

Intel® Open Source HD Graphics

Programmers' Reference Manual (PRM)

Volume 3: GPU Overview

For the 2014-2015 Intel Atom™ Processors, Celeron™ Processors and Pentium™

Processors based on the "Cherry Trail/Braswell" Platform

(Cherryview/Braswell graphics)

October 2015, Revision 1.1

GPU Overview

ii Doc Ref # IHD-OS-CHV-BSW-Vol 3-10.15

Creative Commons License

You are free to Share - to copy, distribute, display, and perform the work under the following

conditions:

 Attribution. You must attribute the work in the manner specified by the author or licensor (but

not in any way that suggests that they endorse you or your use of the work).

 No Derivative Works. You may not alter, transform, or build upon this work.

Notices and Disclaimers

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO

LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY

RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS

OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS

ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS

INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,

MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL

PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result,

directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS

FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS

SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES

OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE

ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY,

PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION,

WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE,

OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked

"reserved" or "undefined". Intel reserves these for future definition and shall have no responsibility

whatsoever for conflicts or incompatibilities arising from future changes to them. The information here

is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which

may cause the product to deviate from published specifications. Current characterized errata are

available on request.

Implementations of the I2C bus/protocol may require licenses from various entities, including Philips

Electronics N.V. and North American Philips Corporation.

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

* Other names and brands may be claimed as the property of others.

Copyright © 2015, Intel Corporation. All rights reserved.

 GPU Overview

Doc Ref # IHD-OS-CHV-BSW-Vol 3-10.15 iii

Table of Contents

Introduction ... 1

Graphics Processing Unit (GPU) ... 1

GPU Overview .. 2

Command Stream (CS) Unit ... 3

3D Pipeline .. 3

Media Pipeline ... 3

Thread Dispatching ... 3

Execution Units (EUs) .. 3

Shared Functions .. 4

Fixed and Shared Function IDs ... 5

Video Codec Engine .. 6

Register Address Maps .. 7

Graphics Register Address Map ... 7

VGA and Extended VGA Register Map .. 7

Memory Object Overview .. 12

Hardware Status Page ..13

Memory Access Indirection ..13

Instruction Ring Buffers ...16

Instruction Batch Buffers ...16

Logical Contexts ...17

Memory Data Formats ... 26

Unsigned Normalized (UNORM)..26

Gamma Conversion (SRGB) ..26

Signed Normalized (SNORM)..26

Unsigned Integer (UINT/USCALED) ..27

Signed Integer (SINT/SSCALED) ...27

Floating Point (FLOAT) ...27

 GPU Overview

Doc Ref # IHD-OS-CHV-BSW-Vol 3-10.15 1

Introduction

The integrated graphics component, specifically called the Graphics Processing Unit, or GPU, resides on

the same chip die as the Central Processing Unit, or CPU, and communicates with the CPU via the on-

chip bus, with internal memory and with output device(s). As Intel GPUs have evolved, they now occupy

a significant percentage of space on the chip, and provide customers with high performance and low-

power graphics processing, eliminating the need to purchase a separate video card for most users.

This Behavioral Specification, or BSpec for short, provides detailed narrative and referential information

required by graphics device driver engineers and graphics API-level programmers to take advantage of

the sophisticated architecture and programmability of the GPU.

Graphics Processing Unit (GPU)

The Graphics Processing Unit is controlled by the CPU through a direct interface of memory-mapped IO

registers, and indirectly by parsing commands that the CPU has placed in memory. The Display interface

and Blitter (block image transferrer) are controlled primarily by direct CPU register addresses, while the

3D and Media pipelines and the parallel Video Codec Engine (VCE) are controlled primarily through

instruction lists in memory.

The subsystem contains an array of cores, or execution units, with a number of “shared functions”,

which receive and process messages at the request of programs running on the cores. The shared

functions perform critical tasks, such as sampling textures and updating the render target (usually the

frame buffer). The cores themselves are described by an instruction set architecture, or ISA.

Block Diagram of the GPU

GPU Overview

2 Doc Ref # IHD-OS-CHV-BSW-Vol 3-10.15

GPU Overview

The subsystem consists of an array of execution units (EUs, sometimes referred to as an array of cores)

along with a set of shared functions outside the EUs that the EUs leverage for I/O and for complex

computations. Programmers access the subsystem via the 3D or Media pipelines.

EUs are general-purpose programmable cores that support a rich instruction set that has been

optimized to support various 3D API shader languages as well as media functions (primarily video)

processing.

Shared functions are hardware units which serve to provide specialized supplemental functionality for

the EUs. A shared function is implemented where the demand for a given specialized function is

insufficient to justify the costs on a per-EU basis. Instead a single instantiation of that specialized

function is implemented as a stand-alone entity outside the EUs and shared among the EUs.

Invocation of the shared functionality is performed via a communication mechanism called a message. A

message is a small self-contained packet of information created by a kernel and directed to a specific

shared function. For SNB, the message is defined by a range of MRF registers that hold message

operands, a destination shared function ID, a function-specific encoding of the desired operation, and a

destination GRF register to which any writeback response is to be directed. Messages are dispatched to

the shared function under software control via the send instruction. This instruction identifies the

contents of the message and the GRF register locations to direct any response.

The message construction and delivery mechanisms are general in their definition and capable of

supporting a wide variety of shared functions.

 GPU Overview

Doc Ref # IHD-OS-CHV-BSW-Vol 3-10.15 3

Command Stream (CS) Unit

The Command Stream (CS) unit manages the use of the 3D and Media pipelines; it performs switching

between pipelines and forwarding command streams to the currently active pipeline. It manages

allocation of the URB and helps support the Constant URB Entry (CURBE) function.

3D Pipeline

The 3D Pipeline provides specialized 3D primitive processing functions. These functions are provided by

a pipeline of “fixed function” stages (units) and GEN threads spawned by these units. See 3D Pipeline

Overview.

Media Pipeline

The Media pipeline provides both specialized media-related processing functions and the ability to

perform more general (“generic”) functionality. These Media-specific functions are provided by a Video

Front End (VFE) unit. A Thread Spawner (TS) unit is utilized to spawn GEN threads requested by the VFE

unit, or as required when the pipeline is used for general processing. See Media Pipeline Overview.

Thread Dispatching

When the 3D and Media pipelines send requests for thread initiation to the Subsystem, the thread

Dispatcher receives the requests. The dispatcher performs such tasks as arbitrating between concurrent

requests, assigning requested threads to hardware threads on EUs, allocating register space in each EU

among multiple threads, and initializing a thread’s registers with data from the fixed functions and from

the URB. This operation is largely transparent to software.

Execution Units (EUs)

The Execution Units (EUs) are the programmable shader units of the Gen Architecture. Each is a stand-

alone programmable computational unit used for execution of 3D shaders and media/gpgpu kernels.

Internally each is capable of multi-issue SIMD execution, and their hardware multi-threaded operation

provides a very high-efficiency execution environment in the face of long data latencies typically

associated with memory accesses. Each hardware thread within and EU has a dedicated large-capacity

high-bandwidth register file (GRF) and associated independent thread-state . Execution is multi-issue

per clock to pipelines capable of integer, single and double precision floating point operations, SIMD

branch capability, logical operations, transcendental operations, and other miscellaneous operations.

Communication to support units (shared functions) for operations such as texture sampling or

scatter/gather load/stores is via ‘messages’ programmatically constructed and ‘sent’ to those functions,

with dependency hardware causing the issuing thread to sleep until the requested data has been

returned.

EU instance count varies by product generation, as well as by SKU within a given generation, and their

capabilities have evolved over the many generation of the Gen Architecture.. Please see “Device

Attributes” in the “Configuration” chapter for specific rates and capacities associated with Execution

Units.

GPU Overview

4 Doc Ref # IHD-OS-CHV-BSW-Vol 3-10.15

Shared Functions

Shared functions are hardware units that provide specialized supplemental functionality for the EUs. A

shared function is implemented where the demand for a given specialized function is insufficient to

justify the costs on a per-EU basis. Instead a single instantiation of that specialized function is

implemented as a stand-alone entity outside the EUs and shared among the EUs.

Invocation of the shared functionality is performed via a communication mechanism called a message.

A message is a small self-contained packet of information created by a kernel and directed to a specific

shared function.

Programming Note

Context: Communication mechanism in shared functions

The message is defined by a range of Message Register File (MRF) registers that hold message operands, a

destination shared function ID, a function-specific encoding of the desired operation, and a destination General

Register File (GRF) register to which any writeback response is directed.

Messages are dispatched to the shared function under software control via the send instruction. This

instruction identifies the contents of the message and the GRF register locations to direct any response.

The message construction and delivery mechanisms are general in their definition and capable of

supporting a wide variety of shared functions.

 GPU Overview

Doc Ref # IHD-OS-CHV-BSW-Vol 3-10.15 5

Fixed and Shared Function IDs

The following table lists the assignments (encodings) of the Shared Function and Fixed Function IDs

used within the GPE. A Shared Function is a valid target of a message initiated via a send instruction. A

Fixed Function is an identifiable unit of the 3D or Media pipeline. Note that the Thread Spawner is both

a Shared Function and Fixed Function.

Function IDs

ID[3:0] SFID Shared Function FFID Fixed Function

0x0 SFID_NULL Null FFID_NULL Null

0x1 Reserved --- Reserved ---

0x2 SFID_SAMPLER Sampler Reserved ---

0x3 SFID_GATEWAY Message Gateway Reserved ---

0x4 SFID_DP_SAMPLER Sampler Cache

Data Port

FFID_HS Hull Shader

0x5 SFID_DP_RC Render Cache Data

Port

FFID_DS Domain Shader

0x6 SFID_URB URB Reserved ---

0x7 SFID_SPAWNER Thread Spawner FFID_SPAWNER Thread Spawner

0x8 SFID_VME Video Motion

Estimation

Reserved ---

0x9 SFID_DP_CC Constant Cache

Data Port

FFID_VS Vertex Shader

0xA SFID_DP_DC0 Data Cache Data

Port0

FFID_CS Command Stream

0xB SFID_PI Pixel Interpolator FFID_VF Vertex Fetch

0xC SFID_DP_DC1 Data Cache Data

Port1

FFID_GS Geometry Shader

0xD SFID_CRE Check &

Refinement Engine

Reserved ---

0xE Reserved --- FFID_SF Strip/Fan Unit

0xF Reserved --- FFID_WM Windower/Masker

Unit

Programming Note

Context: Shared Function ID

SFID_DP_DC1 is an extension of SFID_DP_DC0 to allow for for more messages types. They act as a single logical

entity.

GPU Overview

6 Doc Ref # IHD-OS-CHV-BSW-Vol 3-10.15

Video Codec Engine

The parallel Video Codec Engine (VCE) is a fixed function video decoder and encoder engine. It is also

referred to as the multi-format codec (MFX) engine, as a unified fixed function pipeline is implemented

to support multiple video coding standards such as MPEG2, VC1, and AVC:

 VCS – VCE Command Streamer unit (also referred to as BCS)

 BSD – Bitstream Decoder unit

 VDS – Video Dispatcher unit

 VMC – Video Motion Compensation unit

 VIP – Video Intra Prediction unit

 VIT – Video Inverse Transform unit

 VLF – Video Loop Filter unit

 VFT – Video Forward Transform unit (encoder only)

 BSC – Bitstream Encoder unit (encoder only)

VCE Diagram

Device AVC BSD VC1 BSD AVC Dec VC1 Dec MPEG2 Dec AVC Enc

 No No Yes Yes Yes Yes

 GPU Overview

Doc Ref # IHD-OS-CHV-BSW-Vol 3-10.15 7

Register Address Maps

Graphics Register Address Map

This chapter provides address maps of the graphics controllers I/O and memory-mapped registers.

Individual register bit field descriptions are provided in the following chapters. PCI configuration

address maps and register bit descriptions are provided in the following chapter.

Memory and IO Space Registers

These are graphics MMIO ranges used for [CHV]. Note that this is only a subset of the complete

definition of the MMIO address space.

Range Start

(Hex) Range End (Hex) Unit Owning the Range

00002000 00002FFF Render/Generic Media Engine

00004000 00004FFF Render/Generic Media Graphics Memory Arbiter

00012000 000123FF MFX Control Engine (Video Command Streamer)

00012400 00012FFF Media Units (VIN Unit)

00014000 00014FFF MFX Memory Arbiter

00022000 00022FFF Blitter Engine

00024000 00024FFF Blitter Memory Arbiter

00100000 00107FFF Fence Registers

00140000 0017FFFF MCHBAR (SA)

Programming Note

Context: Memory and IO space registers, graphics MMIO ranges

8800h-88FFh is a reserved range for GT. IA accesses to this region have no impact.

Programming Note

Context: Memory and IO space registers, graphics MMIO ranges

TAP (backdoor) accesses to the reserved range of 8800h-88FFh result in hardware hangs. Do not use it.

VGA and Extended VGA Register Map

For I/O locations, the value in the address column represents the register I/O address. For memory

mapped locations, this address is an offset from the base address programmed in the MMADR register.

GPU Overview

8 Doc Ref # IHD-OS-CHV-BSW-Vol 3-10.15

VGA and Extended VGA I/O and Memory Register Map

Address Register Name (Read) Register Name (Write)

2D Registers

3B0h–3B3h Reserved Reserved

3B4h VGA CRTC Index (CRX) (monochrome) VGA CRTC Index (CRX) (monochrome)

3B5h VGA CRTC Data (monochrome) VGA CRTC Data (monochrome)

3B6h–3B9h Reserved Reserved

3Bah VGA Status Register (ST01) VGA Feature Control Register (FCR)

3BBh–3BFh Reserved Reserved

3C0h VGA Attribute Controller Index (ARX) VGA Attribute Controller Index (ARX)/

 VGA Attribute Controller Data (alternating writes select

ARX or write ARxx Data)

3C1h VGA Attribute Controller Data

 (read ARxx data)

Reserved

3C2h VGA Feature Read Register (ST00) VGA Miscellaneous Output Register (MSR)

3C3h Reserved Reserved

3C4h VGA Sequencer Index (SRX) VGA Sequencer Index (SRX)

3C5h VGA Sequencer Data (SRxx) VGA Sequencer Data (SRxx)

3C6h VGA Color Palette Mask (DACMASK) VGA Color Palette Mask (DACMASK)

3C7h VGA Color Palette State (DACSTATE) VGA Color Palette Read Mode Index (DACRX)

3C8h VGA Color Palette Write Mode Index

(DACWX)

VGA Color Palette Write Mode Index (DACWX)

3C9h VGA Color Palette Data (DACDATA) VGA Color Palette Data (DACDATA)

3CAh VGA Feature Control Register (FCR) Reserved

3CBh Reserved Reserved

3CCh VGA Miscellaneous Output Register (MSR) Reserved

3CDh Reserved Reserved

3CEh VGA Graphics Controller Index (GRX) VGA Graphics Controller Index (GRX)

3CFh VGA Graphics Controller Data (GRxx) VGA Graphics Controller Data (GRxx)

3D0h–3D1h Reserved Reserved

2D Registers

3D4h VGA CRTC Index (CRX) VGA CRTC Index (CRX)

3D5h VGA CRTC Data (CRxx) VGA CRTC Data (CRxx)

System Configuration Registers

3D6h GFX/2D Configurations Extensions Index

(XRX)

GFX/2D Configurations Extensions Index (XRX)

3D7h GFX/2D Configurations Extensions Data

(XRxx)

GFX/2D Configurations Extensions Data (XRxx)

 GPU Overview

Doc Ref # IHD-OS-CHV-BSW-Vol 3-10.15 9

Address Register Name (Read) Register Name (Write)

2D Registers

3D8h–3D9h Reserved Reserved

3DAh VGA Status Register (ST01) VGA Feature Control Register (FCR)

3DBh–3DFh Reserved Reserved

Indirect VGA and Extended VGA Register Indices

The registers listed in this section are indirectly accessed by programming an index value into the

appropriate SRX, GRX, ARX, or CRX register. The index and data register address locations are listed in

the previous section. Additional details concerning the indirect access mechanism are provided in the

VGA and Extended VGA Register Description Chapter (see SRxx, GRxx, ARxx or CRxx sections).

2D Sequence Registers (3C4h / 3C5h)

Index Sym Description

00h SR00 Sequencer Reset

01h SR01 Clocking Mode

02h SR02 Plane / Map Mask

03h SR03 Character Font

04h SR04 Memory Mode

07h SR07 Horizontal Character Counter Reset

2D Graphics Controller Registers (3CEh / 3CFh)

Index Sym Register Name

00h GR00 Set / Reset

01h GR01 Enable Set / Reset

02h GR02 Color Compare

03h GR03 Data Rotate

04h GR04 Read Plane Select

05h GR05 Graphics Mode

06h GR06 Miscellaneous

07h GR07 Color Don’t Care

08h GR08 Bit Mask

10h GR10 Address Mapping

11h GR11 Page Selector

18h GR18 Software Flags

GPU Overview

10 Doc Ref # IHD-OS-CHV-BSW-Vol 3-10.15

2D Attribute Controller Registers (3C0h / 3C1h)

Index Sym Register Name

00h AR00 Palette Register 0

01h AR01 Palette Register 1

02h AR02 Palette Register 2

03h AR03 Palette Register 3

04h AR04 Palette Register 4

05h AR05 Palette Register 5

06h AR06 Palette Register 6

07h AR07 Palette Register 7

08h AR08 Palette Register 8

09h AR09 Palette Register 9

0Ah AR0A Palette Register A

0Bh AR0B Palette Register B

0Ch AR0C Palette Register C

0Dh AR0D Palette Register D

0Eh AR0E Palette Register E

0Fh AR0F Palette Register F

10h AR10 Mode Control

11h AR11 Overscan Color

12h AR12 Memory Plane Enable

13h AR13 Horizontal Pixel Panning

14h AR14 Color Select

 GPU Overview

Doc Ref # IHD-OS-CHV-BSW-Vol 3-10.15 11

2D CRT Controller Registers (3B4h / 3D4h / 3B5h / 3D5h)

Index Sym Register Name

00h CR00 Horizontal Total

01h CR01 Horizontal Display Enable End

02h CR02 Horizontal Blanking Start

03h CR03 Horizontal Blanking End

04h CR04 Horizontal Sync Start

05h CR05 Horizontal Sync End

06h CR06 Vertical Total

07h CR07 Overflow

08h CR08 Preset Row Scan

09h CR09 Maximum Scan Line

0Ah CR0A Text Cursor Start

0Bh CR0B Text Cursor End

0Ch CR0C Start Address High

0Dh CR0D Start Address Low

0Eh CR0E Text Cursor Location High

0Fh CR0F Text Cursor Location Low

10h CR10 Vertical Sync Start

11h CR11 Vertical Sync End

12h CR12 Vertical Display Enable End

13h CR13 Offset

14h CR14 Underline Location

15h CR15 Vertical Blanking Start

16h CR16 Vertical Blanking End

17h CR17 CRT Mode

18h CR18 Line Compare

22h CR22 Memory Read Latch Data

GPU Overview

12 Doc Ref # IHD-OS-CHV-BSW-Vol 3-10.15

Memory Object Overview

Any memory data accessed by the device is considered part of a memory object of some memory object

type.

The following table lists the various memory objects types and an indication of their role in the system.

Memory Object

Type Role

Graphics Translation

Table (GTT)

Contains PTEs used to translate "graphics addresses" into physical memory addresses.

Hardware Status

Page

Cached page of sysmem used to provide fast driver synchronization.

Logical Context

Buffer

Memory areas used to store (save/restore) images of hardware rendering contexts. Logical

contexts are referenced via a pointer to the corresponding Logical Context Buffer.

Ring Buffers Buffers used to transfer (DMA) instruction data to the device. Primary means of controlling

rendering operations.

Batch Buffers Buffers of instructions invoked indirectly from Ring Buffers.

State Descriptors Contains state information in a prescribed layout format to be read by hardware. Many

different state descriptor formats are supported.

Vertex Buffers Buffers of 3D vertex data indirectly referenced through "indexed" 3D primitive instructions.

VGA Buffer

 (Must be mapped

UC on PCI)

Graphics memory buffer used to drive the display output while in legacy VGA mode.

Display Surface Memory buffer used to display images on display devices.

Overlay Surface Memory buffer used to display overlaid images on display devices.

Overlay Register,

Filter Coefficients

Memory area used to provide double-buffer for Overlay register and filter coefficient

loading.

Cursor Surface Hardware cursor pattern in memory.

2D Render Source Surface used as primary input to 2D rendering operations.

2D Render R-M-W

Destination

2D rendering output surface that is read in order to be combined in the rendering function.

Destination surfaces that accessed via this Read-Modify-Write mode have somewhat

different restrictions than Write-Only Destination surfaces.

2D Render Write-

Only Destination

2D rendering output surface that is written but not read by the 2D rendering function.

Destination surfaces that accessed via a Write-Only mode have somewhat different

restrictions than Read-Modify-Write Destination surfaces.

2D Monochrome

Source

1 bpp surfaces used as inputs to 2D rendering after being converted to

foreground/background colors.

2D Color Pattern 8x8 pixel array used to supply the "pattern" input to 2D rendering functions.

DIB "Device Independent Bitmap" surface containing "logical" pixel values that are converted

(via LUTs) to physical colors.

3D Color Buffer Surface receiving color output of 3D rendering operations. May also be accessed via R-M-W

(aka blending). Also referred to as a Render Target.

 GPU Overview

Doc Ref # IHD-OS-CHV-BSW-Vol 3-10.15 13

Memory Object

Type Role

3D Depth Buffer Surface used to hold per-pixel depth and stencil values used in 3D rendering operations.

Accessed via RMW.

3D Texture Map Color surface (or collection of surfaces) which provide texture data in 3D rendering

operations.

"Non-3D" Texture Surface read by Texture Samplers, though not in normal 3D rendering operations (for

example, in video color conversion functions).

Motion Comp

Surfaces

These are the Motion Comp reference pictures.

Motion Comp

Correction Data

Buffer

This is Motion Comp intra-coded or inter-coded correction data.

Hardware Status Page

The hardware status page is a naturally-aligned 4KB page residing in snooped system memory. This

page exists primarily to allow the device to report status via PCI master writes – thereby allowing the

driver to read/poll WB memory instead of UC reads of device registers or UC memory.

The address of this page is programmed via the HWS_PGA MI register. The definition of that register (in

Memory Interface Registers) includes a description of the layout of the Hardware Status Page.

Memory Access Indirection

The GPE supports the indirection of certain graphics (GTT-mapped) memory accesses. This support

comes in the form of two base address state variables used in certain memory address computations

with the GPE.

The intent of this functionality is to support the dynamic relocation of certain driver-generated memory

structures after command buffers have been generated but prior to the their submittal for execution.

For example, as the driver builds the command stream it could append pipeline state descriptors, kernel

binaries, etc. to a general state buffer. References to the individual items would be inserted in the

command buffers as offsets from the base address of the state buffer. The state buffer could then be

freely relocated prior to command buffer execution, with the driver only needing to specify the final

base address of the state buffer. Two base addresses are provided to permit surface-related state

(binding tables, surface state tables) to be maintained in a state buffer separate from the general state

buffer.

While the use of these base addresses is unconditional, the indirection can be effectively disabled by

setting the base addresses to zero. The following table lists the various GPE memory access paths and

which base address (if any) is relevant.

GPU Overview

14 Doc Ref # IHD-OS-CHV-BSW-Vol 3-10.15

Base Address Utilization

Base Address

Used Memory Accesses

General State Base

Address

DataPort Read/Write DataPort memory accesses resulting from ‘stateless’ DataPort

Read/Write requests. See DataPort for a definition of the ‘stateless’ form of requests.

Dynamic State

Base Address

Sampler reads of SAMPLER_STATE data and associated SAMPLER_BORDER_COLOR_STATE.

Viewport states used by CLIP, SF, and WM/CC

COLOR_CALC_STATE, DEPTH_STENCIL_STATE, and BLEND_STATE

Push Constants (depeding on state of INSTPM<CONSTANT_BUFFER Address Offset

Disable>)

Instruction Base

Address [CHV]

Normal EU instruction stream (non-system routine)

System routine EU instruction stream (starting address = SIP)

Surface State Base

Address

Sampler and DataPort reads of BINDING_TABLE_STATE, as referenced by BT pointers passed

via 3DSTATE_BINDING_TABLE_POINTERS

Sampler and DataPort reads of SURFACE_STATE data

Indirect Object

Base Address

MEDIA_OBJECT Indirect Data accessed by the CS unit .

None CS unit reads from Ring Buffers, Batch Buffers

CS writes resulting from PIPE_CONTROL command

All VF unit memory accesses (Index Buffers, Vertex Buffers)

All Sampler Surface Memory Data accesses (texture fetch, etc.)

All DataPort memory accessesexcept ‘stateless’ DataPort Read/Write requests (e.g., RT

accesses.) See DataPort for a definition of the ‘stateless’ form of requests.

Memory reads resulting from STATE_PREFETCH commands

Any physical memory access by the device

GTT-mapped accesses not included above (i.e., default)

[CHV]: Push Constants (depeding on state of INSTPM<CONSTANT_BUFFER Address Offset

Disable>)

 GPU Overview

Doc Ref # IHD-OS-CHV-BSW-Vol 3-10.15 15

The following notation is used in the BSpec to distinguish between addresses and offsets:

Notation Definition

PhysicalAddress[n:m] Corresponding bits of a physical graphics memory byte address (not mapped by a

GTT)

GraphicsAddress[n:m] Corresponding bits of an absolute, virtual graphics memory byte address (mapped by

a GTT)

GeneralStateOffset[n:m] Corresponding bits of a relative byte offset added to the General State Base Address

value, the result of which is interpreted as a virtual graphics memory byte address

(mapped by a GTT)

DynamicStateOffset[n:m] Corresponding bits of a relative byte offset added to the Dynamic State Base Address

value, the result of which is interpreted as a virtual graphics memory byte address

(mapped by a GTT)

InstructionBaseOffset[n:m] Corresponding bits of a relative byte offset added to the Instruction Base Address

value, the result of which is interpreted as a virtual graphics memory byte address

(mapped by a GTT)

SurfaceStateOffset[n:m] Corresponding bits of a relative byte offset added to the Surface State Base Address

value, the result of which is interpreted as a virtual graphics memory byte address

(mapped by a GTT)

GPU Overview

16 Doc Ref # IHD-OS-CHV-BSW-Vol 3-10.15

Instruction Ring Buffers

Instruction ring buffers are the memory areas used to pass instructions to the device. Refer to the

Programming Interface chapter for a description of how these buffers are used to transport instructions.

The RINGBUF register sets (defined in Memory Interface Registers) are used to specify the ring buffer

memory areas. The ring buffer must start on a 4KB boundary and be allocated in linear memory. The

length of any one ring buffer is limited to 2MB.

Programming Note

Context: Instruction Ring Buffers in memory areas.

“Indirect” 3D primitive instructions (those that access vertex buffers) must reside in the same memory space as the

vertex buffers.

Instruction Batch Buffers

Instruction batch buffers are contiguous streams of instructions referenced via an

MI_BATCH_BUFFER_START and related instructions (see Memory Interface Instructions, Programming

Interface). They are used to transport instructions external to ring buffers.

Programming Note

Context: Instruction batch buffers in memory objects

Batch buffers should not be mapped to snooped SM (PCI) addresses. The device will treat these as MainMemory

(MM) addresses and, therefore, not snoop the CPU cache.

Programming Note

Context: Instruction batch buffers in memory objects

The batch buffer must be QWord aligned and a multiple of QWords in length. The ending address is the address

of the last valid QWord in the buffer. The length of any single batch buffer is “virtually unlimited” (i.e., could

theoretically be 4GB in length).

 GPU Overview

Doc Ref # IHD-OS-CHV-BSW-Vol 3-10.15 17

Logical Contexts

This section is the lead section for the following subsections:

 BSD Logical Render Context Address (LRCA)

 Video Enhancement Logical Context Data

 Logical Contexts

BSD Logical Render Context Address (LRCA)

This section discusses the following topics for the BSD Logical Render Context Address (LRCA):

 Overall Context Layout

 Register State Context

 Ring Buffer [CHV]

 Ring Context [CHV]

 The Per-Process Hardware Status Page

Overall Context Layout

Context Layout

For [CHV], when Execlists are enabled, the Context Image for the media engine consists of two 4K

pages:

 Per-Process HW Status Page (4K)

 Register State Context

When Execlists are disabled (ring buffer mode of scheduling) there is no concept of context for workloads

submitted to the media engine, and hence there is no context image.

Register State context is explained in detail in the “Register State Context” Section.

GPU Overview

18 Doc Ref # IHD-OS-CHV-BSW-Vol 3-10.15

Register/State Context

Note: The Register/State Context is valid only when Execlists and PPGTT are enabled.

DW

Range

DW

Count State Field

Restore

Inhibited

PPGTT and

Execlists

Enabled

PPGTT and

Execlists

Disabled

Power

Context

Set Before

Submitting

Context?

00h 1 Context Control R S/R X S/R Yes

01h 1 Ring Head Pointer Register R S/R X S/R Yes

02h 1 Ring Tail Pointer Register R R X S/R Yes

03h 1 Batch Buffer Current Head

Register

NR S/R X S/R No

04h 1 Batch Buffer State Register NR S/R X S/R No

05h 1 PPGTT Directory Cache

Valid Register

 (Software always

populates via host)

R R X S/R Yes

06h 1 Reserved X X X S/R X

07h 1 PD Base Virtual Address

Register

R R X S/R Yes

08h 1 MFX_STATE_POINTER 0 NR S/R X S/R Yes

09h 1 MFX_STATE_POINTER 1 NR S/R X S/R Yes

0Ah 1 MFX_STATE_POINTER 2 NR S/R X S/R Yes

0Bh 1 MFX_STATE_POINTER 3 NR S/R X S/R Yes

0Ch 1 VCS_CNTR — Media

Watchdog Counter

Control

NR S/R X S/R No

0Dh 1 VCS_THRSH — Media

Watchdog Counter

Threshold

NR S/R X S/R No

0Eh 1 Current Context ID

Register

NR S/R X S/R No

0Fh 1 Reserved X X X S/R X

 GPU Overview

Doc Ref # IHD-OS-CHV-BSW-Vol 3-10.15 19

Ring Buffer

Ring Buffer can exist anywhere in memory mapped via Global GTT. Ring buffer details are mentioned in

the ring context area of LRCA (Ring Buffer - Start Address, Head Offset, Tail Pointer & Control Register)

in the Execution List mode of scheduling.

Programming Note

Context: Ring buffers - ring context area of LRCA

Ring Buffer registers are directly programmed in the Ring Buffer mode of scheduling.

Ring Context

Ring Context starts at 4K offset from LRCA. Ring context contains all the details that are needed to be

initialized by SW for submitting a context to HW for execution (Ring Buffer Details, Page Directory

Information, etc). Ring context is five cachelines in size.

Programming Note

Context: Submitting a context to HW for execution.

The last cacheline of the ring context is specific for a given Engine and hence SW needs to populate it accordingly.

Description MMIO Offset/Command # of DW

NOOP VCS 1

Load_Register_Immediate header 0x1100_1015 VCS 1

Context Control 0x12244 VCS 2

Ring Head Pointer Register 0x12034 VCS 2

Ring Tail Pointer Register 0x12030 VCS 2

RING_BUFFER_START 0x12038 VCS 2

RING_BUFFER_CONTROL 0x1203C VCS 2

Batch Buffer Current Head Register (UDW) 0x12168 VCS 2

Batch Buffer Current Head Register 0x12140 VCS 2

Batch Buffer State Register 0x12110 VCS 2

SECOND_BB_ADDR_UDW 0x1211C VCS 2

SECOND_BB_ADDR 0x12114 VCS 2

SECOND_BB_STATE 0x12118 VCS 2

NOOP VCS 8

NOOP VCS 1

Load_Register_Immediate header 0x1100_1011 VCS 1

CTX_TIMESTAMP 0x123A8 VCS 2

PDP3_UDW 0x1228C VCS 2

PDP3_LDW 0x 12288 VCS 2

GPU Overview

20 Doc Ref # IHD-OS-CHV-BSW-Vol 3-10.15

Description MMIO Offset/Command # of DW

PDP2_UDW 0x 12284 VCS 2

PDP2_LDW 0x 12280 VCS 2

PDP1_UDW 0x 1227C VCS 2

PDP1_LDW 0x 12278 VCS 2

PDP0_UDW 0x 12274 VCS 2

PDP0_LDW 0x 12270 VCS 2

NOOP VCS 12

NOOP VCS 16

The Per-Process Hardware Status Page

The layout of the Per-Process Hardware Status Page is defined at PPHWSP_LAYOUT.

The DWord offset values in the table are in decimal.

Figure below explains the different timestamp values reported to PPHWSP on a context switch.

This page is designed to be read by SW to glean additional details about a context beyond what it can

get from the context status.

Accesses to this page are automatically treated as cacheable and snooped. It is therefore illegal to

locate this page in any region where snooping is illegal (such as in stolen memory).

 GPU Overview

Doc Ref # IHD-OS-CHV-BSW-Vol 3-10.15 21

Copy Engine Logical Context Data [CHV]

Overall Context Layout

Context Layout

For [CHV], when Execlists are enabled, the Context Image for the copy engine consists of two 4K pages:

Register State context is explained in detail in “Register State Context” Section.

Register/State Context

Ring Buffer

Ring Buffer can exist anywhere in memory mapped via Global GTT. Ring buffer details are mentioned in

the ring context area of LRCA (Ring Buffer - Start Address, Head Offset, Tail Pointer & Control Register)

in Execution List mode of scheduling. Ring Buffer registers are directly programmed in Ring Buffer

mode of scheduling.

Ring Context

Ring Context starts at 4K offset from LRCA. Ring context contains all the details that are needed to be

initialized by SW for submitting a context to HW for execution (Ring Buffer Details, Page Directory

Information, etc). Ring context is five cachelines in size.

Programming Note

Context: Submitting a context to HW for execution

The last cacheline of the ring context is specific for a given Engine and hence SW needs to populate it accordingly.

GPU Overview

22 Doc Ref # IHD-OS-CHV-BSW-Vol 3-10.15

Description # of DW

NOOP BCS 1

Load_Register_Immediate header 0x1100_1015 BCS 1

Context Control 0x22244 BCS 2

Ring Head Pointer Register 0x22034 BCS 2

Ring Tail Pointer Register 0x22030 BCS 2

RING_BUFFER_START 0x22038 BCS 2

RING_BUFFER_CONTROL 0x2203C BCS 2

Batch Buffer Current Head Register 0x22140 BCS 4

Batch Buffer State Register 0x22110 BCS 2

SECOND_BB_ADDR 0x22114 BCS 4

SECOND_BB_STATE 0x22118 BCS 2

NOOP BCS 8

NOOP BCS 1

Load_Register_Immediate header 0x1100_100F BCS 1

CTX_TIMESTAMP 0x223A8 BCS 2

PDP3_UDW 0x 2228C BCS 2

PDP3_LDW 0x 22288 BCS 2

PDP2_UDW 0x 22284 BCS 2

PDP2_LDW 0x 22280 BCS 2

PDP1_UDW 0x 2227C BCS 2

PDP1_LDW 0x 22278 BCS 2

PDP0_UDW 0x 22274 BCS 2

PDP0_LDW 0x 22270 BCS 2

NOOP BCS 12

NOOP BCS 1

Load_Register_Immediate header 0x1100_1001 BCS 1

BCS_BTILEY 0x22200 BCS 2

NOOP BCS 12

 GPU Overview

Doc Ref # IHD-OS-CHV-BSW-Vol 3-10.15 23

The Per-Process Hardware Status Page

The layout of the Per-Process Hardware Status Page is defined at PPHWSP_LAYOUT.

The DWord offset values in the table are in decimal.

Figure below explains the different timestamp values reported to PPHWSP on a context switch.

This page is designed to be read by SW to glean additional details about a context beyond what it can

get from the context status.

Accesses to this page are automatically treated as cacheable and snooped. It is therefore illegal to

locate this page in any region where snooping is illegal (such as in stolen memory).

GPU Overview

24 Doc Ref # IHD-OS-CHV-BSW-Vol 3-10.15

Video Enhancement Logical Context Data

Overall Context Layout

Context Layout

For [CHV], when Execlists are enabled, the Context Image for the Video Enhancement engine consists of

two 4K pages:

 Per-Process HW Status Page (4K)

 Register State Context

When Execlists are disabled (ring buffer mode of scheduling) there is no concept of context for workloads

submitted to media engine and hence there is no context image.

Register State context is explained in detail in the “Register State Context” Section.

Ring Context

Ring Context starts at 4K offset from LRCA. Ring context contains all the details that are needed to be

initialized by SW for submitting a context to HW for execution (Ring Buffer Details, Page Directory

Information ..etc). Ring context is five cachelines in size.

Programming Note

Context: Submitting a context to HW for execution

The last cacheline of the ring context is specific for a given Engine and hence SW needs to populate it accordingly.

 GPU Overview

Doc Ref # IHD-OS-CHV-BSW-Vol 3-10.15 25

Description # of DW

NOOP VECS 1

Load_Register_Immediate header 0x1100_1015 VECS 1

Context Control 0x1A244 VECS 2

Ring Head Pointer Register 0x1A034 VECS 2

Ring Tail Pointer Register 0x1A030 VECS 2

RING_BUFFER_START 0x1A038 VECS 2

RING_BUFFER_CONTROL 0x1A03C VECS 2

Batch Buffer Current Head Register 0x1A140 VECS 4

Batch Buffer State Register 0x1A110 VECS 2

SECOND_BB_ADDR 0x1A114 VECS 4

SECOND_BB_STATE 0x1A118 VECS 2

NOOP VECS 8

NOOP VECS 1

Load_Register_Immediate header 0x1100_100F VECS 1

CTX_TIMESTAMP 0x1A3A8 VECS 2

PDP3_UDW 0x 1A28C VECS 2

PDP3_LDW 0x 1A288 VECS 2

PDP2_UDW 0x 1A284 VECS 2

PDP2_LDW 0x 1A280 VECS 2

PDP1_UDW 0x 1A27C VECS 2

PDP1_LDW 0x 1A278 VECS 2

PDP0_UDW 0x 1A274 VECS 2

PDP0_LDW 0x 1A270 VECS 2

NOOP VECS 12

NOOP VECS 16

GPU Overview

26 Doc Ref # IHD-OS-CHV-BSW-Vol 3-10.15

Memory Data Formats

This chapter describes the attributes associated with the memory-resident data objects operated on by

the graphics pipeline. This includes object types, pixel formats, memory layouts, and rules/restrictions

placed on the dimensions, physical memory location, pitch, alignment, etc. with respect to the specific

operations performed on the objects.

Unsigned Normalized (UNORM)

An unsigned normalized value with n bits is interpreted as a value between 0.0 and 1.0. The minimum

value (all 0’s) is interpreted as 0.0, the maximum value (all 1’s) is interpreted as 1.0. Values in between

are equally spaced. For example, a 2-bit UNORM value would have the four values 0, 1/3, 2/3, and 1.

If the incoming value is interpreted as an n-bit integer, the interpreted value can be calculated by

dividing the integer by 2n-1.

Gamma Conversion (SRGB)

Gamma conversion is only supported on UNORM formats. If this flag is included in the surface format

name, it indicates that a reverse gamma conversion is to be done after the source surface is read, and a

forward gamma conversion is to be done before the destination surface is written.

Signed Normalized (SNORM)

Programming Note

Context: Signed normalized value in memory data formats.

A signed normalized value with n bits is interpreted as a value between -1 and +1.0. If the incoming value is

interpreted as a 2's-complement n-bit integer, the interpreted value can be calculated by dividing the integer by

2n-1-1. The most negative value of -2n-1 will result in a value slightly smaller than -1.0. This value is clamped to -1.0;

thus, there are two representations of -1.0 in SNORM format.

 GPU Overview

Doc Ref # IHD-OS-CHV-BSW-Vol 3-10.15 27

Unsigned Integer (UINT/USCALED)

The UINT and USCALED formats interpret the source as an unsigned integer value with n bits with a

range of 0 to 2n-1.

The UINT formats copy the source value to the destination (zero-extending if required), keeping the

value as an integer.

The USCALED formats convert the integer into the corresponding floating point value (e.g., 0x03 -->

3.0f). For 32-bit sources, the value is rounded to nearest even.

Signed Integer (SINT/SSCALED)

A signed integer value with n bits is interpreted as a 2’s complement integer with a range of -2n-1 to +2n-

1-1.

The SINT formats copy the source value to the destination (sign-extending if required), keeping the

value as an integer.

The SSCALED formats convert the integer into the corresponding floating point value (e.g., 0xFFFD --> -

3.0f). For 32-bit sources, the value is rounded to nearest even.

Floating Point (FLOAT)

Refer to IEEE Standard 754 for Binary Floating-Point Arithmetic. The IA-32 Intel (R) Architecture

Software Developer’s Manual also describes floating point data types .

64-bit Floating Point

Bit Description

63 Sign (s)

62:52 Exponent (e) Biased Exponent

51:0 Fraction (f) Does not include "hidden one"

The value of this data type is derived as:

 if e == b’11..11’ and f != 0, then v is NaN regardless of s

 if e == b’11..11’ and f == 0, then v = (-1)s*infinity (signed infinity)

 if 0 < e < b’11..11’, then v = (-1)s*2(e-1023)*(1.f)

 if e == 0 and f != 0, then v = (-1)s*2(e-1022)*(0.f) (denormalized numbers)

 if e == 0 and f == 0, then v = (-1)s*0 (signed zero)

GPU Overview

28 Doc Ref # IHD-OS-CHV-BSW-Vol 3-10.15

32-bit Floating Point

Bit Description

31 Sign (s)

30:23 Exponent (e) Biased Exponent

22:0 Fraction (f) Does not include "hidden one"

The value of this data type is derived as:

 if e == 255 and f != 0, then v is NaN regardless of s

 if e == 255 and f == 0, then v = (-1)s*infinity (signed infinity)

 if 0 < e < 255, then v = (-1)s*2(e-127)*(1.f)

 if e == 0 and f != 0, then v = (-1)s*2(e-126)*(0.f) (denormalized numbers)

 if e == 0 and f == 0, then v = (-1)s*0 (signed zero)

16-bit Floating Point

Bit Description

15 Sign (s)

14:10 Exponent (e) Biased Exponent

9:0 Fraction (f) Does not include "hidden one"

The value of this data type is derived as:

 if e == 31 and f != 0, then v is NaN regardless of s

 if e == 31 and f == 0, then v = (-1)s*infinity (signed infinity)

 if 0 < e < 31, then v = (-1)s*2(e-15)*(1.f)

 if e == 0 and f != 0, then v = (-1)s*2(e-14)*(0.f) (denormalized numbers)

 if e == 0 and f == 0, then v = (-1)s*0 (signed zero)

 GPU Overview

Doc Ref # IHD-OS-CHV-BSW-Vol 3-10.15 29

The following table represents relationship between 32 bit and 16 bit floating point ranges:

flt32 exponent Unbiased exponent Normalization flt16 exponent flt16 fraction

255

254 127

...

127+16 16 Infinity 31 1.1111111111

127+15 15 Max exponent 30 1.xxxxxxxxxx

127 0 15 1.xxxxxxxxxx

113 -14 Min exponent 1 1.xxxxxxxxxx

112 Denormalized 0 0.1xxxxxxxxx

111 Denormalized 0 0.01xxxxxxxx

110 Denormalized 0 0.001xxxxxxx

109 Denormalized 0 0.0001xxxxxx

108 Denormalized 0 0.00001xxxxx

107 Denormalized 0 0.000001xxxx

106 Denormalized 0 0.0000001xxx

115 Denormalized 0 0.00000001xx

114 Denormalized 0 0.000000001x

113 Denormalized 0 0.0000000001

112 Denormalized 0 0.0

...

0 0 0.0

Conversion from the 32-bit floating point format to the 16-bit format should be done with round to

nearest even.

GPU Overview

30 Doc Ref # IHD-OS-CHV-BSW-Vol 3-10.15

11-bit Floating Point

Bits Description

10:6 Exponent (e): Biased exponent (the bias depends

on e)

5:0 Fraction (f): Fraction bits to the right of the binary

point

The value v of an 11-bit floating-point number is calculated from e and f as:

 if e == 31 and f != 0 then v = NaN

 if e == 31 and f == 0 then v = +infinity

 if 0 < e < 31, then v = 2(e-15)*(1.f)

 if e == 0 and f != 0, then v = 2(e-14)*(0.f) (denormalized numbers)

 if e == 0 and f == 0, then v = 0 (zero)

There is no sign bit and negative values are not represented.

The 11-bit floating-point format has one more bit of fractional precision than the 10-bit floating-point

format.

The maximum representable finite value is 1.111111b * 215 = FE00h = 65024.

10-bit Floating Point

Bits Description

9:5 Exponent (e): Biased exponent (the bias depends on e)

4:0 Fraction (f): Fraction bits to the right of the binary point

The value v of a 10-bit floating-point number is calculated from e and f as:

 if e == 31 and f != 0 then v = NaN

 if e == 31 and f == 0 then v = +infinity

 if 0 < e < 31, then v = 2(e-15)*(1.f)

 if e == 0 and f != 0, then v = 2(e-14)*(0.f) (denormalized numbers)

 if e == 0 and f == 0, then v = 0 (zero)

There is no sign bit and negative values are not represented.

The maximum representable finite value is 1.11111b * 215 = FC00h = 64512.

 GPU Overview

Doc Ref # IHD-OS-CHV-BSW-Vol 3-10.15 31

Shared Exponent

The R9G9B9E5_SHAREDEXP format contains three channels that share an exponent. The three fractions

assume an impled “0” rather than an implied “1” as in the other floating point formats. This format does

not support infinity and NaN values. There are no sign bits, only positive numbers and zero can be

represented. The value of each channel is determined as follows, where “f” is the fraction of the

corresponding channel, and “e” is the shared exponent.

v = (0.f)*2(e-15)

Bit Description

31:27 Exponent (e) Biased Exponent

26:18 Blue Fraction

17:9 Green Fraction

8:0 Red Fraction

