid range of each vector component is [-2048, +2047.5], implying a

format of s11.1. However, it should be noted that motion vector values are sign extended to 16 bits.

 15:0
Motion Vectors - Field 0, Forward, Horizontal Component

+3 31:16
Motion Vectors - Field 0, Backward, Vertical Component

 15:0
Motion Vectors - Field 0, Backward, Horizontal Component

+4 31:16
Motion Vectors - Field 1, Forward, Vertical Component

 15:0
Motion Vectors - Field 1, Forward, Horizontal Component

+5 31:16
Motion Vectors - Field 1, Backward, Vertical Component

 15:0
Motion Vectors - Field 1, Backward, Horizontal Component

Indirect Data Format in MPEG2-IT Mode

MPEG2-IT mode only contains IT-COEFF indirect data which is described in Section Common Indirect IT-

COEFF Data Structure.

MFX Deblocking Commands

Following are MFX Deblocking Commands:

MFX_DBK_OBJECT

MFX Error Handling

Encoder StreamOut Mode Data Structure Definition

When StreamOut is enabled, per MB (and/or per Slice, per Picture) intermediated coding data (for

example, bit allocated for each MB, and so on) are sent to the memory in a fixed record format (and of

fixed size) from the PAK. The per-MB records must be written in a strict raster order and with no gap

(that is, every MB regardless of its mb_type and slice type, must have an entry in the StreamOut buffer).

Therefore, the consumer of the StreamOut data can offset into the StreamOut Buffer (StreamOut Data

Destination Base Address) using individual MB addresses.

Adding per macroblock stream out for PAK is for the following purposes:

• Immediate multi-pass PAK (without host or EU intervention)

• 3200-bit conformance

• Re-quantization

../../../../Content/m12/vdbox/CommonIndirectITCOEFFDataStructure.htm#_Ref170126306
../../../../Content/m12/vdbox/CommonIndirectITCOEFFDataStructure.htm#_Ref170126306

Doc Ref # IHD-OS-DG1-Vol 11-2.21 243

• Providing information for host for offline processing

• Providing information for updated QP's

The description for the fixed format PAK streamout record:

Streamout Pointer: Use the existing streamout pointer and enabler

Per Macroblock Information (a fixed size structure)

DWord Bit Description

0 31:24 MbQpY - Actual QPY used by the macroblock.

23:16

MbClock16 - MB compute clocks in 16-clock unit.

15:8 Reserved: MBZ

7:4 Reserved: MBZ (future conformance flags)

3 Reserved

2 MbRcFlag: MB level Rate control flag(pass through)

 The same value as RateControlCounterEnable of MFX_AVC_SLICE_STATE Command

1 MbInterConfFlag: MB level InterMB conformance flag to trigger mutli-pass

 1- if total Bit Count of an inter macroblock is more than Inter Conformance Max size limit in the

MFX_AVC_IMG_STATE Command

0 MbIntraConfFlag: MB level IntraMB conformance flag to trigger mutli-pass

 1- if total Bit Count of an intra macroblock is more than Intra Conformance Max size limit in the

MFX_AVC_IMG_STATE Command

1 31:29 Reserved

28:16 MbBits: Total Bit Count for the macroblock

15:12 Reserved

12:0 MbHdrBits: Header Bit count (bit count due to Pre-coefficient data) for the macroblock

2 31:27 Reserved

26:0 Cbp: Coded Block Pattern of sub-blocks

3 31:30 Reserved

29 IntraMBFlag

28:24 MBType5Bits

23:17 Reserved

16 ClampFlag: Coefficient clamping flag for RC (Status)

 1 - Indicates if clamping of any coefficient is done on the macroblock for Rate Control

15:0 Reserved (future QRC stat output)

244 Doc Ref # IHD-OS-DG1-Vol 11-2.21

PAK Frame Statistics StreamOut

The following frame statistics are written to memory at the conclusion of a frame. If Multipass occurs,

these values are overwritten by the end of any subsequent passes of the current frame (hence it contains

only the final pass statistics).

The streamout is done to the MB streamout surface, starting at the next CL boundary. If MB streamout is

disabled, Frame level streamout starts with 0 offset.

MFX_PAK_FRAME_STATISTICS

Source: VideoCS

Length

Bias:
2

DWord Bit Description

0 31:16 Reserved : MBZ

15:0 SumSliceHeader - Report the total size (in bits) of all slice headers inserted into the bitstream for

this frame.

1 31:0 SumMBHeader - Report the total size (in bits) of all MB headers (non coeff bits) inserted into the

bitstream for this frame.

2 31:0 SumNZC - Report the total number of nonzero coefficients after quantization.

3 31:0 Reserved: MBZ

4 31:16 IntraMB16x16 - Count of # of MB's that were of type Intra 16x16

15:0 IntraMB8x8 - Count of # of MB's that were of type Intra 8x8

5 31:16 IntraMB4x4 - Count of # of MB's that were of type Intra 4x4

15:0 InterMB16x16 - Count of # of MB's that were of type Inter 16x16

6 31:16 InterMB16x8 - Count of # of MB's that were of type Inter 16x8

15:0 InterMB8x16 - Count of # of MB's that were of type Inter 8x16

7 31:16 InterMB8x8 - Count of # of MB's that were of type Inter 8x8

15:0 InterSkip16x16 - Count of # of MB's that were of type Inter 16x16 skip

8:49 31:0 RhoDomainStats - Each DW contains 1 of the 42 registers containing the raw Rho Domain

coefficient metrics. DW 8 is QP 10 and DW 49 is QP51.

50 31:0 Reserved: MBZ

Doc Ref # IHD-OS-DG1-Vol 11-2.21 245

PAK Multi-Pass

Multi-Pass PAK Usages:

• Intra MB 3200-bit conformance

• Inter MB Re-quantization

• Frame level Re-quantization

How to Enable Multi-Pass PAK?

• Using the existing conditional batch buffer execution capability to skip/execute the second pass

o How to dynamically change the condition?

▪ Defined one error condition register with a mask. Do HW status page update at

the end of the first pass. 0 means all OK, non-zero means there is an error

condition, requiring second pass. Mask is used by the host to control what kind of

multi-pass is intended.

▪ For example, one error bit is 3200-bit conformance violation. Another error bit is

the total bit count exceeds (too much or too little) the target range (need to define

the target range in the state).

▪ The logic perfectly fits in the conditional batch buffer control logic that VCS

has today in GT. There is no additional logic need to be added in VCS to

support media functionality. (Batch Buffer Skip: This field only takes effect if

Compare Semaphore is set and the value at Semaphore Address is NOT greater

than the Semaphore Data Dword).

• Adding a picture level state command to enable and control the behavior of the second pass PAK

o How to control the re-PAK? Added 3 conformance flags (error registers) in the per-MB

streamout. Then the error control is based on the error register and the mask defined in

picture level states. There are 8 register flags defined out of which only the 3200-bit case

has usage model defined for today. The rest are left for future usage.

Issues and Limitations:

• There is no programmable engine in MFX for flexible control: Therefore, whatever we have defined

must consider flexibility

Following 2 MI packets are used inside VCS without any change to support Multipass-PAK behaviour.

• MI_Conditional_Batch_Buffer_End

• Memory Interface Registers

246 Doc Ref # IHD-OS-DG1-Vol 11-2.21

Driver Usage

Driver places Image states in one batch buffer and all slice level and macroblock level states into another

batch buffer and link 2 batch buffers. Also replicate Image states with multipass changes in another

batch buffer link them to slice/macroblock batch buffer. In this way, only Image states are replicated but

not the slice/macroblock states. The image states includes all buffers defined at image(indirectMV,

original pixel buffer, etc). Following changes are needed in the Multipass Image State,

• Reset- Stream-Out Enable(disable stream out in the second pass)

• Set- MacroblockStatEnable (enable reading of macroblock status buffer)

• Reset- 3200-bit conformance (do not report 3200-bit conformance)

Define Conditional Batch Buffer End for CS/VCSVINunit

Programming Reference

Monochrome Picture Processing

Monochrome picture is specified using the Surface State with Surface Format of 12. Therefore, MFX

hardware, in either decode or encode mode, does not generate any read or write traffic for U/V

components. The motivation for this bandwidth optimization is that monochrome video coding might be

used for wireless display.

For Encoder:

1. No read in UV original components

2. Processing UV component - no

3. Reconstructed UV component reference picture - no

4. Filter UV component - no

For Decoder:

1. VLD mode: There is no color component coming out of the decoding pipeline in Monochrome

mode and so no processing and not writing output.

Doc Ref # IHD-OS-DG1-Vol 11-2.21 247

2. IT mode: There is no color component in the coefficient buffer, and so no processing and not

writing output.

Context Switch

There is no pre-emption for the BCS pipeline; hence every command buffer is required to contain all the

states setup (preamble). Specifically, CPU cannot interrupt the BCS-BSD pipe, to stop the operation in the

middle of decoding a bitstream data.

Switch of contexts can only be performed at picture boundary.

No state needs to be saved.

PMSI Support

Pipeline Flush

Implicit flush for AVC and VC1 is performed at the end of Slice: for MPEG2 is done when a new

image/picture command is issued. Because MPEG2 a slice can be one MB, no point to flush. MPEG2 will

snoop the next command if it is an img_state command.

Explicit flush MI (1 bit to do media pipeline vs Gx pipeline) flush and cache flush (switch reference frame)

- MI flush has bit to do cache flush. MI flush is for driver synchronization.

MMIO Interface

A set of registers are defined and accessible through MMIO interface to serve multiple purposes:

• Use for system configuration

• For accessing Performance counters

The following is the table for all the MMIO addresses for MFX.

Decoder Registers

Following are Decoder Registers:

Registers

MFD_ERROR_STATUS - MFD Error Status

AVC CAVLC

AVC CABAC

VC1

MPEG2

248 Doc Ref # IHD-OS-DG1-Vol 11-2.21

Registers

JPEG

MFD_PICTURE_PARAM - MFD Picture Parameter

MFX_STATUS_FLAGS - MFX Pipeline Status Flags

MFX_MB_COUNT - MFX Frame Macroblock Count

MFX_SE-BIN_CT - MFX Frame BitStream SE/BIN Count

Encoder Registers

Following are the Encoder Registers:

Register

MFC_VIN_AVD_ERROR_CNTR - MFC_AVC Bitstream Decoding Front-End Parsing Logic Error Counter.

MFC_BITSTREAM_BYTECOUNT_FRAME - Reported Bitstream Output Byte Count per Frame Register

MFC_BITSTREAM_SE_BITCOUNT_FRAME - Reported Bitstream Output Bit Count for Syntax Elements Only
Register

MFC_AVC_CABAC_BIN_COUNT_FRAME - Reported Bitstream Output CABAC Bin Count Register

AVC_CABAC_INSERTION_COUNT - MFC_AVC_CABAC_INSERTION_COUNT

MFC_AVC_MINSIZE_PADDING_COUNT - Bitstream Output Minimal Size Padding Count Report Register

MFC_IMAGE_STATUS_MASK - MFC Image Status Mask

MFC_IMAGE_STATUS_CONTROL - MFC Image Status Control

MFC_QUP_CT - MFC QP Status Count

MFC_BITSTREAM_BYTECOUNT_SLICE - Bitstream Output Byte Count Per Slice Report Register

MFC_BITSTREAM_SE_BITCOUNT_SLICE - Bitstream Output Bit Count for the last Syntax Element Report Register

MFX_PAK_ERROR Register

MFX_PAK_WARNING Register

MFX_VP8_CNTRL_MASK - Reported BitRateControl parameter Mask

MFX_VP8_CNTRL_STATUS - Reported BitRateControl parameter Status

MFX_VP8_FRM_BYTE_CNT - Reported Final Bitstream Byte Count

MFX_VP8_FRM_ZERO_PAD - Reported Frame Zero Padding Byte Count

MFX_VP8_BRC_DQindex - Reported BitRateControl DeltaQindex

MFX_VP8_BRC_DLoopFilter - Reported BitRateControl DeltaLoopFilter

MFX_VP8_BRC_CumulativeDQindex01 - Reported BitRateControl CumulativeDeltaQindex and Qindex 01

MFX_VP8_BRC_CumulativeDQindex23 - Reported BitRateControl CumulativeDeltaQindex and Qindex 23

MFX_VP8_BRC_CumulativeDLoopFilter01 - Reported BitRateControl CumulativeDeltaLoopFilter and LoopFilter
01

MFX_VP8_BRC_CumulativeDLoopFilter23 - Reported BitRateControl CumulativeDeltaLoopFilter and LoopFilter
23

MFX_VP8_BRC_Convergence_Status - Reported BitRateControl Convergence Status

Doc Ref # IHD-OS-DG1-Vol 11-2.21 249

MMIO Interface

A set of registers are defined and accessible through MMIO interface to serve multiple purposes:

• Use as Status register for Bit Rate Control

• Use for Context Switch in Multipass

Register Name Description

Register

Type

Address

Offset Dec/Enc

MFX_VP8_CNTRL_MASK BitRateControl parameter Mask

register

RO 12900 Enc

MFX_VP8_CNTRL_STATUS BitRateControl parameter Status

register

RO 12904 Enc

MFX_VP8_FRM_BYTE_CNT Final Bitstream Byte count RO 12908 Enc

MFX_VP8_FRM_ZERO_PAD Final Bitstream Zero Padding Byte

count

RO 1290B Enc

MFX_VP8_BRC_DQindex BitRateControl Delta Qindex RO 12910 Enc

MFX_VP8_BRC_DLoopFilter BitRateControl Delta LoopFilter RO 12914 Enc

MFX_VP8_BRC_CumulativeDQindex01 BitRateControl Cumulative Delta

Qindex for Seg0/1
RW

12918 Enc

MFX_VP8_BRC_CumulativeDQindex23 BitRateControl Cumulative Delta

Qindex for Seg2/3
RW

1291C Enc

MFX_VP8_BRC_CumulativeDLoopFilter01 BitRateControl Cumulative Delta

LoopFilter for Seg0/1
RW

12920 Enc

MFX_VP8_BRC_CumulativeDLoopFilter23 BitRateControl Cumulative Delta

LoopFilter for Seg2/3
RW

12924 Enc

MFX_VP8_BRC_Convergence_Status BitRateControl Convergence Status
RW

12928 Enc

MFX_VP8_DEBUG_CPBAC0_Bottom CPBAC0 engine Bottom State RO 1292C Enc

MFX_VP8_DEBUG_CPBAC0_RangeCount CPBAC0 engine Range/Count State RO 12930 Enc

MFX_VP8_DEBUG_CPBAC0_Misc CPBAC0 engine Misc. States RO 12934 Enc

MFX_VP8_DEBUG_CPBAC1_Bottom CPBAC1 engine Bottom State RO 12938 Enc

MFX_VP8_DEBUG_CPBAC1_RangeCount CPBAC1 engine Range/Count State RO 1293C Enc

MFX_VP8_DEBUG_CPBAC1_Misc CPBAC1 engine Misc. States RO 12940 Enc

250 Doc Ref # IHD-OS-DG1-Vol 11-2.21

The following registers are the same as above except they have a different Address Offset. They are used

if the second VDbox (VP8 Encoder) exists.

Register Name Description

Register

Type

Address

Offset Dec/Enc

MFX_VP8_CNTRL_MASK BitRateControl parameter Mask

register

RO 1C900 Enc

MFX_VP8_CNTRL_STATUS BitRateControl parameter Status

register

RO 1C904 Enc

MFX_VP8_FRM_BYTE_CNT Final Bitstream Byte count RO 1C908 Enc

MFX_VP8_FRM_ZERO_PAD Final Bitstream Zero Padding Byte

count

RO 1C90B Enc

MFX_VP8_BRC_DQindex BitRateControl Delta Qindex RO 1C910 Enc

MFX_VP8_BRC_DLoopFilter BitRateControl Delta LoopFilter RO 1C914 Enc

MFX_VP8_BRC_CumulativeDQindex01 BitRateControl Cumulative Delta

Qindex for Seg0/1
RW

1C918 Enc

MFX_VP8_BRC_CumulativeDQindex23 BitRateControl Cumulative Delta

Qindex for Seg2/3
RW

1C91C Enc

MFX_VP8_BRC_CumulativeDLoopFilter01 BitRateControl Cumulative Delta

LoopFilter for Seg0/1
RW

1C920 Enc

MFX_VP8_BRC_CumulativeDLoopFilter23 BitRateControl Cumulative Delta

LoopFilter for Seg2/3
RW

1C924 Enc

MFX_VP8_BRC_Convergence_Status BitRateControl Convergence Status
RW

1C928 Enc

MFX_VP8_DEBUG_CPBAC0_Bottom CPBAC0 engine Bottom State RO 1C92C Enc

MFX_VP8_DEBUG_CPBAC0_RangeCount CPBAC0 engine Range/Count State RO 1C930 Enc

MFX_VP8_DEBUG_CPBAC0_Misc CPBAC0 engine Misc. States RO 1C934 Enc

MFX_VP8_DEBUG_CPBAC1_Bottom CPBAC1 engine Bottom State RO 1C938 Enc

MFX_VP8_DEBUG_CPBAC1_RangeCount CPBAC1 engine Range/Count State RO 1C93C Enc

MFX_VP8_DEBUG_CPBAC1_Misc CPBAC1 engine Misc. States RO 1C940 Enc

Doc Ref # IHD-OS-DG1-Vol 11-2.21 251

Row Store Sizes and Allocations

 AVC VC1 MPEG2 JPEG IT ENC SEC ENC

vin_vmx_pixcoefind_

 addr[31:6]

Bitstream Bitstream Bitstream Bitstream VDS COEF Orig Pix BSP data

vin_vmx_mvbsdrs_

 addr[31:6]

VAD BSD VMD RS VDS MV MPC MV

vin_vmx_mpcildbmpr_

 addr[31:6]

VAM MPR VDS ILDB MPC RS

vin_vmx_dmv*_

 addr[31:6]

VAM DMV VCP DMV

vin_vmx_bp_addr

 [31:0]

 VCP BP

 Write Surf Size

 Read

MPEG2 VLD Decoding Mode :

use BSD Row Store only, and

MPEG2 IT Decoding Mode :

MPEG2 IT mode does not need row-store

JPEG VLD Decoding Mode : no row store is needed

252 Doc Ref # IHD-OS-DG1-Vol 11-2.21

VDBOX Registers

This section describes the VDBOX Command Memory Interface registers.

MMIO Ranges

MMIO ranges for media are described in this section. The base address of MFX(x), HuC(x), VCS(x),

VECS(x), HEVC(x) are modified.

HEVC MMIO is split into two ranges as HEVC is split into frontend and Backend. x value can range from 0

through 7.

The address offset is defined in hierarchical manner. Each VDBOX has 16KB of MMIO address range and

is allocated as shown in the table below. Unallocated address with-in 16KB space would be claimed by

HEVCFE for writes and read zeros.

Offset to Scalable Engines:

UNIT Address Size

VCS (range 0) 0x0000 - 0x07FF 2 KB

MFX Pipe (VIN) 0x0800 - 0x0FFF 2 KB

VCS (range 1) 0x1000 - 0x1FFF 4 KB

HEVC Pipe (HWM) 0x2800 - 0x2AFF 750 B

AVP Pipe (AWM) 0x2B00 - 0x2CFF 500 B

VDENC 0x2D00-0x2DFF 1KB

Reserved 0x2E00-0x3EFF 4096B

CFCFG 0x3F00-0x3FFF 128B

SCR (no mmio space but MsgCh endpoints)

Total allocation: 12.5 KB

VDBOX and VEBOX Offset Table:

Media Boxes Base Address

Offset

 Range Size

Media

 sliceid[2:0]

Media

 subsliceid[1:0]

VDBOX0 0x1C_0000 0x0000 - 0x3FFF 16KB 000 00

VDBOX1 0x1C_4000 0x0000 - 0x3FFF 16KB 000 01

VEBOX0 0x1C_8000 0x0000 - 0x3FFF 16KB 000 00

VDBOX2 0x1D_0000 0x0000 - 0x3FFF 16KB 001 00

VDBOX3 0x1D_4000 0x0000 - 0x3FFF 16KB 001 01

VEBOX1 0x1D_8000 0x0000 - 0x3FFF 16KB 001 00

VDBOX4 0x1E_0000 0x0000 - 0x3FFF 16KB 010 00

VDBOX5 0x1E_4000 0x0000 - 0x3FFF 16KB 010 01

VEBOX2 0x1E_8000 0x0000 - 0x3FFF 16KB 010 00

VDBOX6 0x1F_0000 0x0000 - 0x3FFF 16KB 011 00

Doc Ref # IHD-OS-DG1-Vol 11-2.21 253

Media Boxes Base Address

Offset

 Range Size

Media

 sliceid[2:0]

Media

 subsliceid[1:0]

VDBOX7 0x1F_4000 0x0000 - 0x3FFF 16KB 011 01

VEBOX3 0x1F_8000 0x0000 - 0x3FFF 16KB 011 00

Media VEBOX

This chapter describes the VEBOX Media Engine.

Media VEBOX Introduction

The VEBOX is an independent pipe with a variety of image enhancement functions.

The following sections are contained in Media VEBOX:

Feature

Denoise

Deinterlacer

Image Enhancement/Color Processing (IECP)

Capture Pipe

VEBOX State

VEBOX Surface State

VEB DI IECP Commands

Command Stream Backend - Video

Video Enhancement Engine Functions

The IECP consists of these functions:

Feature

STD - Skin Tone Detection detects colors which might represent skin.

STE - Skin Tone Enhancement modifies colors marked by STD.

GCC - Gamut Compression

ACE - Automatic Contrast Enhancement changes luma values to enhance contrast.

LACE - Local Automatic Contrast Enhancement.

TCC - Total Color Control allows UV values to be modified to adjust color saturation.

ProcAmp - implements the ProcAmp DDI functions to modify the brightness, contrast, hue, and saturation.

CSC - Color Space Conversion

GEE - Gamut Expansion and Color Correction in Linear RGB Space

254 Doc Ref # IHD-OS-DG1-Vol 11-2.21

Programming Note

The input and output dimensions are restricted to 16K for VEBOX DN/DI/IECP/Capture Pipe.

VEBOX State and Primitive Commands

Every engine can have internal state that can be common and reused across the data entities it processes

instead of reloading for every data entity.

There are two kinds of state information:

1. Surface state or state of the input and output data containers.

2. Engine state or the architectural state of the processing unit.

For example in the case of DN/DI, architectural state information such as denoise filter strength can be

the same across frames. This section gives the details of both the surface state and engine state.

Each frame should have these commands, in this order:

1. VEBOX_State

2. VEBOX_Surface_state for input & output

3. VEB_DI_IECP

Alternatively, VEBOX_Tiling_Convert can be used instead of VEB_DI_IECP.

VEBOX State

This chapter discusses various commands that control the internal functions of the VEBOX. The following

commands are covered:

Command

DN/DI State Table Contents

VEBOX_IECP_STATE

VEBOX_FORWARD_GAMMA_CORRECTION_STATE

VEBOX_STATE
VEBOX_Ch_Dir_Filter_Coefficient

DN-DI State Table Contents

This section contains tables that describe the state commands that are used by the Denoise and

Deinterlacer functions.

VEBOX_DNDI_STATE

Doc Ref # IHD-OS-DG1-Vol 11-2.21 255

VEBOX_IECP_STATE

For all piecewise linear functions in the following table, the control points must be monotonically increasing

(increasing continuously) from the lowest control point to the highest. Functions which have bias/correction values

associated with each control point have the additional restriction that any control points which have the same value

must also have the same bias/correction value. The piecewise linear functions include:

• For Skin Tone Detection:

o Y_point_4 to Y_point_0

o P3L to P0L

o P3U to P0U

o SATP3 to SATP1

o HUEP3 to HUEP1

o SATP3_DARK to SATP1_DARK

o HUEP3_DARK to HUEP1_DARK

• For ACE/LACE:

o Ymax, Y10 to Y1 and Ymin

o There is no state variable to set the bias for Ymin and Ymax. The biases for these two

points are equal to the control point values: B0 = Ymin and B11 = Ymax. That means that

if control points adjacent to Ymin and Ymax have the same value as Ymin/Ymax then the

biases must also be equal to the Ymin/Ymax control points based on the restriction

mentioned above.

o LACE gamma curve PWL (16 points & bias values)

• Forward Gamma correction

• Gamma correction table (1K points & correction values)

• HDR

• HDR Inverse gamma (4K correction values)

• HDR Forward gamma (256 points & correction values)

• Tone Mapping LUT (16 points & correction values)

• Gamut Expansion:

o Gamma Correction (256 points & correction values)

Inverse Gamma Correction (256 points & correction values)

256 Doc Ref # IHD-OS-DG1-Vol 11-2.21

Command

VEBOX_STD_STE_STATE

VEBOX_ACE_LACE_STATE

VEBOX_TCC_STATE

VEBOX_PROCAMP_STATE

VEBOX_CSC_STATE

VEBOX_ALPHA_AOI_STATE

VEBOX_CCM_STATE

VEBOX_FRONT_END_CSC_STATE

VEBOX_GAMUT_CONTROL_STATE

Gamut_Expansion_Gamma_Correction

VEBOX_VERTEX_TABLE

VEBOX_CAPTURE_PIPE_STATE

VEBOX_FORWARD_GAMMA_CORRECTION_STATE

VEBOX_RGB_TO_GAMMA_CORRECTION

VEBOX Surface State

VEBOX_SURFACE_STATE

Doc Ref # IHD-OS-DG1-Vol 11-2.21 257

Surface Format Restrictions

The surface formats and tiling allowed are restricted, depending on which function is consuming or

producing the surface.

Surface Format Restrictions

FourCC

Code Format

DN/DI

Input

DN/DI

Output

IECP

Input

IECP

Output

Capture

Output

Scalar

Input/Output

YUYV YCRCB_NORMAL (4:2:2) X X X X X X

VYUY YCRCB_SwapUVY (4:2:2) X X X X X X

YVYU YCRCB_SwapUV (4:2:2) X X X X X X

UYVY YCRCB_SwapY (4:2:2) X X X X X X

Y8 Y8 Monochrome X X X X X X

NV12 NV12 (4:2:0 with

interleaved U/V)

X X X X X X

AYUV 4:4:4 with Alpha (8-bit

per channel)

 X X X X

Y216 4:2:2 packed 16-bit X X X X

Y416 4:4:4 packed 16-bit X X X X

Y410 4:4:4 packed 10-bit X X X

P216 4:2:2 planar 16-bit X X X X

P016 4:2:0 planar 16-bit X X X X

Y16 Y16 Monochrome X X X X X X

 RGBA 10:10:10:2 X X

 RGBA 8:8:8:8 Spatial

DN

 X X X

 RGBA 16:16:16:16 Spatial

DN

 X X X

 BGRA 8:8:8:8 X X

Tiling

 Tile Y X X X X X X

 Tile X X X X X X X

 Linear X X X X X X

258 Doc Ref # IHD-OS-DG1-Vol 11-2.21

Surface Format Restrictions

FourCC

Code Format

DN

Input/Output

DI

Input/Output

IECP

Input

IECP

Output

Capture

Output

Scalar

Input/Output

YUYV YCRCB_NORMAL

(4:2:2)

X X X X X X

VYUY YCRCB_SwapUVY

(4:2:2)

X X X X X X

YVYU YCRCB_SwapUV

(4:2:2)

X X X X X X

UYVY YCRCB_SwapY (4:2:2) X X X X X X

Y8 Y8 Monochrome X X X X X X

NV12 NV12 (4:2:0 with

interleaved U/V)

X X X X X X

AYUV 4:4:4 with Alpha (8-bit

per channel)

X Output only X X X X

Y216 4:2:2 packed 16-bit X X X X X X

Y416 4:4:4 packed 16-bit X Output only X X X X

Y410 4:4:4 packed 10-bit X Output only X X X X

P216 4:2:2 planar 16-bit X X X X X X

P016 4:2:0 planar 16-bit X X X X X X

Y16 Y16 Monochrome X X X X X X

 RGBA 10:10:10:2 X X

 RGBA 8:8:8:8 Spatial DN X X X

 RGBA 16:16:16:16 Spatial DN X X X

 BGRA 8:8:8:8 X X

Tiling

 Tile Y X X X X X X

 Tile X X X X X X X

 Linear X X X X X X

Doc Ref # IHD-OS-DG1-Vol 11-2.21 259

Surface Formats - Feature Notes

Feature

Surfaces are 4 kb aligned, chroma X offset is cache line aligned (16 byte).

If Y8/Y16 is used as the input format, it must also be used for the output format (chroma is not created by VEBOX).

If IECP and either DN or DI are enabled at the same time, it is possible to select any input that is legal for DN/DI

and any output which is legal for IECP. The only exception is that if DN or DI are enabled, the IECP is not able to

output P216 and P016.

16-bit data from IECP or DN is rounded when converting to 8-bit output formats.

High Speed Bypass has the same format limitations as IECP Input/Output, but the surface formats for the input and

output must be the same.

Capture Input is only linear Bayer Surface Format.

Input formats for Demosaic, White Balance, Vignette and Black Level Correction must be linear Bayer.

For capture pipe, we can support the combination of DN and P216 and P016. For capture pipe with a P016 output

the U/V output is not an average of the 4 component pixels, but the U/V for pixel 4 (the lower right pixel of the 4).

Output format Y410 is supported for DN, DI and DM modes only with IECP enabled.

In non IECP cases, default of "0xFFFF" is sent if output format requires alpha.

For DN 444 input formats interlaced input content is not supported

If IECP and either DN or DI are enabled at the same time, it is possible to select any input that is legal for DN/DI

and any output which is legal for IECP.

260 Doc Ref # IHD-OS-DG1-Vol 11-2.21

SFC

This chapter describes the SFC Media Engine.

SFC Overview

Scaler & Format Converter (SFC) pipeline is introduced on Skylake as a multi-format scaling engine to

accelerate several media usages and achieve ultra-low-power video playback.

SFC Commands Definition

This section contains definitions for commands used with the scaler and format converter (SFC). These

commands are sent from the VDBOX/VEBOX to the SFC pipeline.

SFC_AVS_LUMA_Coeff_Table

SFC_AVS_CHROMA_Coeff_Table

SFC_AVS_STATE

SFC_FRAME_START

SFC_LOCK

SFC_STATE

