

Doc Ref # IHD-OS-VLV-Vol9-04.14 1

Intel® Open Source HD Graphics
Programmers' Reference Manual (PRM)

Volume 9: Blitter

For the 2014 Intel Atom™ Processors, Celeron™ Processors, and Pentium™ Processors
based on the "BayTrail" Platform (ValleyView graphics)

© April 2014, Intel Corporation

Blitter

2 Doc Ref # IHD-OS-VLV-Vol9-04.14

Creative Commons License
You are free to Share — to copy, distribute, display, and perform the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or licensor (but not in any

way that suggests that they endorse you or your use of the work).

No Derivative Works. You may not alter, transform, or build upon this work

Notices and Disclaimers
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO
LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY
RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS
OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS
INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL
PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result,
directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS
FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS
SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES
OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE
ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY,
PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION,
WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE,
OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice.
Designers must not rely on the absence or characteristics of any features or instructions marked
"reserved" or "undefined". Intel reserves these for future definition and shall have no responsibility
whatsoever for conflicts or incompatibilities arising from future changes to them. The information here
is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which
may cause the product to deviate from published specifications. Current characterized errata are
available on request.

Implementations of the I2C bus/protocol may require licenses from various entities, including Philips
Electronics N.V. and North American Philips Corporation.

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2014, Intel Corporation. All rights reserved.

Blitter

Doc Ref # IHD-OS-VLV-Vol9-04.14 3

Table of Contents
Blitter (BLT) Engine Command Streamer... 4

Software Control Bit Definitions ... 4

Registers for Blitter Engine Command Streamer ... 4
BLT Engine - Introduction .. 5

Classical BLT Engine Functional Description.. 5

Basic BLT Functional Considerations ... 7

Color Depth Configuration and Color Expansion ... 7
Graphics Data Size Limitations.. 7

Bit-Wise Operations .. 8

Per-Pixel Write-Masking Operations ... 13

When the Source and Destination Locations Overlap ... 13
Basic Graphics Data Considerations ... 17

Contiguous vs. Discontinuous Graphics Data .. 17

Source Data .. 18

Monochrome Source Data .. 19

Pattern Data ... 20
Destination Data .. 22

BLT Programming Examples .. 22

Pattern Fill — A Very Simple BLT .. 22

Drawing Characters Using a Font Stored in System Memory .. 25
BLT Instruction Overview .. 28

BLT Engine State ... 28

Cacheable Memory Support ... 29

Device Cache Coherency: Render & Texture Caches .. 29
BLT Engine Instructions ... 30

BLT Programming Restrictions .. 30

Fill/Move Instructions ... 31

2D (X,Y) BLT Instructions ... 31
BLT Engine Instruction Field Definitions ... 35

Blitter

4 Doc Ref # IHD-OS-VLV-Vol9-04.14

Blitter (BLT) Engine Command Streamer
This pipeline has its own command streamer and operates completely independently of the other
command streamers. This command streamer supports a separate set of registers starting at offset
20000h.

Software Control Bit Definitions

Registers in the range 22XX are not protected from the load register immediate instruction if the
command is executed in the non-secure batch buffer.

BCS_SWCTRL - BCS SW Control

BCS_TIMESTAMP - BCS Reported Timestamp Count

Registers for Blitter Engine Command Streamer

These are the Registers for the Blitter Engine Command Streamer.

GAB_MODE - Mode Register for GAB

Blitter

Doc Ref # IHD-OS-VLV-Vol9-04.14 5

BLT Engine - Introduction
2D Rendering can be divided into 2 categories: classical BLTs, described here, and 3D BLTs. 3D BLTs are
operations which can take advantage of the 3D drawing engine’s functionality and access patterns.

Functions such as Alpha BLTs, arithmetic (bilinear) stretch BLTs, rotations, transposing pixel maps, color
space conversion, and DIBs are all considered 3D BLTs and are covered in the 3D rendering section.
DIBs can be thought of as an indexed texture which uses the texture palette for performing the data
translation. All drawing engines have swappable context. The same hardware can be used by multiple
driver threads where the current state of the hardware is saved to memory and the appropriate state is
loaded from memory on thread switches.

All operands for both 3D and classical BLTs can be in graphics aperture or cacheable system memory.
Some operands can be immediates which are sent through the command stream. Immediate operands
are: patterns, monochrome sources, DIB palettes, and DIB source operands. All non-monochrome
operands which are not tiled have a stride granularity of a double-word (4 bytes).

The classical BLT commands support both linear addressing and X, Y coordinates with and without
clipping. All X1 and Y1 destination and clipping coordinates are inclusive, while X2 and Y2 are exclusive.
Currently, only destination coordinates can be negative. The source and clipping coordinates must be
positive. If clipping is disabled, but a negative destination coordinate is specified, the negative
coordinate is clipped to 0. Linear address BLT commands must supply a non-zero height and width. If
either height or width = 0, then no accesses occur.

Classical BLT Engine Functional Description

The graphics controller provides a hardware-based BLT engine to off load the work of moving blocks of
graphics data from the host CPU. Although the BLT engine is often used simply to copy a block of
graphics data from the source to the destination, it also has the ability to perform more complex
functions. The BLT engine is capable of receiving three different blocks of graphics data as input as
shown in the figure below. The source data may exist in the frame buffer or the Graphics aperture. The
pattern data always represents an 8x8 block of pixels that can be located in the frame buffer, Graphics
aperture, or passed through a command packet. The pattern data must be located in linear memory.
The data already residing at the destination may also be used as an input. The destination data can also
be located in the frame buffer or graphics aperture.

The BLT engine may use any combination of these three different blocks of graphics data as operands,
in both bit-wise logical operations to generate the actual data to be written to the destination, and in
per-pixel write-masking to control the writing of data to the destination. It is intended that the BLT
engine will perform these bit-wise and per-pixel operations on color graphics data that is at the same
color depth that the rest of the graphics system has been set. However, if either the source or pattern
data is monochrome, the BLT engine has the ability to put either block of graphics data through a
process called "color expansion" that converts monochrome graphics data to color. Since the
destination is often a location in the on-screen portion of the frame buffer, it is assumed that any data
already at the destination will be of the appropriate color depth.

Blitter

6 Doc Ref # IHD-OS-VLV-Vol9-04.14

Block Diagram and Data Paths of the BLT Engine

The BLT engine may use any combination of these three different blocks of graphics data as operands,
in both bit-wise logical operations to generate the actual data to be written to the destination, and in
per-pixel write-masking to control the writing of data to the destination. It is intended that the BLT
engine will perform these bit-wise and per-pixel operations on color graphics data that is at the same
color depth that the rest of the graphics system has been set. However, if either the source or pattern
data is monochrome, the BLT engine has the ability to put either block of graphics data through a
process called "color expansion" that converts monochrome graphics data to color. Since the
destination is often a location in the on-screen portion of the frame buffer, it is assumed that any data
already at the destination will be of the appropriate color depth.

Blitter

Doc Ref # IHD-OS-VLV-Vol9-04.14 7

Basic BLT Functional Considerations

Color Depth Configuration and Color Expansion

The graphics system and BLT engine can be configured for color depths of 8, 16, and 32 bits per pixel.

The configuration of the BLT engine for a given color depth dictates the number of bytes of graphics
data that the BLT engine will read and write for each pixel while performing a BLT operation. It is
assumed that any graphics data already residing at the destination which is used as an input is already
at the color depth to which the BLT engine is configured. Similarly, it is assumed that any source or
pattern data used as an input has this same color depth, unless one or both is monochrome. If either
the source or pattern data is monochrome, the BLT engine performs a process called "color expansion"
to convert such monochrome data to color at the color depth to which the BLT engine has been set.

During "color expansion" the individual bits of monochrome source or pattern data that correspond to
individual pixels are converted into 1, 2, or 4 bytes (which ever is appropriate for the color depth to
which the BLT engine has been set). If a given bit of monochrome source or pattern data carries a value
of 1, then the byte(s) of color data resulting from the conversion process are set to carry the value of a
specified foreground color. If a given bit of monochrome source or pattern data carries a value of 0, the
resulting byte(s) are set to the value of a specified background color or not written if transparency is
selected.

The BLT engine is set to a default configuration color depth of 8, 16, or 32 bits per pixel through BLT
command packets. Whether the source and pattern data are color or monochrome must be specified
using command packets. Foreground and background colors for the color expansion of both
monochrome source and pattern data are also specified through the command packets. The source
foreground and background colors used in the color expansion of monochrome source data are
specified independently of those used for the color expansion of monochrome pattern data.

Graphics Data Size Limitations

The BLT engine is capable of transferring very large quantities of graphics data. Any graphics data read
from and written to the destination is permitted to represent a number of pixels that occupies up to
65,536 scan lines and up to 32,768 bytes per scan line at the destination. The maximum number of
pixels that may be represented per scan line’s worth of graphics data depends on the color depth.

Any source data used as an input must represent the same number of pixels as is represented by any
data read from or written to the destination, and it must be organized so as to occupy the same
number of scan lines and pixels per scan line.

The actual number of scan lines and bytes per scan line required to accommodate data read from or
written to the destination are set in the destination width & height registers or using X and Y
coordinates within the command packets. These two values are essential in the programming of the BLT
engine, because the engine uses these two values to determine when a given BLT operation has been
completed.

Blitter

8 Doc Ref # IHD-OS-VLV-Vol9-04.14

Bit-Wise Operations

The BLT engine can perform any one of 256 possible bit-wise operations using various combinations of
the three previously described blocks of graphics data that the BLT engine can receive as input.

The choice of bit-wise operation selects which of the three inputs will be used, as well as the particular
logical operation to be performed on corresponding bits from each of the selected inputs. The BLT
engine automatically foregoes reading any form of graphics data that has not been specified as an
input by the choice of bit-wise operation. An 8-bit code written to the raster operation field of the
command packets chooses the bit-wise operation. The following table lists the available bit-wise
operations and their corresponding 8-bit codes.

Blitter

Doc Ref # IHD-OS-VLV-Vol9-04.14 9

Table: Bit-Wise Operations and 8-Bit Codes (00-3F)

Code Value Written to Bits at Destination Code Value Written to Bits at Destination

00 writes all 0’s 20 D and (P and (notS))

01 not(D or (P or S))) 21 not(S or(D xor P))

02 D and (not(P or S)) 22 D and (notS)

03 not(P or S) 23 not(S or (P and (notD)))

04 S and (not(D or P)) 24 (S xor P) and (D xor S)

05 not(D or P) 25 not(P xor (D and (not(S and P))))

06 not(P or (not(D xor S))) 26 S xor (D or (P and S))

07 not(P or (D and S)) 27 S xor (D or (not(P xor S)))

08 S and (D and (notP)) 28 D and (P xor S)

09 not(P or (D xor S)) 29 not(P xor (S xor (D or (P and S))))

0A D and (notP) 2A D and (not(P and S))

0B not(P or (S and (notD))) 2B not(S xor ((S xor P) and (P xor D)))

0C S and (notP) 2C S xor (P and (D or S))

0D not(P or (D and (notS))) 2D P xor (S or (notD))

0E not(P or (not(D or S))) 2E P xor (S or (D xor P))

0F notP 2F not(P and (S or (notD)))

10 P and (not(D or S)) 30 P and (notS)

11 not(D or S) 31 not(S or (D and (notP)))

12 not(S or (not(D xor P))) 32 S xor (D or (P or S))

13 not(S or (D and P)) 33 notS

14 not(D or (not(P xor S))) 34 S xor (P or (D and S))

15 not(D or (P and S)) 35 S xor (P or (not(D xor S)))

16 P xor (S xor (D and (not(P and S)))) 36 S xor (D or P)

17 not(S xor ((S xor P) and (D xor S))) 37 not(S and (D or P))

18 (S xor P) and (P xor D) 38 P xor (S and (D or P))

19 not(S xor (D and (not(P and S)))) 39 S xor (P or (notD))

1A P xor (D or (S and P)) 3A S xor (P or (D xor S))

1B not(S xor (D and (P xor S))) 3B not(S and (P or (notD)))

1C P xor (S or (D and P)) 3C P xor S

1D not(D xor (S and (P xor D))) 3D S xor (P or (not(D or S)))

1E P xor (D or S) 3E S xor (P or (D and (notS)))

1F not(P and (D or S)) 3F not(P and S)

Notes:

S = Source Data
P = Pattern Data
D = Data Already Existing at the Destination

Blitter

10 Doc Ref # IHD-OS-VLV-Vol9-04.14

Table: Bit-Wise Operations and 8-bit Codes (40 - 7F)

Code Value Written to Bits at Destination Code Value Written to Bits at Destination

40 P and (S and (notD)) 60 P and (D xor S)

41 not(D or (P xor S)) 61 not(D xor (S xor (P or (D and S))))

42 (S xor D) and (P xor D) 62 D xor (S and (P or D))

43 not(S xor (P and (not(D and S)))) 63 S xor (D or (notP))

44 S and (notD) 64 S xor (D and (P or S))

45 not(D or (P and (notS))) 65 D xor (S or (notP))

46 D xor (S or (P and D)) 66 D xor S

47 not(P xor (S and (D xor P))) 67 S xor (D or (not(P or S)))

48 S and (D xor P) 68 not(D xor (S xor (P or (not(D or S)))))

49 not(P xor (D xor (S or (P and D)))) 69 not(P xor (D xor S))

4A D xor (P and (S or D)) 6A D xor (P and S)

4B P xor (D or (notS)) 6B not(P xor (S xor (D and (P or S))))

4C S and (not(D and P)) 6C S xor (D and P)

4D not(S xor ((S xor P) or (D xor S))) 6D not(P xor (D xor (S and (P or D))))

4E P xor (D or (S xor P)) 6E S xor (D and (P or (notS)))

4F not(P and (D or (notS))) 6F not(P and (not(D xor S)))

50 P and (notD) 70 P and (not(D and S))

51 not(D or (S and (notP))) 71 not(S xor ((S xor D) and (P xor D)))

52 D xor (P or (S and D)) 72 S xor (D or (P xor S))

53 not(S xor (P and (D xor S))) 73 not(S and (D or (notP)))

54 not(D or (not(P or S))) 74 D xor (S or (P xor D))

55 notD 75 not(D and (S or (notP)))

56 D xor (P or S) 76 S xor (D or (P and (notS)))

57 not(D and (P or S)) 77 not(D and S)

58 P xor (D and (S or P)) 78 P xor (D and S)

59 D xor (P or (notS)) 79 not(D xor (S xor (P and (D or S))))

5A D xor P 7A D xor (P and (S or (notD)))

5B D xor (P or (not(S or D))) 7B not(S and (not(D xor P)))

5C D xor (P or (S xor D)) 7C S xor (P and (D or (notS)))

5D not(D and (P or (notS))) 7D not(D and (not(P xor S)))

5E D xor (P or (S and (notD))) 7E (S xor P) or (D xor S)

5F not(D and P) 7F not(D and (P and S))

Notes:

S = Source Data
P = Pattern Data
D = Data Already Existing at the Destination

Blitter

Doc Ref # IHD-OS-VLV-Vol9-04.14 11

Table: Bit-Wise Operations and 8-bit Codes (80 - BF)

Code Value Written to Bits at Destination Code Value Written to Bits at Destination

80 D and (P and S) A0 D and P

81 not((S xor P) or (D xor S)) A1 not(P xor (D or (S and (notP))))

82 D and (not(P xor S)) A2 D and (P or (notS))

83 not(S xor (P and (D or (notS)))) A3 not(D xor (P or (S xor D)))

84 S and (not(D xor P)) A4 not(P xor (D or (not(S or P))))

85 not(P xor (D and (S or (notP)))) A5 not(P xor D)

86 D xor (S xor (P and (D or S))) A6 D xor (S and (notP))

87 not(P xor (D and S)) A7 not(P xor (D and (S or P)))

88 D and S A8 D and (P or S)

89 not(S xor (D or (P and (notS)))) A9 not(D xor (P or S))

8A D and (S or (notP)) AA D

8B not(D xor (S or (P xor D))) AB D or (not(P or S))

8C S and (D or (notP)) AC S xor (P and (D xor S))

8D not(S xor (D or (P xor S))) AD not(D xor (P or (S and D)))

8E S xor ((S xor D) and (P xor D)) AE D or (S and (notP))

8F not(P and (not(D and S))) AF D or (notP)

90 P and (not(D xor S)) B0 P and (D or (notS))

91 not(S xor (D and (P or (notS)))) B1 not(P xor (D or (S xor P)))

92 D xor (P xor (S and (D or P))) B2 S xor ((S xor P) or (D xor S))

93 not(S xor (P and D)) B3 not(S and (not(D and P)))

94 P xor (S xor (D and (P or S))) B4 P xor (S and (notD))

95 not(D xor (P and S)) B5 not(D xor (P and (S or D)))

96 D xor (P xor S) B6 D xor (P xor (S or (D and P)))

97 P xor (S xor (D or (not(P or S)))) B7 not(S and (D xor P))

98 not(S xor (D or (not(P or S)))) B8 P xor (S and (D xor P))

99 not(D xor S) B9 not(D xor (S or (P and D)))

9A D xor (P and (notS)) BA D or (P and (notS))

9B not(S xor (D and (P or S))) BB D or (notS)

9C S xor (P and (notD)) BC S xor (P and (not(D and S)))

9D not(D xor (S and (P or D))) BD not((S xor D) and (P xor D))

9E D xor (S xor (P or (D and S))) BE D or (P xor S)

9F not(P and (D xor S)) BF D or (not(P and S))

Notes:

S = Source Data
P = Pattern Data
D = Data Already Existing at the Destination

Blitter

12 Doc Ref # IHD-OS-VLV-Vol9-04.14

Table: Bit-Wise Operations and 8-bit Codes (C0 - FF)

Code Value Written to Bits at Destination Code Value Written to Bits at Destination

C0 P and S E0 P and (D or S)

C1 not(S xor (P or (D and (notS)))) E1 not(P xor (D or S))

C2 not(S xor (P or (not(D or S)))) E2 D xor (S and (P xor D))

C3 not(P xor S) E3 not(P xor (S or (D and P)))

C4 S and (P or (notD)) E4 S xor (D and (P xor S))

C5 not(S xor (P or (D xor S))) E5 not(P xor (D or (S and P)))

C6 S xor (D and (notP)) E6 S xor (D and (not(P and S)))

C7 not(P xor (S and (D or P))) E7 not((S xor P) and (P xor D))

C8 S and (D or P) E8 S xor ((S xor P) and (D xor S))

C9 not(S xor (P or D)) E9 not(D xor (S xor (P and (not(D and S)))))

CA D xor (P and (S xor D)) EA D or (P and S)

CB not(S xor (P or (D and S))) EB D or (not(P xor S))

CC S EC S or (D and P)

CD S or (not(D or P)) ED S or (not(D xor P))

CE S or (D and (notP)) EE D or S

CF S or (notP) EF S or (D or (notP))

D0 P and (S or (notD)) F0 P

D1 not(P xor (S or (D xor P))) F1 P or (not(D or S))

D2 P xor (D and (notS)) F2 P or (D and (notS))

D3 not(S xor (P and (D or S))) F3 P or (notS)

D4 S xor ((S xor P) and (P xor D)) F4 P or (S and (notD))

D5 not(D and (not(P and S))) F5 P or (notD)

D6 P xor (S xor (D or (P and S))) F6 P or (D xor S)

D7 not(D and (P xor S)) F7 P or (not(D and S))

D8 P xor (D and (S xor P)) F8 P or (D and S)

D9 not(S xor (D or (P and S))) F9 P or (not(D xor S))

DA D xor (P and (not(S and D))) FA D or P

DB not((S xor P) and (D xor S)) FB D or (P or (notS))

DC S or (P and (notD)) FC P or S

DD S or (notD) FD P or (S or (notD))

DE S or (D xor P) FE D or (P or S)

DF S or (not(D and P)) FF writes all 1’s

Notes:

S = Source Data
P = Pattern Data
D = Data Already Existing at the Destination

Blitter

Doc Ref # IHD-OS-VLV-Vol9-04.14 13

Per-Pixel Write-Masking Operations

The BLT engine is able to perform per-pixel write-masking with various data sources used as pixel
masks to constrain which pixels at the destination are to be written to by the BLT engine. As shown in
the figure below, either monochrome source or monochrome pattern data may be used as pixel masks.
Color pattern data cannot be used. Another available pixel mask is derived by comparing a particular
color range per color channel to either the color already specified for a given pixel at the destination or
source.

The command packets can specify the monochrome source or the monochrome pattern data as a pixel
mask. When this feature is used, the bits that carry a value of 0 cause the bytes of the corresponding
pixel at the destination to not be written to by the BLT engine, thereby preserving whatever data was
originally carried within those bytes. This feature can be used in writing characters to the display, while
also preserving the pre-existing backgrounds behind those characters. When both operands are in the
transparent mode, the logical AND of the 2 operands are used for the write enables per pixel.

The 3-bit field, destination transparency mode, within the command packets can select per-pixel write-
masking with a mask based on the results of color comparisons. The monochrome source background
and foreground are range compared with either the bytes for the pixels at the destination or the source
operand. This operation is described in the BLT command packet and register descriptions.

When the Source and Destination Locations Overlap

It is possible to have BLT operations in which the locations of the source and destination data overlap.
This frequently occurs in BLT operations where a user is shifting the position of a graphical item on the
display by only a few pixels. In these situations, the BLT engine must be programmed so that
destination data is not written into destination locations that overlap with source locations before the
source data at those locations has been read. Otherwise, the source data will become corrupted. The XY
commands determine whether there is an overlap and perform the accesses in the proper direction to
avoid data corruption.

The following figure shows how the source data can be corrupted when a rectangular block is copied
from a source location to an overlapping destination location. The BLT engine typically reads from the
source location and writes to the destination location starting with the left-most pixel in the top-most
line of both, as shown in step (a). As shown in step (b), corruption of the source data has already started
with the copying of the top-most line in step (a) — part of the source that originally contained lighter-
colored pixels has now been overwritten with darker-colored pixels. More source data corruption occurs
as steps (b) through (d) are performed. At step (e), another line of the source data is read, but the two
right-most pixels of this line are in the region where the source and destination locations overlap, and
where the source has already been overwritten as a result of the copying of the top-most line in step
(a). Starting in step (f), darker-colored pixels can be seen in the destination where lighter-colored pixels
should be. This errant effect occurs repeatedly throughout the remaining steps in this BLT operation. As
more lines are copied from the source location to the destination location, it becomes clear that the
end result is not what was originally intended.

Blitter

14 Doc Ref # IHD-OS-VLV-Vol9-04.14

Source Corruption in BLT with Overlapping Source and Destination Locations

The BLT engine can alter the order in which source data is read and destination data is written when
necessary to avoid source data corruption problems when the source and destination locations overlap.
The command packets provide the ability to change the point at which the BLT engine begins reading
and writing data from the upper left-hand corner (the usual starting point) to one of the other three
corners. The BLT engine may be set to read data from the source and write it to the destination starting
at any of the four corners of the panel.

The XY command packets perform the necessary comparisons and start at the proper corner of each
operand which avoids data corruption.

Blitter

Doc Ref # IHD-OS-VLV-Vol9-04.14 15

Correctly Performed BLT with Overlapping Source and Destination Locations

The following figure illustrates how this feature of the BLT engine can be used to perform the same BLT
operation as was illustrated in the figure above, while avoiding the corruption of source data. As shown
in the figure below, the BLT engine reads the source data and writes the data to the destination starting
with the right-most pixel of the bottom-most line. By doing this, no pixel existing where the source and
destination locations overlap will ever be written to before it is read from by the BLT engine. By the time
the BLT operation has reached step (e) where two pixels existing where the source and destination
locations overlap are about to be over written, the source data for those two pixels has already been
read.

Blitter

16 Doc Ref # IHD-OS-VLV-Vol9-04.14

Suggested Starting Points for Possible Source and Destination Overlap Situations

The figure above shows the recommended lines and pixels to be used as starting points in each of 8
possible ways in which the source and destination locations may overlap. In general, the starting point
should be within the area in which the source and destination overlap.

Blitter

Doc Ref # IHD-OS-VLV-Vol9-04.14 17

Basic Graphics Data Considerations

Contiguous vs. Discontinuous Graphics Data

Graphics data stored in memory, particularly in the frame buffer of a graphics system, has
organizational characteristics that often distinguish it from other varieties of data. The main distinctive
feature is the tendency for graphics data to be organized in a discontinuous block of graphics data
made up of multiple sub-blocks of bytes, instead of a single contiguous block of bytes.

Representation of On-Screen Single 6-Pixel Line in the Frame Buffer

The figure above shows an example of contiguous graphics data — a horizontal line made up of six
adjacent pixels within a single scan line on a display with a resolution of 640x480. Presuming that the
graphics system driving this display has been set to 8 bits per pixel and that the frame buffer’s starting
address of 0h corresponds to the upper left-most pixel of this display, then the six pixels that make this
horizontal line starting at coordinates (256, 256) occupies the six bytes starting at frame buffer address
28100h, and ending at address 28105h.

In this case, there is only one scan line’s worth of graphics data in this single horizontal line, so the
block of graphics data for all six of these pixels exists as a single, contiguous block comprised of only
these six bytes. The starting address and the number of bytes are the only pieces of information that a
BLT engine would require to read this block of data.

The simplicity of the above example of a single horizontal line contrasts sharply to the example of
discontinuous graphics data depicted in the figure below. The simple six-pixel line of the figure above is
now accompanied by three more six-pixel lines placed on subsequent scan lines, resulting in the 6x4
block of pixels shown.

Blitter

18 Doc Ref # IHD-OS-VLV-Vol9-04.14

Representation of On-Screen 6x4 Array of Pixels in the Frame Buffer

Since there are other pixels on each of the scan lines on which this 6x4 block exists that are not part of
this 6x4 block, what appears to be a single 6x4 block of pixels on the display must be represented by a
discontinuous block of graphics data made up of 4 separate sub-blocks of six bytes apiece in the frame
buffer at addresses 28100h, 28380h, 28600h, and 28880h. This situation makes the task of reading what
appears to be a simple 6x4 block of pixels more complex. However, there are two characteristics of this
6x4 block of pixels that help simplify the task of specifying the locations of all 24 bytes of this
discontinuous block of graphics data: all four of the sub-blocks are of the same length, and the four
sub-blocks are separated from each other at equal intervals.

The BLT engine is designed to make use of these characteristics of graphics data to simplify the
programming required to handle discontinuous blocks of graphics data. For such a situation, the BLT
engine requires only four pieces of information: the starting address of the first sub-block, the length of
a sub-block, the offset (in bytes), pitch, of the starting address of each subsequent sub-block, and the
quantity of sub-blocks.

Source Data

The source data may exist in the frame buffer or elsewhere in the graphics aperture where the BLT
engine may read it directly, or it may be provided to the BLT engine by the host CPU through the
command packets. The block of source graphics data may be either contiguous or discontinuous, and
may be either in color (with a color depth that matches that to which the BLT engine has been set) or
monochrome.

The source select bit in the command packets specifies whether the source data exists in the frame
buffer or is provided through the command packets. Monochrome source data is always specified as
being supplied through an immediate command packet.

If the color source data resides within the frame buffer or elsewhere in the graphics aperture, then the
Source Address Register, specified in the command packets is used to specify the address of the source.

Blitter

Doc Ref # IHD-OS-VLV-Vol9-04.14 19

In cases where the host CPU provides the source data, it does so by writing the source data to ring
buffer directly after the BLT command that requires the data or uses an IMMEDIATE_INDIRECT_BLT
command packet which has a size and pointer to the operand in Graphics aperture.

The block of bytes sent by the host CPU through the command packets must be quadword-aligned and
the source data contained within the block of bytes must also be aligned.

To accommodate discontinuous source data, the source and destination pitch registers can be used to
specify the offset in bytes from the beginning of one scan line’s worth source data to the next.
Otherwise, if the source data is contiguous, then an offset equal to the length of a scan line’s worth of
source data should be specified.

Monochrome Source Data

The opcode of the command packet specifies whether the source data is color or monochrome. Since
monochrome graphics data only uses one bit per pixel, each byte of monochrome source data typically
carries data for 8 pixels which hinders the use of byte-oriented parameters when specifying the location
and size of valid source data. Some additional parameters must be specified to ensure the proper
reading and use of monochrome source data by the BLT engine. The BLT engine also provides
additional options for the manipulation of monochrome source data versus color source data.

The various bit-wise logical operations and per-pixel write-masking operations were designed to work
with color data. In order to use monochrome data, the BLT engine converts it into color through a
process called color expansion, which takes place as a BLT operation is performed. In color expansion
the single bits of monochrome source data are converted into one, two, or four bytes (depending on
the color depth) of color data that are set to carry value corresponding to either the foreground or
background color that have been specified for use in this conversion process. If a given bit of
monochrome source data carries a value of 1, then the byte(s) of color data resulting from the
conversion process will be set to carry the value of the foreground color. If a given bit of monochrome
source data carries a value of 0, then the resulting byte(s) will be set to the value of the background
color. The foreground and background colors used in the color expansion of monochrome source data
can be set in the source expansion foreground color register and the source expansion background
color register.

The BLT Engine requires that the bit alignment of each scan line’s worth of monochrome source data be
specified. Each scan line’s worth of monochrome source data is word aligned but can actually start on
any bit boundary of the first byte. Monochrome text is special cased and it is bit or byte packed, where
in bit packed there are no invalid pixels (bits) between scan lines. There is a 3 bit field which indicates
the starting pixel position within the first byte for each scan line, Mono Source Start.

The BLT engine also provides various clipping options for use with specific BLT commands (BLT_TEXT)
with a monochrome source. Clipping is supported through: Clip rectangle Y addresses or coordinates
and X coordinates along with scan line starting and ending addresses (with Y addresses) along with X
starting and ending coordinates.

The maximum immediate source size is 128 bytes.

Blitter

20 Doc Ref # IHD-OS-VLV-Vol9-04.14

Pattern Data

The color pattern data must exist within the frame buffer or Graphics aperture where the BLT engine
may read it directly or it can be sent through the command stream. The pattern data must be located in
linear memory.

Monochrome pattern data is supplied by the command packet when it is to be used. As shown in figure
below, the block of pattern graphics data always represents a block of 8x8 pixels. The bits or bytes of a
block of pattern data may be organized in the frame buffer memory in only one of three ways,
depending upon its color depth which may be 8, 16, or 32 bits per pixel (whichever matches the color
depth to which the BLT engine has been set), or monochrome.

The maximum color pattern size is 256 bytes.

Pattern Data -- Always an 8x8 Array of Pixels

The Pattern Address Register is used to specify the address of the color pattern data at which the block
of pattern data begins. The three least significant bits of the address written to this register are ignored,
because the address must be in terms of quadwords. This is because the pattern must always be
located on an address boundary equal to its size. Monochrome patterns take up 8 bytes, or a single
quadword of space, and are loaded through the command packet that uses it. Similarly, color patterns
with color depths of 8, 16, and 32 bits per pixel must start on 64-byte, 128-byte and 256-byte
boundaries, respectively. The next 3 figures show how monochrome, 8bpp, 16bpp, and 32bpp pattern
data , respectively, is organized in memory.

Blitter

Doc Ref # IHD-OS-VLV-Vol9-04.14 21

8bpp Pattern Data -- Occupies 64 Bytes (8 quadwords)

16bpp Pattern Data -- Occupies 128 Bytes (16 quadwords)

32bpp Pattern Data -- Occupies 256 Bytes (32 quadwords)

The opcode of the command packet specifies whether the pattern data is color or monochrome. The
various bit-wise logical operations and per-pixel write-masking operations were designed to work with
color data. In order to use monochrome pattern data, the BLT engine is designed to convert it into color
through a process called "color expansion" which takes place as a BLT operation is performed. In color
expansion, the single bits of monochrome pattern data are converted into one, two, or four bytes
(depending on the color depth) of color data that are set to carry values corresponding to either the
foreground or background color that have been specified for use in this process. The foreground color
is used for pixels corresponding to a bit of monochrome pattern data that carry the value of 1, while the
background color is used where the corresponding bit of monochrome pattern data carries the value of
0. The foreground and background colors used in the color expansion of monochrome pattern data can
be set in the Pattern Expansion Foreground Color Register and Pattern Expansion Background Color
Register.

Blitter

22 Doc Ref # IHD-OS-VLV-Vol9-04.14

Destination Data

There are actually two different types of "destination data": the graphics data already residing at the
location that is designated as the destination, and the data that is to be written into that very same
location as a result of a BLT operation.

The location designated as the destination must be within the frame buffer or Graphics aperture where
the BLT engine can read from it and write to it directly. The blocks of destination data to be read from
and written to the destination may be either contiguous or discontinuous. All data written to the
destination will have the color depth to which the BLT engine has been set. It is presumed that any data
already existing at the destination which will be read by the BLT engine will also be of this same color
depth — the BLT engine neither reads nor writes monochrome destination data.

The Destination Address Register is used to specify the address of the destination.

To accommodate discontinuous destination data, the Source and Destination Pitch Registers can be
used to specify the offset in bytes from the beginning of one scan line’s worth of destination data to the
next. Otherwise, if the destination data is contiguous, then an offset equal to the length of a scan line’s
worth of destination data should be specified.

BLT Programming Examples

Pattern Fill — A Very Simple BLT

In this example, a rectangular area on the screen is to be filled with a color pattern stored as pattern
data in off-screen memory. The screen has a resolution of 1024x768 and the graphics system has been
set to a color depth of 8 bits per pixel.

Blitter

Doc Ref # IHD-OS-VLV-Vol9-04.14 23

On-Screen Destination for Example Pattern Fill BLT

As shown in the figure above, the rectangular area to be filled has its upper left-hand corner at
coordinates (128, 128) and its lower right-hand corner at coordinates (191, 191). These coordinates
define a rectangle covering 64 scan lines, each scan line’s worth of which is 64 pixels in length — in
other words, an array of 64x64 pixels. Presuming that the pixel at coordinates (0, 0) corresponds to the
byte at address 00h in the frame buffer memory, the pixel at (128, 128) corresponds to the byte at
address 20080h.

Pattern Data for Example Pattern Fill BLT

As shown in figure above, the pattern data occupies 64 bytes starting at address 100000h. As always,
the pattern data represents an 8x8 array of pixels.

The BLT command packet is used to select the features to be used in this BLT operation, and must be
programmed carefully. The vertical alignment field should be set to 0 to select the top-most horizontal
row of the pattern as the starting row used in drawing the pattern starting with the top-most scan line
covered by the destination. The pattern data is in color with a color depth of 8 bits per pixel, so the

Blitter

24 Doc Ref # IHD-OS-VLV-Vol9-04.14

dynamic color enable should be asserted with the dynamic color depth field should be set to 0. Since
this BLT operation does not use per-pixel write-masking (destination transparency mode), this field
should be set to 0. Finally, the raster operation field should be programmed with the 8-bit value of F0h
to select the bit-wise logical operation in which a simple copy of the pattern data to the destination
takes place. Selecting this bit-wise operation in which no source data is used as an input causes the BLT
engine to automatically forego either reading source data from the frame buffer.

The Destination Pitch Register must be programmed with number of bytes in the interval from the start
of one scan line’s worth of destination data to the next. Since the color depth is 8 bits per pixel and the
horizontal resolution of the display is 1024, the value to be programmed into these bits is 400h, which is
equal to the decimal value of 1024.

Bits [31:3] of the Pattern Address Register must be programmed with the address of the pattern data.

Similarly, bits [31:0] of the Destination Address Register must be programmed with the byte address at
the destination that will be written to first. In this case, the address is 20080h, which corresponds to the
byte representing the pixel at coordinates (128, 128).

This BLT operation does not use the values in the Source Address Register or the Source Expansion
Background or Foreground Color Registers.

The Destination Width and Height Registers (or the Destination X and Y Coordinates) must be
programmed with values that describe to the BLT engine the 64x64 pixel size of the destination
location. The height should be set to carry the value of 40h, indicating that the destination location
covers 64 scan lines. The width should be set to carry the value of 40h, indicating that each scan line’s
worth of destination data occupies 64 bytes. All of this information is written to the ring buffer using
the PAT_BLT (or XY_PAT_BLT) command packet.

Blitter

Doc Ref # IHD-OS-VLV-Vol9-04.14 25

Results of Example Pattern Fill BLT

The figure above shows the end result of performing this BLT operation. The 8x8 pattern has been
repeatedly copied ("tiled") into the entire 64x64 area at the destination.

Drawing Characters Using a Font Stored in System Memory

In this example BLT operation, a lowercase letter "f" is to be drawn in black on a display with a gray
background. The resolution of the display is 1024x768, and the graphics system has been set to a color
depth of 8 bits per pixel.

Blitter

26 Doc Ref # IHD-OS-VLV-Vol9-04.14

On-Screen Destination for Example Character Drawing BLT

The figure above shows the display on which this letter "f" is to be drawn. As shown in this figure, the
entire display has been filled with a gray color. The letter "f" is to be drawn into an 8x8 region on the
display with the upper left-hand corner at the coordinates (128, 128).

Source Data in System Memory for Example Character Drawing BLT

The figure above shows both the 8x8 pattern making up the letter "f" and how it is represented
somewhere in the host’s system memory — the actual address in system memory is not important. The
letter "f" is represented in system memory by a block of monochrome graphics data that occupies 8
bytes. Each byte carries the 8 bits needed to represent the 8 pixels in each scan line’s worth of this
graphics data. This type of pattern is often used to store character fonts in system memory.

During this BLT operation, the host CPU will read this representation of the letter "f" from system
memory, and write it to the BLT engine by performing memory writes to the ring buffer as an
immediate monochrome BLT operand following the BLT_TEXT command. The BLT engine will receive
this data through the command stream and use it as the source data for this BLT operation. The BLT
engine will be set to the same color depth as the graphics system — 8 bits per pixel, in this case. Since
the source data in this BLT operation is monochrome, color expansion must be used to convert it to an
8 bpp color depth. To ensure that the gray background behind this letter "f" is preserved, per-pixel
write masking will be performed, using the monochrome source data as the pixel mask.

Blitter

Doc Ref # IHD-OS-VLV-Vol9-04.14 27

The BLT Setup and Text_immediate command packets are used to select the features to be used in this
BLT operation. Only the fields required by these two command packets must be programmed carefully.
The BLT engine ignores all other registers and fields. The source select field in the Text_immediate
command must be set to 1, to indicate that the source data is provided by the host CPU through the
command packet. Finally, the raster operation field should be programmed with the 8-bit value CCh to
select the bit-wise logical operation that simply copies the source data to the destination. Selecting this
bit-wise operation in which no pattern data is used as an input, causes the BLT engine to automatically
forego reading pattern data from the frame buffer.

The Setup Pattern/Source Expansion Foreground Color Register to specify the color with which the
letter "f" will be drawn. There is no Source address. All scan lines of the glyph are bit packed and the
clipping is controlled by the ClipRect registers from the SETUP_BLT command and the Destination Y1,
Y2, X1, and X2 registers in the TEXT_BLT command. Only the pixels that are within (inclusive
comparisons) the clip rectangle are written to the destination surface.

The Destination Pitch Register must be programmed with a value equal to the number of bytes in the
interval between the first bytes of each adjacent scan line’s worth of destination data. Since the color
depth is 8 bits per pixel and the horizontal resolution of the display is 1024 pixels, the value to be
programmed into these bits is 400h, which is equal to the decimal value of 1024. Since the source data
used in this BLT operation is monochrome, the BLT engine will not use a byte-oriented pitch value for
the source data.

Since the source data is monochrome, color expansion is required to convert it to color with a color
depth of 8 bits per pixel. Since the Setup Pattern/Source Expansion Foreground Color Register is
selected to specify the foreground color of black to be used in drawing the letter "f", this register must
be programmed with the value for that color. With the graphics system set for a color depth of 8 bits
per pixel, the actual colors are specified in the RAMDAC palette, and the 8 bits stored in the frame
buffer for each pixel actually specify the index used to select a color from that palette. This example
assumes that the color specified at index 00h in the palette is black, and therefore bits [7:0] of this
register should be set to 00h to select black as the foreground color. The BLT engine ignores bits [31:8]
of this register because the selected color depth is 8 bits per pixel. Even though the color expansion
being performed on the source data normally requires that both the foreground and background colors
be specified, the value used to specify the background color is not important in this example. Per-pixel
write-masking is being performed with the monochrome source data as the pixel mask, which means
that none of the pixels in the source data that will be converted to the background color will ever be
written to the destination. Since these pixels will never be seen, the value programmed into the
Pattern/Source Expansion Background Color Register to specify a background color is not important.

The Destination Width and Height Registers are not used. The Y1, Y2, X1, and X2 are used to describe to
the BLT engine the 8x8 pixel size of the destination location. The Destination Y1 and Y2 address (or
coordinate) registers must be programmed with the starting and ending scan line address (or Y
coordinates) of the destination data. This address is specified as an offset from the start of the frame
buffer of the scan line at the destination that will be written to first. The destination X1 and X2 registers
must be programmed with the starting and ending pixel offsets from the beginning of the scan line.

This BLT operation does not use the values in the Pattern Address Register, the Source Expansion
Background Color Register, or the Source Expansion Foreground Color Register.

Blitter

28 Doc Ref # IHD-OS-VLV-Vol9-04.14

Results of Example Character Drawing BLT

The preceding shows the end result of performing this BLT operation. Only the pixels that form part of
the actual letter "f" have been drawn into the 8x8 destination location on the display, leaving the other
pixels within the destination with their original gray color.

BLT Instruction Overview

This chapter defines the instructions used to control the 2D (BLT) rendering function.

The instructions detailed in this chapter are used across devices. However, slight changes may be
present in some instructions (i.e., for features added or removed), or some instructions may be removed
entirely. Refer to the Device Dependencies chapter for summary information regarding device-specific
behaviors/interfaces/features.

The XY instructions offload the drivers by providing X and Y coordinates and taking care of the access
directions for overlapping BLTs without fields specified by the driver.

Color pixel sizes supported are 8, 16, and 32 bits per pixel (bpp). All pixels are naturally aligned.

BLT Engine State

Most of the BLT instructions are state-free, which means that all states required to execute the
command is within the instruction. If clipping is not used, then there is no shared state for many of the
BLT instructions. This allows the BLT Engine to be shared by many drivers with minimal synchronization
between the drivers.

Instructions which share state are:

All instructions that are X,Y commands and use the Clipping Rectangle by asserting the Clip Enable field

All XY_Setup Commands (XY_SETUP_BLT and XY_SETUP_MONO_PATTERN_SL_BLT, XY_SETUP_CLIP_BLT)
load the shared state for the following commands:

Blitter

Doc Ref # IHD-OS-VLV-Vol9-04.14 29

XY_PIXEL_BLT (Negative Stride (=Pitch) Not Allowed)

XY_SCANLINES_BLT

XY_TEXT_BLT (Negative Stride (=Pitch) Not Allowed)

XY_TEXT_IMMEDIATE_BLT (Negative Stride (=Pitch) Not Allowed)

State registers that are saved & restored in the Logical Context:

BR1+ Setup Control (Solid Pattern Select, Clipping Enable, Mono Source Transparency Mode, Mono Pattern Transparency
Mode, Color Depth[1:0], Raster Operation[7:0], & Destination Pitch[15:0]) + 32bpp Channel Mask[1:0], Mono / Color
Pattern

BR05 Setup Background Color

BR06 Setup Foreground Color

BR07 Setup Pattern Base Address

BR09 Setup Destination Base Address

BR20 DW0 for a Monochrome Pattern

BR21 DW1 for a Monochrome Pattern

BR24 ClipRectY1’X1

BR25 ClipRectY2’X2

Cacheable Memory Support

The BLT Engine can be used to transfer data between cacheable ("system") memory and uncached
("main", or "UC") graphics memory using the BLT instructions. The GTT must be properly programmed
to map memory pages as cacheable or UC. Only linear-mapped (not tiled) surfaces can be mapped as
cacheable.

Transfers between cacheable sources and cacheable destinations are not supported. Patterns and
monochrome sources can not be located in cacheable memory.

Cacheable write operands do not snoop the processor’s cache nor update memory until evicted from
the render cache. Cacheable read or write operands are not snooped (nor invalidated) from either
internal cache by external (processor, hublink,…) accesses.

Device Cache Coherency: Render & Texture Caches

Software must initiate cache flushes to enforce coherency between the render and texture caches, i.e.,
both the render and texture caches must be flushed before a BLT destination surface can be reused as a
texture source. Color sources and destinations use the render cache, while patterns and monochrome
sources use the texture cache.

Blitter

30 Doc Ref # IHD-OS-VLV-Vol9-04.14

BLT Engine Instructions

The Instruction Target field is used as an opcode by the BLT Engine state machine to qualify the control
bits that are relevant for executing the instruction. The descriptions for each DWord and bit field are
contained in the BLT Engine Instruction Field Definition section. Each DWord field is described as a
register, but none of these registers can be written or read through a memory mapped location; they
are internal state only.

BLT Programming Restrictions

Overlapping Source/Destination BLTs: The following condition must be avoided when programming
the BLT engine: Linear surfaces with a cache line in scan line Y for the source stream overlapping with a
cache line in scan line Y-1 for the dest stream (=> non-aligned surface pitches). The cache coherency
rules combined with the Blitter data consumption rules result in UNDEFINED operation. There are two
suggested software workarounds:

In order to perform coherent overlapping BLTs, (a) the Source and Destination Base Address registers
must hold the same value (without alignment restriction), and (b) the Source and Destination Pitch
registers (BR11, BR13) must both be a multiple of 64 bytes.

If (a) isn’t possible, do overlapping source copy BLTs as two blits, using a separate intermediate surface.

All reserved fields must be programmed to 0s.

When using monosource or text data (bit/byte/word aligned): do not program pixel widths greater than
32,745 pixels.

The other way to do this is driver should always program a dummy 3D.

NON-PIPELINE state following the BLT commands:

• Immediate Commands: There must be at least one command after any immediate blitter
commands before head == tail. This can be a simple MI_NOOP.

• For Monosource and also Color Pattern surfaces, the start Base Address programmed should
always be Cache Line (64 byte) aligned.

Blitter

Doc Ref # IHD-OS-VLV-Vol9-04.14 31

Fill/Move Instructions

These instructions use linear addresses with width and height. BLT clipping is not supported.

COLOR_BLT

SRC_COPY_BLT

2D (X,Y) BLT Instructions

Most BLT instructions (prefixed with "XY_") use 2D X,Y coordinate specifications vs. lower-level linear
addresses These instructions also support simple 2D clipping against a clip rectangle. The top and left
Clipping coordinates are inclusive. The bottom and right coordinates are exclusive. The BLT Engine
performs a trivial reject for all CLIP BLT instructions before performing any accesses.

Negative destination and source coordinates are supported. In the case of negative source coordinates,
the destination X1 and Y1 are modified by the absolute value of the negative source coordinate before
the destination clip checking and final drawing coordinates are calculated. The absolute value of the
source negative coordinate is added to the corresponding destination coordinate. The BLT engine
clipping also checks for (DX2 [or = DX1) or (DY2 [or = DY1) after this calculation and if true, then the
BLT is totally rejected.

Source and destination pitches have the additional explanation given next. The below statements are
applicable for pitch field in all of the Blit commands:

1. For Linear surfaces, the pitch is programmed in bytes. For Tiled surfaces the pitch programmed is
in Dwords count.

2. For Tiled surfaces this pitch is of 512Byte granularity for Tile-X: This means the tiled-x surface
pitch can be (512, 1024, 1536, 2048...)/4 (in Dwords).

3. For Tiled surfaces this pitch is of 128B granularity for Tile-Y: This means the tiled-y surface pitch
can be (128, 256, 384, 512...)/4 (in Dwords).

4. Another way to indicate this is, for tiled surfaces, the pitch is programmed in Dwords and is an
integral multiple of the tile width.

XY_COLOR_BLT

XY_FULL_BLT

XY_FULL_IMMEDIATE_PATTERN_BLT

XY_FULL_MONO_PATTERN_BLT

XY_FULL_MONO_PATTERN_MONO_SRC_BL

XY_FULL_MONO_SRC_BLT

XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT

XY_MONO_PAT_BLT

XY_MONO_PAT_FIXED_BLT

XY_MONO_SRC_COPY_BLT

Blitter

32 Doc Ref # IHD-OS-VLV-Vol9-04.14

XY_MONO_SRC_COPY_IMMEDIATE_BLT

XY_PAT_BLT

XY_PAT_BLT_IMMEDIATE

XY_PAT_CHROMA_BLT

XY_PAT_CHROMA_BLT_IMMEDIATE

XY_PIXEL_BLT

XY_SCANLINES_BLT

XY_SETUP_BLT

XY_SETUP_CLIP_BLT

XY_SETUP_MONO_PATTERN_SL_BLT

XY_SRC_COPY_BLT

XY_SRC_COPY_CHROMA_BLT

XY_TEXT_BLT

XY_TEXT_IMMEDIATE_BLT

Blitter

Doc Ref # IHD-OS-VLV-Vol9-04.14 33

Some Equalities & Inequalities for Source Clipping:

DX1, DY1, CX1, and CY1 are inclusive, while DX2, DY2, CX2, and CY2 are exclusive.

Destination pixel address = (Destination Base Address + (Destination Y coordinate * Destination pitch)
+ (Destination X coordinate * bytes per pixel)).

Source pixel address = (Source Base Address + (Source Y coordinate * Source pitch) + (Source X
coordinate * bytes per pixel)).

Since there is 1 set of Clip Rectangle registers, the Interrupt Ring BLT commands either MUST NEVER
enable clipping with these command and never use the XY_Pixel_BLT, XY_Scanline_BLT, nor XY_Text_BLT
commands or it must use context switching. The Interrupt rings can also use the non-clipped, linear
address commands specified before this section.

The base addresses plus the X and Y coordinates determine if there is an overlap between the source
and destination operands. If the base addresses of the source and destination are the same and the
Source X1 is less than Destination X1, then the BLT Engine performs the accesses in the X-backwards
access pattern. There is no need to look for an actual overlap. If the base addresses are the same and
Source Y1 is less than Destination Y1, then the scan line accesses are performed backwards.

Blitter

34 Doc Ref # IHD-OS-VLV-Vol9-04.14

Blitter

Doc Ref # IHD-OS-VLV-Vol9-04.14 35

BLT Engine Instruction Field Definitions

This section describes the BLT Engine instruction fields. These descriptions are in the format of register
descriptions. These registers are internal and are not readable. Some of these registers are in a state
that is saved and restored for supporting separate software threads.

BR00 - BLT Opcode and Control

BR01 - Setup BLT Raster OP, Control, and Destination Offset

BR05 - Setup Expansion Background Color

BR06 - Setup Expansion Foreground Color

BR07 - Setup Blit Color Pattern Address

BR09 - Destination Address

BR11 - BLT Source Pitch (Offset)

BR12 - Source Address

BR13 - BLT Raster OP, Control, and Destination Pitch

BR14 - Destination Width and Height

BR15 - Color Pattern Address

BR16 - Pattern Expansion Background and Solid Pattern Color

BR17 - Pattern Expansion Foreground Color

BR18 - Source Expansion Background and Destination Color

BR19 - Source Expansion Foreground Color

	Blitter (BLT) Engine Command Streamer
	Software Control Bit Definitions
	Registers for Blitter Engine Command Streamer
	Classical BLT Engine Functional Description
	Basic BLT Functional Considerations
	Color Depth Configuration and Color Expansion
	Graphics Data Size Limitations
	Bit-Wise Operations
	Per-Pixel Write-Masking Operations
	When the Source and Destination Locations Overlap

	Basic Graphics Data Considerations
	Contiguous vs. Discontinuous Graphics Data
	Source Data
	Monochrome Source Data
	Pattern Data
	Destination Data

	BLT Programming Examples
	Pattern Fill — A Very Simple BLT
	Drawing Characters Using a Font Stored in System Memory

	BLT Instruction Overview
	BLT Engine State
	Cacheable Memory Support
	Device Cache Coherency: Render & Texture Caches
	BLT Engine Instructions
	BLT Programming Restrictions

	Fill/Move Instructions
	2D (X,Y) BLT Instructions
	BLT Engine Instruction Field Definitions

