

Intel® Iris® Xe MAX Graphics Open Source

Programmer's Reference Manual

For the 2020 Discrete GPU formerly named "DG1"

Volume 7: Memory Cache

February 2021, Revision 1.0

ii Doc Ref # IHD-OS-DG1-Vol 7-2.21

Notices and Disclaimers

Intel technologies may require enabled hardware, software or service activation.

No product or component can be absolutely secure.

Code names are used by Intel to identify products, technologies, or services that are in development and

not publicly available. These are not "commercial" names and not intended to function as trademarks.

Customer is responsible for safety of the overall system, including compliance with applicable safety-

related requirements or standards.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by

this document.

The products described may contain design defects or errors known as errata which may cause the

product to deviate from published specifications. Current characterized errata are available on request.

You may not use or facilitate the use of this document in connection with any infringement or other legal

analysis concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free

license to any patent claim thereafter drafted which includes subject matter disclosed herein.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of

merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising

from course of performance, course of dealing, or usage in trade.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers

must not rely on the absence or characteristics of any features or instructions marked "reserved" or

"undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for

conflicts or incompatibilities arising from future changes to them. The information here is subject to

change without notice. Do not finalize a design with this information.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its

subsidiaries. Other names and brands may be claimed as the property of others.

Doc Ref # IHD-OS-DG1-Vol 7-2.21 iii

Table of Contents

Memory Cache ... 1

L3 Cache ... 1

L3 Blocks Overview ... 1

Size of L3 Bank and Allocations .. 1

Memory Object Control State on Cacheability .. 2

Atomics .. 3

L3 Cache Error Protection .. 8

Doc Ref # IHD-OS-DG1-Vol 7-2.21 1

Memory Cache

This section describes the GFX L3 Cache, which is a large storage that backs up various L2/L1 caches in

the GPU's internal units.

L3 Cache

This is the volume describing the L3/URB/SLM.

L3 Blocks Overview

L3 is formed via some number of logical banks that are identical to each other. The major blocks in each

logical bank are:

• L3 Cache Arrays & Controller

• Super Q and related data buffer

• Ingress queues and related CAMs with arbitration

• Atomics Block/SLM pipeline & crossbar for data routing

Size of L3 Bank and Allocations

Multi-Bank Allocation Options with Tile Cache and Command buffer support

DG1 support for Large Cache

DG1 support will have two basic changes:

• URB allocation is no longer programmable via L3 but rather a fixed allocation of 768KB for entire

DG1. S/W does not need to program a certain allocation for DG1 anymore. Note that dual-context

mode can still a portion of URB for the second context when enabled to do so.

• L3 cache size has been increased to 16MB total storage (still organized as 8 banks of 2MB each)

L3 Allocation programming (KBytes per bank)

URB Rest

(DC+RO)

DC RO

(I/S/C/T)

Z Color Unified

Tile Cache

Command

Buffer/

State

Sum

96KB

(fixed)

0 to 2MB

in

increments

of 32KB

0 to 2MB

in

increments

of 32KB

0 to 2MB

in

increments

of 32KB

0 to 2MB

in

increments

of 32KB

0 to 2MB

in

increments

of 32KB

0 to 2MB

in

increments

of 32KB

0 to 2MB

in

increments

of 32KB

2048KB

Note : The granularity of 32KB delta for each section arises from the fact that the L3 is implemented as a

sectored cache with 2 ways per sector. Due to this, the number of ways programmed for each section of

the L3 cache should be an even number. The programming of the L3ALLOCREG to configure the

2 Doc Ref # IHD-OS-DG1-Vol 7-2.21

sections should be determined based on the size of the cache per way. The total number of ways

implemented in the design is available in the L3 Parameter Information register.

However, several restrictions apply.

• It is not allowed to allocate the entire cache to DC (Data space) with 0KB for reads.

• It is not allowed to have Rest and DC to be "0KB" at the same time. Cache requires either Rest or

DC to have at least non-0KB allocation.

• It is not allowed to have Rest and RO to be "0KB" at the same time. Cache requires either Rest or

RO to have at least non-0KB allocation.

• State is now stored as part of Command Streamer allocation. If specific allocation is 0KB, it will be

placed in the Rest section.

L3 Allocation programming (KBytes per bank)

Config

Rest

(DC+RO) DC

RO

(I/S/C/T) Z Color

Unified

Tile Cache

Command

Buffer Sum

0 (def) 2048 0 0 0 0 0 0 2048

1 1024 0 0 0 0 992 32 2048

2 0 1024 992 0 0 0 32 2048

Preferred configuration setting will be Config#0 with flat cache.

Memory Object Control State on Cacheability

This 7-bit field is used in various state commands and indirect state objects to define L3/LLC/eDRAM

cacheability, memory type, and graphics data type for memory objects.

Note that memory type information from state is used for non-IA compatible paging structures (legacy

context). For new context definition where IA compatible (IA32e) paging structures are used, memory

typing follows the IOMMU defined structures.

 MOCS[6:1] in L3 is used as an index to a set of programmable tables starting with address xB020h. GFX

Software can set up the tables as part of the h/w context, and program various index values in surfaces

to point to a table that best suits for that particular surface.

Doc Ref # IHD-OS-DG1-Vol 7-2.21 3

Atomics

An atomic operation may involve both reading from and then writing to a memory location. Atomic

operations apply only to either u# (Unordered Access Views) or g# (Thread Group Shared Memory). It is

guaranteed that when a thread issues an atomic operation on a memory address, no write to the same

address from outside the current atomic operation by any thread can occur between the atomic read and

write.

If multiple atomic operations from different threads target the same address, the operations are

serialized in an undefined order. This serialization occurs due to L3 serialization rules to the same

address.

Atomic operations do not imply a memory or thread fence. If the program author/compiler does not

make appropriate use of fences, it is not guaranteed that all threads see the result of any given memory

operation at the same time, or in any particular order with respect to updates to other memory

addresses. However atomic operations are always stated on a global level (except on shared local

memory), when atomic is operation is complete final result is always visible to all thread groups.

Atomics features:

• Double size operands where 8B atomic operations are introduced for 64-bit data types. There is

also an addition 16B "atomic_cmp/wr16B" to the table. All these new operands apply to global

memory only.

• Floats for 4B/8B accesses, only floating-point adder is used.

• (note: if L3 atomics are disabled, floating point atomics can be used)

• Move global atomic ops to L3 (keep the GTI support for non-coherent L3 mode) and share same

atomic OPs as SLM.

o GT3 can process up to 192 IA coherent atomics per cycle.

• Hardware improves the performance of atomics to the same cacheline. Specifically, back-to-back

atomics to the same memory location are done without the need to re-fetch the result of the

previous atomic from L3. This should increase bandwidth for atomics to the same location

significantly over previous.

• Single-Precision FP Min/Max and Compare/Exchange Instructions are added.

• URB atomics are not supported.

Programming Note

Context: Atomics

API Specification: The API specification says that atomic operations on Thread Group Shared Memory are atomic

with respect to other atomic operations, as well as operations that only perform reads (loads). However, atomic

operations on Thread Group Shared Memory are notatomic with respect to operations that perform only writes

(stores) to memory. Mixing atomics and stores on the same Thread Group Shared Memory address without thread

synchronization and memory fencing between them produces undefined results at the address involved.

This restriction arises because some implementations of loads and stores do not honor the locking semantics for

implementing atomics. It turns out this has no impact on loads, since they are guaranteed to retrieve a value either

4 Doc Ref # IHD-OS-DG1-Vol 7-2.21

Programming Note

Context: Atomics

before or after an atomic (they will not retrieve partially updated values, given they are all defined at 32-bit quanta).

However, store operations could find their way into the middle of an atomic operation and thus have their effect

possibly lost.

In L3 or SLM, the atomic operation leads to a read-modify-write operation on the destination location

with the option of returning value back to requester. The table below is defined as a list of atomic

operations needed:

Atomic

 Operation Opcode Description

New Destination

 Value Applicable

Return

Value

(Optional)

Atomic_AND 0000_0001 Single component 32-bit bitwise

AND of operand src0 into dst at 32-

bit per component address

dstAddress, performed atomically.

"old_dst" AND

"src0"

global/SLM old_dst

Atomic_OR 0000_0010 Single component 32-bit bitwise

OR of operand src0 into dst at 32-

bit per component address

dstAddress, performed atomically.

"old_dst" OR

"src0"

global/SLM old_dst

Atomic_XOR 0000_0011 Single component 32-bit bitwise

XOR of operand src0 into dst at 32-

bit per component address

dstAddress, performed atomically.

"old_dst" XOR

"src0"

global/SLM old_dst

Atomic_MOVE 0000_0100 Replace the dst with src0. "src0" global/SLM old_dst

Atomic_INC 0000_0101 Single component 32-bit integer

increment of dst back into dst.

"old_dst + 1" global/SLM old_dst

Atomic_DEC 0000_0110 Single component 32-bit integer

decrement of dst back into dst.

"old_dst - 1" global/SLM old_dst

Atomic_ADD 0000_0111 Single component 32-bit integer

add of operand src0 into dst at 32-

bit per component address

dstAddress, performed atomically.

Insensitive to sign.

"old_dst + src0" global/SLM old_dst

Atomic_SUB 0000_1000 Single component 32-bit integer

subtraction of operand src0 from

dst at 32-bit per component

address dstAddress, performed

atomically. Insensitive to sign.

"old_dst - src0" global/SLM old_dst

Atomic_RSUB 0000_1001 Single component 32-bit integer

subtraction of operand dst from

src0 into dst at 32-bit per

component address dstAddress,

"src0 - old_dst" global/SLM old_dst

Doc Ref # IHD-OS-DG1-Vol 7-2.21 5

Atomic

 Operation Opcode Description

New Destination

 Value Applicable

Return

Value

(Optional)

performed atomically. Insensitive to

sign.

Atomic_IMAX 0000_1010 Single component 32-bit signed

MAX of operand src0 into dst at 32-

bit per component address

dstAddress, performed atomically.

IMAX(old_dst,

src0)

global/SLM old_dst

Atomic_IMIN 0000_1011 Single component 32-bit signed

MIN of operand src0 into dst at 32-

bit per component address

dstAddress, performed atomically.

IMIN(old_dst,

src0)

global/SLM old_dst

Atomic_UMAX 0000_1100 Single component 32-bit unsigned

MAX of operand src0 into dst at 32-

bit per component address

dstAddress, performed atomically.

UMAX(old_dst,

src0)

global/SLM old_dst

Atomic_UMIN 0000_1101 Single component 32-bit unsigned

MIN of operand src0 into dst at 32-

bit per component address

dstAddress, performed atomically.

UMIN(old_dst,

src0)

global/SLM old_dst

Atomic_

CMP/WR

0000_1110 Single component 32-bit value

compare of operand src0 with dst

at 32-bit per component address

dstAddress.

(src0 == old_dst)? global/SLM
old_dst

 If the compared values are

identical, the single-component 32-

bit value in src1 is written to

destination memory, else the

destination is not changed.

src1:

 The entire compare+write

operation is performed atomically.

old_dst

Atomic_

PREDEC

0000_1111 Single component 32-bit integer

decrement of dst back into dst.

"old_dst - 1" global/SLM new_dst

Atomic_AND8B 0010_0001 Single component 64-bit bitwise

AND of operand src0 into dst at 64-

bit per component address

dstAddress, performed atomically.

"old_dst8B" AND

"src08B"

global old_dst8B

Atomic_OR8B 0010_0010 Single component 64-bit bitwise

OR of operand src0 into dst at 64-

bit per component address

dstAddress, performed atomically.

"old_dst8B" OR

"src08B"

global old_dst8B

6 Doc Ref # IHD-OS-DG1-Vol 7-2.21

Atomic

 Operation Opcode Description

New Destination

 Value Applicable

Return

Value

(Optional)

Atomic_XOR8B 0010_0011 Single component 64-bit bitwise

XOR of operand src0 into dst at 64-

bit per component address

dstAddress, performed atomically.

"old_dst8B" XOR

"src08B"

global old_dst8B

Atomic_

MOVE8B

0010_0100 Replacement of the dst with src0. "src08B" global old_dst8B

Atomic_INC8B 0010_0101 Single component 64-bit integer

increment of dst back into dst

"old_dst8B + 1" global old_dst8B

Atomic_DEC8B 0010_0110 Single component 64-bit integer

decrement of dst back into dst

"old_dst8B - 1" global old_dst8B

Atomic_ADD8B 0010_0111 Single component 64-bit integer

add of operand src0 into dst at 64-

bit per component address

dstAddress, performed atomically.

Insensitive to sign.

"old_dst8B +

src08B"

global old_dst8B

Atomic_SUB8B 0010_1000 Single component 64-bit integer

subtraction of operand src0 from

dst at 64-bit per component

address dstAddress, performed

atomically. Insensitive to sign.

"old_dst8B -

src08B"

global old_dst8B

Atomic_

RSUB8B

0010_1001 Single component 64-bit integer

subtraction of operand dst from

src0 into dst at 64-bit per

component address dstAddress,

performed atomically. Insensitive to

sign.

"src08B -

old_dst8B"

global old_dst8B

Atomic_IMAX8B 0010_1010 Single component 64-bit signed

MAX of operand src0 into dst at 64-

bit per component address

dstAddress, performed atomically.

IMAX (old_dst8B,

src08B)

global old_dst8B

Atomic_IMIN8B 0010_1011 Single component 64-bit signed

MIN of operand src0 into dst at 64-

bit per component address

dstAddress, performed atomically.

IMIN (old_dst8B,

src08B)

global old_dst8B

Atomic_

UMAX8B

0010_1100 Single component 64-bit unsigned

MAX of operand src0 into dst at 64-

bit per component address

dstAddress, performed atomically.

UMAX (old_dst8B,

src08B)

global old_dst8B

Atomic_
0010_1101 Single component 64-bit unsigned

MIN of operand src0 into dst at 64-

UMIN (old_dst8B,

src08B)

global old_dst8B

Doc Ref # IHD-OS-DG1-Vol 7-2.21 7

Atomic

 Operation Opcode Description

New Destination

 Value Applicable

Return

Value

(Optional)

UMIN8B bit per component address

dstAddress, performed atomically.

Atomic_

CMP/WR8B

0010_1110 Single component 64-bit value

compare of operand src0 with dst

at 64-bit per component address

dstAddress.

(src08B ==

old_dst8B)?

global
old_dst8B

 If the compared values are

identical, the single-component 64-

bit value in src1 is written to

destination memory, else the

destination is not changed.

src18B:

 The entire compare+write

operation is performed atomically.

old_dst8B

Atomic_

PREDEC8B

0010_1111 Single component 64-bit integer

decrement of dst back into dst.

"old_dst8B - 1" global new_dst8B

Atomic_

CMP/WR16B

0100_1110 Single component 64-bit value

compare of operand src0 with dst

at 64-bit per component address

dstAddress.

(src0_16B ==

old_dst16B)?

global
old_dst16B

 If the compared values are

identical, the single-component 64-

bit value in src1 is written to

destination memory, else the

destination is not changed.

src1_16B:

 The entire compare+write

operation is performed atomically.

old_dst_16B

Atomic_MAX_Float32 1000_1010 Single component / single precision

float MAX of operand src0 into dst

dstAddress, performed atomically.

FMAX32(old_dst,

src0)

global/SLM old_dst

Atomic_MIN_Float32 1000_1011 Single component / single precision

float MIN of operand src0 into dst

dstAddress, performed atomically.

FMIN32(old_dst,

src0)

global/SLM old_dst

Atomic_

CMP/WR_Float32

1000_1110
Single component / single precision

value compare of operand src0 with

dst at address dstAddress.

If the compared values are

different, the single-component 32-

bit value in src1 is written to

destination memory, else the

(src0 == old_dst)? global/SLM old_dst

8 Doc Ref # IHD-OS-DG1-Vol 7-2.21

Atomic

 Operation Opcode Description

New Destination

 Value Applicable

Return

Value

(Optional)

destination is not changed.

The entire compare+write

operation is performed atomically.

L3 Cache Error Protection

L3 cache error protection is covered via ECC (SECDED). All accesses are subject to ECC protection where

single bit errors are fixed silently. Double bit errors are reported via a register structure and

communicated by an interrupt to GFX driver. L3 cache HW is additionally capable of stalling execution

upon a double bit error.

