

Intel® Open Source HD Graphics

Programmers' Reference Manual (PRM)

Volume 8: Media VDBOX

For the 2014-2015 Intel Atom™ Processors, Celeron™ Processors and Pentium™

Processors based on the "Cherry Trail/Braswell" Platform

(Cherryview/Braswell graphics)

October 2015, Revision 1.1

Media VDBOX

ii Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15

Creative Commons License

You are free to Share - to copy, distribute, display, and perform the work under the following

conditions:

 Attribution. You must attribute the work in the manner specified by the author or licensor (but

not in any way that suggests that they endorse you or your use of the work).

 No Derivative Works. You may not alter, transform, or build upon this work.

Notices and Disclaimers

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO

LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY

RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS

OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS

ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS

INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,

MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL

PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result,

directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS

FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS

SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES

OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE

ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY,

PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION,

WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE,

OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked

"reserved" or "undefined". Intel reserves these for future definition and shall have no responsibility

whatsoever for conflicts or incompatibilities arising from future changes to them. The information here

is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which

may cause the product to deviate from published specifications. Current characterized errata are

available on request.

Implementations of the I2C bus/protocol may require licenses from various entities, including Philips

Electronics N.V. and North American Philips Corporation.

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

* Other names and brands may be claimed as the property of others.

Copyright © 2015, Intel Corporation. All rights reserved.

 Media VDBOX

Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15 iii

Table of Contents

VDBOX Registers ... 1

MFX Architecture .. 1

MFX Introduction ... 1

MFC Overview.. 2

Sample Algorithmic Flow ... 3

Synchronization Mechanism ... 5

Restrictions ... 6

MFD Overview ... 7

MFD Memory Interface ...11

MFD Codec-Specific Commands...12

MFX State Model ..12

MFX Interruptability Model ..13

Decoder Input Bitstream Formats ...14

AVC Bitstream Formats – DXVA Short ..14

AVC Bitstream Formats – DXVA Long ...14

VC1 Bitstream Formats – Intel Long ..14

MPEG2 Bitstream Formats – DXVA1 ..14

JPEG Bitstream Formats – Intel ..14

Concurrent Multiple Video Stream Decoding Support ...15

MFX Codec Commands Summary .. 15

MFX Decoder Commands Sequence ..20

Examples for AVC ..20

Examples for VC1 ...22

Examples for JPEG ...23

MFX Pipe Common Commands .. 24

Bitplane Buffer ...27

Video Codecs ... 28

AVC (H.264) ..29

AVC Common Commands ...29

AVC Decoder Commands ..30

Session Decoder StreamOut Data Structure ..30

Media VDBOX

iv Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15

AVC Encoder PAK Commands ..40

Indirect Data Description ...40

Unpacked Motion Vector Data Block ...40

Packed-Size Motion Vector Data Block ...46

Macroblock Level Rate Control ...48

Theory of Operation Overview..50

AVC Encoder MBAFF Support ..51

MPEG-2 ..53

MPEG2 Common Commands ...53

MPEG2 Decoder Commands ..53

Indirect Data Description ...53

MPEG2 Encoder PAK Commands ..54

PAK Object Inline Data Description – MPEG-2 ...54

MFX HW Interface and DXVA Conversion ..61

Map DXVA to HW BSpec ...61

Map HW Bspec to DXVA ...64

VC1 Common Commands ...66

VC1 Decoder Commands ...66

Handling Emulation Bytes ...67

VP8 ...68

MFX_VP8_STATISTICS - Encoder Only ...68

VP8 Encoder StreamOut Format ...71

VP8 Common Commands ..72

VP8 Decoder Commands ...72

VP8 Encoder Commands ..73

VP8 Bitstream Formats ..73

JPEG and MJPEG ...74

JPEG Decoder Commands ...74

JPEG Encoder Commands ..78

More Decoder and Encoder ...80

MFD IT Mode Decode Commands ...80

Common Indirect IT-COEFF Data Structure ...80

Inline Data Description in AVC-IT Mode ...81

 Media VDBOX

Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15 v

Indirect Data Format in AVC-IT Mode ..87

Inline Data Description in VC1-IT Mode ..91

Indirect Data Format in VC1-IT Mode ..96

Inline Data Description in MPEG2-IT Mode ...97

Indirect Data Format in MPEG2-IT Mode ..99

MFX Deblocking Commands ..99

MFX Error Handling ..99

Encoder StreamOut Mode Data Structure Definition ... 100

PAK Multi-Pass ... 102

Driver Usage .. 103

Programming Reference .. 103

Monochrome Picture Processing .. 103

Context Switch.. 104

PMSI Support .. 104

Pipeline Flush .. 104

MMIO Interface .. 105

Decoder Registers .. 107

Encoder Registers ... 108

MMIO Interface... 109

Row Store Sizes and Allocations ... 111

 Media VDBOX

Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15 1

VDBOX Registers

This section describes the VDBOX Command Memory Interface registers.

MFX Architecture

This section and the following sections of Media VDBOX contain the referential documentation on the

Multi-Format Codecs, or MFX for those series of chips.

MFX Introduction

Multi-Format Codec (MFX) Engine is the hardware fixed function pipeline for decode and encoding. It

includes multi-format decoding (MFD) and multi-format encoding (MFC).

Media VDBOX

2 Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15

MFC Overview

Multi-Format Codec (MFX) Engine is the hardware fixed function pipeline for decode and encoding. It

includes multi-format decoding (MFD) and multi-format encoding (MFC).

Note: MFC only supports AVC (H.264).

Many decoding function blocks in MFD such as VIP, VMC, IQT, etc, are also used in encoding mode.

Two blocks, FTQ and BSE, are encoding only.

The encoding process is partitioned across host software, the GPE engine, and the MFX engine. The

generation of transport layer, sequence layer, picture layer, and slice header layer must be done in the

host software. GP hardware is responsible for compressing from Slice Data Layer down to all macro-

block and block layers. Specifically, GPE w/ VME acceleration is for motion vector estimation, motion

estimation, and code decision. The VME(Video Motion Estimation) is located next to all image

processing units, such as DN (denoise) and DI (deinterlace) in sampler in GPE. MFX is for final bit packing

and reconstructed picture generation.

MFC is operated concurrently with and independently from the GPE (3D/Media) pipeline with a separate

command streamer. The two parallel engines have similar command protocol. They can be executed in

parallel with different context. For encoding, motion search, MB mode decision, and rate control are

performed using GPE pipeline resources.

MFC is implemented to achieve the following objectives:

 Compliant with next generation high definition optical video disc requirements, with sufficient

performance headroom:

 Support AVC 4:2:0 Main Profile and High Profile only (8-bit only), up to Level 4.1 resolution

and up to 40 mbps bitstream. With sufficient duty cycles, higher bit rate contents can also

be encoded. There is no support for Baseline, Extended, or High-10 Profiles.

 Performance requirements with MFX core frequency above 667MHz:

 Real-time performance with 20% duty cycle or less.

 Support concurrent decoding of two active HD bitstreams of different formats (for example,

one AVC and one VC1 HD bitstream) and one active HD encoding.

As the result of this hardware partitioning, VPP and ENC are always running in GPE, and PAK is what

runs exactly in MFC.

PAK – residue packing and entropy coding, including block transformation, quantization, data

prediction, bitrate tuning and reference decoding. It delivers final packed bitstream and decoded key-

frame reference:

 As the same as ENC, PAK is invoked on a Slice boundary; a single call of VPP can lead to multiple

calls for PAK.

 Rate control is inside ENC and PAK only, not in VPP.

 PAK must always perform with reconstructed reference picture.

 Media VDBOX

Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15 3

There is a general dependency of the three operation pipelines. Semaphores are inserted either

according to frames or slices. The main CS will also be notified when the decoded reference is ready for

the next frame set to be encoded. The detailed discussion will be found in a later section.

Host software is responsible for encoding the transport stream and all the sequence, picture, and slice

layer/header in the bit-stream; the MFC system is responsible for compressing from Slice Data Layer

down to all macro-block and block layers.

Sample Algorithmic Flow

Assuming all the hardware components are given, there are infinite usage possibilities left with

intention for software to decide according to its own application needs depending upon the balanced

requirement of coding speed, frame latency, power-consumption, and video quality, and depending

upon the usage modes and user preferences (such as low-frame-rate-high-frame-quality vs. high-

frame-rate-low-frame-quality).

The last part of this chapter, we illustrate a generic sample to show how a compression algorithm can

be implemented to use our hardware.

Step 1. Application or driver initializes the encoder with desired configuration, including speed, quality,

targeted bit-rate, input video info, and output format and restrictions.

Step 2. VPP – Application or driver feeds VPP one frame at a time in coded order with specified frame

or field type, as well as transcoding informations: motion vectors, coded complexity (i.e. bit size).

 It will perform denoising and deblocking based on original and targeted bit-rate, and output additional

 4 spatial variances and 2 temporal variances for each macroblock as well as the whole frame.

Step 3. ENC – Application or driver feeds ENC one coding slice buffer at a time including all VPP

output. The frame level data is accessible to all slices.

a. Encoding setup unit (ESE) will set picture level quality parameters (including LUTs, and other

costing functions) and set target bit-budget (TBB) and maximal bit-budget (MBB) to each

macroblock based on rate-control (RC) scheme implemented. For B-frames, it wll also make ME

searching mode decision (either Fast, Slow or Uni-directional).

b. Loop over all macroblocks: calculate searching center (MVP) perform individual ME and IE (MEE).

Multi-thread may be designed for HW according to a zigzag order for minimal dependency issue.

c. ENC make microblock level code decision (CD) outputs macroblock type, intra-mode, motion-

vectors, distortions, as well as TBBs and MBBs.

Step 4. PAK – Application or driver feeds PAK one array of coded macroblocks covering a slice at a

time, including all ENC output. Original frame buffer and reconstructed reference frame buffers are also

available for PAK to access.

a. PAK may create bitstreams for all sequence, gop, picture, and slice level headers prior the first

macroblock.

b. Loop over all macroblocks, accurate prediction block is constructed for either inter- or intra-

predictions (VMC & VIP). If MB distortion is less than some predetermined threshold, for a B slice

this step can be skiped as well as the Steps (c)-(e) and jump directly to Step (f); for a key slice the

Media VDBOX

4 Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15

prediction calculated here will be directly used as the reference thus it jumps to Step (e) after this

step.

c. Differencing the predicted block from the original block derives the residue block. Forward

transformation and quantization (FTQ) is performed. For B slice, it will jump to Step (f) right after.

For other types of slice, Steps (d) and (e) can be performed in a thread in parallel with Step (f) and

beyond.

d. This is for accurate construction of reference pictures. Inverse quantization and inverse

transformation (IQT) are performed and added to the predictions to have the decoded blocks.

e. ILDB is applied accordingly to the reconstructed blocks.

f. Meanwhile macroblock codes: including its configuration info (types and modes), motion info

(motion vectors and reference ids), and residual info (quantized coefficients), are collected for

packing (BSE) in the following sub-steps:

i. Code clean-up (in MPR). Check and verify Mbtype and Cbps, use Skip or Zero respectively

if one can. In principal, when there are equivalent codes, use the simple one.

ii. Drop dependency (in MPR). Calculate relative codes from the absolute codes by associate

thm with neighborhood information. All neighborhood correlations are solved in this step.

iii. Unify symbols (in SEC). Translate relative codes into symbols, and table or context indices

that are independent of the concept of syntax type.

iv. Entropy coding (VLE) on symbols.

g. Parsing bitstream data in RBSP form (in VLE), and output to application or driver.

h. By the end of each picture, write out the accurate actual data size to designate buffer for ENC to

access.

 Media VDBOX

Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15 5

Synchronization Mechanism

Encoding of a video stream can be broken down to three major steps (as explained in the previous

section):

1. VPP: video-stream pre-processing

2. ENC: encoding, that is, code decision of inter-MVs and intra-modes

3. PAK: bit-stream packing

a. residual calculation, transformation, and quantization

b. code bit-stream packing

c. reference generation of keyframes

This section describes an architectural solution to map the first two steps in the GFX engine and the last

step in the MFX engine. Since this mapping involves two OS-visible engines, managing them in parallel

under one application is similar to the solution in earlier generations. Each engine has its own command

streamers and has mechanisms to synchronize at required levels as described in the next sub-section.

Above three steps of encoding have dependencies in processing based on

i. functional pipeline order, i.e. on a given frame, VPP needs to be performed first, then ENC,

then PAK and finally MFD (Multi-Format Decoding) for key reference frame generation.

ii. I-frames are key frames for P and B, they have to be first in every pipe-stage.

iii. P-frames are key frames for B frames and therefore P frames are processed first before the

dependent B frames

iv. GFX Engine is time slice to work on either VPP or ENC frame as we discussed in the previous

chapter.

v. PAK + MFD are executed on the same frame in the MFX engine by macro-block level

pipelining within a slice. It should be noted that for the sake of simplicity, an entire frame

(potentially multiple slices) are processed in the corresponding engine and no smaller

granularity of switching is allowed between the functional pipeline stages.

Three steps of the encoding can be interleaved on two engines in the following way on a frame by

frame basis.

Media VDBOX

6 Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15

Command Stream Synchronization

Restrictions

MFC implementation is subject to the following limitations.

 Context switching within MFC and with Graphics Engine occurs only at frame boundary to

minimize the amount of information that needs to be tracked and maintained.

 Media VDBOX

Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15 7

MFD Overview

When used for decoding, we also refer to the MFX Engine as the MFD Engine.

The Multi-Format Decoder (MFD) is a hardware fixed function pipeline for decoding the three video

codec format and one image compression codec format: AVC (H.264), VC-1, MPEG2, and JPEG.

 Compliant with next generation high definition optical video disc requirements, with sufficient

performance headroom:

o Support AVC 4:2:0 Main and High (8-bit only) Profile only (no support for Baseline,

Extended and High-10 Profiles), up to Level 5.1 (max 983,040 MB/s, max 36,864 MB/frame,

and at most one dimension can reach 4K pixel) resolution and up to 40 mbps bitstream.

With sufficient duty cycles, higher bit rate contents can also be decoded.

 Allow a B-picture (frame or field) as a reference picture

o Support MVC 4:2:0 Stereoscopic Progressive Profile only, up to Level 5.1 (max 983,040 MB/s

per view, max 36,864 MB/frame per view, and at most one dimension can reach 4K pixel)

resolution and up to 40 mbps bitstream. With sufficient duty cycles, higher bit rate contents

can also be decoded.

 Does not support interlaced video specified in the Stereoscopic Profile

Media VDBOX

8 Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15

o Support VC1 4:2:0 Simple, Main and Advanced Profiles, up to Level 4 (max 491,520 MB/s

and max 16,384 MB/frame; max only one dimension will be at 4K pixel) resolution and up

to 40 mbps bitstream. With sufficient duty cycles, higher bit rate contents can also be

decoded.

 Allow a B-field as a reference picture only in interlaced field decoding, no other

modes.

o Support MPEG2 HD Main Profile (4:2:0), up to High Level (1920x1152 pixels) and up to 80

mbps bitstream. With sufficient duty cycles, higher bit rate contents can also be decoded.

No support for SNR and spatial-scalability.

 Does not support B-picture as a reference picture.

o Support Baseline JPEG with five choma types (4:0:0, 4:1:1, 4:2:2, 4:2:0, and 4:4:4. No support

for Extended DCT-based mode, Progressive mode, Loseless mode, nor Hierarchical mode.

 H/W support 64Kx64K, but Surface State can support only up to 16kx16k

Features Supported Unsupported

Coding processes
Baseline sequential mode:

 8-bit pixel precision of source images

 loadable 2 AC and 2 DC Huffman

tables

 3 loadable quantization matrix for Y, U,

V

 Interleaved and non-interleaved Scans

 Single and multiple Scans

Extended DCT-based mode,

Lossless, Hierarchical modes:

More than 8 bit pixel resolution,

progressive mode, arithmetic

coding, 4 AC and 4 DC Huffman

tables (extended mode),

predictive process (lossless),

multiple frames (hierarchical)

Number of image

channels
1 for grey image

3 for Y, Cb, Cr color image

4-th channel (usually alpha

blending image)

Image resolution Arbitrary image size up to 16K * 16K Larger than 16K * 16K (64K * 64K

is max. in the JPEG standard)

Chroma

subsampling ratio
Chroma 4:0:0 (grey image)

Chroma 4:1:1

Chroma 4:2:0

Chroma horizontal 4:2:2

Chroma vertical 4:2:2

Chroma 4:4:4

Any other arbitrary ratio, e.g., 3:1

subsampled chroma

Additional

feature (post-

processing)

Image rotation: 90/180/270 degrees

 Media VDBOX

Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15 9

o H/W does not impose restriction on picture frame aspect ratio, but is bounded by a max

256 MBs (4096 pixels) per dimension programmable at the H/W interface specifications.

 For example, supporting HD video resolution 1920x1080/60i, 1920x1080/24p,

1280x720/60p

 Performance requirements with MFX core frequency above 1GHz

o Real-time performance around 10% duty cycle

o Support concurrently decoding of at least two active HD bitstreams of different formats

(For example, one AVC and one VC1 HD bitstream)

 The parsing of transport layer and sequence layer is not performed in this hardware, and is

required to be done in the host software.

 The MFD hardware pipeline is operated concurrently with and independently from the Graphics

(3D/Media) pipeline with separate command streamer. The two parallel engines are designed

with the similar command protocol. They can be executed in parallel with different context.

 Local storages and buffers along the hardware pipeline are kept at minimum. For example, there

is no on-die row-store memory. They are resided on the system memory. MFD is designed to

hide the memory access latency (in both the row stores and in the motion compensation units) in

maximizing its decoding throughput.

 Support the following operating modes:

o VLD mode - operation starts from entropy decoding of the compressed bit stream (parsing

Slice Header and Slice Data Layer in AVC, Picture layer, Slice layer and MB Layer in VC-1,

and MB-layer in MPEG2), all the way, to the reconstruction of display picture, including in-

loop and out-loop deblocking, if any.

 Streamout mode - a new feature of the VLD mode in assisting transcoding during

decoding. Selected uncompressed data (e.g. per MB MV information) will be sent out

to the EU and the ME engine (resided on the Sampler of the 3D Gx Pipeline) for

encoding into a different format or for the purpose of transcaling and transrating. In

addition, the uncompressed result may continue to be processed by the rest of

pipeline as in VLD mode to generate the display picture for transcoding. That is,

while intermediate data are streaming out to the memory, the MFD Engine continues

its decoding as ususal.

 For JPEG, only VLD mode is supported (No IT mode). Host software decodes Frame

and Scan layers (down to Scan header in the JPEG bit stream syntax) and sends all

the corresponding information and Scan payload to the MFD hardware pipeline.

o IT mode - when host software has already performed all the bit stream parsing of the

compressed data and packaging the uncompressed result into a specific format (as a

sequence of per-MB record) stored in memory. The hardware pipeline will fetch one MB

record at a time and perform the rest of the decoding process as in VLD mode

o Host software (Application) is responsible for parsing and decoding all the transport and

program layers, and all sequence layers. These parameters are passed to Driver and

forwarded to H/W as needed through different STATE commands. Host software is also

Media VDBOX

10 Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15

responsible for separating non-video data (audio, meta and user data) from sending to

H/W.

 MFD Engine is only responsible for macro-block and block layers decoding, plus

certain level of header decoding. For AVC MFD starts decoding from Slice Header; for

VC1, MFD starts decoding from Picture Header, and for MPEG2 decoding starts from

MB Layer only.

 For JPEG, MFD is responsible for ECS and block layers decoding.

 Support bitstream formats (compressed video data) for each codec

o AVC - 2 formats

o MVC - 2 formats

 DXVA2 MVC Short Slice Format

 DXVA2 AVC Long Slice Format Specification (exactly the same as AVC)

o VC1 - 2 formats

 Fully compliant to Picture Parameter and Slice Control Parameter interface

definition

o MPEG2

 MB Layer only, according to DXVA 1 Specification

o JPEG

 ECS Layer

 The MFX codec is designed to be a stateless engine, that it does not retain any history of settings

(states) for the encoding/decoding process of a picture. Hence, driver must issue the full set of

MFX picture state command sequence prior to process each new picture. In addition, driver must

issue the full set of Slice state command sequence prior to process a slice.

o In particularly, RC6 always happens between frame boundaries. So at the beginning of

every frame, all state information needs to be programmed. There is no state information

as part of media context definition.

 To activate the AVC deblocker logic for incoming uncompressed 4:2:0-only video stream, one can

pack the uncompressed video stream to compliant with the IPCM MB data format (including ILDB

control information) and feed them into the MFD engine in IT mode. Since the MFD Engine is in

IPCM mode, transformation, inter and intra processing are all inactive.

Start Code Detection and removal are done in the CPU, but the Start Code Emulation Prevention Byte is

detected and removed by the front end logic in the MFD. The bitstream format for each codec and for

each mode is specified in this document.

 Media VDBOX

Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15 11

Codec specific information are based on the following released documents from third parties :

 Draft of Version 4 of H.264/AVC (ITU-T Recommendation H.264 and ISO/IEC 14496-10 (MPEG-4

part 10) Advanced Video Coding); JVT-O205d1.doc; dated 2005-05-30

 Final Draft SMPTE Standard : VC1 Compressed Video Bitstream Format and Decoding Process,

SMPTE 421M, dated 2006-1-6; PDF file.

 MPEG2 Recommendation ITU T H.262 (1995 E), ISO/IEC 13818-2: 1995 (E); doc file.

 Digital Compression and Coding of Continuous-tone Still Images, ITU-T Rec. T.81 and ISO/IEC

10918-1: Requirements and guidelines September 18 1992; itu-t81[1].pdf

MFD Memory Interface

The Memory Arbitrator follows the pre-defined arbitration policy (as indicated in the following listing P0

to P11, in which P0 is the highest priority) to select the next memory request to service, then it will

perform the TLB translation (translation to physical address in memory), and make the actual request to

memory.

The Memory Arbitration unit is also responsible for capturing the return data from memory (read

request) and forward it to the appropriate unit along the MFD Engine.

 Read streams: (all 64B requests)

 Commands for BSD : linear (including indirect data) (P0)

 Indirect DMA (P1)

 Row store for BSD: linear (P5)

 Row store for MPR: linear (P6)

 MC ref cache fetch : tiled (P2)

 Intra row store: linear (P9)

 ILDB row store: linear (P10)

 Write streams: (all 64B requests)

 Row store write for BSD: linear and can avoid partial writes (P3)

 Row store write for MPR: linear and can avoid partial writes (P4)

 Intra row store write: linear and can avoid partial writes (P7)

 ILDB row store write: linear and can avoid partial writes (P8)

 Final dest writes: tiled and can potentially be partial, two ways to avoid these partials: 1)

either write garbage and buffers are aligned or 2) read-modify writes for dribble end of line

cases (P11)

Media VDBOX

12 Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15

MFD Codec-Specific Commands

MFD hardware pipeline supports 3 different codec standards : AVC, VC1 and MPEG2. To make the

interface flexible, each codec is designed with its own set of commands.

There are two categories of commands for each codec format : one set for VLD mode and one set for IT

mode.

MFX State Model

The parallel video engine (PVE) supports two state delivery models: inline state model and indirect state

model. For inline state model, the state commands (*_STATE) can be issued in batch buffers or ring

buffers directly preceding object commands (*_OBJECT). In the indirect state model, the state

commands are not placed in the batch buffers or ring buffers. Instead Indirect State Buffers provide

state information (in the form of the above mentioned state commands) for the MFX pipeline. See

MFX_STATE_POINTER for more details.

VCS (aka BCS) handles the difference of the two state delivery models. Therefore, the MFX pipeline

always sees the state commands in both models. However, MFX hardware supports additional context

save/restore of ‘dynamic states’. Dynamic states are the internal signals that are persistent. This could

be the CABAC context for macroblock encoding.

MFX State Model

The MFX codec is designed to be a stateless engine, that it does not retain any history of settings

(states) for the encoding/decoding process of a picture. Hence, driver must issue the full set of MFX

picture state command sequence prior to process each new picture. In addition, driver must issue the

full set of Slice state command sequence prior to process a slice.

 In particular, RC6 always happens between frame boundaries. So at the beginning of every frame,

all state information needs to be programmed. There is no state information as part of media

context definition.

 Media VDBOX

Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15 13

MFX Interruptability Model

MFX encoding and the encoding pipeline do not support interruption. All operations are frame based.

Interrupts can only occur between frames; the driver will submit all the states at the beginning of each

frame. Any state kept across frames is in MMIO registers that should be read between frames.

Software submits without any knowledge of where the parser head pointer is located. Also there is a

non-deterministic amount of time for the new context to reach the command streamer. However, the

state model for the MFX engine requires software to know exactly what state the pipeline is in at all

times. This introduces cases where a preemption could occur during or after a state change without

software ever knowing the state saved out to memory on the context switch.

Also, preemption is only allowed during the last macroblock in a row. Hardware cannot always perform

a context switch when the new context is seen by the hardware. To avoid a switch during an invalid

macroblock and to keep the state synchronized with software, there are two commands available that

are used. MI_ARB_ON_OFF disables and enables preemption while MFX_WAIT ensures the context

switch, if needed, preempts during macroblock execution. Below illustrates an example assuming VC1

VLD mode.

Command Ring/Batch Notes

MI_ARB_ON_OFF = OFF Disable preemption

S1 Inline or indirect state cmd 1

S2 Inline or indirect state cmd 2

S3 Inline or indirect state cmd 3

XXXX_OBJECT Slice

MI_ARB_ON_OFF = ON Enable preemption

MFX_WAIT Allow preemption to occur while XXXX_OBJECT executes

MI_ARB_ON_OFF = OFF Since arbitration is off again, state commands are allowed below

S4 Inline or indirect state cmd 4

S5 Inline or indirect state cmd 5

S6 Inline or indirect state cmd 6

XXXX_OBJECT Slice

MI_ARB_ON_OFF = ON Enable preemption

MFX_WAIT Allow preemption to occur while XXXX_OBJECT executes

MI_ARB_ON_OFF = OFF Since arbitration is off again, state commands are allowed below

Note that store DW commands may execute inside the preemption enabling window if needed.

Media VDBOX

14 Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15

Decoder Input Bitstream Formats

AVC Bitstream Formats – DXVA Short

Bitstream Buffer Address starts after the 3-byte start code, i.e. starts (and includes) at the NAL Header

Byte. This byte must not be included in the Emulation Byte Detection Process.

AVC Bitstream Formats – DXVA Long

Bitstream Buffer Address starts after the 3-byte start code, i.e. starts (and includes) at the NAL Header

Byte. This byte must not be included in the Emulation Byte Detection Process. Application will provide

the Slice Header Skip Byte count (not including any possible Emulation Prevention Byte).

VC1 Bitstream Formats – Intel Long

Bitstream starts right at the MB layer, with any emulation byte crossing the header and MB layer being

removed by application and the data length is adjusted.

MPEG2 Bitstream Formats – DXVA1

Bitstream buffer starts right at the very first MB data.

JPEG Bitstream Formats – Intel

Bitstream buffer starts right at the very first MCU data of each Scan.

The indirect data start address in MFD_JPEG_BSD_OBJECT specifies the starting Graphics Memory

address of the bitstream data that follows the Scan header. It provides the byte address for the first

MCU of the Scan. Different from MFD_MPEG2_BSD_OBJECT command, First MCU Bit Offset does not

need to be specified because it is always set to zero.

Indirect data buffer for a Scan

The indirect data length in MFD_JPEG_BSD_OBJECT provides the length in bytes of the bitstream data

for the Scan excluding Scan header. It includes the first byte of the first macroblock and the last byte of

the last macroblock in the Scan. The Figure illustrates these parameters for a slice data.

 Media VDBOX

Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15 15

Concurrent Multiple Video Stream Decoding Support

The natural place for switching across multiple streams is at the Slice boundary. Each Slice is a self-

sustained unit of compressed video data and has no dependency with its neighbors (except for the

Deblocking process). In addition, there is no interruptability within a Slice. However, when ILDB is

invoked, the processing of some MBs will require neighbour MB information that crosses the Slice

boundary. Hence, to limit the buffering requirement, in this version of hardware design, stream

switching can only be performed at the picture boundary instead.

MFX Codec Commands Summary

DWord Bit Description

0 31:29 Instruction Type = GFXPIPE = 3h

28:16 3D Instruction Opcode = PIPELINE_SELECT

 GFXPIPE[28:27 = 1h, 26:24 = 1h, 23:16 = 04h] (Single DW, Non-pipelined)

15:1 Reserved: MBZ

0 Pipeline Select

0: 3D pipeline is selected

 1: Media pipeline is selected

Pipeline Type (28:27) Opcode (26:24) Sub Opcode (23:16) Command Definition Chapter

VC1 State

2h 5h 0h VC1_BSD_PIC_STATE VC1 BSD

2h 5h 1h Reserved n/a

2h 5h 2h Reserved n/a

2h 5h 3h VC1_BSD_BUF_BASE_STATE VC1 BSD

2h 5h 4h Reserved n/a

2h 5h 5h-7h Reserved n/a

VC1 Object

2h 5h 8h VC1_BSD_OBJECT VC1 BSD

2h 5h 9h-FFh Reserved n/a

Pipeline Type (28:27) Opcode (26:24) Sub Opcode (23:16) Command Definition Chapter Security

State

2h 6h 2h-7h Reserved N/A

Object

2h 6h 9h-FFh Reserved N/A

Media VDBOX

16 Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15

Note that it is possible for a command to appear in both IMAGE and SLICE state buffer, e.g. QM_STATE

for JPEG can be issued at frame level or scan/slice level.

Pipeline

Type

(28:27)

Opcode

(26:24)

SubopA

(23:21)

SubopB

(20:16) Command Chapter

Recommended

Indirect State

Pointer Map Interruptable?

 MFX

Commo

n

Common

2h 0h 0h 0h MFX_PIPE_MODE_SELECT MFX IMAGE No

2h 0h 0h 1h MFX_SURFACE_STATE MFX IMAGE No

2h 0h 0h 2h MFX_PIPE_BUF_ADDR_ST

ATE

MFX IMAGE No

2h 0h 0h 3h MFX_IND_OBJ_BASE_ADD

R_STATE

MFX IMAGE No

2h 0h 0h 4h MFX_BSP_BUF_BASE_ADD

R_STATE

MFX IMAGE No

2h 0h 0h 6h MFX_ STATE_POINTER MFX IMAGE No

2h 0h 0h 7h MFX_QM_STATE MFX IMAGE/SLICE No

2h 0h 0h 8h MFX_FQM_STATE MFX IMAGE No

2h 0h 0h 9h MFX_DBK_OBJECT MFX IMAGE No

2h 0h 0h A-1Eh Reserved n/a n/a No

 MFX

Commo

n

Dec

2h 0h 1h 0-8h Reserved n/a n/a n/a

2h 0h 1h 9h MFD_ IT_OBJECT MFX n/a No

2h 0h 1h A-1Fh Reserved n/a n/a n/a

 MFX

Commo

n

Enc

2h 0h 2h 0-7Fh Reserved n/a n/a n/a

2h 0h 2h 8h MFX_PAK_INSERT_OBJECT MFX n/a No

2h 0h 2h 9h Reserved n/a n/a n/a

2h 0h 2h Ah MFX_STITCH_OBJECT MFX n/a No

2h 0h 2h B-1Fh Reserved n/a n/a n/a

 AVC/

MVC

Common

(State)

2h 1h 0h 0h MFX_AVC_IMG_STATE MFX IMAGE n/a

2h 1h 0h 1h Reserved n/a n/a n/a

2h 1h 0h 2h MFX_AVC_DIRECTMODE_ MFX SLICE n/a

 Media VDBOX

Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15 17

Pipeline

Type

(28:27)

Opcode

(26:24)

SubopA

(23:21)

SubopB

(20:16) Command Chapter

Recommended

Indirect State

Pointer Map Interruptable?

STATE

2h 1h 0h 3h MFX_AVC_SLICE_STATE MFX SLICE n/a

2h 1h 0h 4h MFX_AVC_REF_IDX_STATE MFX SLICE n/a

2h 1h 0h 5h MFX_AVC_WEIGHTOFFSE

T_STATE

MFX SLICE n/a

2h 1h 0h 9 Reserved n/a n/a n/a

2h 1h 0h D-1Fh Reserved n/a n/a n/a

 AVC/

MVC

Dec

2h 1h 1h 0-5h Reserved MFX n/a n/a

2h 1h 1h 6h MFD_AVC_DPB_STATE MFX IMAGE n/a

2h 1h 1h 7h MFD_AVC_SLICEADDR_O

BJECT

MFX n/a n/a

2h 1h 1h 8h MFD_AVC_BSD_OBJECT MFX n/a No

2h 1h 1h 9-1Fh Reserved n/a n/a n/a

 AVC/

MVC

Enc

2h 1h 2h 0-8h Reserved n/a n/a n/a

2h 1h 2h 9h MFC_AVC_PAK_OBJECT MFX n/a No

2h 1h 2h A-1Fh Reserved n/a n/a n/a

 AVC/

MVC

Extensio

n

 VC1 Common

 (State)

2h 2h 0h 0h Reserved n/a n/a n/a

2h 2h 0h 1h MFX_VC1_PRED_PIPE_STA

TE

MFX IMAGE n/a

2h 2h 0h 2h MFX_VC1_DIRECTMODE_

STATE

MFX SLICE n/a

2h 2h 0h 3-1Fh Reserved n/a n/a n/a

 VC1 Dec

2h 2h 1h 0h MFD_VC1_SHORT_PIC_ST

ATE

MFX IMAGE n/a

2h 2h 1h 1h MFD_VC1_LONG_PIC_STA

TE

MFX IMAGE n/a

2h 2h 1h 2-7h Reserved n/a n/a n/a

2h 2h 1h 8h MFD_VC1_BSD_OBJECT MFX n/a No

Media VDBOX

18 Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15

Pipeline

Type

(28:27)

Opcode

(26:24)

SubopA

(23:21)

SubopB

(20:16) Command Chapter

Recommended

Indirect State

Pointer Map Interruptable?

2h 2h 1h 9-1Fh Reserved n/a n/a n/a

 VC1 Enc

2h 2h 2h 0-1Fh Reserved n/a n/a n/a

 MPEG2 Common

 (State)

2h 3h 0h 0h MFX_MPEG2_PIC_STATE MFX IMAGE n/a

2h 3h 0h 1-1Fh Reserved n/a n/a n/a

 MPEG2 Dec

2h 3h 1h 1-7h Reserved n/a n/a n/a

2h 3h 1h 8h MFD_MPEG2_BSD_OBJEC

T

MFX n/a No

2h 3h 1h 9-1Fh Reserved n/a n/a n/a

 MPEG2 Enc

2h 3h 2h 0-2h Reserved n/a n/a n/a

2h 3h 2h 3h MFC_MPEG2_PAK_OBJEC

T

2h 3h 2h 3-8h Reserved

2h 3h 2h 9h MFC_MPEG2_SLICEGROU

P_STATE

2h 3h 2h A-1Fh Reserved

 VP8 Common

 (State)

2h 4h 0h 0h MFX_VP8_PIC_STATE MFX IMAGE n/a

 VP8 Dec

2h 4h 1h 8h MFD_VP8_BSD_OBJECT MFX IMAGE No

 VP8 Enc

2h 4h 2h Reserved

 JPEG Common

2h 7h 0h 0h MFX_JPEG_PIC_STATE MFX IMAGE No

2h 7h 0h 1h Reserved n/a n/a n/a

2h 7h 0h 2h MFX_JPEG_HUFF_TABLE_S

TATE

MFX IMAGE No

2h 7h 0h 3-1Fh Reserved n/a n/a n/a

 JPEG Common

2h 7h 0h 0h MFX_JPEG_PIC_STATE MFX IMAGE No

2h 7h 0h 1h Reserved n/a n/a n/a

 Media VDBOX

Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15 19

Pipeline

Type

(28:27)

Opcode

(26:24)

SubopA

(23:21)

SubopB

(20:16) Command Chapter

Recommended

Indirect State

Pointer Map Interruptable?

2h 7h 0h 2h MFX_JPEG_HUFF_TABLE_S

TATE

MFX IMAGE No

2h 7h 0h 3-1Fh Reserved n/a n/a n/a

 JPEG Dec

2h 7h 1h 1-7h Reserved MFX n/a n/a

2h 7h 1h 8h MFD_JPEG_BSD_OBJECT MFX MCU No

2h 7h 1h 9-1Fh Reserved MFX n/a n/a

 JPEG Enc

2h 7h 2h 0-1Fh Reserved MFX n/a n/a

MMIO Space Registers

Range Start Range End Unit owner

00002000 00002FFF Render/Generic Media Engine

00004000 00004FFF Render/Generic Media Graphics Memory Arbiter

00005000 0000517F

00006000 00007FFF Reserved

00012000 000123FF MFX Control Engine (Video Command Streamer)

00012400 00012FFF Media Units (VIN unit)

00014000 00014FFF MFX Memory Arbiter

00022000 00022FFF Blitter Engine

00024000 00024FFF Blitter Memory Arbiter

00030000 0003FFFF Reserved

00100000 00107FFF Fence Registers

00140000 0017FFFF MCHBAR (SA)

Memory Interface Command Map

04h Opcode (28:23) MI_FLUSH

Media VDBOX

20 Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15

MFX Decoder Commands Sequence

The MFX codec is designed to be a stateless engine, that it does not retain any history of settings

(states) for the encoding/decoding process of a picture. Hence, driver must issue the full set of MFX

picture state command sequence prior to process each new picture. In addition, driver must issue the

full set of Slice state command sequence prior to process a slice.

In particular, RC6 always happens between frame boundaries. So at the beginning of every frame, all

state information needs to be programmed. There is no state information as part of media context

definition

Examples for AVC

The following gives a sample command sequence programmed by a driver

a) For Intel or DXVA2 AVC Long Slice Bitstream Format

MFX_PIPE_MODE_SELECT

MFX_SURFACE_STATE

MFX_PIPE_BUF_ADDR_STATE

MFX_IND_OBJ_BASE_ADDR_STATE

MFX_BSP_BUF_BASE_ADDR_STATE

MFX_QM_STATE

VLD mode: MFX_AVC_PICID_STATE

MFX_AVC_IMG_STATE

MFX_AVC_DIRECTMODE_STATE

MFX_AVC_REF_IDX_STATE

MFX_AVC_WEIGHTOFFSET_STATE

MFX_AVC_SLICE_STATE

VLD mode: MFD_AVC_BSD_OBJECT

IT mode: MFD_IT_OBJECT

MI_FLUSH

b) For DXVA2 AVC Short Slice Bitstream Format (for VLD mode only)

MFX_PIPE_MODE_SELECT

MFX_SURFACE_STATE

MFX_PIPE_BUF_ADDR_STATE

MFX_IND_OBJ_BASE_ADDR_STATE

MFX_BSP_BUF_BASE_ADDR_STATE

 Media VDBOX

Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15 21

MFD_AVC_DPB_STATE

VLD mode: MFX_AVC_PICID_STATE

MFX_AVC_IMG_STATE

MFX_QM_STATE

MFX_AVC_DIRECTMODE_STATE

VLD mode : MFD_AVC_SLICEADDR_OBJECT

VLD mode: MFD_AVC_BSD_OBJECT

VLD mode : MFD_AVC_BSD_SLICEADDR_OBJECT

VLD mode: MFD_AVC_BSD_OBJECT

… repeat these four commands N-1 times for a N-slice picture

VLD mode: MFD_AVC_BSD_OBJECT (for the last slice of the picture)

MI_FLUSH

Media VDBOX

22 Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15

Examples for VC1

The following gives a sample command sequence programmed by a driver

a) For Intel Proprietary Long Bitstream Format

MFX_VC1_DIRECTMODE_STATE

MFX_VC1_PRED_PIPE_STATE

MFX_VC1_LONG_PIC_STATE

VLD mode: MFD_VC1_BSD_OBJECT

IT mode: MFD_IT_OBJECT

MI_FLUSH

b) For DXVA2 VC1 Compliant Bitstream Format (for VLD mode only)

MFX_VC1_DIRECTMODE_STATE

MFX_VC1_PRED_PIPE_STATE

MFX_VC1_SHORT_PIC_STATE

VLD mode: MFD_VC1_BSD_OBJECT

MI_FLUSH

c) For DXVA2 VC1 Compliant Bitstream Format (for VLD mode only), and field pair picture

Batch buffer for top-field

states....

Slice_objs...

MI_flush

store register immediate (if VC1 short format with interlaced field pic)

MI_flush

Batch buffer for bottom field

load register immediate (if VC1 short format with interlaced field pic)

MI_flush

states....

Slice_objs...

MI_flush

 Media VDBOX

Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15 23

Examples for JPEG

The following gives a sample command sequence programmed by a driver

Programmed once at the start of decoding

MFX_PIPE_MODE_SELECT

MFX_PIPE_SURFACE_STATE

MFX_IND_OBJ_BASE_ADDR_STATE

MFX_PIPE_BUF_ADDR_STATE

MFX_JPEG_PIC_STATE

Programmed at the start of Frame or Scan (These commands can be sent multiple times either before

MFX_JPEG_PIC_STATE or before MFD_JPEG_BSD_OBJECT)

MFX_JPEG_HUFF_TABLE

MFX_QM_STATE

Programmed per Scan (These commands can be sent multiple times depending on each bit stream)

MFD_JPEG_ BSD_OBJECT

MI_FLUSH

Media VDBOX

24 Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15

MFX Pipe Common Commands

MFX Commands are organized into groups based on their scope of functioning. There are Pipeline

Common state commands that are common to all codecs (encoder and decoder) and is applicable to

the processing of one full frame/field. There are also individual codec Common state commands that

are common to both encoder and decoder of that particular codec. These latter common state

commands, some are applicable at the processing of one full frame/field, and some are applicable at

the processing of an individual slice level.

MFX_STATE_POINTER

MFX_PIPE_MODE_SELECT

The Encoder Pipeline Modes of Operation (Per Frame):

1. PAK Mode: VCS-command driven, setup by driver. Like the IT mode of decoder, it is executed on a per-MB

basis. Hence, each PAK Object command corresponds to coding of only one MB.

a. Normal Mode (including transcoding): receive per-MB control and data (MV, mb_type, cbp, etc.). It

generates the output compressed bitstream as well as the reconstructed reference pictures, one MB at a

time, for later use.

b. Encoder StreamOut Mode: to provide per-MB, per-Slice and per-Frame coding result and information

(statistics) to the Host, Video Preprocessing Unit and ENC Unit to enhance their operations.

The Decoder Pipeline Modes of Operation (Per Frame):

1. VLD Mode: The output from the BSD (weight&offset/coeff/motion vectors record) can be sent in part (as

specified) and to the remaining fixed function hardware pipeline to complete the decoding processing. The

driver specifies through MFD commands of what to send out from the BSD unit and where to send the BSD

output.

a. For transcoding (including transrating and transcaling), part of the BSD output (a series of per-MB record) can

be sent to memory for further processing to encode into a difference output format. This function is named as

StreamOut. When StreamOut is active, not all MB information needs to be sent, only MVs and selective MB

coding information.

2. IT Mode: In this mode, the BSD is not invoked. Instead host performs all the bitstream decoding and

parsing; and the result are saved into memory in a specific per-MB record format. The MFD Engine VCS

reads in these records one at time and finish the rest of the decoding (IT, MC, IntraPred and ILDB).

a. MB information is organized into two indirect data buffers, one for MVs and one for residue coefficients. As

such, two indirect base address pointers are defined.

Programming Restriction:

 Software must ensure the current pipeline is flushed via an MI_FLUSH prior to the execution of

MFX_PIPE_MODE_SELECT in switching the MFX Engine to encode/decode a different codec

format (AVC, VC1 or MPEG2).

 MFX_PIPE_MODE_SELECT is issued per picture (frame or field).

 Media VDBOX

Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15 25

MFX_SURFACE_STATE

MFX_PIPE_BUF_ADDR_STATE

MFX_IND_OBJ_BASE_ADDR_STATE

MFX_BSP_BUF_BASE_ADDR_STATE

MFX_PAK_INSERT_OBJECT

MFX_STITCH_OBJECT

MFX_QM_STATE

Bits 31:24 23:16 15:8 7:0 Project

Dword 1 QuantMatrix[0][3] QuantMatrix[0][2] QuantMatrix[0][1] QuantMatrix[0][0] CHV

Dword 2 QuantMatrix[0][7] QuantMatrix[0][6] QuantMatrix[0][5] QuantMatrix[0][4] CHV

Dword 3 QuantMatrix[1][3] QuantMatrix[1][2] QuantMatrix[1][1] QuantMatrix[1][0] CHV

… … … … … CHV

Dword 16 QuantMatrix[7][7] QuantMatrix[7][6] QuantMatrix[7][5] QuantMatrix[7][4] CHV

MFX_FQM_STATE

This is a frame-level state. Reciprocal Scaling Lists are always sent from the driver regardless whether they are

specified by an application or the default/flat lists are being used. This is done to save the ROM (to store the

default matrices) inside the PAK Subsystem. Hence, the driver is responsible for determining the final set of scaling

lists to be used for encoding the current slice, based on the AVC Spec (Fall-Back Rules A and B). For encoding,

there is no need to send the qm_list_flags[i], i=0 to7 and qm_present_flag to the PAK, since Scaling Lists syntax

elements are encoded above Slice Data Layer.

FQM Reciprocal Scaling Lists elements are 16-bit each, conceptually equal to 1/ScaleValue. QM matrix elements

are 8-bit each, equal to ScaleValue. However, in AVC spec., the Reciprocal Scaling Lists elements are not exactly

equal to one-over of the corresponding Scaling Lists elements. The numbers are adjusted to simplify hardware

implementation.

For all the description below, a scaling list set contains 6 4x4 scaling lists (or forward scaling lists) and 2 8x8 scaling

lists (or forward scaling lists).

In MFX PAK mode, PAK needs both forward Q scaling lists and IQ scaling lists. The IQ scaling lists are sent as in

MFD in raster scan order as shown in MFX_AVC_QM_STATE. But the Forward Q scaling lists are sent in transport

form, i.e. column-wise raster order (column-by-column) to simplify the H/W.

Media VDBOX

26 Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15

Precisely, if the reciprocal forward scaling matrix is F[4][4], then the 16 word of the matrix will be set as

the following:

 bits 0-15 bits 16-31 Project

DW0 F[0][0] F[1][0] All

DW1 F[2][0] F[3][0] All

DW2 F[0][1] F[1][1] All

DW3 F[2][1] F[3][1] All

DW4 F[0][2] F[1][2] All

DW5 F[2][2] F[3][2] All

DW6 F[0][3] F[1][3] All

DW7 F[2][3] F[3][3] All

For JPEG encoder, 16-bit precision is used for each element 1/QM matrix. The 32 DWords are used for 64 QM

elements with the following data structure:

 Bits 15:0 Bits 31:16 Project

DWord1 1/QM[0][0] 1/QM[1][0] CHV

DWord2 1/QM[2][0] 1/QM[3][0] CHV

DWord3 1/QM[4][0] 1/QM[5][0] CHV

DWord4 1/QM[6][0] 1/QM[7][0] CHV

DWord5 1/QM[0][1] 1/QM[1][1] CHV

DWord6 1/QM[2][1] 1/QM[3][1] CHV

DWord7 1/QM[4][1] 1/QM[5][1] CHV

DWord8 1/QM[6][1] 1/QM[7][1] CHV

… CHV

DWord31 1/QM[4][7] 1/QM[5][7] CHV

DWord32 1/QM[6][7] 1/QM[7][7] CHV

 Media VDBOX

Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15 27

 Bitplane Buffer

Bitplane coding is used in seven different cases in VC-1, although not all the seven syntax elements are

present in the same picture header at the same time. The following list shows which syntax elements are

coded as bitplanes in each picture header:

Progressive I and BI picture headers in AP: ACPRED, OVERFLAGS

 Field interlace I and BI picture headers in AP: ACPRED, OVERFLAGS

 Frame interlace I and BI picture headers in AP: FIELDTX, ACPRED, OVERFLAGS

Frame interlace P picture headers in AP: SKIPMB

 Progressive P picture headers in SP and MP: MVTYPEMB, SKIPMB

 Progressive P picture headers in AP: MVTYPEMB, SKIPMB

Field interlace B picture headers in AP: FORWARDMB

 Frame interlace B picture headers in AP: DIRECTMB, SKIPMB

 Progressive B picture headers in AP: DIRECTMB, SKIPMB

 Progressive B picture headers in MP: DIRECTMB, SKIPMB

There are also seven different modes of coding the bitplane information. Except when the bitplane is

coded in raw mode, the bitplane is decoded by the host and provided to the hardware in the bitplane

buffer.

Since at most three bitplanes are encoded in any picture header, instead of using a complete byte for

signaling the values of all the seven possible bitplanes for each MB, a more efficient approach is used

with each byte divided in two nibbles and each nibble carries the data of up to four bitplanes for one

MB.

PictureType Bits 3, 7 Bit 2, 6 Bits 1, 5 Bits 0, 4

I or BI 0 OVERFLAGS ACPRED FIELDTX

P 0 MVTYPEMB SKIPMB 0

B 0 FORWARDMB SKIPMB DIRECTMB

The bytes containing the above defined nibbles are stored in the bitplane buffer in raster scan order.

The bitplane buffer is a linear buffer with a buffer pitch (as defined by Bitplane Buffer Pitch field in

VC1_BSD_PIC_STATE command). When the number of macroblock in a row is odd, the last byte of the

row containing the last macroblock in bits 0-3. The first macroblock of the next row starts at the next

pitch offset from the first macroblock of the current row.

The bitplane buffer structure must be sent once per picture only if there is one or more syntax elements

coded as bitplanes in the picture header.

Media VDBOX

28 Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15

Video Codecs
The following sections contain the various registers for video codec support. Specifically, the codec

types supported are:

Supported Codec Types

Advanced Video Coding (AVC)/ H.264/MPEG-4 Part 10 (MVC)

MPEG-2 (H.222/H.262) — Used in Digital Video Broadcast and DVDs

VC1 — SMPTE 421M, known informally as VC-1

VP8 — Video compression format

JPEG and MJPEG — A video format in which video gram or interlaced field of a digital video sequence is

compressed separately as a JPEG image

Other Codec Functions

Internal Media Rowstore table – An internal Media Rowstore Storage is added to reduce memory

read/write to save power. If the internal Media Rowstore exists, driver should use the storage as the

following table indicates.

AVC/VC1/MPEG2/JPEG/VP8 Decoder/Encoder: (CHV, ,)

[BSD is bitstream decoder rowstore; MPR is Motion Prediction rowstore; IP is Intra Prediction rowstore; VLF is loop

filter rowstore; VDE is VDENC rowstore]

Codec Mode

Frame

Width BSD MPR IP VLF VDE

BSD

Addr

MPR

Addr

IP

Addr

VLF

ADDR

VDE

ADDR

AVC Frame/Field < 2k Y Y Y Y N 0 128 256 384 N/A

2k -> 3k Y Y Y N N 0 192 384 N/A N/A

3k -> 4k Y Y N N N 0 256 N/A N/A N/A

Mbaff < 2k Y Y Y N N 0 256 512 N/A N/A

2k -> 4k Y N N N N 0 N/A N/A N/A N/A

AVC Frame/Field < 2k Y N Y Y N 0 N/A 256 384 N/A

2k -> 3k Y N Y N N 0 N/A 384 N/A N/A

3k -> 4k Y N Y N N 0 N/A 256 N/A N/A

Mbaff < 2k Y N Y N N 0 N/A 512 N/A N/A

2k -> 4k Y N N N N 0 N/A N/A N/A N/A

JPEG

Dec/Enc

 N N N N N N/A N/A N/A N/A N/A

VP8 Dec Frame < 2k Y N Y Y N 0 N/A 256 384 N/A

2k -> 3k Y N Y N N 0 N/A 384 N/A N/A

3k -> 4k Y N Y N N 0 N/A 256 N/A N/A

VP8 Enc Frame N N N N N N/A N/A N/A N/A N/A

MPEG2 N N N N N N/A N/A N/A N/A N/A

VC1 Dec Y N N N N N/A N/A N/A N/A N/A

 Media VDBOX

Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15 29

AVC (H.264)

AVC Common Commands

MFX Commands are organized into groups based on their scope of functioning. There are Pipeline

Common state commands that are common to all codecs (encoder and decoder) and is applicable to

the processing of one full frame/field. There are also individual codec Common state commands that

are common to both encoder and decoder of that particular codec. These latter common state

commands, some are applicable at the processing of one full frame/field, and some are applicable at

the processing of an individual slice level.

MFX_AVC_IMG_STATE

A new command is added to support MPEG transport stream encapsulation of AVC bitstream in

Encoder mode. This command should be used only when MPEG transport stream is needed.

MFX_AVC_DIRECTMODE_STATE

MFX_AVC_SLICE_STATE

MFX_AVC_REF_IDX_STATE

MFX_AVC_WEIGHTOFFSET_STATE

Media VDBOX

30 Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15

AVC Decoder Commands

These are decoder-only commands. They provide the pointer to the compressed input bitstream to be

decoded.

MFD_AVC_DPB_STATE

NOTE modified from DXVA2 – The values in RefFrameList and UsedForReference_Flag are the primary

means by which the H/W can determine whether the corresponding entries in RefFrameList, POCList,

LTSTFrameNumList, and Non-ExistingFrame_Flag should be considered valid for use in the decoding

process of the current picture or not. When RefFrameList[i] is marked to be invalid, the values of

POCList[i][0], POCList[i][1], LTSTFrameNumList[i], UsedForReference_Flag[i], and Non-

ExistingFrame_Flag[i] must all be equal to 0. When UsedForReference_Flag[i] = 0, the value of

RefFrameList[i] must be marked invalid.

MFD_AVC_SLICEADDR

MFD_AVC_BSD_OBJECT

Inline Data Description for MFD_AVC_BSD_Object

MFD_AVC_PICID_STATE

NOTE 1: In AVC short format, PictureIDList has one-to-one corresponding to LongTermFrame_Flag list,

Non-ExistingFrame_flag list, UsedForReference_Flag list, FrameNumList list in MFD_AVC_DPB_STATE.

NOTE 2: PictureIDList is only used to identify reference picture across frames. Hardware will convert the

picture in the RefFrameList to PictureID before writing out DMV data and convert back to RefFrameList

Index after reading out DMV data. The reference pictures and their orders in the RefFrameList can be

changed across frames.

Session Decoder StreamOut Data Structure

When StreamOut is enabled, per MB intermediated decoded data (MVs, mb_type, MB qp, etc.) are sent

to the memory in a fixed record format (and of fixed size). The per-MB records must be written in a

strict raster order and with no gap (i.e. every MB regardless of its mb_type and slice type, must have an

entry in the StreamOut buffer). Therefore, the consumer of the StreamOut data can offset into the

StreamOut Buffer (StreamOut Data Destination Base Address) using individual MB addresses.

 Media VDBOX

Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15 31

A StreamOut Data record format is detailed as follows:

DWord Bit Description

 23 Reserved MBZ

 22-20 EdgeFilterFlag (AVC) / OverlapSmoothFilter (VC1)

 19:17 CodedPatternDC (for AVC only, 111b for others)

 The field indicates whether DC coefficients are sent.

 1 bit each for Y, U and V.

 16 Reserved MBZ

 15 Transform8x8Flag

When it is set to 0, the current MB uses 4x4 transform. When it is set to 1, the current MB uses

8x8 transform. The transform_szie_8x8_flag syntax element, if present in the output bitstream, is

the same as this field. However, whether transform_szie_8x8_flag is present or not in the output

bitstream depends on several conditions:

This field is only allowed to be set to 1 for two conditions:

It must be 1 if IntraMbFlag = INTRA and IntraMbMode = INTRA_8x8

It may be 1 if IntraMbFlag = INTER and there is no sub partition size less than 8x8

Otherwise, this field must be set to 0.

 0: 4x4 integer transform

 1: 8x8 integer transform

 14 MbFieldFlag

This field specifies whether current macroblock is coded as a field or frame macroblock in MBAFF

mode.

This field is exactly the same as FIELD_PIC_FLAG syntax element in non-MBAFF mode.

Same as the mb_field_decoding_flag syntax element in AVC spec.

 0 = Frame macroblock

 1 = Field macroblock

 13
IntraMbFlag

This field specifies whether the current macroblock is an Intra (I) macroblock.

I_PCM is considered as Intra MB.

For I-picture MB (IntraPicFlag =1), this field must be set to 1.

This flag must be set in consistent with the interpretation of MbType (inter or intra modes).

0: INTER (inter macroblock)

1: INTRA (intra macroblock)

 12:8 MbType5Bits

 This field is encoded to match with the best macroblock mode determined as described in the

next section. It follows AVC encoding for inter and intra macroblocks.

Media VDBOX

32 Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15

DWord Bit Description

 7 MbPolarity

 FieldMB Polarity - vctrl_vld_top_field AVC

 6 Reserved MBZ

 5:4 IntraMbMode

 This field is provided to carry information partially overlapped with MbType.

 This field is only valid if IntraMbFlag = INTRA, otherwise, it is ignored by hardware.

 3 Reserved MBZ

 2 MbSkipFlag

 Reserved MBZ (DXVA Encoder). HW (VDSunit) doesn’t have skip MB info.

 It sets to 1 if any of the sub-blocks is inter, uses predicted MVs, and skips sending MVs explicitly

in the code stream. Currently H/W can provide this flag and is defaulted to 0 always.

 1:0 InterMbMode

 This field is provided to carry redundant information as that in MbType. It also carries additional

information such as skip.

 This field is only valid if IntraMbFlag =INTER, otherwise, it is ignored by hardware.

1 31:16 MbYCnt (Vertical Origin).

 This field specifies the vertical origin of current macroblock in the destination picture in units of

macroblocks.

 Format = U8 in unit of macroblock.

15:0 MbXCnt (Horizontal Origin).

 This field specifies the horizontal origin of current macroblock in the destination picture in units

of macroblocks.

 Format = U8 in unit of macroblock.

2 31 Conceal MB Flag.

 This field specifies if the current MB is a conceal MB, use in AVC/VC1/MPEG2 mode.

30 Last MB of the Slice Flag.

 This field indicate the current MB is a last MB of the slice. Use in AVC/VC1/MPEG2 mode.

29:24 Reserved

23:20 CbpAcV

 0 in a bit – indicates the corresponding 8x8 block or 4x4 sub-block is not present (because all

coefficient values are zero)

 1 in a bit – indicates the corresponding 8x8 block or 4x4 sub-block is present (although it is still

possible to have all its coefficients be zero – bad coding).

19:16 CbpAcU

 0 in a bit – indicates the corresponding 8x8 block or 4x4 sub-block is not present (because all

coefficient values are zero)

 1 in a bit – indicates the corresponding 8x8 block or 4x4 sub-block is present (although it is still

possible to have all its coefficients be zero – bad coding).

 Media VDBOX

Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15 33

DWord Bit Description

15:0
CbpAcY

0 in a bit – indicates the corresponding 8x8 block or 4x4 sub-block is not present (because all

coefficient values are zero)

1 in a bit – indicates the corresponding 8x8 block or 4x4 sub-block is present (although it is still

possible to have all its coefficients be zero – bad coding).

Bit15=Y0Sub0, Bit0=Y3Sub3

3
31:28

AVC

Skip8x8Pattern (AVC)

This field indicates whether each of the four 8x8 sub macroblocks is using the predicted MVs and

will not be explicitly coded in the bitstream (the sub macroblock will be coded as direct mode). It

contains four 1-bit subfields, corresponding to the 4 sub macroblocks in sequential order. The

whole macroblock may be actually coded as B_Direct_16x16 or B_Skip, according to the

macroblock type conversion rules described in a later sub section.

This field is only valid for a B slice. It is ignored by hardware for a P slice. Hardware also ignores

this field for an intra macroblock.

0 in a bit – Corresponding MVs are sent in the bitstream

1 in a bit – Corresponding MVs are not sent in the bitstream

27:25 Reserved

24:16 NzCoefCountMB – all coded coefficients input including AC/DC blocks in current MB.

 Range 0 to 384 (9 bits)

15:8

[CHV] MbClock16 – MB compute clocks in 16-clock unit.

7 mbz (AVC) / QScaleType (MPEG2)

6:0
QpPrimeY (AVC) / QScaleCode (MPEG2)

The luma quantization index. This is the per-MB QP value specified for the current MB.

4 to 6 31:0

Each
For intra macroblocks, definition of these fields are specified in 1

For inter macroblocks, definition of these fields are specified in 2

7 31:24 Reserved

23:20
MvFieldSelect (Ref polarity top or bottom bits) for VC1 and MPEG2

vcp_vds_mvdataR[162:159] VC1

vmd_vds_mt_vert_fld_selR[3:0] MPEG2

19:12 Reserved

11:10 SubBlockCodeType V

 (If 8x8, 8x4, 4x8, 4x4 type)

Media VDBOX

34 Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15

DWord Bit Description

9:8 SubBlockCodeType U

 (specifies 8x8, 8x4, 4x8, 4x4 type) VC1

7:6 SubBlockCodeType Y3

 (specifies 8x8, 8x4, 4x8, 4x4 type) VC1

5:4 SubBlockCodeType Y2

 (specifies 8x8, 8x4, 4x8, 4x4 type) VC1

3:2 SubBlockCodeType Y1

 (specifies 8x8, 8x4, 4x8, 4x4 type) VC1

1:0 SubBlockCodeType Y0

 (specifies 8x8, 8x4, 4x8, 4x4 type) VC1

Inter Cases:

8 31:16 MvFwd[0].y – y-component of the forward motion vector of the 1st 8x8 or 1st 4x4 subblock

15:0 MvFwd[0].x – x-component of the forward motion vector of the 1st 8x8 or 1st 4x4 subblock

9 31:0 MvBck[0] – the backward motion vector of the 1st 8x8 or 1st 4x4 subblock

10 31:0 MvFwd[1] – the forward motion vector of the 2nd 8x8 or 4th 4x4 subblock

11 31:0 MvBck[1] – the backward motion vector of the 2nd 8x8 or 4th 4x4 subblock

12 31:0 MvFwd[2] – the forward motion vector of the 3rd 8x8 or 8th 4x4 subblock

13 31:0 MvBck[2] – the backward motion vector of the 3rd 8x8 or 8th 4x4 subblock

14 31:0 MvFwd[3] – the forward motion vector of the 4th 8x8 or 12th 4x4 subblock

15 31:0 MvBck[3] – the backward motion vector of the 4th 8x8 or 12th 4x4 subblock

Intra Cases:

8 to 15 31:0 Reserved MBZ

The inline data content of Dwords 4 to 6 is defined either for intra prediction or for inter prediction, but

not both.

Inline data subfields for an Intra Macroblock

DWord Bit Description

4 31:16 LumaIndraPredModes[1]

Specifies the Luma Intra Prediction mode for four 4x4 sub-block of a MB, 4-bit each.

AVC: See the bit assignment table later in this section.

VC1: MBZ.

MPEG2: MBZ.

15:0 LumaIndraPredModes[0]

Specifies the Luma Intra Prediction mode for four 4x4 sub-block, four 8x8 block or one intra16x16

of a MB.

4-bit per 4x4 sub-block (Transform8x8Flag=0, Mbtype=0 and intraMbFlag=1) or 8x8 block

 Media VDBOX

Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15 35

DWord Bit Description

(Transform8x8Flag=1, Mbtype=0, MbFlag=1), since there are 9 intra modes.

4-bit for intra16x16 MB (Transform8x8Flag=0, Mbtype=1 to 24 and intraMbFlag=1), but only the

LSBit[1:0] is valid, since there are only 4 intra modes.

AVC: See the bit assignment table later in this section.

VC1: MBZ.

MPEG2: MBZ.

5

AVC

 INTRA

31:16 LumaIndraPredModes[3]

Specifies the Luma Intra Prediction mode for four 4x4 sub-block of a MB, 4-bit each.

AVC: See the bit assignment table later in this section.

VC1: MBZ.

MPEG2: MBZ.

15:0 LumaIndraPredModes[2]

Specifies the Luma Intra Prediction mode for four 4x4 sub-block of a MB, 4-bit each.

AVC: See the bit assignment later in this section.

VC1: MBZ.

MPEG2: MBZ.

6 31:8 Reserved (Reserved for encoder turbo mode IntraResidueDataSize, when this is not 0, optional

residue data are provided to the PAK; Reserved for decoder)

7:0 MbIntraStruct

The IntraPredAvailFlags[4:0] have already included the effect of the constrained_intra_pred_flag.

See the diagram later for the definition of neighbors position around the current MB or MB pair

(in MBAFF mode).

1 – IntraPredAvailFlagX, indicates the values of samples of neighbor X can be used in intra

prediction for the current MB.

0 – IntraPredAvailFlagX, indicates the values of samples of neighbor X is not available for intra

prediction of the current MB.

IntraPredAvailFlag-A and -E can only be different from each other when

constrained_intra_pred_flag is equal to 1 and mb_field_decoding_flag is equal to 1 and the value of

the mb_field_decoding_flag for the macroblock pair to the left of the current macroblock is equal

to 0 (which can only occur when MbaffFrameFlag is equal to 1).

IntraPredAvailFlag-F is used only if

o it is in MBAFF mode, i.e. MbaffFrameFlag = 1

o the current macroblock is of frame type, i.e. MbFieldFag = 0, and

o the current macroblock type is Intra8x8,

Media VDBOX

36 Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15

DWord Bit Description

 that is, IntraMbFlag = INTRA, IntraMbMode = INTRA_8x8, and Transform8x8Flag = 1.

In any other cases IntraPredAvailFlag-A shall be used instead.

Bits IntraPredAvailFlags[4:0] Definition

7 IntraPredAvailFlagF – F (Left 8th row (-1,7) neighbor)

6 IntraPredAvailFlagA – A

 (Left neighbor top half)

5 IntraPredAvailFlagE – E

 (Left neighbor bottom half)

4 IntraPredAvailFlagB – B

 (Top neighbor)

3 IntraPredAvailFlagC – C

 (Top right neighbor)

2 IntraPredAvailFlagD – D

 (Top left corner neighbor)

1:0 ChromaIntraPredMode –

 2 bits to specify 1 of 4 chroma intra prediction mode, see the table in later section.

Inline data subfields for an Inter Macroblock

DWord Bit Description

4 31:24 Reserved: MBZ (DXVA Decoder)

23:16 Reserved: MBZ (DXVA Decoder)

15:8
SubMbPredModes[bit 7:0] (Sub Macroblock Prediction Mode)

This field describes the prediction mode of the sub macroblocks (four 8x8 blocks). It contains four

subfields each with 2-bits, corresponding to the 4 fixed size 8x8 sub macroblocks in sequential

order.

This field is provided for MB with sub_mb_type equal to BP_8x8 only (B_8x8 and P_8x8 as defined

in DXVA)

This field is derived from MbType for a non-BP_8x8 inter macroblock, and carries redundant

information as MbType)

Bits [1:0]: SubMbPredMode[0] – for 8x8 Block 0

Bits [3:2]: SubMbPredMode[1] – for 8x8 Block 1

Bits [5:4]: SubMbPredMode[2] – for 8x8 Block 2

Bits [7:6]: SubMbPredMode[3] – for 8x8 Block 3

Blocks of the MB is numbered as follows :

0 1

2 3

 Media VDBOX

Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15 37

DWord Bit Description

Each 2-bit value [1:0] is defined as :

00 – Pred_L0

01 – Pred_L1

10 – BiPred

For VC1:

Bits [1:0]: “00”= Y0 Forward only, “01”= Y0 Backward only, “10”= Y0 Bi direction

Bits [3:2]: SubMbPredMode[1] – for 8x8 Block 1

Bits [5:4]: SubMbPredMode[2] – for 8x8 Block 2

Bits [7:6]: SubMbPredMode[3] – for 8x8 Block 3

7:0
SubMbShape[bit 7:0] (Sub Macroblock Shape)

This field describes the sub-block partitioning of each sub macroblocks (four 8x8 blocks). It

contains four subfields each with 2-bits, corresponding to the 4 fixed size 8x8 sub macroblocks in

sequential order.

This field is provided for MB with sub_mb_type equal to BP_8x8 only (B_8x8 and P_8x8 as defined

in DXVA)

This field is forced to 0 for a non-BP_8x8 inter macroblock, and effectively carries redundant

information as MbType).

Bits [1:0]: SubMbShape[0] – for 8x8 Block 0

Bits [3:2]: SubMbShape[1] – for 8x8 Block 1

Bits [5:4]: SubMbShape[2] – for 8x8 Block 2

Bits [7:6]: SubMbShape[3] – for 8x8 Block 3

Blocks of the MB is numbered as follows :

0 1

2 3

Each 2-bit value [1:0] is defined as :

00 – SubMbPartWidth=8, SubMbPartHeight=8

01 – SubMbPartWidth=8, SubMbPartHeight=4

10 – SubMbPartWidth=4, SubMbPartHeight=8

11 – SubMbPartWidth=4, SubMbPartHeight=4

For VC-1, This field indicates the transformation types used for luma components, 2 bits for each

8x8.

5 31:24
Frame Store ID L0[3]

Media VDBOX

38 Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15

DWord Bit Description

Support up to 4 Frame store ID per L0 direction, one per MB partition, if exists. See details in later

section. This field specifies the frame Store ID into the Reference Picture List0 Table.

Bit 7: Must Be One: (This is reserved for control fields in future extension, when reference index

are generated instead of frame store ID)

1: indicate it is in Frame store ID format.

0: indicate it is in Reference Index format.

Bit 6:5: reserved MBZ

Bit 4:0: Frame store index or Frame Store ID (Bit 4:1 is used to form the binding table index in intel

implementation)

23:16
Frame Store ID L0[2]

Support up to 4 Frame store ID per L0 direction, one per MB partition, if exists. See details in later

section. This field specifies the frame Store ID into the Reference Picture List0 Table.

Bit 7: Must Be One: (This is reserved for control fields in future extension, when reference index

are generated instead of frame store ID)

1: indicate it is in Frame store ID format.

0: indicate it is in Reference Index format.

Bit 6:5: reserved MBZ

Bit 4:0: Frame store index or Frame Store ID (Bit 4:1 is used to form the binding table index in intel

implementation)

15:8
Frame Store ID L0[1]

Support up to 4 Frame store ID per L0 direction, one per MB partition, if exists. See details in later

section. This field specifies the frame Store ID into the Reference Picture List0 Table.

Bit 7: Must Be One: (This is reserved for control fields in future extension, when reference index

are generated instead of frame store ID)

1: indicate it is in Frame store ID format.

0: indicate it is in Reference Index format.

Bit 6:5: reserved MBZ

Bit 4:0: Frame store index or Frame Store ID (Bit 4:1 is used to form the binding table index in intel

implementation).

7:0
Frame Store ID L0[0]

Support up to 4 Frame store ID per L0 direction, one per MB partition, if exists. See details in later

section. This field specifies the frame Store ID into the Reference Picture List0 Table.

Bit 7: Must Be One: (This is reserved for control fields in future extension, when reference index

 Media VDBOX

Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15 39

DWord Bit Description

are generated instead of frame store ID)

1: indicate it is in Frame store ID format.

0: indicate it is in Reference Index format.

Bit 6:5: reserved MBZ

Bit 4:0: Frame store index or Frame Store ID (Bit 4:1 is used to form the binding table index in intel

implementation)

6 31:24
Frame Store ID L1[3]

Support up to 4 Frame store ID per L0 direction, one per MB partition, if exists. See details in later

section. This field specifies the frame Store ID into the Reference Picture List0 Table.

Bit 7: Must Be One: (This is reserved for control fields in future extension, when reference index

are generated instead of frame store ID)

1: indicate it is in Frame store ID format.

0: indicate it is in Reference Index format.

Bit 6:5: reserved MBZ

Bit 4:0: Frame store index or Frame Store ID (Bit 4:1 is used to form the binding table index in intel

implementation)

23:16
Frame Store ID L1[2]

Support up to 4 Frame store ID per L0 direction, one per MB partition, if exists. See details in later

section. This field specifies the frame Store ID into the Reference Picture List0 Table.

Bit 7: Must Be One: (This is reserved for control fields in future extension, when reference index

are generated instead of frame store ID)

1: indicate it is in Frame store ID format.

0: indicate it is in Reference Index format.

Bit 6:5: reserved MBZ

Bit 4:0: Frame store index or Frame Store ID (Bit 4:1 is used to form the binding table index in intel

implementation)

15:8
Frame Store ID L1[1]

Support up to 4 Frame store ID per L0 direction, one per MB partition, if exists. See details in later

section. This field specifies the frame Store ID into the Reference Picture List0 Table.

Bit 7: Must Be One: (This is reserved for control fields in future extension, when reference index

are generated instead of frame store ID)

1: indicate it is in Frame store ID format.

0: indicate it is in Reference Index format.

Media VDBOX

40 Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15

DWord Bit Description

Bit 6:5: reserved MBZ

Bit 4:0: Frame store index or Frame Store ID (Bit 4:1 is used to form the binding table index in intel

implementation)

7:0
Frame Store ID L1[0]

Support up to 4 Frame store ID per L0 direction, one per MB partition, if exists. See details in later

section. This field specifies the frame Store ID into the Reference Picture List0 Table.

Bit 7: Must Be One: (This is reserved for control fields in future extension, when reference index

are generated instead of frame store ID)

1: indicate it is in Frame store ID format.

0: indicate it is in Reference Index format.

Bit 6:5: reserved MBZ

Bit 4:0: Frame store index or Frame Store ID (Bit 4:1 is used to form the binding table index in intel

implementation)

AVC Encoder PAK Commands

Each PAK Commands is composed of a command op-code DW and one or more command data DWs

(inline data). The size of each command is specified as part of the op-code DW. Most of the commands

have fixed size, except some are allowed to be of variable length.

There is an inherent order of executing MFC PAK commands that driver must follow.

MFC_AVC_PAK_OBJECT

Indirect Data Description

For each macroblock, an ENC-PAK data set consists of two types of data blocks: indirect MV data block

and inline MB information.

The indirect MV data block may be in two modes: unpackedmode and packed-size mode.

Unpacked Motion Vector Data Block

In the unpacked mode, motion vectors are expanded (or duplicated) to either bidirectional 8x8 8MV

major partition format, or bidirectional 4x4 32MV format. Thus either 32 bytes or 128 bytes is assigned

to each MB.

Motion Vector block contains motion vectors in an intermediate format that is partially expanded

according to the sub- macroblock size. During the expansion, a place that does not contain a motion

vector is filled by replicating the relevant motion vector according to the following motion vector

replication rules. If the relevant motion vector doesn’t exist (for the given L0 or L1), it is zero filled.

Motion Vector Replication Rules:

 Media VDBOX

Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15 41

 Rule #1

o #1.1: For L0 MV, for any sub-macroblock or sub-partition where there is at least one

motion vector

 If L0 inter prediction exists, the corresponding L0 MV is used

 Else it must be zero

o #1.2: For L1 MV, for any sub-macroblock or sub-partition where there is at least one

motion vector

 If L1 inter prediction exists, the corresponding L1 MV is used

 Else it must be zero

 For a macroblock with a 16x16, 16x8 or 8x16 sub-macroblock, MvSize = 8. The eight MV fields

follow Rule #1.

o The 16x16 is broken down into 4 8x8 sub-macroblocks. The 16x16 MVs (after rule #1) are

replicated into all 8x8 blocks.

o For an 8x16 partition, each 8x16 is broken down into 2 8x8 stacking vertically. The 8x16

MVs (after rule #1) are replicated into both 8x8 blocks.

o For a 16x8 partition, each 16x8 is broken down into 2 8x8 stacking horizontally. The 16x8

MVs (after rule #1) are replicated into both 8x8 blocks.

 For macroblock with sub-macroblock of 8x8 without minor partition (SubMbShape[0…3] = 0),

MvSize = 8, (e.g. mb_type equal to P_8x8, P_8x8ref0, or B_8x8)

o There is no motion vector replication

 For macroblock with sub-macroblock of 8x8 with at least one minor partition (if any

SubMbShape[i] != 0), MvSize = 32, (e.g. mb_type equal to P_8x8, P_8x8ref0, or B_8x8)

o For an 8x8 sub-partition, the 8x8 MVs (after rule #1) is replicated into all the four 4x4

blocks.

o For an 4x8 sub-partition within an 8x8 partition, each 4x8 is broken down into 2 4x4

stacking vertically. The 4x8 MVs (after rule #1) are replicated into both 4x4 blocks.

o For an 8x4 sub-partition within an 8x8 partition, each 8x4 is broken down into 2 4x4

stacking horizontally. The 8x4 MVs (after rule #1) are replicated into both 4x4 blocks.

o For a 4x4 sub-partition within an 8x8 partition, each 4x4 has its own MVs (after rule #1).

Media VDBOX

42 Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15

Motion Vector block and MvSize

DWord Bit

MvSize

 8 32

W1.0
31:16 MV_Y0_L0.y MV_Y0_0_L0.y

 15:0 MV_Y0_L0.x MV_Y0_0_L0.x

W1.1
31:16 MV_Y0_L1.y MV_Y0_0_L1.y

 15:0 MV_Y0_L1.x MV_Y0_0_L1.x

W1.2
31:0 MV_Y1_L0 MV_Y0_1_L0

W1.3
31:0 MV_Y1_L1 MV_Y0_1_L1

W1.4
31:0 MV_Y2_L0 MV_Y0_2_L1

W1.5
31:0 MV_Y2_L1 MV_Y0_2_L0

W1.6
31:0 MV_Y3_L0 MV_Y0_3_L0

W1.7
31:0 MV_Y3_L1 MV_Y0_3_L1

W2.0
31:0 n/a MV_Y1_0_L1

W2.1
31:0 n/a MV_Y1_0_L0

W2.2
31:0 n/a MV_Y1_1_L1

W2.3
31:0 n/a MV_Y1_1_L0

W2.4
31:0 n/a MV_Y1_2_L1

W2.5
31:0 n/a MV_Y1_2_L0

W2.6
31:0 n/a MV_Y1_3_L0

W2.7
31:0 n/a MV_Y1_3_L1

W3.0
31:0 n/a MV_Y2_0_L1

W3.1
31:0 n/a MV_Y2_0_L0

 Media VDBOX

Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15 43

DWord Bit

MvSize

 8 32

W3.2
31:0 n/a MV_Y2_1_L1

W3.3
31:0 n/a MV_Y2_1_L0

W3.4
31:0 n/a MV_Y2_2_L1

W3.5
31:0 n/a MV_Y2_2_L0

W3.6
31:0 n/a MV_Y2_3_L0

W3.7
31:0 n/a MV_Y2_3_L1

W4.0
31:0 n/a MV_Y3_0_L1

W4.1
31:0 n/a MV_Y3_0_L0

W4.2
31:0 n/a MV_Y3_1_L1

W4.3
31:0 n/a MV_Y3_1_L0

W4.4
31:0 n/a MV_Y3_2_L1

W4.5
31:0 n/a MV_Y3_2_L0

W4.6
31:0 n/a MV_Y3_3_L0

W4.7
31:0 n/a MV_Y3_3_L1

The motion vector(s) for a given sub-macroblock or a sub-partition are uniquely placed in the output

message as shown by the non-duplicate fields in Unpacked Motion Vector Data Block and Unpacked

Motion Vector Data Block.

MV_Yx_L0 and MV_Yx_L1 may be present individually or both. If one is not present, the corresponding

field must be zero. Subsequently, the duplicated fields will be zero as well.

Media VDBOX

44 Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15

Motion Vector duplication by sub-macroblocks for a 16x16 macroblock, whereas the 8x8 column

is for 4x(8x8) partition without minor shape

DWord Bit

16x16 16x8 8x16 8x8

W1.0
31:16 MV_Y0_L1 (A) MV_Y0_L1 (A) MV_Y0_L1 MV_Y0_L1

 15:0 MV_Y0_L0 (A) MV_Y0_L0 (A) MV_Y0_L0 MV_Y0_L0

W1.1
31:16 Duplicate (A) Duplicate (A) MV_Y1_L1 MV_Y1_L1

 15:0 Duplicate (A) Duplicate (A) MV_Y1_L0 MV_Y1_L0

W1.2
31:16 Duplicate (A) MV_Y2_L1 (B) Duplicate (A) MV_Y2_L1

 15:0 Duplicate (A) MV_Y2_L0 (B) Duplicate (A) MV_Y2_L0

W1.3
31:16 Duplicate (A) Duplicate (B) Duplicate (B) MV_Y3_L1

 15:0 Duplicate (A) Duplicate (B) Duplicate (B) MV_Y3_L0

 Media VDBOX

Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15 45

Motion Vector duplication by sub-partitions for the first 8x8 sub-macroblock Y0 if any Y0-Y3

contains minor shape (Y1_ to Y3_ have the same format in W2 to W4)

DWord Bit

8x8 8x4 4x8 4x4

W1.0
31:16 MV_Y0_L1 MV_Y0_0_L1 (A) MV_Y0_0_L1 (A) MV_Y0_0_L1

 15:0 MV_Y0_L0 MV_Y0_0_L0 (A) MV_Y0_0_L0 (A) MV_Y0_0_L0

W1.1
31:16 Duplicate (A) Duplicate (A) MV_Y0_1_L1 (B) MV_Y0_1_L1

 15:0 Duplicate (A) Duplicate (A) MV_Y0_1_L0 (B) MV_Y0_1_L0

W1.2
31:16 Duplicate (A) MV_Y0_2_L1 (B) Duplicate (A) MV_Y0_2_L1

 15:0 Duplicate (A) MV_Y0_2_L0 (B) Duplicate (A) MV_Y0_2_L0

W1.3
31:16 Duplicate (A) Duplicate (B) Duplicate (B) MV_Y0_3_L0

 15:0 Duplicate (A) Duplicate (B) Duplicate (B) MV_Y0_3_L1

Media VDBOX

46 Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15

Packed-Size Motion Vector Data Block

In the packed case, no redundant motion vectors are sent. So the number of motion vectors sent, as

specified by MvQuantity is the same as the motion vectors that will be packed (MvPacked).

The following tables are for information only. Fields like MvQuantity and MvPacked are not required

interface fields.

MbSkipFlag MbType Description Mv

Quantity

MvSize (Minimal MvSize)

1 1 P_Skip_16x16 0 8 1

0 1 BP_L0_16x16 1 8 1

0 2 B_L1_16x16 1 8 1

0 3 B_Bi_16x16 2 8 2

0 4 BP_L0_L0_16x8 2 8 4

0 5 BP_L0_L0_8x16 2 8 4

0 6 B_L1_L1_16x8 2 8 8

0 7 B_L1_L1_8x16 2 8 8

0 8 B_L0_L1_16x8 2 8 8

0 9 B_L0_L1_8x16 2 8 8

0 0Ah B_L1_L0_16x8 2 8 8

0 0Bh B_L1_L0_8x16 2 8 8

0 0Ch B_L0_Bi_16x8 3 8 8

0 0Dh B_L0_Bi_8x16 3 8 8

0 0Eh B_L1_Bi_16x8 3 8 8

0 0Fh B_L1_Bi_8x16 3 8 8

0 10h B_Bi_L0_16x8 3 8 8

0 11h B_Bi_L0_8x16 3 8 8

0 12h B_Bi_L1_16x8 3 8 8

0 13h B_Bi_L1_8x16 3 8 8

0 14h B_Bi_Bi_16x8 4 8 8

0 15h B_Bi_Bi_8x16 4 8 8

0 16h
BP_8x8 ³4

8 or 32 8 or 32

 Media VDBOX

Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15 47

When MbType = 22, BP_8x8, take the sum of four individual 8x8 subblocks

Direct8x8Pattern SubMb

Shape

SubMb

PredMode

Description Mv

Quantity

Mv

Size

(Min MvSize)

OR OR OR

ADD ADD ADD

1 0 0
P_Skip_8x8

 B_Direct_L0_8x8

 (B-Skip_ L0_8x8)

0 2 1

1 0 1
B_Direct_L1_8x8

 (B-Skip_ L1_8x8)

0 2 1

1 0 2
B_Direct_Bi_8x8

 (B-Skip_ Bi_8x8)

0 2 2

1 3 0
P_Skip_4x4

 B_Direct_L0_4x4

 (B-Skip_ L0_4x4)

0 8 4

1 3 1
B_Direct_L1_4x4

 (B-Skip_ L1_4x4)

0 8 4

1 3 2
B_Direct_Bi_4x4

 (B-Skip_ Bi_4x4)

0 8 8

0 0 0 BP_L0_8x8 1 2 1

0 0 1 B_L1_8x8 1 2 1

0 0 2 B_BI_8x8 2 2 2

0 1 0 BP_L0_8x4 2 8 4

0 1 1 B_L1_8x4 2 8 4

0 1 2 B_BI_8x4 4 8 8

0 2 0 BP_L0_4x8 2 8 4

0 2 1 B_L1_4x8 2 8 4

0 2 2 B_BI_4x8 4 8 8

0 3 0 BP_L0_4x4 4 8 4

0 3 1 B_L1_4x4 4 8 4

0 3 2 B_BI_4x4 8 8 8

Media VDBOX

48 Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15

Macroblock Level Rate Control

The QRC (Qauntization Rate Control) unit receives data from BSP (Bit Serial Packer) and VIN (Video In)

and generates adjustments to QP values across macroblocks.

QRC can be logically partitioned into two units as shown below.

 Media VDBOX

Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15 49

Macroblock level rate control is handled by the RC logic and the quantization logic.

The signals QPmod and panic are generated by the RC logic based on data feedback from BSP. A

flowchart of the RC logic is given below.

Media VDBOX

50 Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15

Theory of Operation Overview

BSP will generate a byte estimate for each macroblock packed. Additionally, the user will specify a

target and max size per macroblock. The running sum of these signals (actual, target, max) creates

“curves” which are used to identify when QP adjustments are necessary (see figure below). Three more

curves are symmetrically generated by QRC (upper_midpt, lower_midpt, sum_min) from target and max.

The values of target and max are specified by the user will dictate the shape of these curves.

The difference between sum_actual and sum_target (called ‘bytediff’) identifies the margin of error

between the target and actual sizes. The difference between the current bytediff and the previously

calculated bytediff represents the rate of change in this margin over time. The sign of this rate is used

to identify if the correction is trending in the appropriate direction (towards bytediff = 0).

QPmod

Each macroblock will have a requested QP (which could vary across macroblocks or remain constant).

QPmod is to be added to the QP requested. QPmod will be positive when the target was under-

predicted and negative when the target is over-predicted.

QPmod is incremented or decremented when internal counters (called ‘over’ and ‘under’) reach tripping

points (called ‘grow’ and ‘shrink’). For each MB processed and based on which region (1-6) sum_actual

falls in, various amounts of points are added to either counters. If over exceeds grow, QPmod is

incremented whereas if under exceeds shrink, QPmod is decremented.

To dampen the effect of repeated changes in the same direction, an increase in resistance for that

direction and decrease in resistance for the complementary direction occurs (called ‘grow_resistance’

and ‘shrink_resistance’). This resistance is added to grow or shrink, which then requires more points to

trip the next correction in that direction.

 Media VDBOX

Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15 51

The user can specify guard-bands that limit the amount QPmod can be modified. QPmod cannot

exceed QPmax_pos_mod or become less than -QPmax_neg_mod_abs.

Triggering

The RC unit begins to modify QPmod occurs only when it is triggered.

Three levels of triggering exist: always, gentle, loose. Always means that RC will be active once

sum_actual reaches regions 3 or 4. Gentle will trigger RC once sum_actual reaches regions 2 or 5. Loose

waits to trigger RC when sum_actual reaches regions 1 or 6.

RC will deactivate (triggered = false) once sum_actual begins to track sum_target over a series of

macroblocks. Specifically, the sign of the rate of change for bytediff is monitored over a window of

macroblocks. When the sum of these signs over the window falls within a tolerance value (called

‘stable’), triggered will reset to false.

Panic

When enabled, panic mode will occur whenever sum_actual reaches region 1 and will remain so until

sum_actual reaches region 4. When panicking, all macroblocks will be quantized with QP = MB(n).QP +

QPmax_pos_mod, clamped to 51.

User Controls

This unit achieves a large flexibility by allowing the user to define various key parameters. At the per-

macroblock level, the values of target and max are specifed and will create various shapes of curves that

sum_actual will be compared against.

Per-slice, the user can specify the triggering sensitivity and the tolerance required to disable the trigger.

Additionally, the user can enable panic detection.

The point values assigned to each of the 6 regions are exposed to the user which allow for asymmetrical

control for over and under predictions amongst other things. Additionally, the user can specify the

initial values of grow and shrink along with the resistance values applied when correction is invoked.

Lastly, the maximum and minimum values for QPmod are also exposed to the user.

AVC Encoder MBAFF Support

1. Algorithm

Prediction of current macroblock motion vector is possible from neighboring macroblocks

mbAddrA/mbAddrD/mbAddrB/mbAddrC/mbAddrA+1/mbAddrD+1/mbAddrB+1/mbAddrC+1.

The selection of these macroblocks depends on coding type(field/frame) of current macroblock

pair and the coding of neighboring macroblock pair.

Selection of these macroblock pairs is described in detail in following sections.

1.1 Selection of Top LeftMB pair: The selection of Top Left MB pair depends on coding type of

current and also top left macroblock pair.

Media VDBOX

52 Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15

1.2 Selection of LeftMB pair: The selection of Left MB pair depends on coding type of current

and also left macroblock pair.

1.3 Selection of Top MB pair: The selection of Top MB pair depends on coding type of current

and also top macroblock pair.

1.4 Selection of Top RightMB pair: The selection of Top Right MB pair depends on coding type

of current and also top right macroblock pair.

1.5 Motion Vector and refIdx Scaling: Motion vectors and reference index of neighboring

macroblocks (mbAddrA/mbAddrB/mbAddrC/mbAddrD) should be scaled before using them into

prediction equations. Again the scaling depends on coding type of current and neighboring

macroblock pair which is described as follows

 If the current macroblock is a field macroblock and the macroblock mbAddrN is a frame

macroblock ...

 mvLXN[1] = mvLXN[1] / 2 (8-214)

 refIdxLXN = refIdxLXN * 2 (8-215)

 Otherwise, if the current macroblock is a frame macroblock and the macroblock mbAddrN

is a field macroblock ...

 mvLXN[1] = mvLXN[1] * 2 (8-216)

 refIdxLXN = refIdxLXN / 2 (8-217)

 Otherwise, the vertical motion vector component mvLXN[1] and the reference index

refIdxLXN remain unchanged.

 Media VDBOX

Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15 53

MPEG-2

MPEG2 Common Commands

MFX Commands are organized into groups based on their scope of functioning. There are Pipeline

Common state commands that are common to all codecs (encoder and decoder) and is applicable to

the processing of one full frame/field. There are also individual codec Common state commands that

are common to both encoder and decoder of that particular codec. These latter common state

commands, some are applicable at the processing of one full frame/field, and some are applicable at

the processing of an individual slice level.

MFX_MPEG2_PIC_STATE

MPEG2 Decoder Commands

These are decoder-only commands. They provide the pointer to the compressed input bitstream to be

decoded.

MFD_MPEG2_BSD_OBJECT

MFD_MPEG2_BSD_OBJECT Inline Data Description

Indirect Data Description

The indirect data start address in MFD_MPEG2_BSD_OBJECT specifies the starting Graphics Memory

address of the bitstream data that follows the slice header. It provides the byte address for the first

macroblock of the slice. Together with the First Macroblock Bit Offset field in the inline data, it provides

the bit location of the macroblock within the compressed bitstream.

The indirect data length in MFD_MPEG2_BSD_OBJECT provides the length in bytes of the bitstream data

for this slice. It includes the first byte of the first macroblock and the last non-zero byte of the last

macroblock in the slice. Specifically, the zero-padding bytes (if present) and the next start-code are

excluded. Hardware ignores the contents after the last non-zero byte. Indirect Data Description

illustrates these parameters for a slice data.

Indirect data buffer for a slice

Media VDBOX

54 Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15

MPEG2 Encoder PAK Commands

The MFC_MPEG2_PAK_INSERT_OBJECT Command is identical to the MFC_AVC_PAK_INSERT_OBJECT

command as described in this document.

The MFC_MPEG2_STITCH_OBJECT Command is identical as MFC_AVC_STITCH_OBJECT command as

described in this document.

MFC_MPEG2_SLICEGROUP_STATE

MFC_MPEG2_PAK_OBJECT

PAK Object Inline Data Description – MPEG-2

The Inline Data includes all the required MB encoding states, constitute part of the Slice Data syntax

elements, MB Header syntax elements and their derivatives. It provides information for the following

operations:

1. Forward and Inverse Transform

2. Forward and Inverse Quantization

3. Advanced Rate Control (QRC)

4. MB Parameter Construction (MPC)

5. VLC encoding

6. Bit stream packing

7. Internal error handling

These state/parameter values may subject to change on a per-MB basis, and must be provided in each

MFC_MPEG2_PAK_OBJECT command. The values set for these variables are retained internally, until they

are reset by hardware Asynchronous Reset or changed by the next MFC_MPEG2_PAK_OBJECT

command.

 Media VDBOX

Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15 55

The inline data has been designed to match AVC MB structure for efficient transcoding.

Current MB [x,y] address is not sent, it is assumed that the H/W will keep track of the MB count and

current MB position internally.

DWord Bit Description

1 31:27 Reserved: MBZ

22-

20
MvFormat (Motion Vector Size). This field specifies the size and format of the input motion

vectors.

This field is reserved (MBZ) when the IntraMbFlag = 1.

The valid encodings are:

011 = Unpacked: Two motion vector pairs

Others are reserved.

(The following encodings are intended for other formats:

001 = 1MV: one 16x16 motion vector

010 = 2MV: One 16x16 motion vector pair

011 = 4MV: Four 8x8 motion vectors, or Two 16x8 motion vector pairs

100 = 8MV: Four 8x8 motion vector pairs

101 = 16MV: 16 4x4 motion vectors

110 = 32MV: 16 4x4 motion vector pairs

111 = Packed, number of MVs is given by packedMvNum.)

19 CbpDcY. This field specifies if the Luma DC coded. Must be 1 for MPEG-2.

18 CbpDcU. This field specifies if the Chroma Cb DC coded. Must be 1 for MPEG-2.

17 CbpDcV. This field specifies if the Chroma Cb DC coded. Must be 1 for MPEG-2.

16 Reserved: MBZ

15
TransformFlag

Used to indicate transformation type for MPEG-2.

0 = Frame DCT transformation

 1 = Field DCT transformation

14
FieldMbFlag

For MPEG-2, this flag is set to 1 if

either the picture is in field type

or the MB is INTER of field type, i.e. split into two 16x8 field blocks.

Media VDBOX

56 Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15

13
IntraMbFlag

This field specifies whether the current macroblock is an Intra (I) macroblock.

For I-picture MB (IntraPicFlag =1), this field must be set to 1.

This flag must be set in consistent with the interpretation of MbType (inter or intra modes).

0: INTER (inter macroblock)

1: INTRA (intra macroblock)

12:8
MbType

This field is encoded to match with the best macroblock mode determined as described in the

next section. It follows an unified encoding for inter and intra macroblocks according to MFX

Encoding reference as shown in Figure A.

7:3 Reserved : MBZ

2
SkipMbFlag

By setting it to 1, this field forces an inter macroblock to be encoded as a skipped macroblock. It is

equivalent to mb_skip_flag in AVS spec, Hardware honors input MVs for motion prediction and

forces CBP to zero.

By setting it to 0, an inter macroblock will be coded as a normal inter macroblock. The macroblock

may still be coded as a skipped macroblock, according to the macroblock type conversion rules

described in the later sub sections.

This field can only be set to 1 for certain values of MbType. See details later.

This field is only valid for an inter macroblock. Hardware ignores this field for an intra macroblock.

0 = not a skipped macroblock

1 = is coded as a skipped macroblock

Note: When this flag is set to 1, the correct MVs are assumed for HW decoder to generate

decoded reconstruction frame.

1:0
InterMbMode

This field is provided to carry redundant information as that encoded in MbType.

This field is only valid if IntraMbFlag =0, otherwise, it is ignored by hardware.

2 31:16
MbYCnt (Vertical Origin). This field specifies the vertical origin of current macroblock in the

destination picture in units of macroblocks.

Format = U16 in unit of macroblock.

15:0
MbXCnt (Horizontal Origin). This field specifies the horizontal origin of current macroblock in

the destination picture in units of macroblocks.

Format = U16 in unit of macroblock.

 Media VDBOX

Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15 57

3 31:24
MaxSizeInWord

PAK should not exceed this budget accumulatively, otherwise it will trickle the PANIC mode.

23:16
TargetSizeInWord

PAK should use this budget accumulatively to decide if it needs to limit the number of non-zero

coefficients.

15:13 MBZ

12:0
Cbp – Coded Block Pattern. This field specifies whether blocks are present or not.

Format = 6-bit mask (or 8-bit, & 12-bit, for 422 and 444).

Bit 11: Y0Bit 10: Y1Bit 9: Y2Bit 8: Y3

Bit 7: Cb4Bit 6: Cr5Bits 0-5: MBZ

4 31 LastMbInSlice – the last MB in a slice.

30 FirstMbInSlice – the first slice in a slice, it requires slice header insertion.

29:28 MBZ

27
EnableCoeffClamp

1 = the magnitude of coefficients of the current MB will be clamped based on the clamping matrix

after quantization

0 = no clamping

26
LastMbInSG

1 – the current MB is the last MB in the current slice group.

25
MbSkipConvDisable

This is a per-MB level control to enable and disable skip conversion. This field is ORed with

SkipConvDisable field. This field is only valid for a P or B slice. It must be zero for other slice types.

Rules are provided in Macroblock Type Conversion Rules

0 - Enable skip type conversion for the current macroblock

1 – Disable skip type conversion for the current macroblock

24
FirstMbInSG

1 – the current MB is the last MB in the current slice group.

23:20 MBZ

Media VDBOX

58 Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15

19:16
MvFieldSelect – Motion Vertical Field Select. A bit-wise representation of a long [2][2] array as

defined in §6.3.17.2 of the ISO/IEC 13818-2 (see also §7.6.4).

Bit MVector[r] MVector[s] MotionVerticalFieldSelect Index

16 0 0 0

17 0 1 1

18 1 0 2

19 1 1 3

Format = MC_MotionVerticalFieldSelect.

0 = The prediction is taken from the top reference field.

1 = The prediction is taken from the bottom reference field.

15:5 MBZ Reserved

4:0 QpScaleCode

5 31:16
MV[0][0].y – the y coordinate of the first forward MV

if Mv[0][0] n/a:

if Mv[1][0] available, it MUST be set to the same value as Mv[1][0].

else it MUST be set to the value 0

15:0
MV[0][0].x – the x coordinate of the first forward MV

if Mv[0][0] n/a:

if Mv[1][0] available, it MUST be set to the same value as Mv[1][0].

else it MUST be set to the value 0

6 31:0
MV[1][0] – the first backward MV

if Mv[1][0] n/a: it MUST be set to the same value as Mv[0][0]

7 31:0
MV[0][1] – the second forward MV

if Mv[0][1] n/a:

if Mv[1][1] available, it MUST be set to the same value as Mv[1][1].

else it MUST be set to the same value as Mv[0][0]

8 31:0
MV[1][1] – the second backward MV

if Mv[1][1] n/a: it MUST be set to the same value as Mv[1][0]

 Media VDBOX

Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15 59

The mapping between MPEG-2 spec and MfxMbCode can be achieved according to the following:

1) Renamed variables with identical meaning:

MPEG-2 Spec MFX API Value

macroblock_quant MbQuantPresent 0 or 1

macroblock_intra IntraMbFlag 0 or 1

dct_type Transform8x8Flag 0 or 1

macroblock_pattern Cbp8x8 remapped

2) Macroblock type remapping:

B-spec Entry MPEG-2 Spec

Frame

Type

Mb

Type

Intra

Mb

 Flag

Skip

 Mb

 Flag

Mb

 Type

 5Bits

Field

 Mb

 Flag

Inter

 Mb

 Mode
macroblock

_intra

motion_

type_bit

0

motion_

type_bit

1

motion_

forward

motion_

backwar

d

IPB Intra 1
0 1Ah 0/1 - 1 - - - -

P

B

B

Skip
0

1 01h

02h

03h

0/1 0 0 - -
1

0

1

0

1

1

P 0-MV*
0 0 01h 0/1 0 0 - - 0 0

P Frame Frame

type

0 0 01h 0 0 0 0 1 1 0

P Frame Field

type

0 0 04h 1 1 0 1 0 1 0

P Frame dual

prime

0 0 19h 0 0 0 1 1 1 0

P Field One

16x16

0 0 01h 1 0 0 1 0 1 0

P Field Two

16x8

0 0 04h 1 1 0 0 1 1 0

P Field dual

prime

0 0 19h 1 0 0 1 1 1 0

Media VDBOX

60 Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15

B-spec Entry MPEG-2 Spec

Frame

Type

Mb

Type

Intra

Mb

 Flag

Skip

 Mb

 Flag

Mb

 Type

 5Bits

Field

 Mb

 Flag

Inter

 Mb

 Mode
macroblock

_intra

motion_

type_bit

0

motion_

type_bit

1

motion_

forward

motion_

backwar

d

B Frame Frame

type

0 0
01h

02h

03h

0 0 0 0 1
1

0

1

0

1

1

B Frame Field

type

0 0
04h

 06h

14h

1 1 0 1 0
1

0

1

0

1

1

B Field One

16x16

0 0
01h

02h

03h

1 0 0 1 0
1

0

1

0

1

1

B Field Two

16x8

0 0
04h

 06h

14h

1 1 0 0 1
1

0

1

0

1

1

 Notice that there is no special way to indicate 0 motion vector case for P frame. It is for PAK to

handle internally by checking up the motion vector values.

 Notice also, the MbType5bits is adapted from AVC DXVA macroblock types. It may seems

awkward from MPEG-2 perspective, but provides a common VME interface for us for simpler HW

design and help the advanced transcoding solution.

 Media VDBOX

Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15 61

MFX HW Interface and DXVA Conversion

This topic is currently under development.

Map DXVA to HW BSpec

 HW

Location BSPEC

BYTE MPEG-2 DXVA

 DW0

0 MbMode

0.0-1 0[0-1] InterMbMode see (A)

0.2 0[2] SkipMbFlag <-MBskipsFollowing

0.3 0[3] mbz

0.4-5 0[4-5] IntraMbMode IntraMacroblock

0.6 0[6] mbz

0.7 0[7] FieldMbPolarity derived

1 MbType

1.0-4 0[8-12] MbType5Bits see (A)

1.5 0[13] IntraMbFlag IntraMacroblock

1.6 0[14] FieldMbFlag see (A)

1.7 0[15] TransformFlag FieldResidual

2 MbFlag

2.0 0[16] ResidDataFlag HostResDiff

2.1 0[17] CbpDcV PAK control

2.2 0[18] CbpDcU PAK control

2.3 0[19] CbpDcY PAK control

2.4-6 0[20-22] MvFormat = 3, derived

2.7 0[23] mbz

3 0[24-31] PackedMvNum see (A)

 DW1

4-5 1[0-15] MbXCnt wMBaddress

6-7 1[16-31] MbYCnt wMBaddress

 DW2

8 2[0-7] bNumCoef[0]

8.0-5 2[0-5] mbz

8.6-7 2[6-7] CbpAcUV PAK control

9 2[8-11] CbpAcY PAK control

Media VDBOX

62 Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15

 HW

Location BSPEC

BYTE MPEG-2 DXVA

 2[12-15] mbz

10 2[16-23] TargetedSzInWord

11 2[24-31] MaxSzInWord

 DW3

12 Qscale derived

12.0-6 3[0-6] QScaleCode

12.7 3[7] QScaleType

13 3[8-15] mbz

14 3[16-19] MvFieldSelect MvertFieldSel

 3[20-23] mbz

15 MbExtFlag

15.0 3[24] mbz

15.1 3[25] SkipMvConvDisable

15.2 3[26] LastMbFlag PAK control

15.3 3[27] EnableCoeffClamp PAK control

15.4-5 3[28-29] MbScanMethod MBscanMethod

15.6 3[30] NewSliceFlag PAK control

15.7 3[31] EndSliceFlag PAK control

 DW4-7

16-32 4-7[all] MV[2][2][2] MVector[4][2]

 Media VDBOX

Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15 63

(A): Set InterMbMode, MbType5bits, FieldMbFlag, and PackedMvNum from DXVA parameters:

 if(IntraMacroblock) return (TYPE_INTRA);

 else if(MotionType==3){ // dual prime

 MbType5bits = 0x19; FieldMbFlag = 0; InterMbMode = 0; PackedMvNum = 2; return

(DUAL_PRIME);

 }

 else{

 IsFieldFrame = a PicState derivative; switch(MotionType+IsFieldFrame{

 case 1: // Two 16x8 field in Frame Frame

 case 3: // Two 16x8 field in Field Frame

 FieldMbFlag = 1; InterMbMode= 1; switch(MotionForward |Motionbackward

«1)){

 case 1:

 MbType5bits = 4; PackedMvNum = 2; break;

 case 2:

 MbType5bits = 6; PackedMvNum = 2; break;

 case 3:

 MbType5bits = 0x14; PackedMvNum = 4; break;

 }

 break;

 case 2: // 16x16 block in either case

 FieldMbFlag = IsFieldFrame; InterMbMode = 0;

switch(MotionForward|(Motionbackward«1)){

 case 1:

 MbType5bits = 1; PackedMvNum = 1; break;

 case 2:

 MbType5bits = 2; PackedMvNum = 1; break;

 case 3:

 MbType5bits = 3; PackedMvNum = 2; break;

 }

 break;

 }

 }

Media VDBOX

64 Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15

Map HW Bspec to DXVA

DXVA BSPEC

MPEG-2

0-1
wMBaddress = MbYCnt*MbW + MbXCnt

2-3
wMBtype

2.0
IntraMacroblock = IntraMbFlag

2.1
MotionForward see (B)

2.2
MotionBackward see (B)

2.3
Motion4MV VC-1 only, MBZ for Mpeg-2

2.4
Reserved

2.5
FieldResidual = TranformFlag

2.6-7
MBscanMethod = MbScanMethod

3.0-1
MotionType see (B)

3.2
HostResDiff = ResidDataFlag

3.3
Reserved

3.4-7
MvertFieldSel = MvFieldSelect

4
MBskipsFollowing count SkipMbFlag

5-7
MBdataLocation n/a

8-9
wPatternCode = CbpAcY|UV

10-15
bNumCoef[6] n/a

16-32
MVector[4][2] = MV[2][2][2]

 Media VDBOX

Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15 65

(B): Set MBtype and MotionType from Bspec interface

if(MbIntraFlag) return (TYPE_INTRA);

else if(MbType5Bits&8){ // dual prime

MotionForward= 1;

MotionBackward= 0;

MotionType= 3;

return (DUAL_PRIME);

}

else{

// redundant: InterMbMode = !!(MbType5Bits&4);

if(InterMbMode){

MotionForward= !(MbType5Bits&2);

MotionBackward= !!(MbType5Bits&0x12);

}

else{

MotionForward= (MbType5Bits&1);

MotionBackward= !!(MbType5Bits&2);

}

MotionType = 2-(InterMbMode^FieldMbFlag);

// equivalently the 2 bits are:

// MotionType0 = (InterMbMode^FieldMbFlag);

// MotionType1 = ~MotionType0;

return (TYPE_INTER);

}

Media VDBOX

66 Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15

VC1 Common Commands

MFX Commands are organized into groups based on their scope of functioning. There are Pipeline

Common state commands that are common to all codecs (encoder and decoder) and is applicable to

the processing of one full frame/field. There are also individual codec Common state commands that

are common to both encoder and decoder of that particular codec. These latter common state

commands, some are applicable at the processing of one full frame/field, and some are applicable at

the processing of an individual slice level.

MFX_VC1_PRED_PIPE_STATE

MFX_VC1_DIRECTMODE_STATE

VC1 Decoder Commands

These are decoder-only commands. They provide the pointer to the compressed input bitstream to be

decoded.

MFD_VC1_LONG_PIC_STATE

AltPQuantConfig and AltPQuantEdgeMask are derived based on the following variables: DQUANT,

DQUANTFRM, DQPROFILE, DQSBEDGE, DQDBEDGE, and DQBILEVEL defined in the VC1 standard, as

shown in the following table.

 Media VDBOX

Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15 67

Definition of AltPQuantConfig and AltPQuantEdgeMask

Inputs Outputs

Description DQUANT

DQUANT

 FRM

DQ

PROFILE

DQDB

 EDGE

DQSB

EDGE

DQBI

LEVEL

AltPQuant

 Config

AltPQuant

EdgeMask

0 - - - - - 00b 0000b No AltPQuant

1 0 - - - - 00b 0000b No AltPQuant

1 1 11b - - 0 10b 0000b All MBs are different with

MQDIFF and ABSMQ

1 1 11b - - 1 11b 0000b All MBs may switch with 1-bit

MQDIFF

2 - - - - - 01b 1111b All edge MBs

1 1 00b - - - 01b 1111b All edge MBs

1 1 01b 00b - - 01b 0011b Left and top MBs

1 1 01b 01b - - 01b 0110b Top and right MBs

1 1 01b 10b - - 01b 1100b Right and bottom MBs

1 1 01b 11b - - 01b 1001b Bottom and left MBs

1 1 10b - 00b - 01b 0001b Left MBs

1 1 10b - 01b - 01b 0010b Top MBs

1 1 10b - 10b - 01b 0100b Right MBs

1 1 10b - 11b - 01b 1000b Bottom MBs

MFD_VC1_SHORT_PIC_STATE

Intel HW does not use the MVMODE and MVMODE2 provided at the revised DXVA2 VC1 VLD interface,

instead, HW will decode them directly from the bitstream picture header.

MFD_VC1_BSD_OBJECT

For VC1, a slice/picture is always started with MB x positon equal to 0. Hence, no need to include in the

Object Command.

Handling Emulation Bytes

In general, VC1 BSD unit is capable of handling emulation prevention bytes. However, there is a corner

case that requires host software’s intervention. Host software needs to overwrite the emulation byte if it

overlaps the macroblock layer decode and there is not enough information for the hardware to detect

the emulation byte.

The emulation bytes might have an overlap between the picture states and the first macroblock data. If

the emulation bytes are 0x00 0x000x03 0x00 and the macroblock data starts in the middle of byte1

(0x00), then the host software needs to overwrite the 0x03 byte location with the previous byte (0x00)

and change the byte offset accordingly. The hardware wouldn’t know what the 1st byte was and will miss

this 0x03 removal.

Media VDBOX

68 Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15

VP8

This topic is currently under development.

MFX_VP8_STATISTICS - Encoder Only

Address

offset Name Description

0 31:0 32-bit P0 Partition Bit Size // Raw bit count per Partition No Fulsim

Validation

1 31:0 32-bit P1 Partition Bit Size No Fulsim

Validation

2 31:0 32-bit P2 Partition Bit Size No Fulsim

Validation

3 31:0 32-bit P3 Partition Bit Size No Fulsim

Validation

4 31:0 32-bit P4 Partition Bit Size No Fulsim

Validation

5 31:0 32-bit P5 Partition Bit Size No Fulsim

Validation

6 31:0 32-bit P6 Partition Bit Size No Fulsim

Validation

7 31:0 32-bit P7 Partition Bit Size No Fulsim

Validation

8 31:0 32-bit P8 Partition Bit Size No Fulsim

Validation

9 31:0 32-bit P1-8 Partition Bit

Size Sum

// This is raw BIT sum of Partition1-8, Not Byte

sum.

No Fulsim

Validation

 No Fulsim

Validation

10 31:0 32-bit Segment0 Total Bit

Count

// Raw bit count per Segment No Fulsim

Validation

11 31:0 32-bit Segment1 Total Bit

Count

 No Fulsim

Validation

12 31:0 32-bit Segment2 Total Bit

Count

 No Fulsim

Validation

13 31:0 32-bit Segment3 Total Bit

Count

 No Fulsim

Validation

14 15:0 16-bit Segment0 Num of

MB

// Num of MB per Segment No Fulsim

Validation

 31:16 16-bit Segment1 Num of

MB

 No Fulsim

Validation

 Media VDBOX

Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15 69

Address

offset Name Description

15 15:0 16-bit Segment2 Num of

MB

 No Fulsim

Validation

 31:16 16-bit Segment3 Num of

MB

 No Fulsim

Validation

16 31:0 32-bit P0 Partition Bit Size

before CPBAC

// Bin Count of Syntax Element before CPBAC No Fulsim

Validation

17 31:0 32-bit P1 Partition Bit Size

before CPBAC

 No Fulsim

Validation

18 31:0 32-bit P2 Partition Bit Size

before CPBAC

 No Fulsim

Validation

19 31:0 32-bit P3 Partition Bit Size

before CPBAC

 No Fulsim

Validation

20 31:0 32-bit P4 Partition Bit Size

before CPBAC

 No Fulsim

Validation

21 31:0 32-bit P5 Partition Bit Size

before CPBAC

 No Fulsim

Validation

22 31:0 32-bit P6 Partition Bit Size

before CPBAC

 No Fulsim

Validation

23 31:0 32-bit P7 Partition Bit Size

before CPBAC

 No Fulsim

Validation

24 31:0 32-bit P8 Partition Bit Size

before CPBAC

 No Fulsim

Validation

25 31:0 32-bit Reserved

26 31:0 32-bit Reserved

27 31:0 32-bit Reserved

28 31:0 32-bit Reserved

29 31:0 32-bit Reserved

30 31:0 32-bit Reserved

31 31:0 32-bit Reserved

32 31:0 32-bit mb skip prob Total

cnt

Total Number of MB when MBNoCoeffSkip ==

1(if MBNoCoeffSkip == 0, this field =0) Please

see foot notes 1.

33 31:0 32-bit mb skip prob cnt Number of MB with MBSkip == 1 when

MBNoCoeffSkip == 1. Please see foot notes 1.

303-34 15:0 token_statistic count Token Statistics Counters. Please see foot notes

2.

Media VDBOX

70 Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15

Address

offset Name Description

 31:16 Reserved

Programming Note

Context: MFX_VP8_STATISTICS - Encoder Only

1. MBSkip_Prob_Total_Cnt and MBSkip_Prob_Cnt are collected to generate MBSkipProbability. After bit

packing, Hardware returns both MBSkip_Prob_Total_Cnt and MBSkip_Prob_Cnt. Optimal packing could be

performed in subsequent pass using MBSkipProbability of

round (256 * (MBSkip_Prob_Total_Cnt- MBSkip_Prob_Cnt) / MBSkip_Prob_Total_Cnt))

2. Token Statistics counters collects token statistics of particular plane (4), coefficient band(8), neighbor

context(3) and tree node position(11) as described in WebM Spec. Out of the space of 1056 counters, there

are 270 of which has high significant in compression efficiency and are chosen for statistics collection.

 Media VDBOX

Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15 71

VP8 Encoder StreamOut Format

VP8 Encoder StreamOut Format

DW0 0 1-bit MBLevelIntraMBConformanceFlag

 1 1-bit MBLevelInterMBConformanceFlag

 2 1-bit MbRcFlag

 3 1-bit MBSkip

 7:4 Reserved

 15:8 8-bit MbClock16

 23:16 8-bit MbX

 31:24 8-bit MbY

DW1 12:0 13-bit MB_Total_BitCount

 15:13 Reserved

 28:16 13-bit MB_Residual_BitCount

 31:29 Reserved

DW2 24:0 25-bit Cbp

 31:25 Reserved

DW3 15:0 Reserved

 16 1-bit CoeffClampStatus

 23:17 Reserved

 28:24 5-bit MBType5Bits

 29 1-bit IntraMBFlag

 30 1-bit LastMbFlag

 31 Reserved

Media VDBOX

72 Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15

VP8 Common Commands

Following are VP8 Common Commands:

MFX_VP8_PIC_STATE

For VP8 HW PAK, there are four VP8 versions supported and their programming is shown in Table1

below.

Version

MC Filter

Select

Chroma Full Pixel MC Filter

Mode

DBLK

FilterType

DBLK FilterLevel for

Segment0

0 0 0 0 Any FilterLevel

1 1 0 1 Any FilterLevel

2 1 0 0 0

3 1 1 1 0

Table1: VP8 Version

MC Filter Select: MFX_VP8_PIC_STATE.DW2.Bit0

Chroma Full Pixel MC Filter Mode: MFX_VP8_PIC_STATE.DW2.Bit1

DBKL Filter Type: MFX_VP8_PIC_STATE.DW2.Bit4

DBLK Filter Level for Segment0: MFX_VP8_PIC_STATE.DW3.Bit5:0

1. Note that when multiple segment is enabled, if Segment0 DBLK Filter is programmed to 0,

Segment1,2,3 DBLK Filter should be set to 0 as well.

2. Note that MFX_VP8_Encoder_CFG.BW22.Bit22:20 (Bitstream Format Version). This field is used for

generating Uncompressed header only. It is not used to control any Filter.

VP8 Decoder Commands

Following are VP* Decoder Commands:

MFD_VP8_BSD_OBJECT

 Media VDBOX

Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15 73

VP8 Encoder Commands

MFX_VP8_Encoder_CFG

MFX_VP8_BSP_BUF_BASE_ADDR_STATE

MFX_VP8_PAK_OBJECT

VP8 PAK Object inline data:

Inline Data Description - VP8 PAK OBJECT

Y_Mode for macroblock in non-B mode

0 DC_PRED

1 V_PRED

2 H_PRED

3 TM_PRED

4 B_PRED

5 NEARESTMV

6 NEARMV

7 ZEROMV

8 NEWMV

9 SPLITMV

2 B mode

0 B_DC_PRED

1 B_TM_PRED

2 B_VE_PRED

3 B_HE_PRED

4 B_LD_PRED

5 B_RD_PRED

6 B_VR_PRED

7 B_VL_PRED

8 B_HD_PRED

9 B_HU_PRED

10 SPLIT_LEFT

11 SPLIT_ABOVE

12 SPLIT_ZERO

13 SPLIT_NEW

VP8 Bitstream Formats

There are the following restrictions on the input compressed bitstream format:

1. No Zero Coefficient coded before EOB;

2. No zero coefficient coded, only EOB coded if all subblock coefficients are 0's.

Media VDBOX

74 Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15

JPEG and MJPEG

JPEG Decoder Commands

Following are JPEG Decoder Commands:

MFD_JPEG_BSD_OBJECT

MFX_JPEG_PIC_STATE command is used for both encoding and decoding. Note the duplicate bits and the "Exists

If" rows that specify what the bits represent for Encoder and Decoder.

MFX_JPEG_PIC_STATE

For JPEG decoding, the following program note is informative.

For Rotation, it is important to note that rotation of 90 or 270 degrees also requires exchanging

FrameWidthlnBlksMinus1 with FrameHeightlnBlksMinus1 in the command. In addition, the rotation

of 90 or 270 degrees also requires transportation of the quantization matrix will be transposed into the

position (y, x).

Chroma type is determined by the values of horizontal and vertical sampling factors of the

components (Hi and Vi where i is a component id) in the Frame header as shown in the following table.

 H1 H2 H3 V1 V2 V3

0: YUV400 r Not available Not available r Not available Not available

1: YUV420 2 1 1 2 1 1

2: YUV422H_2Y 2 1 1 1 1 1

3: YUV444 1 1 1 1 1 1

4: YUV411 4 1 1 1 1 1

5: YUV422V_2Y 1 1 1 2 1 1

6: YUV422H_4Y 2 1 1 2 2 2

7: YUV422V_4Y 2 2 2 2 1 1

For YUV400, the value of V1 can be 1, 2, or 3 and will be same as the value of H1, and the Minimum

coded unit (MCU) is one 8x8 block. For the other chroma formats, if non-interleaved data, the MCU is

one 8x8 block. For interleaved data, the MCU is the sequence of block units defined by the sampling

factors of the components.

 Media VDBOX

Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15 75

For example, the following figures show the MCU structures of interleaved data and the decoding order

of blocks in the MCU:

422H_2Y

422H_4Y

422V_2Y

422V_4Y

Media VDBOX

76 Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15

If picture width X in the Frame header is not a multiple of 8, the decoding process needs to extend the

number of columns to complete the right-most sample blocks. If the component is to be interleaved,

the decoding process needs to extend the number of samples by one or more additional blocks so that

the number of blocks is an integer multiple of Hi. In other words, “The number of blocks in width” in the

table should be an integer multiple of (8xH1). Similarly, if picture height Y in the Frame header is not a

multiple of 8, the decoding process needs to extend the number of lines to complete bottom-most

block-row. If the component is to be interleaved, the decoding process also needs to extend the

number of lines by one or more additional block-rows so that the number of block-row is an integer

multiple of (8xV1). For example, if non-interleaved YUV411 with X=270, then “The number of blocks in

width” shall be (270 + 7) / 8 = 34, where “/” is integer division. Therefore, FrameWidthlnBlksMinus1 is

set to 33. However, for interleaved data, “The number of blocks in width” shall be ((270 + 31) / 32) x 4 =

36. Therefore, FrameWidthlnBlksMinus1 is set to 35.

VertUpSamplingEnb is used to convert an input chroma420 to an output chroma422 in the surface

format of YUY2 or UYVY. To enable this flag, the input should be interleaved Scan, InputFormatYUV

should be set to YUV420, and OutputFormatYUV should be set to YUY2 or UYVY. Vertical 2:1 up-

sampling is only applied to chroma blocks where each line of 8x8 block pixels is replicated to make

8x16 U/V blocks. For example:

 Media VDBOX

Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15 77

VertDownSamplingEnb is used to convert an input chroma422 to an output chroma420 in the surface

format NV12. To enable this flag, the input should be interleaved Scan, InputFormatYUV should be set

to YUV422H_2Y or YUV422H_4Y, and OutputFormatYUV should be set to NV12. Combined with

AvgDownSampling flag, the following table and figures show the down-sampling methods.

VertDownSamplingEnb AvgDownSampling Down-Sampling Methods

0 0 or 1 No down-sampling.

1 0
Drop every other line:

1 1
Average vertically neighboring two pixels:

The recent history forJPEG Decoder Commands are described in the following:

 If the InputFormat is YUV400 or YUV444 or YUV411, then output cannot be NV12, YUY2 or UYVY,

it has to be planar. But for 420 and 422 InputFormat, there’s a choice of having Planar, NV12,

YUY2 or UYVY OutputFormat. And the surface state should be programmed accordingly.

 Refer “Output Format YUV” field for more details.

MFX_JPEG_HUFF_TABLE_STATE

Media VDBOX

78 Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15

JPEG Encoder Commands

Following are JPEG Encoder Commands:

MFX_JPEG_PIC_STATE command is used for both encoding and decoding. Note the duplicate bits and the "Exists

If" rows that specify what the bits represent for Encoder and Decoder.

MFX_JPEG_PIC_STATE

Programming Note: For completion of partial MCUs in JPEG encoding, it is important to note the

following:

If the image’s dimensions are not an exact multiple of the MCU size, the encoded data should include

padding to round up to the next complete MCU, which is called completion of partial MCU. If the

number of lines is not aligned with MCU structure (not a multiple of MCU size, i.e. 8, 16, 32), the

encoding process needs to extend the number of lines to complete the bottom-most MCU-row.

Similarly, if the number of samples per line is not aligned with MCU structure, the encoding process

needs to extend the number of columns to complete the right-most sample MCUs. JPEG standard

recommends that any incomplete MCUs be completed by replication of the right-most column and the

bottom line of each component Y, U, and V.

The following equations are used to set the command for encoding partial MCUs.

FrameWidthlnBlksMinus1 = (((X + (H1 *8 -1)) / (H1 *8)) * H1) – 1

FrameHeightlnBlksMinus1 = (((Y + (V1*8 -1)) / (V1*8)) * V1) – 1

 For YUV400,

 PixelsInHoriLastMCU = X % 8

 PixelsInVertLastMCU = Y % 8

 For YUV420,

 PixelsInHoriLastMCU = X % 16 if X % 2 = 0, ((X % 16) + 1) % 16 if X % 2 = 1

 PixelsInVertLastMCU = Y % 16 if Y % 2 = 0, ((Y % 16) + 1) % 16 if Y % 2 = 1

 For YUV422H_2Y,

 PixelsInHoriLastMCU = X % 16 if X % 2 = 0, ((X % 16) + 1) % 16 if X % 2 = 1

 PixelsInVertLastMCU = Y % 8

 X: the number of samples per line in Y-image

 Y: the number of lines in Y-image

 H1: horizontal sampling factor of Y-image in the Frame header

 V1: vertical sampling factor of Y-image in the Frame header

Note that PixelsInHoriLastMCU=0 does not mean the num of pixels in the right-most MCUs = 0, but

does mean that the right-most MCUs are fully filled with pixels, i.e., not a partial MCU.

For example, for input image dimension 17x26 pixels and an interleaved Scan, the following equations

and the table show how to set the command for each OutputMcuStructure.

 YUV400 YUV420 YUV422H_2Y

MCU size of Y 8x8 16x16 16x8

 Media VDBOX

Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15 79

 YUV400 YUV420 YUV422H_2Y

MCU size of U and V 8x8 8x8 8x8

H1 and V1 1, 1 2, 2 2, 1

FrameWidthlnBlksMinus1 2 3 3

FrameHeightlnBlksMinus1 3 3 3

PixelsInHoriLastMCU 1 2 2

PixelsInVertLastMCU 2 10 2

MFC_JPEG_SCAN_OBJECT

MFC_JPEG_ HUFF_TABLE_STATE

The JPEG standard Table K.5 shows the real table of code length and code word as follows:

Run/Size Code length Code word

0/0 (EOB) 4 1010

0/1 2 00

0/2 2 01

0/3 3 100

0/4 4 1011

0/5 5 11010

0/6 7 1111000

0/7 8 11111000

0/8 10 1111110110

0/9 16 1111111110000010

0/A 16 1111111110000011

It is not necessary to send Run/size in the command as driver will send the increasing order of run/size.

Each symbol aligns to a DWord with the following byte structure. Each DWord (a group of 4 bytes)

contains Byte0 for Code length, Byte1 and Byte2 for Code word, and Byte3 for dummy.

Media VDBOX

80 Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15

Driver will program to always send 12 pairs of Code length and Code Word in DC coefficient table and

162 pairs in AC coefficient table. When a Huffman table contains valid full entries of Run/Size, all the

Code word and Code length will not be zero. If a Huffman table is customized or optimized, the table

can contain smaller set of Code length and Code Word, i.e., the number of entries of the real Huffman

table will be less than 12 for DC, or less than 162 for AC. For the customized Huffman table, driver will

set the missing entry (Run/Size) to Code length = 0 and Code word = 0.

MFX_PAK_INSERT_OBJECT

More Decoder and Encoder

MFD IT Mode Decode Commands

These are decoder-only commands to support the IT-mode specified in DXVA interface.

MFD_IT_OBJECT

Common Indirect IT-COEFF Data Structure

Transform-domain residual data block in AVC-IT, VC1-IT and MPEG2-IT mode follows the same data

structure.

The indirect IT-COEFF data start address in MFD_IT_OBJECT command specifies the doubleword aligned

address of the first non-zero DCT coefficient of the first block of the macroblock. Only the non-zero

coefficients are present in the data buffer and they are packed in the 8x8 block sequence of Y0, Y1, Y2,

Y3, Cb4 and Cr5, as shown in Common Indirect IT-COEFF Data Structure. When an 8x8 block is further

subdivided into 4x4 subblocks, the coefficients, if present, are organized in the subblock order. The

smallest subblock division is referred to as a transform block. The indirect IT-COEFF data length in the

command includes all the non-zero coefficients for the macroblock. It must be doubleword aligned.

Structure of the IDCT Compressed Data Buffer

Each non-zero coefficient in the indirect data buffer is contained in a doubleword-size data structure

consisting of the coefficient index, end of block (EOB) flag and the fixed-point coefficient value in 2’s

compliment form. As shown in Common Indirect IT-COEFF Data Structure, index is the row major 'raster'

index of the coefficient within a transform block (please note that it is not converted to 8x8 block basis).

A coefficient is a 16-bit value in 2's complement.

 Media VDBOX

Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15 81

Structure of a transform-domain residue unit

DWord Bit Description

0 31:16 Transform-Domain Residual (coefficient) Value. This field contains the value of the non-zero

transform-domain residual data in 2’s compliment.

 15:7 Reserved: MBZ

 6:1
Index. This field specifies the raster-scan address (raw address) of the coefficient within the

transform block. For a coefficient at Cartesian location (row, column) = (y, x) in a transform block

of width W, Index is equal to (y * W + x). For example, coefficient at location (row, column) = (0, 0)

in a 4x4 transform block has an index of 0; that at (2, 3) has an index of 2*4 + 3 = 11.

The valid range of this field depends on the size of the transform block.

Format = U6

Range = [0, 63]

 0 EOB (End of Block). This field indicates whether the transform-domain residue is the last one of

the current transform block.

Allowed transform block dimensions per coding standard

Transform Block Dimension AVC VC1 MPEG2

8x8 Yes Yes Yes

8x4 No Yes No

4x8 No Yes No

4x4 Yes Yes No

For AVC, there is intra16x16 mode, in which the DC Luma coefficients of all 4x4 sub-blocks within the

current MB are sent separately in its own 4x4 Luma block. As such, only 15 coefficients remains in each

of the 16 4x4 Luma blocks.

Inline Data Description in AVC-IT Mode

The Inline Data includes all the required MB decoding states, extracted primarily from the Slice Data,

MB Header and their derivatives. It provides information for the following operations:

1. Inverse Quantization

2. Inverse Transform

3. Intra and inter-Prediction decoding operations

4. Internal error handling

IT Mode supports only packed MV data as specified in the DXVA spec.

These state/parameter values may subject to change on a per-MB basis, and must be provided in each

MFD_IT_OBJECT command. The values set for these variables are retained internally, until they are reset

by hardware Asynchronous Reset or changed by the next MFC_AVC_PAK_OBJECT command.

Media VDBOX

82 Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15

The inline data has been designed to match the DXVA 2.0, with the exception of the starting byte

(DW0:0-7) and the ending dword (DW7:0-31).

The Deblocker Filter Control flags (FilterInternalEdgesFlag, FilterTopMbEdgeFlag and

FilterLeftMbEdgesFlag) are generated by H/W, which are depending on MbaffFrameFlag, CurrMbAddr,

PicWidthInMbs and disable_deblocking_filter_idc states.

Current MB [x,y] address is not sent, it is assumed that the H/W will keep track of the MB count and

current MB position internally.

DWord Bit Description

0 31:24
MvQuantity

Specify the number of MVs (in unit of motion vector, 4 bytes each) to be fetched

for motion compensation operation.

Decoder IT mode only supports packed MV format (DXVA). This field specifies the

exact number of MVs present for the current MB.

For a P-Skip MB, there is still 1 MV being sent (Skip MV is sent explicitly); for a B-

Direct/Skip MB, there are 2 MVs being sent.

For an Intra-MB, MvQuantity is set to 0.

MvQuantity = 0, signifies there is no MV indirect data for the current MB.

This field must be set in consistent with Indirect MV Data Length, so as not to

exceed its bound

Unsigned.

 23:20 Reserved MBZ (DXVA)

 19
DcBlockCodedYFlag

1 – the 4x4 DC-only Luma sub-block of the Intra16x16 coded MB is present; it is

still possible that all DC coefficients are zero.

0 – no 4x4 DC-only Luma sub-block is present; either not in Intra16x16 MB mode

or all DC coefficients are zero.

 18
DcBlockCodedCbFlag

For 4:2:0 case :

1 – the 2x2 DC-only Chroma Cb sub-block of all coded MB (any type) is present;

it is still possible that all DC coefficients are zero.

0 – no 2x2 DC-only Chroma Cb sub-block is present; all DC coefficients are zero.

 17
DcBlockCodedCrFlag

For 4:2:0 case :

1 – the 2x2 DC-only Chroma Cr sub-block of all coded MB (any type) is present; it

 Media VDBOX

Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15 83

DWord Bit Description

is still possible that all DC coefficients are zero.

0 – no 2x2 DC-only Chroma Cr sub-block is present; all DC coefficients are zero.

 16 Reserved MBZ (DXVA)

 15
Transform8x8Flag

0: indicates the current MB is coded with 4x4 transform and therefore the luma

residuals are presented in 4x4 blocks.

1: indicates the current MB is coded with 8x8 transform and therefore the luma

residuals are presented in 8x8 blocks.

Same as the transform_szie_8x8_flag syntax element in AVC spec.

 14
MbFieldFlag

This field specifies whether current macroblock is coded as a field or frame

macroblock in MBAFF mode.

1 = Field macroblock

0 = Frame macroblock

This field is exactly the same as FIELD_PIC_FLAG syntax element in non-MBAFF

mode.

Same as the mb_field_decoding_flag syntax element in AVC spec.

 13
IntraMbFlag

This field specifies whether the current macroblock is an Intra (I) macroblock.

0 – not an intra MB

1 – is an intra MB

I_PCM is considered as Intra MB.

For I-picture MB (IntraPicFlag =1), this field must set to 1.

This flag must be set in consistent with the interpretation of MbType (inter or

intra modes).

 12:8
MbType

This field carries the Macroblock Type. The meaning depends on IntraMbFlag.

If IntraMbFlag is 1, this field is the intra macroblock type as defined in MbType

definition for Intra Macroblock .

If IntraMbFlag is 0, this field is the inter macroblock type as defined in the first

two columns of MbType definition for Inter Macroblock (and MbSkipflag = 0). All

macroblock types in a P Slice are mapped into the corresponding types in a B

Slice. Skip and Direct modes are converted into its corresponding processing

Media VDBOX

84 Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15

DWord Bit Description

modes.

Programming note: It is exactly matched with that of DXVA 2.0.

 7
FieldMbPolarityFlag

This field indicates the field polarity of the current macroblock.

Within a MbAff frame picture, this field may be different per macroblock and is

set to 1 only for the second macroblock in a MbAff pair if FieldMbFlag is set.

Otherwise, it is set to 0.

Within a field picture, this field is set to 1 if the current picture is the bottom field

picture. Otherwise, it is set to 0. It is a constant for the whole field picture.

This field is only valid for MBAFF frame picture. It is reserved and set to 0 for a

progressive frame picture or a field picture.

0 = Current macroblock is a field macroblock from the top field (first in a MBAFF

pair)

1 = Current macroblock is a field macroblock from the bottom field (second in a

MBAFF pair)

 6
IsLastMB

1 – the current MB is the last MB in the current Slice

0 – the current MB is not the last MB in the current Slice

 5-4 Reserved MBZ (Intel encoder)

 3:0 Reserved MBZ (DXVA Decoder)

1 31:16
CbpY[bit 15:0] (Coded Block Pattern Y)

For 4x4 sub-block (when Transform8x8flag = 0 or in intra16x16) :

block in intra16x16) in a MB. The 4x4 Luma sub-blocks are numbered as

bl

k0

1 4 5 14 11 10

bl

k2

3 6 7 bit

13

12 9 8

bl

k8

9 12 13 bit

7

6 3 2

bl

k1

0

11 14 15 bit

5

4 1 0

The cbpY bit assignment is cbpY bit [15 – X] for sub-block_num X.

For 8x8 block (when Transform8x8flag = 1)

 Media VDBOX

Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15 85

DWord Bit Description

Only the lower 4 bits [3:0] are valid; the remaining upper bits [15:4] are ignored.

The 8x8 Luma blocks are numbered as

bl

k0

1 bit

3

2

bl

k2

3 bit

1

0

The cbpY bit assignment is cbpY bit [3 – X] for block_num X.

0 in a bit – indicates the corresponding 8x8 block or 4x4 sub-block is not present

(because all coefficient values are zero)

1 in a bit – indicates the corresponding 8x8 block or 4x4 sub-block is present

(although it is still possible to have all its coefficients be zero – bad coding).

 15:8
VertOrigin (Vertical Origin). This field specifies the vertical origin of current

macroblock in the destination picture in units of macroblocks.

For field macroblock pair in MBAFF frame, the vertical origins for both

macroblocks should be set as if they were located in corresponding field pictures.

For example, for field macroblock pair originated at (16, 64) pixel location in an

MBAFF frame picture, the Vertical Origin for both macroblocks should be set as 2

(macroblocks). Whether the current macroblock is the first/second (top/bottom)

in a MBAFF pair is specified by FieldMbPolarityFlag.

The macroblocks with (VertOrigin, HorzOrigin) must be delivered in the strict

order as coded in the bitstream (raster order for progressive frame or field

pictures and MBAFF pair order for MBAFF pictures). No gap is allowed. Otherwise,

hardware behavior is undefined.

Format = U8 in unit of macroblock.

 7:0
HorzOrigin (Horizontal Origin). This field specifies the horizontal origin of

current macroblock in the destination picture in units of macroblocks.

Format = U8 in unit of macroblock.

2 31:16
CbpCr (Coded Block Pattern Cr 4:2:0-only)

Only the lower 4 bits [3:0] are valid; the remaining upper bits [15:4] are ignored

(only valid for 4:2:2 and 4:4:4). The 4x4 Chroma Cr sub-blocks are numbered as

bl

k0

1 bit

3

2

bl

k2

3 bit

1

0

The cbpCr bit assignment is cbpCr bit [3 – X] for sub-block_num X.

Media VDBOX

86 Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15

DWord Bit Description

0 in a bit – indicates the corresponding 4x4 sub-block is not present (because all

coefficient values are zero)

1 in a bit – indicates the corresponding 4x4 sub-block is present (although it is

still possible to have all its coefficients be zero – bad coding).

For monochrome, this field is ignored.

 15-0
CbpCb (Coded Block Pattern Cb 4:2:0-only)

Only the lower 4 bits [3:0] are valid; the remaining upper bits [15:4] are ignored

(only valid for 4:2:2 and 4:4:4). The 4x4 Chroma Cb sub-blocks are numbered as

bl

k0

1 bit

3

2

bl

k2

3 bit

1

0

The cbpCb bit assignment is cbpCb bit [3 – X] for sub-block_num X.

0 in a bit – indicates the corresponding 4x4 sub-block is not present (because all

coefficient values are zero)

1 in a bit – indicates the corresponding 4x4 sub-block is present (although it is

still possible to have all its coefficients be zero – bad coding).

For monochrome, this field is ignored.

3 31:24 Reserved MBz

 23:16
QpPrimeCr

Driver is responsible for deriving the QpPrimeCr from QpPrimeY.

For 8-bit pixel data, QpCr is the same as QpPrimeCr, and it takes on a value in the

range of 0 to 51, positive integer.

 15:8
QpPrimeCb

Driver is responsible for deriving the QpPrimeCb from QpPrimeY.

For 8-bit pixel data, QpCb is the same as QpPrimeCb, and it takes on a value in

the range of 0 to 51, positive integer.

 7:0
QpPrimeY

This is the per-MB QP value specified for the current MB.

For 8-bit pixel data, QpY is the same as QpPrimeY, and it takes on a value in the

range of 0 to 51, positive integer.

 Media VDBOX

Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15 87

DWord Bit Description

4 to 6
31:0

Each

For intra macroblocks, definition of these fields are specified in Inline data

subfields for an Intra Macroblock

For inter macroblocks, definition of these fields are specified in Inline data

subfields for an Inter Macroblock

Indirect Data Format in AVC-IT Mode

Indirect data in AVC-IT mode consist of Motion Vectors, Transform-domain Residue (Coefficient) and

ILDB control data. All three data records have variable size. Size of each Motion Vector record is

determined by the MvQuantity value as shown in Indirect Data Format in AVC-IT Mode. ILDB control

record is fixed at the same size for all MBs in a picture. Coefficient data record is variable size per MB,

since it may only consist of non-zero coefficients.

Each MV is represented in 4 bytes, in the form of

 Lower 2 bytes : horizontal MVx component in q-pel units

 Upper 2 bytes : vertical MVy component in q-pel units

 Integer distance is measured in unit of samples in the frame or field grid position.

 Chroma MVs are not sent and are derived in the H/W.

Indirect MV record size in AVC-IT mode

Macroblock Type MVQuant

BP_L0_16x16 1

B_L1_16x16 1

B_Bi_16x16 2

BP_L0_L0_16x8 2

BP_L0_L0_8x16 2

B_L1_L1_16x8 2

B_L1_L1_8x16 2

B_L0_L1_16x8 2

B_L0_L1_8x16 2

B_L1_L0_16x8 2

Media VDBOX

88 Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15

Macroblock Type MVQuant

B_L1_L0_8x16 2

B_L0_Bi_16x8 3

B_L0_Bi_8x16 3

B_L1_Bi_16x8 3

B_L1_Bi_8x16 3

B_Bi_L0_16x8 3

B_Bi_L0_8x16 3

B_Bi_L1_16x8 3

B_Bi_L1_8x16 3

B_Bi_Bi_16x8 4

B_Bi_Bi_8x16 4

BP_8x8 Sum

For macroblock type of BP_8x8, MvQuant takes the sum of value MvQ[i] of the four individual 8x8 sub

macroblocks.

SubMbShape[i] SubMbPredMode[i] Description MvQ[i]

0 0 BP_L0_8x8 1

0 1 B_L1_8x8 1

0 2 B_BI_8x8 2

1 0 BP_L0_8x4 2

1 1 B_L1_8x4 2

1 2 B_BI_8x4 4

2 0 BP_L0_4x8 2

2 1 B_L1_4x8 2

2 2 B_BI_4x8 4

3 0 BP_L0_4x4 4

3 1 B_L1_4x4 4

3 2 B_BI_4x4 8

 Media VDBOX

Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15 89

Indirect data Deblocking Filter Control block in AVC-IT mode:

AVC Deblocker Control Data record has a fixed size for each MB in a picture and is 48 bytes or 12

Dwords in size.

DWord Bit Description

0 31:24 Reserved : MBZ (DXVA Decoder)

23 FilterTopMbEdgeFlag

22 FilterLeftMbEdgeFlag

21 FilterInternal4x4EdgesFlag

20 FilterInternal8x8EdgesFlag

19 FieldModeAboveMbFlag

18 FieldModeLeftMbFlag

17 FieldModeCurrentMbFlag

16 MbaffFrameFlag (DXVA Decoder reserved bit)

15:8 VertOrigin Current MB y position (address)

7:0 HorzOrigin Current MB x position (address)

1 31:30 bS_h13 2-bit boundary strength for internal top horiz 4-pixel edge 3

29:28 bS_h12 2-bit boundary strength for internal top horiz 4-pixel edge 2

27:26 bS_h11 2-bit boundary strength for internal top horiz 4-pixel edge 1

25:24 bS_h10 2-bit boundary strength for internal top horiz 4-pixel edge 0

23:22 bS_v33 2-bit boundary strength for internal right vert 4-pixel edge 3

21:20 bS_v23 2-bit boundary strength for internal right vert 4-pixel edge 2

19:18 bS_v13 2-bit boundary strength for internal right vert 4-pixel edge 1

17:16 bS_v03 2-bit boundary strength for internal right vert 4-pixel edge 0

15:14 bS_v32 2-bit boundary strength for internal mid vert 4-pixel edge 3

13:12 bS_v22 2-bit boundary strength for internal mid vert 4-pixel edge 2

11:10 bS_v12 2-bit boundary strength for internal mid vert 4-pixel edge 1

9:8 bS_v02 2-bit boundary strength for internal mid vert 4-pixel edge 0

7:6 bS_v31 2-bit boundary strength for internal left vert 4-pixel edge 3

5:4 bS_v21 2-bit boundary strength for internal left vert 4-pixel edge 2

3:2 bS_v11 2-bit boundary strength for internal left vert 4-pixel edge 1

1:0 bS_v01 2-bit boundary strength for internal left vert 4-pixel edge 0

2 31:28 bS_v30_0 4-bit boundary strength for Left0 4-pixel edge 3 (MSbit is wasted)

17:24 bS_v20_0 4-bit boundary strength for Left0 4-pixel edge 2 (MSbit is wasted)

23:20 bS_v10_0 4-bit boundary strength for Left0 4-pixel edge 1 (MSbit is wasted)

19:16 bS_v00_0 4-bit boundary strength for Left0 4-pixel edge 0 (MSbit is wasted)

15:14 bS_h33 2-bit boundary strength for internal bot horiz 4-pixel edge 3

13:12 bS_h32 2-bit boundary strength for internal bot horiz 4-pixel edge 2

Media VDBOX

90 Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15

DWord Bit Description

11:10 bS_h31 2-bit boundary strength for internal bot horiz 4-pixel edge 1

9:8 bS_h30 2-bit boundary strength for internal bot horiz 4-pixel edge 0

7:6 bS_h23 2-bit boundary strength for internal mid horiz 4-pixel edge 3

5:4 bS_h22 2-bit boundary strength for internal mid horiz 4-pixel edge 2

3:2 bS_h21 2-bit boundary strength for internal mid horiz 4-pixel edge 1

1:0 bS_h20 2-bit boundary strength for internal mid horiz 4-pixel edge 0

3 31:28 bS_h03_0 4-bit boundary strength for Top0 4-pixel edge 3 (MSbit is wasted)

27:24 bS_h02_0 4-bit boundary strength for Top0 4-pixel edge 2 (MSbit is wasted)

23:20 bS_h01_0 4-bit boundary strength for Top0 4-pixel edge 1 (MSbit is wasted)

19:16 bS_h00_0 4-bit boundary strength for Top0 4-pixel edge 0 (MSbit is wasted)

15:12 bS_v03 4-bit boundary strength for Left1 4-pixel edge 3 (MSbit is wasted)

11:8 bS_v02 4-bit boundary strength for Left1 4-pixel edge 2 (MSbit is wasted)

7:4 bS_v01 4-bit boundary strength for Left1 4-pixel edge 1 (MSbit is wasted)

3:0 bS_v00 4-bit boundary strength for Left1 4-pixel edge 0 (MSbit is wasted)

4 31:24 bIndexBinternal_Y Internal index B for Y

23:16 bIndexAinternal_Y Internal index A for Y

15:12 bS_h03_1 4-bit boundary strength for Top1 4-pixel edge 3 (MSbit is wasted)

11:8 bS_h02_1 4-bit boundary strength for Top1 4-pixel edge 2 (MSbit is wasted)

7:4 bS_h01_1 4-bit boundary strength for Top1 4-pixel edge 1 (MSbit is wasted)

3:0 bS_h00_1 4-bit boundary strength for Top1 4-pixel edge 0 (MSbit is wasted)

5 31:24 bIndexBleft1_Y

23:16 bIndexAleft1_Y

15:8 bIndexBleft0_Y

7:0 bIndexAleft0_Y

6 31:24 bIndexBtop1_Y

23:16 bIndexAtop1_Y

15:8 bIndexBtop0_Y

7:0 bIndexAtop0_Y

7 31:24 bIndexBleft0_Cb

23:16 bIndexAleft0_Cb

15:8 bIndexBinternal_Cb

7:0 bIndexAinternal_Cb

8 31:24 bIndexBtop0_Cb

23:16 bIndexAtop0_Cb

15:8 bIndexBleft1_Cb

7:0 bIndexAleft1_Cb

 Media VDBOX

Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15 91

DWord Bit Description

9 31:24 bIndexBinternal_Cr

23:16 bIndexAinternal_Cr

15:8 bIndexBtop1_Cb

7:0 bIndexAtop1_Cb

10 31:24 bIndexBleft1_Cr

23:16 bIndexAleft1_Cr

15:8 bIndexBleft0_Cr

7:0 bIndexAleft0_Cr

11 31:24 bIndexBtop1_Cr

23:16 bIndexAtop1_Cr

15:8 bIndexBtop0_Cr

7:0 bIndexAtop0_Cr

Inline Data Description in VC1-IT Mode

DWord Bits Description

+0 31:28
MvFieldSelect. A bit-wise representation indicating which field in the reference frame is used as

the reference field for current field. It’s only used in decoding interlaced pictures.

This field is valid for non-intra macroblock only.

Bit Description

28 Forward predict of current frame/field or TOP field of interlace frame, or block

0 in 4MV mode.

29 Backward predict of current frame/field or TOP field of interlace frame, or

forward predict for block 1 in 4MV mode.

30 Forward predict of BOTTOM field of interlace frame, or block 2 in 4MV mode.

31 Backward predict of BOTTOM field of interlace frame, or forward predict for

block 3 in 4MV mode.

Each corresponding bit has the following indication.

0 = The prediction is taken from the top reference field.

1 = The prediction is taken from the bottom reference field.

 27 Reserved. MBZ

 26
MvFieldSelectChroma . This field specifies the polarity of reference field for chroma blocks when

their motion vector is derived in Motion4MV mode for interlaced (field) picture.

Non-intra macroblock only. This field is derived from MvFieldSelect.

Media VDBOX

92 Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15

DWord Bits Description

0 = The prediction is taken from the top reference field.

1 = The prediction is taken from the bottom reference field.

 25:24
MotionType – Motion Type

For frame picture, a macroblock may only be either 00 or 10.

For interlace picture, a macroblock may be of any motion types. It can be 01 if and only if DctType

is 1.

This field is 00 if and only if IntraMacroblock is 1.

00 = Intra

01 = Field Motion.

10 = Frame Motion or no motion.

Others = Reserved.

 23 Reserved. MBZ

 22
MvSwitch. This field specifies whether the prediction needs to be switched from forward to

backward or vice versa for single directional prediction for top and bottom fields of interlace

frame B macroblocks.

0 = No directional prediction switch from top field to bottom field

1 = Switch directional prediction from top field to bottom field

 21
DctType. This field specifies whether the residual data is coded as field residual or frame residual

for interlaced picture. This field can be 1 only if MotionType is 00 (intra) or 01 (field motion).

For progressive picture, this field must be set to ‘0’, i.e. all macrobalcoks are frame macroblock.

0 = Frame residual type.

1 = Field residual type.

 20
OverlapTransform. This field indicates whether overlap smoothing filter should be performed on

I-block boundaries.

0 = No overlap smoothing filter.

1 = Overlap smoothing filter performed.

 19
Motion4MV. This field indicates whether current macroblock a progressive P picture uses 4

motion vectors, one for each luminance block.

It’s only valid for progressive P-picture decoding. Otherwise, it is reserved and MBZ. For example,

with MotionForward is 0, this field must also be set to 0.

0 = 1MV-mode.

 Media VDBOX

Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15 93

DWord Bits Description

1 = 4MV-mode.

 18
MotionBackward. This field specifies whether the backward motion vector is active for B-picture.

This field must be 0 if Motion4MV is 1 (no backward motion vector in 4MV-mode).

0 = No backward motion vector.

1 = Use backward motion vector(s).

 17
MotionForward. This field specifies whether the forward motion vector is active for P and B

pictures.

0 = No forward motion vector.

1 = Use forward motion vector(s).

 16
IntraMacroblock. This field specifies if the current macroblock is intra-coded. When set, Coded

Block Pattern is ignored and no prediction is performed (i.e., no motion vectors are used).

For field motion, this field indicates whether the top field of the macroblock is coded as intra.

0 = Non-intra macroblock.

1 = Intra macroblock.

 15:12
LumaIntra8x8Flag – Luma Intra 8x8 Flag

This field specifies whether each of the four 8x8 luminance blocks are intra or inter coded when

Motion4MV is set to 4MV-Mode.

Each bit corresponds to one block. “0” indicates the block is inter coded and ‘1’ indicates the block

is intra coded.

When Motion4MV is not 4MV-Mode, this field is reserved and MBZ.

Bit 15: Y0

Bit 14: Y1

Bit 13: Y2

Bit 12: Y3

 11:6
CBP - Coded Block Pattern

This field specifies whether the 8x8 residue blocks in the macroblock are present or not.

Each bit corresponds to one block. “0” indicates residue block isn’t present, “1” indicates residue

block is present.

Note: For each block in an intra-coded macroblock or an intra-coded block in a P macroblock in

4MV-Mode, the corresponding CBP must be 1. Subsequently, there must be at least one

coefficient (this coefficient might be zero) in the indirect data buffer associated with the bock (i.e.

residue block must be present).

Media VDBOX

94 Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15

DWord Bits Description

Bit 11: Y0

Bit 10: Y1

Bit 9: Y2

Bit 8: Y3

Bit 7: Cb4

Bit 6: Cr5

 5
ChromaIntraFlag - Derived Chroma Intra Flag

This field specifies whether the chroma blocks should be treated as intra blocks based on motion

vector derivation process in 4MV mode.

0 = Chroma blocks are not coded as intra.

1 = Chroma blocks are coded as intra

 4
LastRowFlag – Last Row Flag

This field indicates that the current macroblock belongs to the last row of the picture.

This field may be used by the kernel to manage pixel output when overlap transform is on.

0 = Not in the last row

1 = In the last row

3 LastMBInRow – This field indicates the last MB in row flag.

2:0 Reserved. MBZ

+1 32:26 Reserved. MBZ

 25:24
OSEdgeMaskChroma

This field contains the overscan edge mask for the Chroma blocks.

The left edge masks are hardware and the top edge masks are used by the kernel software.

Bit 24: Top edge of block Cb/Cr

Bit 25: Left edge of block Cb/Cr

 23:16
OSEdgeMaskLuma

This field contains the overscan edge mask for the Luma blocks.

The left edge masks are hardware and the top edge masks are used by the kernel software.

Bit 16: Top edge of block Y0

Bit 17: Top edge of block Y1

Bit 18: Top edge of block Y2

 Media VDBOX

Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15 95

DWord Bits Description

Bit 19: Top edge of block Y3

Bit 20: Left edge of block Y0

Bit 21: Left edge of block Y1

Bit 22: Left edge of block Y2

Bit 23: Left edge of block Y3

Programming Note: In order to create 8 predication bits from each edge mask bit, software may first

create a 0, 1 vector by using a shr instruction with a step shift vector like 0, 1, 2, 3 (e.g. using

immediate of type :v. Then each 0 or 1 of the LSB can be repeated by an and instruction to create 8

bits to the flag register. Alternatively, this can be achieved with one and instruction using a CURBE

constant map of bit 0 and bit 1 mask.

 15:8
VertOrigin - Vertical Origin

In unit of macroblocks relative to the current picture (frame or field).

 7:0
HorzOrigin - Horizontal Origin

In unit of macroblocks.

+2 31:16 MotionVector[0].Vert

 15:0 MotionVector[0].Horz

+3 31:0 MotionVector[1]

+4 31:0 MotionVector[2]

+5 31:0 MotionVector[3]

+6 31:0
MotionVectorChroma

This field is not valid for a field motion in an interlaced frame picture where 4 MVs for chroma

blocks.

Notes: This field is derived from MotionVector[3:0] as described in the following section.

Media VDBOX

96 Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15

+7 31:24
Subblock Code for Y3

The following subblock coding definition applies to all 6 subblock coding bytes. Bits 7:6 are reserved.

Subblock Partitioning

(Bits [1:0])

Specify Transform uses for an 8x8 block

Subblock Present

(0 means not present, 1 means

present)

Bits

[1:0]
Meaning Bit 2 Bit 3 Bit 4 Bit 5

00 Single 8x8 block (sb0) Sb0 Don’t

care

Don’t

care

Don’t

care

01 Two 8x4 subblocks (sb0-1) Sb1

(bot)

Sb0 (top) Don’t

care

Don’t

care

10 Two 4x8 subblocks (sb0-1) Sb1

(right)

Sb0 (left) Don’t

care

Don’t

care

11 Four 4x4 subblocks (sb0-3) Sb3

(lower

right)

Sb2

(lower

left)

Sb1

(upper

right)

Sb0

(upper

left)

 23:16 Subblock Code for Y2

 15:8 Subblock Code for Y1

 7:0 Subblock Code for Y0

+8 31:16 Reserved. MBZ

 15:8 Subblock Code for Cr

 7:0 Subblock Code for Cb

+9 31:24 ILDB control data for block Y3

 23:16 ILDB control data for block Y2

 15:8 ILDB control data for block Y1

 7:0 ILDB control data for block Y0

+10 31:16 Reserved

 15:8 ILDB control data for Cr block

 7:0 ILDB control data for Cb block

Indirect Data Format in VC1-IT Mode

VC1-IT mode only contains IT-COEFF indirect data which is described in Common Indirect IT-COEFF

Data Structure.

 Media VDBOX

Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15 97

Inline Data Description in MPEG2-IT Mode

The content in this command is similar to that in the MEDIA_OBJECT command in IS mode described in

the Media Chapter.

Each MFD_IT_OBJECT command corresponds to the processing of one macroblock. Macroblock

parameters are passed in as inline data and the non-zero DCT coefficient data for the macroblock is

passed in as indirect data.

Inline Data Description in MPEG2-IT Mode depicts the inline data format. Inline data starts at dword 7 of

MFD_IT_OBJECT command. There are 7 dwords total.

Inline data in MPEG2-IT Mode

DWord Bit Description

+0 31:28
Motion Vertical Field Select. A bit-wise representation of a long [2][2] array as defined in

§6.3.17.2 of the ISO/IEC 13818-2 (see also §7.6.4).

Bit MVector[r] MVector[s] MotionVerticalFieldSelect Index

28 0 0 0

29 0 1 1

30 1 0 2

31 1 1 3

Format = MC_MotionVerticalFieldSelect.

0 = The prediction is taken from the top reference field.

1 = The prediction is taken from the bottom reference field.

 27 Reserved (was Second Field)

 26 Reserved. (HWMC mode)

 25:24
Motion Type. When combined with the destination picture type (field or frame) this Motion Type

field indicates the type of motion to be applied to the macroblock. See ISO/IEC 13818-2 §6.3.17.1,

Tables 6-17, 6-18. In particular, the device supports dual-prime motion prediction (11) in both

frame and field picture type.

Format = MC_MotionType

Value

Destination = Frame

Picture_Structure = 11

Destination = Field

Picture_Structure != 11

‘00’ Reserved Reserved

‘01’ Field Field

‘10’ Frame 16x8

‘11’ Dual-Prime Dual-Prime

Media VDBOX

98 Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15

DWord Bit Description

 23:22 Reserved. (Scan method)

 21
DCT Type. This field specifies the DCT type of the current macroblock. The kernel should ignore

this field when processing Cb/Cr data. See ISO/IEC 13818-2 §6.3.17.1. This field is zero if Coded

Block Pattern is also zero (no coded blocks present).

0 = MC_FRAME_DCT (Macroblock is frame DCT coded).

1 = MC_FIELD_DCT (Macroblock is field DCT coded).

 20 Reserved (was Overlap Transform - H261 Loop Filter).

 19 Reserved (was 4MV Mode - H263)

 18
Macroblock Motion Backward. This field specifies if the backward motion vector is active. See

ISO/IEC 13818-2 Tables B-2 through B-4.

0 = No backward motion vector.

1 = Use backward motion vector(s).

 17
Macroblock Motion Forward. This field specifies if the forward motion vector is active. See

ISO/IEC 13818-2 Tables B-2 through B-4.

0 = No forward motion vector.

1 = Use forward motion vector(s).

 16
Macroblock Intra Type. This field specifies if the current macroblock is intra-coded. When set,

Coded Block Pattern is ignored and no prediction is performed (i.e., no motion vectors are used).

See ISO/IEC 13818-2 Tables B-2 through B-4.

0 = Non-intra macroblock.

1 = Intra macroblock.

 15:12 Reserved : MBZ

 11:6
Coded Block Pattern. This field specifies whether blocks are present or not.

Format = 6-bit mask.

Bit 11: Y0

Bit 10: Y1

Bit 9: Y2

Bit 8: Y3

Bit 7: Cb4

Bit 6: Cr5

5:4 Reserved. (Quantization Scale Code)

3 LastMBInRow – This field indicates the last MB in each row.

 Media VDBOX

Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15 99

DWord Bit Description

2:0 Reserved: MBZ

+1 31:16 Reserved : MBZ

 15:8
VertOrigin - Vertical Origin

In unit of macroblocks relative to the current picture (frame or field).

7:0
HorzOrigin - Horizontal Origin

In unit of macroblocks.

+2 31:16 Motion Vectors – Field 0, Forward, Vertical Component. Each vector component is a 16-bit

two’s-complement value. The vector is relative to the current macroblock location. According to

ISO/IEC 13818-2 Table 8, the valid range of each vector component is [-2048, +2047.5], implying a

format of s11.1. However, it should be noted that motion vector values are sign extended to 16

bits.

 15:0 Motion Vectors – Field 0, Forward, Horizontal Component

+3 31:16 Motion Vectors – Field 0, Backward, Vertical Component

 15:0 Motion Vectors – Field 0, Backward, Horizontal Component

+4 31:16 Motion Vectors – Field 1, Forward, Vertical Component

 15:0 Motion Vectors – Field 1, Forward, Horizontal Component

+5 31:16 Motion Vectors – Field 1, Backward, Vertical Component

 15:0 Motion Vectors – Field 1, Backward, Horizontal Component

Indirect Data Format in MPEG2-IT Mode

MPEG2-IT mode only contains IT-COEFF indirect data which is described in Section Common Indirect IT-

COEFF Data Structure.

MFX Deblocking Commands

Following are MFX Deblocking Commands:

MFX_DBK_OBJECT

MFX Error Handling

This topic is currently under development.

Media VDBOX

100 Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15

Encoder StreamOut Mode Data Structure Definition

When StreamOut is enabled, per MB (and/or per Slice, per Picture) intermediated coding data (for

example, bit allocated for each MB, and so on) are sent to the memory in a fixed record format (and of

fixed size) from the PAK. The per-MB records must be written in a strict raster order and with no gap

(that is, every MB regardless of its mb_type and slice type, must have an entry in the StreamOut buffer).

Therefore, the consumer of the StreamOut data can offset into the StreamOut Buffer (StreamOut Data

Destination Base Address) using individual MB addresses.

Adding per macroblock stream out for PAK is for the following purposes:

 Immediate multi-pass PAK (without host or EU intervention)

 3200-bit conformance

 Re-quantization

 Providing information for host for offline processing

 Providing information for updated QP’s

The description for the fixed format PAK streamout record:

Streamout Pointer: Use the existing streamout pointer and enabler

Per Macroblock Information (a fixed size structure)

DWord Bit Description

0 31:24 MbQpY - Actual QPY used by the macroblock.

23:16 [CHV] MbClock16 – MB compute clocks in 16-clock unit.

15:8 Reserved: MBZ

7:4 Reserved: MBZ (future conformance flags)

3 Reserved

2 MbRcFlag: MB level Rate control flag(pass through)

 The same value as RateControlCounterEnable of MFX_AVC_SLICE_STATE Command

1 MbInterConfFlag: MB level InterMB conformance flag to trigger mutli-pass

 1- if total Bit Count of an inter macroblock is more than Inter Conformance Max size limit in the

MFX_AVC_IMG_STATE Command

0 MbIntraConfFlag: MB level IntraMB conformance flag to trigger mutli-pass

 1- if total Bit Count of an intra macroblock is more than Intra Conformance Max size limit in the

MFX_AVC_IMG_STATE Command

1 31:29 Reserved

28:16 MbBits: Total Bit Count for the macroblock

15:12 Reserved

12:0 MbHdrBits: Header Bit count (bit count due to Pre-coefficient data) for the macroblock

2 31:27 Reserved

26:0 Cbp: Coded Block Pattern of sub-blocks

 Media VDBOX

Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15 101

DWord Bit Description

3 31:30 Reserved

29 IntraMBFlag

28:24 MBType5Bits

23:17 Reserved

16 ClampFlag: Coefficient clamping flag for RC (Status)

 1 - Indicates if clamping of any coefficient is done on the macroblock for Rate Control

15:0 Reserved (future QRC stat output)

Media VDBOX

102 Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15

PAK Multi-Pass

Multi-Pass PAK Usages:

 Intra MB 3200-bit conformance

 Inter MB Re-quantization

 Frame level Re-quantization

How to Enable Multi-Pass PAK?

 Using the existing conditional batch buffer execution capability to skip/execute the second pass

o How to dynamically change the condition?

 Defined one error condition register with a mask. Do HW status page update at

the end of the first pass. 0 means all OK, non-zero means there is an error

condition, requiring second pass. Mask is used by the host to control what kind

of multi-pass is intended.

 For example, one error bit is 3200-bit conformance violation. Another error bit is

the total bit count exceeds (too much or too little) the target range (need to

define the target range in the state).

 The logic pefectly fits in the conditional batch buffer control logic that VCS

has today in GT. There is no additional logic need to be added in VCS to

support media functionality. (Batch Buffer Skip: This field only takes effect if

Compare Semaphore is set and the value at Semaphore Address is NOT greater

than the Semaphore Data Dword).

 Adding a picture level state command to enable and control the behavior of the second pass PAK

o How to control the re-PAK? Added 3 conformance flags (error registers) in the per-MB

streamout. Then the error control is based on the error register and the mask defined in

picture level states. There are 8 register flags defined out of which only the 3200-bit case

has usage model defined for today. The rest are left for future usage.

Issues and Limitations:

 There is no programmable engine in MFX for flexible control: Therefore, whatever we have

defined must consider flexibility

Following 2 MI packets are used inside VCS without any change to support Multipass-PAK behaviour.

 MI_Conditional_Batch_Buffer_End

 Memory Interface Registers

 Media VDBOX

Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15 103

Driver Usage

Driver places Image states in one batch buffer and all slice level and macroblock level states into

another batch buffer and link 2 batch buffers. Also replicate Image states with multipass changes in

another batch buffer link them to slice/macroblock batch buffer. In this way, only Image states are

replicated but not the slice/macroblock states. The image states includes all buffers defined at

image(indirectMV, original pixel buffer, etc). Following changes are needed in the Multipass Image State

 Reset- Stream-Out Enable(disable stream out in the second pass)

 Set- MacroblockStatEnable (enable reading of macroblock status buffer)

 Reset- 3200-bit conformance (do not report 3200-bit conformance)

Define Conditional Batch Buffer End for CS/VCSVINunit

Programming Reference

This topic is currently under development.

Monochrome Picture Processing

Monochrome picture is specified using the Surface State with Surface Format of 12. Therefore, MFX

hardware, in either decode or encode mode, does not generate any read or write traffic for U/V

components. The motivation for this bandwidth optimization is that monochrome video coding might

be used for wireless display.

For Encoder:

1. No read in UV original components

2. Processing UV component - no

3. Reconstructed UV component reference picture - no

4. Filter UV component - no

For Decoder:

1. VLD mode: There is no color component coming out of the decoding pipeline in Monochrome

mode and so no processing and not writing output.

2. IT mode: There is no color component in the coefficient buffer, and so no processing and not

writing output.

Media VDBOX

104 Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15

Context Switch

There is no pre-emption for the BCS pipeline; hence every command buffer is required to contain all the

states setup (preamble). Specifically, CPU can not interrupt the BCS-BSD pipe, to stop the operation in

the middle of decoding a bitstream data.

Switch of contexts can only be performed at picture boundary.

No state needs to be saved.

PMSI Support

This topic is currently under development.

Pipeline Flush

Implicit flush for AVC and VC1 is performed at the end of Slice : for MPEG2 is done when a new

image/picture command is issued. Because MPEG2 a slice can be one MB, no point to flush. MPEG2 will

snoop the next command if it is an img_state command.

Explicit flush MI (1 bit to do media pipeline vs Gx pipeline) flush and cache flush (switch reference

frame) – MI flush has bit to do cache flush. MI flush is for driver synchronization.

 Media VDBOX

Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15 105

MMIO Interface

A set of registers are defined and accessible through MMIO interface to serve multiple purposes:

 Use for system configuration

 For accessing Performance counters

Register Name Description

Register

Type

Address

Offset Dec/Enc

MFD ERROR Status MFD ERROR STATUS_VLD ERROR

flags and counter

RO 12400 Dec

Reserved MBZ 12404~1241C

MFD picture-level parameter VC1 picture level parameters R/W 12420 Dec

Reserved MBZ 12434

MFX PIPELINE_STATUS_FLAGS MFX PIPELINE STATUS Flags_MFX

pipeline mode flags

RO 12438 Dec

MFX_Error_Injection_Parameter Control HW error injector WO 12454 Dec

Reserved 12458~1245C

MFX Frame Performance count Number of clocks spent

decoding/encoding a frame

RO 12460 Dec/Enc

MFX Slice Performance count Number of clocks spent

decoding/encoding a slice

RO 12464 Dec/Enc

MFX Frame Macroblock count Number of MBs decoded/encoded

per frame

RO 12468 Dec/Enc

MFD Frame BITSTREAM SE/BIN count Number of bin/SE decoded per

frame

RO 1246C Dec

MFX Memory Latency count1 Reference picture read latency -

min and max

RO 12470 Dec/Enc

MFX Memory Latency count2 Reference picture read latency -

Accumulative (used for compute

AVE latency)

RO 12474 Dec/ENc

MFX Memory Latency count3 row-store/bit-stream memory read

latency -min and max

RO 12478 Dec/Enc

MFX Memory Latency count4 row-store/bit-stream memory read

latency - accumulative (used to

compute AVE latency)

RO 1247C Dec/End

MFX Frame row-stored/bit-stream read

Count

of row-store memory requests

sent

RO 12480 Dec/End

MFX Motion Comp read Count total number of CL memory

accesses per frame

RO 12484 Dec/ENd

MFX Motion Comp MISS Count total number of CL HITs per frame RO 12488 Dec/ENd

Reserved 1248C~1249C

Media VDBOX

106 Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15

MFC_BITSTREAM_BYTECOUNT_FRAME Total Bitstream Output Byte Count

register per Frame

RO 124A0 Enc

MFC_BITSTREAM_SE_BITCOUNT_FRAME Bitstream Output total Byte Count

for syntax eements (total byes of

MB data from SEC per frame)

RO 124A4 Enc

MFC_AVC_CABAC_BIN_COUNT_FRAME Bitstream Output total bin count

per frame

RO 124A8 Enc

MFC_AVC_CABAC_INSERTION_COUNT Bitstream Output CABAC Insertion

Count Register

RO 124AC Enc

MFC_AVC_MINSIZE_PADDING_COUNT Bitstream Output Minimal Size

Padding Count Register

RO 124B0 Enc

MFC_IMAGE_STATUS_MASK image status(flags). R/W 124B4 Enc

MFC_IMAGE_STATUS_CONTROL suggested data for next frame in

multi-pass.

RO 124B8 Enc

MFC_QP_STATUS_COUNT Overall adjusted delta QP via

multi-pass, Sum of QPY for all

macroblocks of the frame

RO 124BC Enc

 124C0~124CC Enc

MFC_BITSTREAM_BYTECOUNT_SLICE Bitstream Output Byte Count

Register per Slice

RO 124D0 Enc

MFC_BITSTREAM_SE_BITCOUNT_SLICE Bitstream Output Bit Count for the

last Syntax Element Register

RO 124D4 Enc

PAK_ REPORT_WARNING MPC Warning Register RO 124E4 Enc

PAK_REPORT_ERROR MPC Error Register RO 124E8 Enc

PAK_REPORT_RUNNING PAK_REPORT_RUNNING status

register

RO 124EC Enc

Reserved 124F0~124FC Enc

 Media VDBOX

Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15 107

Decoder Registers

Following are Decoder Registers:

MFD_ERROR_STATUS - MFD Error Status

AVC CAVLC

AVC CABAC

VC1

MPEG2

JPEG

MFD_PICTURE_PARAM - MFD Picture Parameter

MFX_STATUS_FLAGS - MFX Pipeline Status Flags

MFX_FRAME_PERFORMANCE_CT - MFX Frame Performance Count

MFX_SLICE_PERFORM_CT - MFX Slice Performance Count

MFX_MB_COUNT - MFX Frame Macroblock Count

MFX_SE-BIN_CT - MFX Frame BitStream SE/BIN Count

MFX_LAT_CT1 - MFX_Memory_Latency_Count1

MFX_LAT_CT2 - MFX Memory Latency Count2

MFX_LAT_CT3 - MFX Memory Latency Count3

MFX_LAT_CT4 - MFX Memory Latency Count4

MFX_SE-BIN_CT - MFX Frame BitStream SE/BIN Count

MFX_READ_CT - MFX Frame Motion Comp Read Count

MFX_MISS_CT - MFX Frame Motion Comp Miss Count

Media VDBOX

108 Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15

Encoder Registers

Following are the Encoder Registers:

MFC_VIN_AVD_ERROR_CNTR - MFC_AVC Bitstream Decoding Front-End Parsing Logic Error Counter

MFC_BITSTREAM_BYTECOUNT_FRAME - Reported Bitstream Output Byte Count per Frame Register

MFC_BITSTREAM_SE_BITCOUNT_FRAME - Reported Bitstream Output Bit Count for Syntax Elements
Only Register

MFC_AVC_CABAC_BIN_COUNT_FRAME - Reported Bitstream Output CABAC Bin Count Register

AVC_CABAC_INSERTION_COUNT - MFC_AVC_CABAC_INSERTION_COUNT

MFC_AVC_MINSIZE_PADDING_COUNT - Bitstream Output Minimal Size Padding Count Report
Register

MFC_IMAGE_STATUS_MASK - MFC Image Status Mask

MFC_IMAGE_STATUS_CONTROL - MFC Image Status Control

MFC_QUP_CT - MFC QP Status Count

MFC_BITSTREAM_BYTECOUNT_SLICE - Bitstream Output Byte Count Per Slice Report Register

MFC_BITSTREAM_SE_BITCOUNT_SLICE - Bitstream Output Bit Count for the last Syntax Element
Report Register

MFX_PAK_ERROR Register

MFX_PAK_WARNING Register

MFX_VP8_CNTRL_MASK - Reported BitRateControl parameter Mask

MFX_VP8_CNTRL_STATUS - Reported BitRateControl parameter Status

MFX_VP8_FRM_BYTE_CNT - Reported Final Bitstream Byte Count

MFX_VP8_FRM_ZERO_PAD - Reported Frame Zero Padding Byte Count

MFX_VP8_BRC_DQindex - Reported BitRateControl DeltaQindex

MFX_VP8_BRC_DLoopFilter - Reported BitRateControl DeltaLoopFilter

MFX_VP8_BRC_CumulativeDQindex01 - Reported BitRateControl CumulativeDeltaQindex and
Qindex 01

MFX_VP8_BRC_CumulativeDQindex23 - Reported BitRateControl CumulativeDeltaQindex and
Qindex 23

MFX_VP8_BRC_CumulativeDLoopFilter01 - Reported BitRateControl CumulativeDeltaLoopFilter and
LoopFilter 01

MFX_VP8_BRC_CumulativeDLoopFilter23 - Reported BitRateControl CumulativeDeltaLoopFilter and
LoopFilter 23

MFX_VP8_BRC_Convergence_Status - Reported BitRateControl Convergence Status

 Media VDBOX

Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15 109

MMIO Interface

A set of registers are defined and accessible through MMIO interface to serve multiple purposes:

 Use as Status register for Bit Rate Control

 Use for Context Switch in Multipass

Register Name Description

Register

Type

Address

Offset Dec/Enc

MFX_VP8_CNTRL_MASK BitRateControl parameter Mask

register

RO 12900 Enc

MFX_VP8_CNTRL_STATUS BitRateControl parameter Status

register

RO 12904 Enc

MFX_VP8_FRM_BYTE_CNT Final Bitstream Byte count RO 12908 Enc

MFX_VP8_FRM_ZERO_PAD Final Bitstream Zero Padding

Byte count

RO 1290B Enc

MFX_VP8_BRC_DQindex BitRateControl Delta Qindex RO 12910 Enc

MFX_VP8_BRC_DLoopFilter BitRateControl Delta LoopFilter RO 12914 Enc

MFX_VP8_BRC_CumulativeDQindex01 BitRateControl Cumulative Delta

Qindex for Seg0/1

RW (RO for

CHV A0)

12918 Enc

MFX_VP8_BRC_CumulativeDQindex23 BitRateControl Cumulative Delta

Qindex for Seg2/3

RW (RO for

CHV A0)

1291C Enc

MFX_VP8_BRC_CumulativeDLoopFilter01 BitRateControl Cumulative Delta

LoopFilter for Seg0/1

RW (RO for

CHV A0)

12920 Enc

MFX_VP8_BRC_CumulativeDLoopFilter23 BitRateControl Cumulative Delta

LoopFilter for Seg2/3

RW (RO for

CHV A0)

12924 Enc

MFX_VP8_BRC_Convergence_Status BitRateControl Convergence

Status

RW (RO for

CHV A0)

12928 Enc

Media VDBOX

110 Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15

The following registers are the same as above except they have a different Address Offset. They are

used if the second VDbox (VP8 Encoder) exists.

Register Name Description

Register

Type

Address

Offset Dec/Enc

MFX_VP8_CNTRL_MASK BitRateControl parameter Mask

register

RO 1C900 Enc

MFX_VP8_CNTRL_STATUS BitRateControl parameter Status

register

RO 1C904 Enc

MFX_VP8_FRM_BYTE_CNT Final Bitstream Byte count RO 1C908 Enc

MFX_VP8_FRM_ZERO_PAD Final Bitstream Zero Padding

Byte count

RO 1C90B Enc

MFX_VP8_BRC_DQindex BitRateControl Delta Qindex RO 1C910 Enc

MFX_VP8_BRC_DLoopFilter BitRateControl Delta LoopFilter RO 1C914 Enc

MFX_VP8_BRC_CumulativeDQindex01 BitRateControl Cumulative Delta

Qindex for Seg0/1

RW (RO for

CHV A0)

1C918 Enc

MFX_VP8_BRC_CumulativeDQindex23 BitRateControl Cumulative Delta

Qindex for Seg2/3

RW (RO for

CHV A0)

1C91C Enc

MFX_VP8_BRC_CumulativeDLoopFilter01 BitRateControl Cumulative Delta

LoopFilter for Seg0/1

RW (RO for

CHV A0)

1C920 Enc

MFX_VP8_BRC_CumulativeDLoopFilter23 BitRateControl Cumulative Delta

LoopFilter for Seg2/3

RW (RO for

CHV A0)

1C924 Enc

MFX_VP8_BRC_Convergence_Status BitRateControl Convergence

Status

RW (RO for

CHV A0)

1C928 Enc

 Media VDBOX

Doc Ref # IHD-OS-CHV-BSW-Vol 8-10.15 111

Row Store Sizes and Allocations

 AVC VC1 MPEG2 JPEG IT ENC SEC ENC

vin_vmx_pixcoefind_

 addr[31:6]

Bitstream Bitstream Bitstream Bitstream VDS COEF Orig Pix BSP data

vin_vmx_mvbsdrs_

 addr[31:6]

VAD BSD VMD RS VDS MV MPC MV

vin_vmx_mpcildbmpr_

 addr[31:6]

VAM MPR VDS ILDB MPC RS

vin_vmx_dmv*_

 addr[31:6]

VAM DMV VCP DMV

vin_vmx_bp_addr

 [31:0]

 VCP BP

MPEG2 VLD Decoding Mode :

use BSD Row Store only, and

MPEG2 IT Decoding Mode :

MPEG2 IT mode does not need row-store

JPEG VLD Decoding Mode : no row store is needed

