

Intel® Open Source HD Graphics Programmers' Reference Manual (PRM)

Volume 4: Configurations

For the 2014-2015 Intel Atom™ Processors, Celeron™ Processors and Pentium™ Processors based on the "Cherry Trail/Braswell" Platform (Cherryview/Braswell graphics)

October 2015, Revision 1.1

Creative Commons License

You are free to Share - to copy, distribute, display, and perform the work under the following conditions:

- **Attribution.** You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work).
- No Derivative Works. You may not alter, transform, or build upon this work.

Notices and Disclaimers

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Implementations of the I2C bus/protocol may require licenses from various entities, including Philips Electronics N.V. and North American Philips Corporation.

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

* Other names and brands may be claimed as the property of others.

Copyright © 2015, Intel Corporation. All rights reserved.

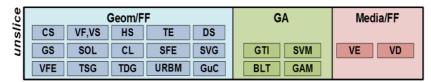
Table of Contents

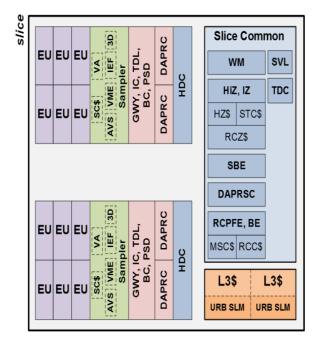
Configurations Overview	1
Configurations	
Top Level Block Diagrams	
Device Attributes	
Steppings and Device IDs	7

Configurations Overview

The Intel "Gen" Graphics Architecture was first introduced to the market in 2004. Since that time, the architecture and its implementation have evolved to add many new features, increase performance, and improve power efficiency.

Configurations

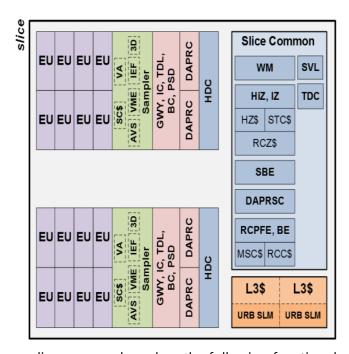

This chapter contains configurations details as described in the following sections:


- Top Level Block Diagrams
- Device Attributes
- Steppings & Device IDs

Top Level Block Diagrams

The diagram below shows basic feature blocks of the Cherryview (CHV) and Braswell (BSW) graphics architecture:

12 EU (2x6) Configuration:



16 EU (2x8) Configuration:

ce		(Geom/F	F	GA	Media/FF	
sli		VF,VS	HS	TE	DS		
nn		SOL	CL	SFE	SVG	GTI SVM	VE VD
	VFE	TSG	TDG	URBM	GuC	BLT GAM	

The above diagrams are based on the following functional partitions:

- (a) Geometry Fixed Functions (Geom/FF)
- (b) Media Fixed Functions (Media/FF)
- (c) Global Assets and GT Interface (GA)
- (d) One or more Subslices (two shown)
- (e) A Slice Common block
- (f) An L3 Cache (L3\$) block

Note that the combination of (a), (b), and (c) is typically referred to as the "unslice", while a combination of (d), (e), and (f) is referred to as a compute "slice".

The functionality in each of these groupings is further broken down as follows:

- Unslice Fixed function pipelines for 3D, GPGPU, and Media operations, and interface to the outside world.
 - The 3D Geometry / Fixed Function (Geom/FF) block consisting of:
 - 3D fixed function pipeline (CS, VFVS, HS, TE, DS, GS, SOL, SL, SFE, SVG)
 - Video Front-End unit (VFE)
 - Thread Spawner unit (TSG) and the global Thread Dispatcher unit (TDG)

- Unified Return Buffer Manager (URBM)
- Media fixed function assets:
 - Video Decode (VD) Box
 - Video Encode (VE) Box
 - Wireless Display (WD) BOX
- The Global Assets (GA) block as the primary interface and memory stream gateway to the outside world, consisting of:
 - GT Interface (GTI)
 - State Variable Manager (SVM)
 - Blitter (BLT)
 - Graphics Arbiter (GAM)
- Subslice (three shown) A compute unit with supporting fixed- or shared-function assets sufficient for the EU capability.
 - A bank of Execution Units (EUs) eight per subslice shown
 - Sampler, supporting both media and 3D functions
 - Gateway (GWY)
 - Instruction cache (IC)
 - Local Thread Dispatcher (TDL)
 - Barycentric Calculator (BC)
 - Pixel Shader Dispatcher (PSD)
 - Data Cluster (HDC)
 - Dataport Render Cache (DAPRC) two per subslice
- Slice Common Scalable fixed function assets which support the compute horsepower provided two or more subslices.
 - 3D Fixed Function:
 - Windower/Mask unit (WM)
 - Plane-Z, Hi-Z (HZ) and Intermediate Z (IZ)
 - Setup Backend (SBE)
 - Pixel backend units
 - 3D stream caches for color, multi-sample surface, iz, and stencil (RCC\$, MSC\$, HZ\$, RCZ\$, STC\$)
 - Media Fixed Function:
 - DAPRSC
 - RCPFE, BE
 - SVL
 - TDC
- L3 Cache backing L3 cache for certain memory streams emanating from subslices.
 - L3 Data cache with support for data, URB, and shared local memory (SLM)

Device Attributes

Product Configuration Attribute Table				
Product Family		/ BSW		
Architectural Name	2x6	2x8		
Slice count	1	1		
Subslice Count	2	2		
EU/Subslice	6	8		
EU count (total)	12	16		
Thread Count	7	7		
Thread Count (Total)	84	112		
FLOPs/Clk - Half Precision, MAD (peak)	384	512		
FLOPs/Clk - Single Precision, MAD (peak)	192	256		
FLOPs/Clk - Double Precision, MAD (peak)	24	32		
Unslice clocking (coupled/decoupled from Cr slice)	coupled	coupled		
GTI / Ring Interfaces	1	1		
GTI bandwidth (bytes/unslice-clk)	64: R	64: R		
	64: W	64: W		
L3 Cache, total size (bytes)	384K	384K		
L3 Cache, bank count	2	2		
L3 Cache, bandwidth (bytes/clk)				
L3 Cache, D\$ Size (Kbytes)	192K-256K	192K-256k		
URB Size (kbytes)	64K-192K	64K-192K		
SLM Size (kbytes)	0, 128K	0, 128K		
LLC/L4 size (bytes)	N/A	N/A		
Instruction Cache (IC, bytes)	2x 48K	2x 48K		
Color Cache (RCC, bytes)	24K	24K		
MSC Cache (MSC, bytes)	12K	12K		
HiZ Cache (HZC, bytes)	8K	8K		
Z Cache (RCZ, bytes)	16K	16K		
Stencil Cache (STC, bytes)	4K	4K		
L1 Texture Cache (bytes)	2x 32K	2x 32K		
MT Texture Cache (bytes)	2x 8K	2x 8K		
FMAD, SP (ops/EU/clk)	8	8		
FMUL, SP (ops/EU/clk)	8	8		
FADD, SP (ops/EU/clk)	8	8		
MIN,MAX, SP (ops/EU/clk)	8	8		
CMP, SP (ops/EU/clk)	8	8		

Product Configuration Attribute Table		
INV, SP (ops/EU/clk)	2	2
SQRT, SP (ops/EU/clk)	2	2
RSQRT, SP (ops/EU/clk)	2	2
LOG, SP (ops/EU/clk)	2	2
EXP, SP (ops/EU/clk)	2	2
POW, SP (ops/EU/clk)	1	1
IDIV, SP (ops/EU/clk)	1-6	1-6
TRIG, SP (ops/EU/clk)	2	2
FDIV, SP (ops/EU/clk)	1	1
Data Ports (HDC)	2	2
L3 Load/Store - same addresses within msg (dwords/clk)	2x 32	2x 32
L3 Load/Store - unique addresses within msg (dwords/clk)		
SLM Load//Store - same addresses within msg (dwords/clk)		
SLM Load//Store - unique addresses within msg (dwords/clk)		
Atomic, Local 32b - same addresses within msg (dwords/clk)	2x 16	2x 16
Atomic, Global 32b - unique addresses within msg (dwords/clk)	2x 16	2x 16
Geometry pipes	1	1
Samplers (3D)	2	2
Texel Rate, point, 32b (tex/clk)	8	8
Texel Rate, point, 64b (tex/clk)	8	8
Texel Rate, point, 128b (tex/clk)	8	8
Texel Rate, bilinear, 32b (tex/clk)	8	8
Texel Rate, bilinear, 64b (tex/clk)	8	8
Texel Rate, bilinear, 128b (tex/clk)	2	2
Texel Rate, trilinear, 32b (tex/clk)	4	4
Texel Rate, trilinear, 64b (tex/clk)	2	2
Texel Rate, trilinear, 128b (tex/clk)	1	1
Texel Rate, aniso 2x, 32b (tex/clk)	2	2
Texel Rate, aniso 4x, 32b (tex/clk)	1	1
Texel Rate, ansio 8x, 32b (tex/clk)	0.5	0.5
Texel Rate, ansio 16x, 32b (tex/clk)	0.25	0.25
HiZ Rate, (ppc)	32	32
IZ Rate, (ppc)	16	16
Stencil Rate (ppc)	32	32
(500 MHz, DDR-1600 or eDRAM; Range depends on dynamic compression ratio)		
Pixel Rate, fill, 32bpp (pix/clk, RCC hit)	4	4

Product Configuration Attribute Table		
Pixel Rate, fill, 32bpp (pix/clk, LLC hit @ 1.0x unslice clk)	N/A	N/A
Pixel Rate, fill, 32bpp (pix/clk, LLC hit, @ 1.5x unslice clk)	N/A	N/A
Pixel Rate, fill, 32bpp (pix/clk, memory, @ 1.0x unslice clk)	4	4
Pixel Rate, fill, 32bpp (pix/clk, memory, @ 1.5x unslice clk)	N/A	N/A
(500 MHz, DDR-1600 or eDRAM; Range depends on dynamic compression ratio)		
Pixel Rate, blend, 32bpp (p/clk, RCC hit)	4	4
Pixel Rate, blend, 32bpp (p/clk, LLC hit, @ 1.0x unslice clk)	N/A	N/A
Pixel Rate, blend, 32bpp (p/clk, LLC hit, @ 1.5x unslice clk)	N/A	N/A
Pixel Rate, blend, 32bpp (pix/clk, memory, @ 1.0x unslice clk)	4	4
Pixel Rate, blend, 32bpp (pix/clk, memory, @ 1.5x unslice clk)	N/A	N/A
Samplers (media)	2	2
VDBox Instances	1	1
VEBox Instances	1	1
SFC Instances	N/A	N/A
WGBox Instances	N/A	N/A

Programming Note				
Context:	Device Attributes			
Unslice clock and slice clock are coupled; independent frequency control is not supported.				

Steppings and Device IDs

GT SKUs and Device IDs: The following table lists current GT Die / Packages for Cherry Trail (CHT) and Braswell (BSW).

Program Name	Gen	GT SKU	Total EUs	CPU / GT Stepping	GT Device2 Native ID	GT Device2 Revision ID	Comments / Description
CHT	Gen8LP	2x6	12	C0	0x22B0	0x20, 0x22, or 0x23 (depending on packaging)	Production Devices: Atom x5 series
CHT	Gen8LP	2x8	16	C0	0x22B0	0x20, 0x22, or 0x23 (depending on packaging)	Production Devices: Atom x7 series
BSW	Gen8LP	2x6	12	CO	0x22B1	0x21	Production Devices: Celeron QC and and Celeron DC series
BSW	Gen8LP	2x8	16	C0	0x22B1	0x21	Production Devices: Pentium QC series

Programming Note				
Project: CHV				
Context: Steppings and Device IDs				
See the DID [CHV] register.				