intel

Intel® Iris® X MAX Graphics Open Source
Programmer's Reference Manual

For the 2020 Discrete GPU formerly named "DG1"
Volume 9: Render Engine

February 2021, Revision 1.0

intel

Notices and Disclaimers
Intel technologies may require enabled hardware, software or service activation.
No product or component can be absolutely secure.

Code names are used by Intel to identify products, technologies, or services that are in development and
not publicly available. These are not "commercial” names and not intended to function as trademarks.

Customer is responsible for safety of the overall system, including compliance with applicable safety-
related requirements or standards.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by
this document.

The products described may contain design defects or errors known as errata which may cause the
product to deviate from published specifications. Current characterized errata are available on request.

You may not use or facilitate the use of this document in connection with any infringement or other legal
analysis concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free
license to any patent claim thereafter drafted which includes subject matter disclosed herein.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of
merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising
from course of performance, course of dealing, or usage in trade.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers
must not rely on the absence or characteristics of any features or instructions marked "reserved" or
"undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for
conflicts or incompatibilities arising from future changes to them. The information here is subject to
change without notice. Do not finalize a design with this information.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its
subsidiaries. Other names and brands may be claimed as the property of others.

ii Doc Ref # IHD-OS-DG1-Vol 9-2.21

Table of Contents

Render Engine

Workload Submission

Context Submission Overview

Render-3D-GPGPU Command Streamer

MI Commands Supported by POCS

20

Compute Command Streamer

38

Engine State

48

Software Interface

65

3D Pipeline Stages

72

73

3D Pipeline-Level State

76

3D Pipeline Geometry

3D Pipeline Rasterization

Pixel

COLOR_CALC_STATE

3DSTATE_BLEND_STATE_POINTERS

3DSTATE_DEPTH_STENCIL_STATE_POINTERS
DEPTH_STENCIL_STATE

BLEND_STATE

CC_VIEWPORT

Statistics Gathering
GPGPU Compute Pipeline

General Purpose Compute Model

GPGPU Context in GPU Hardware

Programming the GPGPU Pipeline

Commands for GPGPU Pipe

MEDIA_VFE_STATE

MEDIA_STATE_FLUSH

Thread Spawner (TS)
Thread Dispatch

Thread Tracking and Synchronization

Context Switch for GPGPU and Media

3D and GPGPU Programs

Doc Ref # IHD-OS-DG1-Vol 9-2.21

184
254
315
315
315
315
315
316
316
316
316
319
320
327
328
329
338
349
355
358
360

intel

intel

EU Overview

360

Integer Numeric Data Types

441

Floating-Point Numeric Data Types

443

Packed Signed Half-Byte Integer Vector

445

446

Packed UnSigned Half-Byte Integer Vector
Packed Restricted Float Vector

447

IEEE Floating Point Mode

450

Alternative Floating Point Mode

453

IEEE Floating-Point Exceptions

460

Floating-Point Compare Operations

465

469

Float to Integer

Integer to Integer with Same or Higher Precision

469

Integer to Integer with Lower Precision

470

Integer to Float

470

Double Precision Float to Single Precision Float

470

471

Single Precision Float to Double Precision Float

474

Invoking the System Routine

Returning to the Application Thread

475

System IP (SIP)

475

System Routine Register Space

475

System Scratch Memory Space

476

Conditional Instructions Within the System Routine

476

477

lllegal Opcode
Undefined Opcodes

477

Software Exception

477

Context Save and Restore

478

lllegal Instruction Format

478

478

Malformed Message

GRF Register Out of Bounds
Hung Thread

479
479

Instruction Fetch Out of Bounds

479

FPU Math Errors

479

Computational Overflow

479

SIMD Instructions and SIMD Width

482

Doc Ref # IHD-OS-DG1-Vol 9-2.21

intel

Instruction Operands and Register Regions 483
Instruction Execution 483
EU Compact Instruction Format 484
Compact Instructions Format 484
EU Instruction Compaction Tables 487
Move and Logic Instructions 499
Flow Control Instructions 500
Miscellaneous Instructions 501
Parallel Arithmetic Instructions 501
Vector Arithmetic Instructions 502
Special Instructions 502
Instruction Groups 503
Destination Register 505
Source Register 506
Address Registers 507
Register Files and Register Numbers 507
Relative Location and Stack Control 508
Regions 508
Types 509
Write Mask 509
Swizzle Control 509
Immediate Values 509
Predication and Modifiers 510
Instruction Options 511
Grammar 518
IGA Grammar 518
Grammar 527
IGA Grammar 527
Load-Store Pseudo Instructions 538
Syntax 538
Loads 538
Stores 538
Operand Syntax 539
Examples 540

Doc Ref # IHD-OS-DG1-Vol 9-2.21 v

intel

Supported Messages 540
Split-Sends and Conditional Sends 551
Operand Mapping 551
Load Pseudo-Instructions 551
Block Messages 551
Vector Messages with a Header 552
Headerless Vector Messages 552
Store Pseudo-Instructions 552
Block Messages 553
Vector Messages with a Header 554
Headerless Vector Messages 554
Round Instructions 558
rndd - Round Down 559
rnde - Round to Nearest or Even 560
rndu - Round Up 561
rndz - Round to Zero 562
math - Extended Math Function 563
INV - Inverse 563
LOG - Logarithm 563
EXP - Exponent 563
SQRT - Square Root 563
RSQ - Reciprocal Square Root 564
SIN - SINE 564
COS - COSINE 564
INT DIV - Integer Divide 564
INVM/RSQRTM 565
SEND Instruction 569
EU Instructions 571
SEND Instructions 573
Control Flow Instructions 574
Shared Functions 575
Sampler SW Performance Recommendations 582
TEXCOORDMODE_MIRROR_101 601
Procedural Textures and Texel Shading 621

Vi

Doc Ref # IHD-OS-DG1-Vol 9-2.21

3D Sampler Message Types

gather4 Message Types

Definitions

Supported Variants:

Restrictions and Programming Notes for gather4:

Restrictions and Programming Notes for gather4_c:

Restrictions and Programming Notes for gather4_po:
Restrictions and Programming Notes for gather4_po_c:

sampleinfo Message Type

Supported Variants:

Restrictions and Programming Notes for sampleinfo:

LOD Message Type

LOD Message Definition

Supported Variants:

Restrictions and Programming Notes for LOD:

resinfo Message Type

Supported Variants:

Restrictions and Programming Notes for resinfo:

cache_flush Message Type

cache_flush Message Definition

Supported Variants:

Media Message Types

sample_unorm Message Types

Supported Variants:

626
637
637
637
638
638
639
639
639
640
640
640
640
640
640
641
642
642
642
642
642
643
643
643

intel

Restrictions and Programming Notes for sample_unorm, sample_unorm_RG, sample_unorm_killpix,

sample_unorm_RG_killpix:

sample_8x8 Message Type

Supported Variants:

Restrictions and Programming Notes for sample_8x8:

Message Format

HWord Aligned Block Read/Write Messages

Word Untyped Atomic Integer Messages

Word Untyped Atomic Float Messages

Word Atomic Counter Messages

Doc Ref # IHD-OS-DG1-Vol 9-2.21

644
644
645
645
645
702
707
713
718

Vii

intel

DWord URB Read/Write Messages 726
Message-Specific Descriptors 749
Render Target Write Message 749
Replicate Data 756
Single Source 756
Dual Source 756
Message Data Payloads 757
Render Target Data Payloads 758
Message Payload 776
Writeback Message to Requester Thread 777
Broadcast Writeback Message 777

viii Doc Ref # IHD-OS-DG1-Vol 9-2.21

intel

Render Engine

The Render Engine supports command streams used both for 3D and Compute (GPGPU) workloads.
These command streams fetch the data, and dispatch individual work items to many threads that operate
in parallel. The threads run small software programs (also called kernels or shaders) on the GPU
processors (called Execution Units).

The command streamers control the programmable pipelines in the Render Engine so that the individual
programs run in parallel but are synchronized to start only when their required data is available, and
complete when all the work is done.

Each pipeline in the Render Engine shares common state with all the threads running in the pipeline. The
command streamer manages that state.

Workload Submission

This section describes work submission to the Rendering engine which can run 3D, Compute and
Programmable Media workloads

Context Submission Overview

Work into the Render/GPGPU engine is fed using the Render Command Streamer.

The Render engine runs in one of the following modes (that is specified using the PIPE_SELECT
command):

e 3D
e Media/GPGPU

When Software submits multiple elements(contexts) into the execution list, the hardware executes the
elements serially.

Doc Ref # IHD-OS-DG1-Vol 9-2.21 1

intel

Host
Interrupts
Block

Workload
Submission

}

Execution list Interrupts
CITTTTT1]

y

POSH Render
Command
Streamer

Sub-slice 0 Sub-slice N
EU armay EU array N slices
EEEEEEEE ©E EEEEEEEE "EE
NNEENEER__NRE ENNENENE_ EE

Render-3D-GPGPU Command Streamer

This section describes the infrastructure provided by the Command Streamer of the Render engine which
supports 3D, Compute and Programmable Media.

POCS and RCS Synchronization

Once POCS is triggered, it executes parallel to RCS, it only stops (doesn't switch out) when it runs out of
command (head equals to tail) or on encountering unsuccessful semaphore wait. Command sequence
execution of POCS is completely asynchronous to RCS command sequence execution. SW is responsible
to explicitly synchronize POCS and RCS command sequence execution whenever required based on the
various produce consume model using MI_SEMAPHORE_WAIT command.

GPGPU/Media

POSH pipe supports parallel execution during GPGPU and Media workloads under the condition that the
L3 is not reconfigured and the GPGPU/Media workload will not use more than 32KB of the URB.
Currently the POSH and GPGPU on the RCS share the same URB space. However, the first 32KB are not
used when POSH is only running.

Reconfiguring the URB cannot occur when switching between 3D and Compute/Media workloads if it is
possible for POSH pipeline to be active. SW can ensure POSH is inactive using synchronization
commands in the case POSH was enabled earlier in the context.

Mid-thread preemption must be disabled if it is possible for POSH to be running in parallel with compute
workloads.

2 Doc Ref # IHD-OS-DG1-Vol 9-2.21

intel

HW Binding Table with RS Disabled

RCS sets up the HW Binding Table functionality when 3DSTATE_BTP_POOL_ALLOC is programmed with
RS disabled. POSH pipe uses the mode set by RCS. SW will explicitly synchronize POCS and RCS to
ensure they always work in the same mode of operation wither HW BTP Enabled or Disabled. Note that
both POCS and RCS will maintain their own copies of 3DSTATE_BTP_POOL_ALLOC.

Protection-On/Off Mode

RenderCS controlls the Protection-On/Off mode at all times for both POSH and Render pipes.
Protection-on/off mode set by RenderCS applies to memory clients form both render pipe and POSH
pipe based on the protection on signal from RCS. SW must explicitly ensure both POSH and Render
pipes are synchronized around Protection and ProtectionOff zones during the command sequencing.

Render Engine Command Streamer (RCS)

The RCS (Render Command Streamer) unit primarily serves as the software programming interface
between the O/S driver and the Render Engine. It is responsible for fetching, decoding, and dispatching
of data packets (3D/Media Commands with the header DWord removed) to the front-end interface
module of Render Engine.

Logic Functions Included

e MMIO register programming interface.

e DMA action for fetching of ring data from memory.

¢ Management of the Head pointer for the Ring Buffer.

e Decode of ring data and sending it to the appropriate destination: 3D (Vertex Fetch Unit) & GPGPU.
e Handling of user interrupts.

e Flushing the 3D and GPGPU Engine.

e Handle NOP.

e DMA action for fetching of execlists from memory.

e Handling of ring context switch interrupt.

The RCS unit only claims memory mapped I/O cycles that are targeted to its range of 0x2000 to Ox27FF.
The Gx and MFX Engines use semaphore to synchronize their operations.

RCS operates completely independent of the MFx CS.

The simple sequence of events is as follows: a ring (say PRBO) is programmed by a memory-mapped
register write cycle. The DMA inside RCS is kicked off. The DMA fetches commands from memory based
on the starting address and head pointer. The DMA requests cache lines from memory (one cacheline CL
at a time). There is guaranteed space in the DMA FIFO (8 CL deep) for data coming back from memory.
The DMA control logic has copies of the head pointer and the tail pointer. The DMA increments the head
pointer after making requests for ring commands. Once the DMA copy of the head pointer becomes
equal to the tail pointer, the DMA stops requesting.

Doc Ref # IHD-OS-DG1-Vol 9-2.21 3

intel

The parser starts executing once the DMA FIFO has valid commands. All the commands have a header
DWord packet. Based on the encoding in the header packet, the command may be targeted towards
Vertex Fetch Unit or GPPGU engine or the command parser. After execution of every command, the
actual head pointer is updated. The ring is considered empty when the head pointer becomes equal to
the tail pointer.

Render Command Formats

3D Commands

The 3D commands are used to program the graphics pipelines for 3D operations.

Refer to the 3D chapter for a description of the 3D state and primitive commands and the Media chapter
for a description of the media-related state and object commands.

For all commands listed in 3D Command Map, the Pipeline Type (bits 28:27) is 3h, indicating the 3D

Pipeline.

3D Command Map

Opcode Sub Opcode
Bits 26:24 Bits 23:16 Command Definition Chapter
Oh 01h Reserved 3D Pipeline
Oh 02h Reserved 3D Pipeline
Oh 03h Reserved
Oh 04h 3DSTATE_CLEAR_PARAMS 3D Pipeline
Oh 05h 3DSTATE_DEPTH_BUFFER 3D Pipeline
Oh 06h 3DSTATE_STENCIL_BUFFER 3D Pipeline
Oh 07h 3DSTATE_HIER_DEPTH_BUFFER 3D Pipeline
Oh 08h 3DSTATE_VERTEX_BUFFERS Vertex Fetch
Oh 0%h 3DSTATE_VERTEX_ELEMENTS Vertex Fetch
Oh 0Ah 3DSTATE_INDEX_BUFFER Vertex Fetch
Oh 0Bh 3DSTATE_VF_STATISTICS Vertex Fetch
Oh 0Ch 3DSTATE_VF Vertex Fetch
Oh 0Dh 3DSTATE_VIEWPORT_STATE_POINTERS 3D Pipeline
Oh OEh 3DSTATE_CC_STATE_POINTERS 3D Pipeline
Oh 10h 3DSTATE_VS Vertex Shader
Oh 11h 3DSTATE_GS Geometry Shader
Oh 12h 3DSTATE_CLIP Clipper
Oh 13h 3DSTATE_SF Strips & Fans
Oh 14h 3DSTATE_WM Windower
Oh 15h 3DSTATE_CONSTANT_VS Vertex Shader
Oh 16h 3DSTATE_CONSTANT_GS Geometry Shader

Doc Ref # IHD-OS-DG1-Vol 9-2.21

intel

Opcode Sub Opcode

Bits 26:24 Bits 23:16 Command Definition Chapter
Oh 17h 3DSTATE_CONSTANT_PS Windower
Oh 18h 3DSTATE_SAMPLE_MASK Windower
Oh 19h 3DSTATE_CONSTANT_HS Hull Shader
Oh 1Ah 3DSTATE_CONSTANT_DS Domain Shader
Oh 1Bh 3DSTATE_HS Hull Shader
Oh 1Ch 3DSTATE_TE Tesselator
Oh 1Dh 3DSTATE_DS Domain Shader
Oh 1Eh 3DSTATE_STREAMOUT HW Streamout
Oh 1Fh 3DSTATE_SBE Setup
Oh 20h 3DSTATE_PS Pixel Shader
Oh 21h 3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP Strips & Fans
Oh 22h 3DSTATE_CPS_POINTER Course Pixel Shader
Oh 23h 3DSTATE_VIEWPORT_STATE_POINTERS_CC Windower
Oh 24h 3DSTATE_BLEND_STATE_POINTERS Pixel Shader
Oh 25h 3DSTATE_DEPTH_STENCIL_STATE_POINTERS Pixel Shader
Oh 26h 3DSTATE_BINDING_TABLE_POINTERS_VS Vertex Shader
Oh 27h 3DSTATE_BINDING_TABLE_POINTERS_HS Hull Shader
Oh 28h 3DSTATE_BINDING_TABLE_POINTERS_DS Domain Shader
Oh 29h 3DSTATE_BINDING_TABLE_POINTERS_GS Geometry Shader
Oh 2Ah 3DSTATE_BINDING_TABLE_POINTERS_PS Pixel Shader
Oh 2Bh 3DSTATE_SAMPLER_STATE_POINTERS_VS Vertex Shader
Oh 2Ch 3DSTATE_SAMPLER_STATE_POINTERS_HS Hull Shader
Oh 2Dh 3DSTATE_SAMPLER_STATE_POINTERS_DS Domain Shader
Oh 2Eh 3DSTATE_SAMPLER_STATE_POINTERS_GS Geometry Shader
Oh 2Fh 3DSTATE_SAMPLER_STATE_POINTERS_PS Pixel Shader
Oh 30h 3DSTATE_URB_VS Vertex Shader
Oh 31h 3DSTATE_URB_HS Hull Shader
Oh 32h 3DSTATE_URB_DS Domain Shader
Oh 33h 3DSTATE_URB_GS Geometry Shader
Oh 34h 3DSTATE_GATHER_CONSTANT_VS Vertex Shader
Oh 35h 3DSTATE_GATHER_CONSTANT_GS Geometry Shader
Oh 36h 3DSTATE_GATHER_CONSTANT_HS Hull Shader
Oh 37h 3DSTATE_GATHER_CONSTANT_DS Domain Shader
Oh 38h 3DSTATE_GATHER_CONSTANT_PS Pixel Shader
Oh 39h 3DSTATE_DX9_CONSTANTF_VS Vertex Shader
Oh 3Ah 3DSTATE_DX9_CONSTANTF_PS Pixel Shader

Doc Ref # IHD-OS-DG1-Vol 9-2.21

intel

Opcode Sub Opcode

Bits 26:24 Bits 23:16 Command Definition Chapter
Oh 3Bh 3DSTATE_DX9_CONSTANTI_VS Vertex Shader
Oh 3Ch 3DSTATE_DX9_CONSTANTI_PS Pixel Shader
Oh 3Dh 3DSTATE_DX9_CONSTANTB_VS Vertex Shader
Oh 3Eh 3DSTATE_DX9_CONSTANTB_PS Pixel Shader
Oh 3Fh 3DSTATE_DX9_LOCAL_VALID_VS Vertex Shader
Oh 40h 3DSTATE_DX9_LOCAL_VALID_PS Pixel Shader
Oh 41h 3DSTATE_DX9_GENERATE_ACTIVE_VS Vertex Shader
Oh 42h 3DSTATE_DX9_GENERATE_ACTIVE_PS Pixel Shader
Oh 43h 3DSTATE_BINDING_TABLE_EDIT_VS Vertex Shader
Oh 44h 3DSTATE_BINDING_TABLE_EDIT_GS Geometry Shader
Oh 45h 3DSTATE_BINDING_TABLE_EDIT_HS Hull Shader
Oh 46h 3DSTATE_BINDING_TABLE_EDIT_DS Domain Shader
Oh 47h 3DSTATE_BINDING_TABLE_EDIT_PS Pixel Shader
Oh 48h 3DSTATE_VF_HASHING Vertex Fetch
Oh 49h 3DSTATE_VF_INSTANCING Vertex Fetch
Oh 4Ah 3DSTATE_VF_SGVS Vertex Fetch
Oh 4Bh 3DSTATE_VF_TOPOLOGY Vertex Fetch
Oh 4Ch 3DSTATE_WM_CHROMA_KEY Windower
Oh 4Dh 3DSTATE_PS_BLEND Windower
Oh 4Eh 3DSTATE_WM_DEPTH_STENCIL Windower
Oh 4Fh 3DSTATE_PS_EXTRA Windower
Oh 50h 3DSTATE_RASTER Strips & Fans
Oh 51h 3DSTATE_SBE_SWIZ Strips & Fans
Oh 52h 3DSTATE_WM_HZ_OP Windower
Oh 53h 3DSTATE_INT (internally generated state) 3D Pipeline
Oh 54h 3DSTATE_RS_CONSTANT_POINTER Resource Streamer
Oh 55h 3DSTATE_VF_COMPONENT_PACKING Vertex Fetch
Oh 56h 3DSTATE_VF_SGVS_2 VertexFetch
Oh 58h 3DSTATE_URB_ALLOC_VS VertexShader
Oh 59h 3DSTATE_URB_ALLOC_HS HullShader
Oh 5Ah 3DSTATE_URB_ALLOC_DS DomainShader
Oh 5Bh 3DSTATE_URB_ALLOC_GS GeometryShader
Oh 5Dh-5Fh Reserved
Oh 60h 3DSTATE_SO_BUFFER_INDEX_0 HW StreamOut
Oh 61h 3DSTATE_SO_BUFFER_INDEX_1 HW StreamOut
Oh 62h 3DSTATE_SO_BUFFER_INDEX_2 HW StreamOut

Doc Ref # IHD-OS-DG1-Vol 9-2.21

intel

Opcode Sub Opcode
Bits 26:24 Bits 23:16 Command Definition Chapter
Oh 63h 3DSTATE_SO_BUFFER_INDEX_3 HW StreamOut
Oh 64h-69h Reserved
Oh 6Ah 3DSTATE_PTBR_MARKER 3D Pipeline
Oh 6Bh 3DSTATE_PTBR_TILE_SELECT Vertex Fetch, Strips & Fans
Oh 6Ch 3DSTATE_PRIMITIVE_REPLICATION 3D Pipeline
Oh 6Dh 3DSTATE_CONSTANT_ALL 3D Pipeline
Oh 6Fh 3DSTATE_AMFS PSS
Oh 70h 3DSTATE_DEPTH_CNTL_BUFFER WM
Oh 71h 3DSTATE_DEPTH_BOUNDS WM
Oh 72h 3DSTATE_AMFS_TEXTURE_POINTERS WM
Oh 73h 3DSTATE_CONSTANT_TS_POINTER PSS
Oh 57h-59h Reserved
Oh 60h-68h Reserved
Oh 69h Reserved
Oh 6Eh Reserved
Oh 74h Reserved
Oh 75h Reserved
Oh 76h Reserved
Oh 77h-82h Reserved
Oh 83h Reserved
Oh 83h-FFh Reserved
1h 00h 3DSTATE_DRAWING_RECTANGLE Strips & Fans
1h 02h Reserved
1h 03h Reserved
Th 04h 3DSTATE_CHROMA_KEY Sampling Engine
1h 05h Reserved
Th 06h 3DSTATE_POLY_STIPPLE_OFFSET Windower
Th 07h 3DSTATE_POLY_STIPPLE_PATTERN Windower
Th 08h 3DSTATE_LINE_STIPPLE Windower
Th 0Ah 3DSTATE_AA_LINE_PARAMS Windower
Th 0Bh 3DSTATE_GS_SVB_INDEX Geometry Shader
Th 0Ch Reserved
1h 0Dh 3DSTATE_MULTISAMPLE Windower
1h OEh 3DSTATE_STENCIL_BUFFER Windower
1h OFh 3DSTATE_HIER_DEPTH_BUFFER Windower
1h 10h 3DSTATE_CLEAR_PARAMS Windower

Doc Ref # IHD-OS-DG1-Vol 9-2.21

intel

Opcode Sub Opcode
Bits 26:24 Bits 23:16 Command Definition Chapter

Th 11h 3DSTATE_MONOFILTER_SIZE Sampling Engine
1h 12h 3DSTATE_PUSH_CONSTANT_ALLOC_VS Vertex Shader
1h 13h 3DSTATE_PUSH_CONSTANT_ALLOC_HS Hull Shader
Th 14h 3DSTATE_PUSH_CONSTANT_ALLOC_DS Domain Shader
Th 15h 3DSTATE_PUSH_CONSTANT_ALLOC_GS Geometry Shader
Th 16h 3DSTATE_PUSH_CONSTANT_ALLOC_PS Pixel Shader
Th 17h 3DSTATE_SO_DECL_LIST HW Streamout
Th 18h 3DSTATE_SO_BUFFER HW Streamout
Th 19h 3DSTATE_BINDING_TABLE_POOL_ALLOC Resource Streamer
1h 1Ah 3DSTATE_GATHER_POOL_ALLOC Resource Streamer
1h 1Bh 3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC Resource Streamer
1h 1Ch 3DSTATE_SAMPLE_PATTERN Windower
1h 1Dh 3DSTATE_URB_CLEAR 3D Pipeline
1h 1Eh 3DSTATE_3D_MODE 3D Pipeline
1h 1Fh 3DSTATE_SUBSLICE_HASH_TABLE 3D Pipeline
1h 20h 3DSTATE_SLICE_TABLE_STATE_POINTERS 3D Pipeline
1h 21h 3DSTATE_PTBR_PAGE_POOL_BASE_ADDRESS 3D Pipeline
1h 22h 3DSTATE_PTBR_TILE_PASS_INFO 3D Pipeline
1h 23h 3DSTATE_PTBR_RENDER_LIST_BASE_ADDRESS 3D Pipeline
1h 24h 3DSTATE_PTBR_FREE_LIST_BASE_ADDRES 3D Pipeline
1h 23h-2Ah Reserved
1h 2Bh-FFh Reserved
2h 00h PIPE_CONTROL Render/Compute Pipeline
2h 01h Reserved
2h 03h-FFh Reserved
3h 00h 3DPRIMITIVE Vertex Fetch
3h 01h Reserved
3h 02h Reserved
3h 03h-FFh Reserved

4h-7h 00h-FFh Reserved

Doc Ref # IHD-OS-DG1-Vol 9-2.21

intel

Pipeline Type (28:27) Opcode | Sub Opcode Command Definition Chapter
Common (pipelined) Bits 26:24 |Bits 23:16
Oh Oh 04h-FFh Reserved
Common (non-pipelined) |Bits 26:24 |Bits 23:16
Oh 1h 00h Reserved N/A
Oh Th 01h STATE_BASE_ADDRESS Graphics Processing Engine
Oh Th 02h STATE_SIP Graphics Processing Engine
Oh Th 03h Reserved 3D Pipeline
Oh Th 04h GPGPU CSR BASE ADDRESS | Graphics Processing Engine
Oh 1h 05h STATE_COMPUTE_MODE Compute Pipeline
Oh 1h 06h Reserved
Oh 1h 07h-08h |Reserved
Oh 1h 09h Reserved
Oh 1h OAh-FFh Reserved N/A
Reserved Bits 26:24 |Bits 23:16
Oh 2h-7h XX Reserved N/A
Render Command Header Format
Render Command Header
Type Bits
31:29 28:24 23 22 21:0
Memory 000 Opcode Identification No./DWord Count
Interface 00h - NOP Command Dependent Data
(M1) 0Xh - Single DWord Commands 5:0 - DWord Count
1Xh - Two+ DWord Commands 5:0 - DWord Count
2Xh - Store Data Commands 5:0 - DWord Count
3Xh - Ring/Batch Buffer Cmds
Type Bits
31:29 2824 | 23 | 22a7 16:10 9:0
Type Bits
31:29 28:24 23:19 18:16 15:0
Reserved 001, Opcode - 11111 Sub Opcode 00h - 01h Reserved DWord Count
010

Doc Ref # IHD-OS-DG1-Vol 9-2.21

intel

Type Bits
31:29 | 28:27 26:24 23:16 15:8 7:0

Common 011 00 Opcode - 000 Sub Opcode Data |DWord Count
Common (NP) 011 00 Opcode - 001 Sub Opcode Data |DWord Count
Reserved 011 00 Opcode - 010 - 111
Single Dword Command 011 01 Opcode - 000 - 001 Sub Opcode N/A
Reserved 011 01 Opcode - 010 - 111
Media State 011 10 Opcode - 000 Sub Opcode Dword Count
Media Object 011 10 Opcode - 001 - 010 Sub Opcode Dword Count
Reserved 011 10 Opcode - 011 - 111
3DState (Pipelined) 011 11 Opcode - 000 Sub Opcode Data |DWord Count
3DState (NP)' 011 11 Opcode - 001 Sub Opcode Data |DWord Count
PIPE_Control 011 11 Opcode - 010 Data |DWord Count
3DPrimitive 011 11 Opcode - 011 Data |[DWord Count
Reserved 011 11 Opcode - 100
L3_CONTROL 011 11 Opcode-101
Reserved 011 11 Opcode - 110 - 111
Reserved 100 XX
Reserved 101 XX
Reserved 110 XX

Notes:

The qualifier "NP" indicates that the state variable is non-pipelined and the render pipe is flushed before
such a state variable is updated. The other state variables are pipelined (default).

10 Doc Ref # IHD-OS-DG1-Vol 9-2.21

intel

Render Engine Preemption

Render Engine Command Streamer Preemptable Commands

Preemptable Command Condition
MI_ARB_CHECK AP
Element Boundary AP (if allowed)
Semaphore Wait Unsuccessful & AP
Wait for Event Unsuccessful & AP (if allowed)
3DPRIMITIVE Object Level (if enabled?)
GPGPU_WALKER Mid-Thread (if enabled?)
PIPE_CONTROL? PIPESEL_GPGPU MODE / PIPESEL-MEDIA MODE
MEDIA STATE FLUSH Mid-Thread (if enabled?)
MEDIA_OBJECT_WALKER / MEDIA_OBJECT | Thread Group
PIPELINE_SELECT PIPESEL-GPGPU Mode / PIPESEL-MEDIA MODE
Any Non-Pipelined State* PIPESEL-GPGPU Mode / PIPESEL-MEDIA MODE
Table Notes:

AP - Allow Preemption if arbitration is enabled.
1. Ox20EC bit 0 determines whether the level of preemption is command or object level.
2. 0x20E4 bits 2:1 determine the level of preemption for GPGPU workloads.

3. MI_ATOMIC and MI_SEMAPHORE_SIGNAL commands with Post Sync Op bit set are treated as
PIPE_CONTROL command with Post Sync Operation as Atomics or Semaphore Signal.

4. Any Header with the value [31:29] = "011", [28:27] = "00" OR "11" and [26:24] = "001". Refer to
Graphics Command Formats.

Batch Buffer Privilege Register

FORCE_TO_NONPRIV - FORCE_TO_NONPRIV

Doc Ref # IHD-OS-DG1-Vol 9-2.21 11

intel

Mode Registers

The following are the Mode Registers:

Register

INSTPM - Instruction Parser Mode Register

EXCC - Execute Condition Code Register

NOPID - NOP Identification Register

CSPREEMPT - CSPREEMPT

IDLEDLY - Idle Switch Delay

SEMA_WAIT_POLL - Semaphore Polling Interval on Wait

HWS_PGA - Hardware Status Page Address Register

Hardware Status Page Layout

Logical Context Support

The following are the Logical Context Support Registers:

Register

BB_ADDR - Batch Buffer Head Pointer Register

BB_ADDR_UDW - Batch Buffer Upper Head Pointer Register

CXT_SIZE - Context Sizes

CXT_EL_OFFSET - Exec-List Context Offset

SYNC_FLIP_STATUS - Wait For Event and Display Flip Flags Register

SYNC_FLIP_STATUS_1 - Wait For Event and Display Flip Flags Register 1

SYNC_FLIP_STATUS_2 - Wait For Event and Display Flip Flags Register 2

WAIT_FOR_RC6_EXIT - Control Register for Power Management

SBB_ADDR - Second Level Batch Buffer Head Pointer Register

SBB_ADDR_UDW - Second Level Batch Buffer Upper Head Pointer Register

SBB_STATE - Second Level Batch Buffer State Register

PS_INVOCATION_COUNT_SLICEO - PS Invocation Count for Slice0

PS_INVOCATION_COUNT_SLICE1 - PS Invocation Count for Slicel

PS_INVOCATION_COUNT_SLICE2 - PS Invocation Count for Slice2

PS_DEPTH_COUNT_SLICEO - PS Depth Count for Slice0

PS_DEPTH_COUNT_SLICE1 - PS Depth Count for Slicel

PS_DEPTH_COUNT_SLICE2 - PS Depth Count for Slice2

DISPLAY_MESSAGE_FORWARD_STATUS - Display Message Forward Status Register

R_PWR_CLK_STATE - Render Power Clock State Register

12

Doc Ref # IHD-OS-DG1-Vol 9-2.21

intel

Context Save Registers

The following are the Context Save Registers:

Register

BB_PREEMPT_ADDR - Batch Buffer Head Pointer Preemption Register

BB_PREEMPT_ADDR_UDW - Batch Buffer Upper Head Pointer Preemption Register

RING_BUFFER_HEAD_PREEMPT_REG - RING_BUFFER_HEAD_PREEMPT_REG

BB_START_ADDR - Batch Buffer Start Head Pointer Register

BB_START_ADDR_UDW - Batch Buffer Start Upper Head Pointer Register

BB_ADDR_DIFF - Batch Address Difference Register

BB_OFFSET - Batch Offset Register

SBB_PREEMPT_ADDR - Second Level Batch Buffer Head Pointer Preemption Register

SBB_PREEMPT_ADDR_UDW - Second Level Batch Buffer Upper Head Pointer Preemption Register

BB_PER_CTX_PTR - Batch Buffer Per Context Pointer

MI Commands for Render Engine

This chapter describes the formats of the "Memory Interface" commands, including brief descriptions of
their use. The functions performed by these commands are discussed fully in the Memory Interface
Functions Device Programming Environment chapter.

This chapter describes MI Commands for the original graphics processing engine. The term "for
Rendering Engine" in the title has been added to differentiate this chapter from a similar one describing
the MI commands for the Media Decode Engine.

The commands detailed in this chapter are used across product families. However, slight changes may be
present in some commands (i.e., for features added or removed), or some commands may be removed
entirely. Refer to the Preface chapter for product specific summary.

Commands

MI_NOOP

MI_ARB_CHECK

MI_ARB_ON_OFF

MI_BATCH_BUFFER_START

MI_BATCH_BUFFER_END

MI_CONDITIONAL_BATCH_BUFFER_END

MI_DISPLAY_FLIP

MI_LOAD_SCAN_LINES_EXCL

MI_LOAD_SCAN_LINES_INCL

MI_MATH

MI_REPORT_HEAD

MI_STORE_DATA_IMM

MI_ATOMIC

MI_COPY_MEM_MEM

Doc Ref # IHD-OS-DG1-Vol 9-2.21 13

intel

Commands

MI_LOAD_REGISTER_REG

MI_LOAD_REGISTER_MEM

MI_STORE_REGISTER_MEM

MI_SUSPEND_FLUSH

MI_USER_INTERRUPT

MI_WAIT_FOR_EVENT

MI_SEMAPHORE_SIGNAL

MI_SEMAPHORE_WAIT

MI_FORCE_WAKEUP

Watchdog Timer Registers

These registers together implement a watchdog timer. Writing ones to the control register enables the
counter, and writing zeros disables the counter. The second register is programmed with a threshold
value which, when reached, signals an interrupt that then resets the counter to 0. Program the threshold
value before enabling the counter or extremely frequent interrupts may result.

Note: The counter itself is not observable. It increments with the main render clock.

Programming Notes: When watch dog timer is enabled, HW does not trigger any kind of idle
sequences. SW must enable and disable watch dog timer for any given workload within the same
command buffer dispatch. SW must disable watch dog timer around semaphore waits and wait for
events commands so that HW can trigger appropriate idle sequence for power savings.

Position Only Shader Command Streamer (POCS)

Position only shader (POSH) is a secondary geometry pipeline that has the optional ability to execute the
position only vertex shaders and perform the visibility test on these vertices before the actual vertex
shader is executed. POSH pipe can run ahead of the original geometry pipe by executing position only
vertex shaders and doing visibility test on these vertices and recording this information. Geometry pipe
when processing the vertices will use this visibility information outputted by POSH pipe to skip the vertex
fetch and shading for vertices that are already marked as culled.

POSH pipe has its own command streamer called Position only command streamer (POCS). A context
running on render pipe can exercise POSH capabilities through Render Command Streamer (RCS). RCS
manages the POSH pipe through POCS for POSH enabled contexts. Render command streamer loads the
context to execute on POCS when a POSH enable context execution begins in render pipe, similarly,
preempts context executing in POCS when the POSH enabled context switches out of render pipe. Once
POCS is loaded with context it starts executing the ring buffer similar to RCS, refer Programming Model
section for more details.

Position Only Command Streamer (POCS)

The POCS (Position Only Shader Command Streamer) unit primarily serves as the programming interface
between the render command streamer and the POSH pipe. It is responsible for fetching, decoding, and
dispatching of data packets (3D Commands with the header DWord removed) for the POSH pipe.

14 Doc Ref # IHD-OS-DG1-Vol 9-2.21

intel

Logic Functions Included

e MMIO register programming interface.
e DMA action for fetching of ring buffer and batch buffer data from memory.
e Management of the Head pointer for the Ring Buffer.
e Decode and execution of command programmed in ring buffer and batch buffers.
e Flushing the POSH pipe.
Handle NOOP.

The POCS unit only claims memory mapped I/O cycles that are targeted to its range of 0x1_8000 to
Ox1_9FFF. The POCS and RCS use semaphore to synchronize their operations.

POCS ExeclList Scheduling

Position Only Engine Command Streamer Preemptable Commands

Preemptable Command Condition
MI_ARB_CHECK AP
Element Boundary AP (if allowed)
Semaphore Wait Unsuccessful & AP
Wait for Event Unsuccessful & AP (if allowed)
3DPRIMITIVE Object Level (if enabled)
3DSTATE_PTBR_TILE_PASS_INFO AP

Table Notes:
AP - Allow Preemption if arbitration is enabled.

1. 0x20EC bit 0 determines whether the level of preemption is command or object level.

POSH Programming Model

The POSH + Render pipeline will appear as a monolithic engine from SW perspective. Render Command
Streamer (RCS) is hardware front end interface to the SW for the modified Render + POSH pipeline. SW
will use a single context (and associated LRCA) to submit work to the modified Render + POSH pipeline
through its associated ring buffer.

Context submission model should be visualized as context submitted to RCS. RCS will set up the context
definition in HW and triggers POSH pipe to execute the same context, resulting in execution of the same
ring buffer by render pipe and POSH pipe in parallel. POSH pipe has its own command streamer called
POCS (POSH Command Streamer). Similarly, when the context is switched out on the render pipe due to
whatever reasons (Wait For Event, Semaphore Wait or Preemption due to pending execlist), RCS will
ensure POSH pipe is preempted and its corresponding logic state is saved through POCS.

POCS and RCS get to see the same ring buffer, however the execution of the same ring buffer by POCS
and RCS are asynchronous to each other and its SW responsibility to ensure POCS and RCS are

Doc Ref # IHD-OS-DG1-Vol 9-2.21 15

intel

synchronized through semaphores as and when required. SW will provide independent command buffers
(batch buffers) to be executed by RCS and POCS. Marking of batch buffers for POCS and RCS and
execution of ring buffer are detailed in the latter subsections.

This model of execution has the following implications:

e POCS and RCS have to run on the same context definition. RCS sets up context with GAM and
POCS runs within this address space.

e Even though the currently running context may not be utilizing the POSH pipe, a waiting context
with POSH enabled has to wait for the current context to be evicted. (waiting context cannot take
advantage of the idle POSH pipe ahead of getting scheduled on the render engine)

POSH Enabled Context

A context submitted to render engine exercising POSH functionality is called "POSH Enabled" context.
Application (UMD) decides if a context is POSH Enabled at the time of context creation. A context is
indicated as POSH enabled to HW by setting "POSH Enable" bit in CTX_SR_CTL register of RCS. SW
allocates additional separate memory space (POSH LRCA) for the POSH Enabled contexts. POSH pipe
uses the POSH LRCA for its context state management.

Context Submission and LRCA for POSH

SW will continue to submit POSH enabled contexts to ELSP in RCS. There is no change in the pending
execlist submission or context switch status report mechanism to/from RCS.

Listed below are the SW changes required for submission of the POSH enabled context:

e "POSH Enable" bit in CTX_SR_CTL of RCS must be set to indicate POSH enabled context to HW.
Refer POSH functionality control section for the bit definition and programming.

e POSH LRCA is provided to RCS through register programming in the ring context of RCS. Refer
RCS ring context details below.
e POSH LRCA format is similar to that of RCS, i.e PPHWSP followed by ring context followed by the

engine context. However POSH ring context will only have the ring buffer and batch buffer details.
POSH ring context will not have the page directory pointers details as the PPGTT is setup by RCS.

e SW does not control POCS context ID independently. The context ID for POCS will be supplied
from RCS, and thus will be the same.

e SW must update the ring context of POSH with ring buffer details on the very first submission and
whenever the ring buffer start address, control and head pointer details are updated. POSH pipe
(POCS) will sample the tail pointer from RCS. Note that the POCS and RCS share the same ring
buffer.

16 Doc Ref # IHD-OS-DG1-Vol 9-2.21

intel.

LRCA

Pointer

RCS Head
Pointer
POCS Head
Tail Ppinter

MEMORY

POSH LRCA

— — — — — — — — — — — — — — — — | — —— — — — — — — —

— o . el

RENDER + POSH

17

Doc Ref # IHD-OS-DG1-Vol 9-2.21

intel

POSH LRCA in RCS Ring Context

The table below highlights the POSH LRCA details in RCS ring context. Ring context listed below is for
illustration of the change, "Register State Context" in "Render Logical Context Data" should be referred

as the final format for implementation.

Description Unit | # of DW
NOOP CSEL 1
MI_LOAD_REGISTER_IMM CSEL 1
Ring Buffer Head CSEL 2
Ring Tail Pointer Register CSEL 2
RING_BUFFER_START CSEL 2
RING_BUFFER_CONTROL CSEL 2
Batch Buffer Current Head Register (UDW) | CSEL 2
Batch Buffer Current Head Register CSEL 2
Batch Buffer State Register CSEL 2
SECOND_BB_ADDR_UDW CSEL 2
SECOND_BB_ADDR CSEL 2
SECOND_BB_STATE CSEL 2
BB_PER_CTX_PTR CSEL 2
RCS_INDIRECT_CTX CSEL 2
RCS_INDIRECT_CTX_OFFSET CSEL 2
NOOP CSEL 2
NOOP CSEL 1
MI_LOAD_REGISTER_IMM CSEL 1
CTX_TIMESTAMP CSEL 2
PDP3_UDW CSEL 2
PDP3_LDW CSEL 2
PDP2_UDW CSEL 2
PDP2_LDW CSEL 2
PDP1_UDW CSEL 2
PDP1_LDW CSEL 2
PDPO_UDW CSEL 2
PDPO_LDW CSEL 2
MI_LOAD_REGISTER_IMM CSEL 1
POSH_LRCA CSEL 2
NOOP CSEL 9
NOOP CSEL 1
MI_LOAD_REGISTER_IMM CSEL 1

18

Doc Ref # IHD-OS-DG1-Vol 9-2.21

Description Unit | # of DW
R_PWR_CLK_STATE CSEL 2
GPGPU_CSR_BASE_ADDRESS CSEL 3
NOOP CSEL 9

POCS Ring Context

intel

Table below details the POSH ring context. Ring context listed below is for illustration of the change,
"Register State Context" in "Render Logical Context Data" should be referred as the final format for

implementation.

Description Unit | # of DW
NOOP CSEL 1
MI_LOAD_REGISTER_IMM CSEL 1
Ring Buffer Head CSEL 2
Ring Tail Pointer Re