

Intel[®] Open Source HD Graphics Programmers' Reference Manual (PRM)

Volume 6: Command Stream Programming

For the 2014 Intel Atom[™] Processors, Celeron[™] Processors, and Pentium[™] Processors based on the "BayTrail" Platform (ValleyView graphics)

© April 2014, Intel Corporation

Creative Commons License

You are free to Share — to copy, distribute, display, and perform the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or licensor (but not in any

way that suggests that they endorse you or your use of the work).

No Derivative Works. You may not alter, transform, or build upon this work

Notices and Disclaimers

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Implementations of the I2C bus/protocol may require licenses from various entities, including Philips Electronics N.V. and North American Philips Corporation.

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2014, Intel Corporation. All rights reserved.

Table of Contents

Graphics Command Formats	4
Command Header	5
Memory Interface Commands	7
2D Commands	9
3D Commands	
MFX Commands	
Blitter Engine Command Interface	
BCS_RINGBUF—Ring Buffer Registers	
Blitter Engine Command Interface	17
BCS_RINGBUF—Ring Buffer Registers	17
BLT Watchdog Timer Registers	17
BLT Interrupt Control Registers	17
Hardware-Detected Error Bit Definitions (for EIR, EMR, ESR)	
BLT Logical Context Support	
BLT Mode Registers	19
MI Commands for Blitter Engine	20
Render Engine Command Interface	20
Render Engine Command Streamer (RCS)	20
RINGBUF — Ring Buffer Registers	21
Render Watchdog Timer Registers	21
Render Interrupt Control Registers	22
Hardware-Detected Error Bit Definitions (for EIR, EMR, ESR)	23
Render Logical Context Support	23
Context Save Registers	23
Mode Registers	23
MI Commands for Render Engine	24
Video Command Streamer (VCS)	24
Video Command Streamer (VCS)	25
VCS_RINGBUF—Ring Buffer Registers	25
Watchdog Timer Registers	26
Interrupt Control Registers	26
VCS Hardware - Detected Error Bit Definitions (for EIR, EMR, ESR)	28
Logical Context Support	29
Mode Registers	29
Registers in Media Engine	29
GAC PWR CTX STORAGE REGISTERS	
GFX TLB In Use Virtual Address Registers	
GFX Pending TLB Cycles Information Registers	
Memory Interface Commands for Video Codec Engine	
Preemption	
Ring Buffer Scheduling	

Graphics Command Formats

This section describes the general format of the graphics device commands.

Graphics commands are defined with various formats. The first DWord of all commands is called the *header* DWord. The header contains the only field common to all commands, the *client* field that determines the device unit that processes the command data. The Command Parser examines the client field of each command to condition the further processing of the command and route the command data accordingly.

Some products include two Command Parsers, each controlling an independent processing engine. These are referred to in this document as the Render Command Parser (RCP) and the Video Codec Command Parser (VCCP).

Valid client values for the Render Command Parser are:

Client #	Client
0	Memory Interface (MI_xxx)
1	Miscellaneous
2	2D Rendering (xxx_BLT_xxx)
3	Graphics Pipeline (3D and Media)
4-7	Reserved

Valid client values for the Video Codec Command Parser are:

Client #	Client
0	Memory Interface (MI_xxx)
1-2	Reserved
3	AVC and VC1 State and Object Commands
4-7	Reserved

Graphics commands vary in length, though are always multiples of DWords. The length of a command is either:

- Implied by the client/opcode
- Fixed by the client/opcode yet included in a header field (so the Command Parser explicitly knows how much data to copy/process)
- Variable, with a field in the header indicating the total length of the command

Note that command *sequences* require QWord alignment and padding to QWord length to be placed in Ring and Batch Buffers.

The following subsections provide a brief overview of the graphics commands by client type provides a diagram of the formats of the header DWords for all commands. Following that is a list of command mnemonics by client type.

Command Header

RCP Command Header Format

Bits								
ТҮРЕ	31:29		28:24	23	22		21:0	
Memory	000	Opcode	e		Identification No./DWord Count			
Interface		00h – N	IOP		Command	Command Dependent Data		
(MI)		0Xh – S Comma 1Xh – T	ingle DWord ands wo+ DWord		5:0 – DWo 5:0 – DWo	ord Count ord Count		
		Comma	ands		J.0 - DVVC			
		2Xh – S Comma	itore Data ands					
		3Xh – F Cmds	Ring/Batch Buffer					
Reserved	001	Opcode	- 11111	23:19		18:16	15:0	
				Sub Opcode 00h – 01h		Re-served	DWord Count	
2D	010	Opcode				Command Data	Dependent	
						4:0 – DWo	rd Count	
ТҮРЕ	31:29	28:27	26:24	23	:16	15:8	7:0	
Common	011	00	Opcode – 000	Sub Opcod	de	Data	DWord Count	
Common (NP)	011	00	Opcode – 001	Sub Opcod	de	Data	DWord Count	
Reserved	011	00	Opcode – 010 – 111					
Single Dword Command	011	01	Opcode – 000 – 001	Sub Opcoo	de		N/A	
Reserved	011	01	Opcode – 010 – 111					
Media State	011	10	Opcode – 000	Sub Opcod	de		Dword Count	
Media Object	011	10	Opcode – 001 – 010	Sub Opcod	de	Dword Cour	nt	
Reserved	011	10	Opcode – 011 – 111					
3DState	011	11	Opcode – 000	Sub Opcod	de	Data	DWord Count	
3DState (NP)	011	11	Opcode – 001	Sub Opcod	de	Data	DWord Count	
PIPE_Control	011	11	Opcode – 010			Data	DWord Count	
3DPrimitive	011	11	Opcode – 011			Data	DWord Count	
Reserved	011	11	Opcode – 100 – 111					
Reserved	100	XX						

Bits							
ТҮРЕ	31:29		28:24	23	22		21:0
Reserved	101	XX					
Reserved	110	XX					
Reserved	111	XX					

Note: The qualifier "NP" indicates that the state variable is non-pipelined and the render pipe is flushed before such a state variable is updated. The other state variables are pipelined (default).

VCCP Command Header Format

	Bits						
ТҮРЕ	31:29		28:24	23	22	2	21:0
Memory Interface (MI)	000	Opcode 00h – NOP 0Xh – Single DWord Commands 1Xh – Reserved 2Xh – Store Data Commands 3Xh – Ring/Batch Buffer Cmds			Iden Com 5:0 - 5:0 - 5:0 -	ntification No. Imand Deper - DWord Cou - DWord Cou - DWord Cou	/DWord Count ndent Data nt nt nt
ТҮРЕ	31:29	28:27	26:24		2	23:16	15:0
Reserved	011	00	Reserved	Rese	rved		Reserved
MFX Single DW	011	01	000	Орсо	ode: ()h	0
Reserved	011	01	1XX				
Reserved	011	10	0XX				
AVC State	011	10	100	Opcode: 0h – 4h)h – 4h	DWord Count
AVC Object	011	10	100	Opcode: 8h		3h	DWord Count
VC1 State	011	10	101	Орсо	ode: ()h – 4h	DWord Count
VC1 Object	011	10	101	Орсо	ode: 8	3h	DWord Count
Reserved	011	10	11X	Reserved Re		Reserved	
Reserved	011	11	Reserved	Reserved		I	Reserved
ТҮРЕ	31:29	28:27	26:24	23:	21	20:16	15:0
MFX Common	011	10	000	000		subopcode	DWord Count
Reserved	011	10	000	001-	111	subopcode	DWord Count
AVC Common	011	10	001	000		subopcode	DWord Count
AVC Dec	011	10	001	001		subopcode	DWord Count
AVC Enc	011	10	001	010		subopcode	DWord Count
Reserved	011	10	001	011-	111	subopcode	DWord Count

Bits							
ТҮРЕ	31:29		28:24	23 2	22	2	21:0
Reserved (for VC1 Common)	011	10	010	000		subopcode	DWord Count
VC1 Dec	011	10	010	001		subopcode	DWord Count
Reserved (for VC1 Enc)	011	10	010	010		subopcode	DWord Count
Reserved	011	10	010	011-11	11	subopcode	DWord Count
Reserved (MPEG2 Common)	011	10	011	000		subopcode	DWord Count
MPEG2 Dec	011	10	011	001		subopcode	DWord Count
Reserved (for MPEG2 Enc)	011	10	011	010		subopcode	DWord Count
Reserved	011	10	011	011-11	11	subopcode	DWord Count
Reserved	011	10	100-111	Reserv	ved	Reserved	Reserved

Memory Interface Commands

Memory Interface (MI) commands are basically those commands which do not require processing by the 2D or 3D Rendering/Mapping engines. The functions performed by these commands include:

- Control of the command stream (e.g., Batch Buffer commands, breakpoints, ARB On/Off, etc.)
- Hardware synchronization (e.g., flush, wait-for-event)
- Software synchronization (e.g., Store DWORD, report head)
- Graphics buffer definition (e.g., Display buffer, Overlay buffer)
- Miscellaneous functions

All the following commands are defined in *Memory Interface Commands*.

Memory Interface Commands for RCP

Opcode (28:23)	Command
	1 DWord
00h	MI_NOOP
01h	
02h	MI_USER_INTERRUPT
03h	MI_WAIT_FOR_EVENT
05h	MI_ARB_CHECK
06h	
07h	MI_REPORT_HEAD
08h	MI_ARB_ON_OFF
0Ah	MI_BATCH_BUFFER_END
0Bh	MI_SUSPEND_FLUSH
0Ch	MI_PREDICATE

Opcode (28:23)	Command
0Dh	MI_TOPOLOGY_FILTER
	2 Dwords
10h	Reserved
14h	MI_DISPLAY_FLIP
15h	Reserved
16h	MI_SEMAPHORE_MBOX
17h	Reserved
18h	MI_SET_CONTEXT
1Ah	MI_MATH
1Eh–1Fh	Reserved
	Store Data
20h	MI_STORE_DATA_IMM
21h	MI_STORE_DATA_INDEX
22h	MI_LOAD_REGISTER_IMM
23h	MI_UPDATE_GTT
24h	MI_STORE_REGISTER_MEM
26h	MI_FLUSH_DW
27h	MI_CLFLUSH
28h	MI_REPORT_PERF_COUNT
29h	MI_LOAD_REGISTER_MEM
	Ring/Batch Buffer
30h	Reserved
31h	MI_BATCH_BUFFER_START
32h–35h	Reserved
36h	MI_CONDITIONAL_BATCH_BUFFER_END
37h–3Fh	Reserved

2D Commands

The 2D commands include various flavors of BLT operations, along with commands to set up BLT engine state without actually performing a BLT. Most commands are of fixed length, though there are a few commands that include a variable amount of "inline" data at the end of the command.

All the following commands are defined in Blitter Instructions.

Table: 2D Command Map

Opcode (28:22)	Command
00h	Reserved
01h	XY_SETUP_BLT
02h	Reserved
03h	XY_SETUP_CLIP_BLT
04h-10h	Reserved
11h	XY_SETUP_MONO_PATTERN_SL_BLT
12h-23h	Reserved
24h	XY_PIXEL_BLT
25h	XY_SCANLINES_BLT
26h	XY_TEXT_BLT
27h-30h	Reserved
31h	XY_TEXT_IMMEDIATE_BLT
32h-3Fh	Reserved
40h	COLOR_BLT
41h-42h	Reserved
43h	SRC_COPY_BLT
44h-4Fh	Reserved
50h	XY_COLOR_BLT
51h	XY_PAT_BLT
52h	XY_MONO_PAT_BLT
53h	XY_SRC_COPY_BLT
54h	XY_MONO_SRC_COPY_BLT
55h	XY_FULL_BLT
56h	XY_FULL_MONO_SRC_BLT
57h	XY_FULL_MONO_PATTERN_BLT
58h	XY_FULL_MONO_PATTERN_MONO_SRC_BLT
59h	XY_MONO_PAT_FIXED_BLT
5Ah-70h	Reserved
71h	XY_MONO_SRC_COPY_IMMEDIATE_BLT
72h	XY_PAT_BLT_IMMEDIATE
73h	XY_SRC_COPY_CHROMA_BLT

Opcode (28:22)	Command
74h	XY_FULL_IMMEDIATE_PATTERN_BLT
75h	XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT
76h	XY_PAT_CHROMA_BLT
77h	XY_PAT_CHROMA_BLT_IMMEDIATE
78h-7Fh	Reserved

3D Commands

The 3D commands are used to program the graphics pipelines for 3D operations.

Refer to the *3D* chapter for a description of the 3D state and primitive commands and the *Media* chapter for a description of the media-related state and object commands.

For all commands listed in **3D Command Map**, the Pipeline Type (bits 28:27) is 3h, indicating the 3D Pipeline.

Table: 3D Command Map

Opcode Bits 26:24	Sub Opcode Bits 23:16	Command	Definition Chapter
0h	03h	Reserved	
0h	04h	3DSTATE_CLEAR_PARAMS	3D Pipeline
0h	05h	3DSTATE_DEPTH_BUFFER	3D Pipeline
0h	06h	3DSTATE_STENCIL_BUFFER	3D Pipeline
0h	07h	3DSTATE_HIER_DEPTH_BUFFER	3D Pipeline
0h	08h	3DSTATE_VERTEX_BUFFERS	Vertex Fetch
0h	09h	3DSTATE_VERTEX_ELEMENTS	Vertex Fetch
0h	0Ah	3DSTATE_INDEX_BUFFER	Vertex Fetch
0h	0Bh	3DSTATE_VF_STATISTICS	Vertex Fetch
0h	0Ch	Reserved	
0h	0Dh	3DSTATE_VIEWPORT_STATE_POINTERS	3D Pipeline
0h	0Eh	3DSTATE_CC_STATE_POINTERS	3D Pipeline
0h	10h	3DSTATE_VS	Vertex Shader
0h	11h	3DSTATE_GS	Geometry Shader

Opcode Bits 26:24	Sub Opcode Bits 23:16	Command	Definition Chapter
0h	12h	3DSTATE_CLIP	Clipper
0h	13h	3DSTATE_SF	Strips & Fans
0h	14h	3DSTATE_WM	Windower
0h	15h	3DSTATE_CONSTANT_VS	Vertex Shader
0h	16h	3DSTATE_CONSTANT_GS	Geometry Shader
0h	17h	3DSTATE_CONSTANT_PS	Windower
0h	18h	3DSTATE_SAMPLE_MASK	Windower
0h	19h	3DSTATE_CONSTANT_HS	Hull Shader
0h	1Ah	3DSTATE_CONSTANT_DS	Domain Shader
0h	1Bh	3DSTATE_HS	Hull Shader
0h	1Ch	3DSTATE_TE	Tesselator
0h	1Dh	3DSTATE_DS	Domain Shader
0h	1Eh	3DSTATE_STREAMOUT	HW Streamout
0h	1Fh	3DSTATE_SBE	Setup
0h	20h	3DSTATE_PS	Pixel Shader
0h	21h	3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP	Strips & Fans
0h	22h	Reserved	
0h	23h	3DSTATE_VIEWPORT_STATE_POINTERS_CC	Windower
0h	24h	3DSTATE_BLEND_STATE_POINTERS	Pixel Shader
0h	25h	3DSTATE_DEPTH_STENCIL_STATE_POINTERS	Pixel Shader
0h	26h	3DSTATE_BINDING_TABLE_POINTERS_VS	Vertex Shader

Opcode Bits 26:24	Sub Opcode Bits 23:16	Command	Definition Chapter
0h	27h		Hull Shader
•		3DSTATE_BINDING_TABLE_POINTERS_HS	
0h	28h	3DSTATE_BINDING_TABLE_POINTERS_DS	Domain Shader
0h	29h	3DSTATE_BINDING_TABLE_POINTERS_GS	Geometry Shader
0h	2Ah	3DSTATE_BINDING_TABLE_POINTERS_PS	Pixel Shader
0h	2Bh	3DSTATE_SAMPLER_STATE_POINTERS_VS	Vertex Shader
0h	2Ch	3DSTATE_SAMPLER_STATE_POINTERS_HS	Hull Shader
0h	2Dh	3DSTATE_SAMPLER_STATE_POINTERS_DS	Domain Shader
0h	2Eh	3DSTATE_SAMPLER_STATE_POINTERS_GS	Geometry Shader
0h	2Fh	Reserved	
0h	30h	3DSTATE_URB_VS	Vertex Shader
0h	31h	3DSTATE_URB_HS	Hull Shader
0h	32h	3DSTATE_URB_DS	Domain Shader
0h	33h	3DSTATE_URB_GS	Geometry Shader
0h	48h-4Bh	Reserved	
0h	4Ch	3DSTATE_WM_CHROMA_KEY	Windower
0h	4Dh	3DSTATE_PS_BLEND	Windower
0h	4Eh	3DSTATE_WM_DEPTH_STENCIL	Windower
0h	4Fh	3DSTATE_PS_EXTRA	Windower
0h	50h	3DSTATE_RASTER	Strips & Fans
0h	51h	3DSTATE_SBE_SWIZ	Strips & Fans
0h	52h	3DSTATE_WM_HZ_OP	Windower
0h	53h	3DSTATE_INT (internally generated state)	3D Pipeline
0h	56h-FFh	Reserved	
1h	00h	3DSTATE_DRAWING_RECTANGLE	Strips & Fans
1h	02h	3DSTATE_SAMPLER_PALETTE_LOAD0	Sampling Engine
1h	03h	Reserved	
1h	04h	3DSTATE_CHROMA_KEY	Sampling Engine

Opcode Bits 26:24	Sub Opcode Bits 23:16	Command	Definition Chapter
1h	05h		
		Reserved	
1h	06h	3DSTATE_POLY_STIPPLE_OFFSET	Windower
1h	07h	3DSTATE_POLY_STIPPLE_PATTERN	Windower
1h	08h	3DSTATE_LINE_STIPPLE	Windower
1h	0Ah	3DSTATE_AA_LINE_PARAMS	Windower
1h	0Bh	3DSTATE_GS_SVB_INDEX	Geometry Shader
1h	0Ch	3DSTATE_SAMPLER_PALETTE_LOAD1	Sampling Engine
1h	0Dh	3DSTATE_MULTISAMPLE	Windower
1h	0Eh	3DSTATE_STENCIL_BUFFER	Windower
1h	0Fh	3DSTATE_HIER_DEPTH_BUFFER	Windower
1h	10h	3DSTATE_CLEAR_PARAMS	Windower
1h	11h	3DSTATE_MONOFILTER_SIZE	Sampling Engine
1h	12h	3DSTATE_PUSH_CONSTANT_ALLOC_VS	Vertex Shader
1h	13h	3DSTATE_PUSH_CONSTANT_ALLOC_HS	Hull Shader
1h	14h	3DSTATE_PUSH_CONSTANT_ALLOC_DS	Domain Shader
1h	15h	3DSTATE_PUSH_CONSTANT_ALLOC_GS	Geometry Shader
1h	16h	3DSTATE_PUSH_CONSTANT_ALLOC_PS	Pixel Shader
1h	17h	3DSTATE_SO_DECL_LIST	HW Streamout
1h	18h	3DSTATE_SO_BUFFER	HW Streamout
1h	1Ch	3DSTATE_SAMPLE_PATTERN	Windower
1h	1Dh	3DSTATE_URB_CLEAR	3D Pipeline
1h	1Eh-FFh	Reserved	
2h	00h	PIPE_CONTROL	3D Pipeline
2h	01h-FFh	Reserved	
3h	00h	3DPRIMITIVE	Vertex Fetch
3h	01h-FFh	Reserved	
4h-7h	00h-FFh	Reserved	

Pipeline Type (28:27)	Opcode	Sub Opcode	Command	Definition Chapter
Common (pipelined)	Bits 26:24	Bits 23:16		
0h	0h	03h	STATE_PREFETCH	Graphics Processing Engine
0h	0h	04h-FFh	Reserved	
Common (non- pipelined)	Bits 26:24	Bits 23:16		
0h	1h	00h	Reserved	n/a
0h	1h	01h	STATE_BASE_ADDRESS	Graphics Processing Engine
0h	1h	02h	STATE_SIP	Graphics Processing Engine
0h	1h	03h	SWTESS BASE ADDRESS	3D Pipeline
0h	1h	04h	GPGPU CSR BASE ADDRESS	Graphics Processing Engine
0h	1h	04h–FFh	Reserved	n/a
Reserved	Bits 26:24	Bits 23:16		
0h	2h–7h	XX	Reserved	n/a

MFX Commands

The MFX (MFD for decode and MFC for encode) commands are used to program the multi-format codec engine attached to the Video Codec Command Parser. See the *MFD* and *MFC* chapters for a description of these commands.

MFX state commands support direct state model and indirect state model. Recommended usage of indirect state model is provided here (as a software usage guideline).

Pipeline Type (28:27)	Opcod e (26:24)	Subop A (23:21)	Subop B (20:16)	Command	Chapte r	Recommend ed Indirect State Pointer Map	Interruptabl e?
MFX Common (State)							
2h	0h	0h	0h	MFX_PIPE_MODE_SELECT	MFX	IMAGE	N/A
2h	0h	0h	1h	MFX_SURFACE_STATE	MFX	IMAGE	N/A
2h	0h	0h	2h	MFX_PIPE_BUF_ADDR_STATE	MFX	IMAGE	N/A
2h	0h	0h	3h	MFX_IND_OBJ_BASE_ADDR_ST ATE	MFX	IMAGE	N/A
2h	0h	0h	4h	MFX_BSP_BUF_BASE_ADDR_ST ATE	MFX	IMAGE	N/A
2h	0h	0h	6h	MFX_STATE_POINTER	MFX	IMAGE	N/A
2h	0h	0h	7-8h	Reserved	N/A	N/A	N/A
MFX Common (Object)							
2h	0h	1h	9h	MFD_IT_OBJECT	MFX	N/A	Yes
2h	0h	0h	4-1Fh	Reserved	N/A	N/A	N/A
AVC Common (State)							
2h	1h	0h	0h	MFX_AVC_IMG_STATE	MFX	IMAGE	N/A
2h	1h	0h	1h	MFX_AVC_QM_STATE	MFX	IMAGE	N/A
2h	1h	0h	2h	MFX_AVC_DIRECTMODE_STAT E	MFX	SLICE	N/A
2h	1h	0h	3h	MFX_AVC_SLICE_STATE	MFX	SLICE	N/A
2h	1h	0h	4h	MFX_AVC_REF_IDX_STATE	MFX	SLICE	N/A
2h	1h	0h	5h	MFX_AVC_WEIGHTOFFSET_STA TE	MFX	SLICE	N/A
2h	1h	0h	6-1Fh	Reserved	N/A	N/A	N/A
AVC Dec							
2h	1h	1h	0-7h	Reserved	N/A	N/A	N/A
2h	1h	1h	8h	MFD_AVC_BSD_OBJECT	MFX	N/A	No
2h	1h	1h	9-1Fh	Reserved	N/A	N/A	N/A
AVC Enc							
2h	1h	2h	0-1h	Reserved	N/A	N/A	N/A

	Opcod					Recommend	
Pineline Type	e (26·24	Subop	Subop		Chante	ed Indirect	Interruntabl
(28:27))	(23:21)	(20:16)	Command	r	Мар	e?
2h	1h	2h	2h	MFC_AVC_FQM_STATE	MFX	IMAGE	N/A
2h	1h	2h	3-7h	Reserved	N/A	N/A	N/A
2h	1h	2h	8h	MFC_AVC_PAK_INSERT_OBJEC T	MFX	N/A	N/A
2h	1h	2h	9h	MFC_AVC_PAK_OBJECT	MFX	N/A	Yes
2h	1h	2h	A-1Fh	Reserved	N/A	N/A	N/A
2h	1h	2h	0-1Fh	Reserved	N/A	N/A	N/A
VC1 Common							
2h	2h	0h	0h	MFX_VC1_PIC_STATE	MFX	IMAGE	N/A
2h	2h	0h	1h	MFX_VC1_PRED_PIPE_STATE	MFX	IMAGE	N/A
2h	2h	0h	2h	MFX_VC1_DIRECTMODE_STAT E	MFX	SLICE	N/A
2h	2h	0h	2-1Fh	Reserved	N/A	N/A	N/A
VC1 Dec							
2h	2h	1h	0-7h	Reserved	N/A	N/A	N/A
2h	2h	1h	8h	MFD_VC1_BSD_OBJECT	MFX	N/A	Yes
2h	2h	1h	9-1Fh	Reserved	N/A	N/A	N/A
VC1 Enc							
2h	2h	2h	0-1Fh	Reserved	N/A	N/A	N/A
MPEG2Comm on							
2h	3h	0h	0h	MFX_MPEG2_PIC_STATE	MFX	IMAGE	N/A
2h	3h	0h	1h	MFX_MPEG2_QM_STATE	MFX	IMAGE	N/A
2h	3h	0h	2-1Fh	Reserved	N/A	N/A	N/A
MPEG2 Dec							
2h	3h	1h	1-7h	Reserved	N/A	N/A	N/A
2h	3h	1h	8h	MFD_MPEG2_BSD_OBJECT	MFX	N/A	Yes
2h	3h	1h	9-1Fh	Reserved	N/A	N/A	N/A
MPEG2 Enc							
2h	3h	2h	0-1Fh	Reserved	N/A	N/A	N/A
The Rest							
2h	4-5h, 7h	x	x	Reserved	N/A	N/A	N/A

Look Inside."

Blitter Engine Command Interface

BCS_RINGBUF—Ring Buffer Registers

Following is a list of ring buffer registers: *RING_BUFFER_TAIL - Ring Buffer Tail RING_BUFFER_HEAD - Ring Buffer Head RING_BUFFER_START - Ring Buffer Start RING_BUFFER_CTL - Ring Buffer Control UHPTR - Pending Head Pointer Register*

Blitter Engine Command Interface

BCS_RINGBUF—Ring Buffer Registers

Following is a list of ring buffer registers: *RING_BUFFER_TAIL - Ring Buffer Tail RING_BUFFER_HEAD - Ring Buffer Head RING_BUFFER_START - Ring Buffer Start RING_BUFFER_CTL - Ring Buffer Control UHPTR - Pending Head Pointer Register*

BLT Watchdog Timer Registers

These are the Watchdog Timer registers: BCS_CTR_THRSH - BCS Watchdog Counter Threshold PR_CTR_THRSH - Watchdog Counter Threshold PR_CTR_CTL - Watchdog Counter Control

BLT Interrupt Control Registers

The Interrupt Control Registers described below all share the same bit definition. The bit definition is as follows:

Bit Definition for Interrupt Control Registers

Bit	Description
31:30	Reserved. MBZ: These bits may be assigned to interrupts on future products/steppings.
29	Reserved
28:27	Reserved. MBZ
26	MI_FLUSH_DW Notify Interrupt: The Pipe Control packet (Fences) specified in <i>3D pipeline</i> document may optionally generate an Interrupt. The Store QW associated with a fence is completed ahead of the interrupt.
25	Blitter Command Parser Master Error: When this status bit is set, it indicates that the hardware has detected an error. It is set by the device upon an error condition and cleared by a CPU write of a one to the appropriate bit contained in the Error ID register followed by a write of a one to this bit in the IIR. Further information on the source of the error comes from the "Error Status Register" which along with the "Error Mask Register" determine which error conditions will cause the error status bit to be set and the interrupt to occur.
	Page Table Error: Indicates a page table error.
	Instruction Parser Error: The Blitter Instruction Parser encounters an error while parsing an instruction.
24	Sync Status: This bit is set when the Instruction Parser completes a flush with the sync enable bit active in the INSTPM register. The event will happen after all the blitter engines are flushed. The HW Status DWord write resulting from this event will cause the CPU's view of graphics memory to be coherent as well (flush and invalidate the blitter cache). It is the driver's responsibility to clear this bit before the next sync flush with HWSP write enabled.
23	Reserved. MBZ
22	Blitter Command Parser User Interrupt: This status bit is set when an MI_USER_INTERRUPT instruction is executed on the Render Command Parser. Note that instruction execution is not halted and proceeds normally. A mechanism such as an MI_STORE_DATA instruction is required to associate a particular meaning to a user interrupt.
21:0	Reserved. MBZ

BCS_HWSTAM - BCS Hardware Status Mask Register

BCS_IMR - BCS Interrupt Mask Register

Hardware-Detected Error Bit Definitions (for EIR, EMR, ESR)

This section defines the Hardware-Detected Error bit definitions and ordering that is common to the EIR, EMR and ESR registers. The EMR selects which error conditions (bits) in the ESR are reported in the EIR. Any bit set in the EIR will cause the Master Error bit in the ISR to be set. EIR bits will remain set until the appropriate bit(s) in the EIR is cleared by writing the appropriate EIR bits with '1' (except for the unrecoverable bits described below).

The following table describes the Hardware-Detected Error bits:

Table: Hardware-Detected Error Bits

BCS Hardware-Detected Error Bit Definitions Following are the the EIR, EMR and ESR registers: BCS_EIR - BCS Error Identity Register BCS_EMR - BCS Error Mask Register BCS_ESR - BCS Error Status Register

BLT Logical Context Support

Following are the Logical Context Support Registers: BB_ADDR - Batch Buffer Head Pointer Register BCS_SYNC_FLIP_STATUS - BCS Wait for event and Display flip flags Register SYNC_FLIP_STATUS - Wait For Event and Display Flip Flags Register SYNC_FLIP_STATUS_1 - Wait For Event and Display Flip Flags Register 1 RING_BUFFER_HEAD_PREEMPT_REG - RING_BUFFER_HEAD_PREEMPT_REG

BLT Mode Registers

Following are BLT Mode Registers: BCS_CXT_SIZE - BCS Context Sizes BCS_MI_MODE - BCS Mode Register for Software Interface BLT_MODE - Blitter Mode Register BCS_INSTPM - BCS Instruction Parser Mode Register

The BCS_INSTPM register is used to control the operation of the BCS Instruction Parser. Certain classes of instructions can be disabled (ignored) – often useful for detecting performance bottlenecks. Also, "Synchronizing Flush" operations can be initiated – useful for ensuring the completion (vs. only parsing) of rendering instructions.

Programming Notes:

- All Reserved bits are implemented.
- BCS_EXCC BCS Execute Condition Code Register

BRSYNC - Blitter/Render Semaphore Sync Register

BVSYNC - Blitter/Video Semaphore Sync Register

Programming Note: If this register is written, a workload must subsequently be dispatched to the render command streamer.

HWS_PGA - Hardware Status Page Address Register

Hardware Status Page Layout

MI Commands for Blitter Engine

This chapter describes the formats of the "Memory Interface" commands, including brief descriptions of their use. The functions performed by these commands are discussed fully in the *Memory Interface Functions* Device Programming Environment chapter.

This chapter describes MI Commands for the blitter graphics processing engine. The term "for Blitter Engine" in the title has been added to differentiate this chapter from a similar one describing the MI commands for the Media Decode Engine and the Rendering Engine.

The commands detailed in this chapter are used across products within the Gen4 family. However, slight changes may be present in some commands (i.e., for features added or removed), or some commands may be removed entirely. Refer to the *Preface* chapter for product specific summary.

MI_NOOP MI_ARB_CHECK MI_ARB_ON_OFF MI_BATCH_BUFFER_START

MI_BATCH_BUFFER_END MI_DISPLAY_FLIP MI_FLUSH_DW MI_REPORT_HEAD MI_STORE_DATA_IMM MI_STORE_DATA_INDEX MI_LOAD_REGISTER_IMM MI_LOAD_REGISTER_MEM MI_STORE_REGISTER_MEM MI_USER_INTERRUPT MI_WAIT_FOR_EVENT MI_SEMAPHORE_MBOX

Render Engine Command Interface

Render Engine Command Streamer (RCS)

The RCS (Render Command Streamer) unit primarily serves as the software programming interface between the O/S driver and the Render Engine. It is responsible for fetching, decoding, and dispatching of data packets (3D/Media Commands with the header DWord removed) to the front end interface module of Render Engine.

Its logic functions include:

- MMIO register programming interface.
- DMA action for fetching of ring data from memory.
- Management of the Head pointer for the Ring Buffer.
- Decode of ring data and sending it to the appropriate destination: 3D (Vertex Fetch Unit) & GPGPU.
- Handling of user interrupts.
- Flushing the 3D and GPGPU Engine.
- Handle NOP.

The register programming bus is a DWord interface bus that is driven by the configuration master. The RCS unit only claims memory mapped I/O cycles that are targeted to its range of 0x2000 to 0x27FF. The Gx and MFX Engines use semaphore to synchronize their operations.

RCS operates completely independent of the MFx CS.

The simple sequence of events is as follows: a ring (say PRB0) is programmed by a memory-mapped register write cycle. The DMA inside RCS is kicked off. The DMA fetches commands from memory based on the starting address and head pointer. The DMA requests cache lines from memory (one cacheline CL at a time). There is guaranteed space in the DMA FIFO (8 CL deep) for data coming back from memory. The DMA control logic has copies of the head pointer and the tail pointer. The DMA increments the head pointer after making requests for ring commands. Once the DMA copy of the head pointer becomes equal to the tail pointer, the DMA stops requesting.

The parser starts executing once the DMA FIFO has valid commands. All the commands have a header DWord packet. Based on the encoding in the header packet, the command may be targeted towards Vertex Fetch Unit or GPPGU engine or the command parser. After execution of every command, the actual head pointer is updated. The ring is considered empty when the head pointer becomes equal to the tail pointer.

RINGBUF — Ring Buffer Registers

See the "Device Programming Environment" chapter for detailed information on these registers.

RING_BUFFER_TAIL - Ring Buffer Tail RING_BUFFER_HEAD - Ring Buffer Head RING_BUFFER_START - Ring Buffer Start RING_BUFFER_CTL - Ring Buffer Control UHPTR - Pending Head Pointer Register

Render Watchdog Timer Registers

These two registers together implement a watchdog timer. Writing ones to the control register enables the counter, and writing zeroes disables the counter. The 2nd register is programmed with a threshold value which, when reached, signals an interrupt then resets the counter to 0. Program the threshold value before enabling the counter or extremely frequent interrupts may result.

Note that the counter itself is not observable. It increments with the main render clock.

PR_CTR_CTL - Watchdog Counter Control PR_CTR_THRSH - Watchdog Counter Threshold PR_CTR - Render Watchdog Counter

Render Interrupt Control Registers

The Interrupt Control Registers described in this section all share the same bit definition. The bit definition is as follows:

Bit Definition for Interrupt Control Registers

The following table specifies the settings of interrupt bits stored upon a "Hardware Status Write" due to ISR changes:

		ISR bit Reporting via Hardware Status Write (when unmasked via
Bit	Interrupt Bit	HWSTAM)
9	Performance Monitoring Buffer Half-Full Interrupt	Set when event occurs, cleared when event cleared
8	Reserved	
7	Page Fault: This bit is set whenever there is a pending PPGTT (page or directory) fault.	Set when event occurs, cleared when event cleared
6	Media Decode Pipeline Counter Exceeded Notify Interrupt: The counter threshold for the execution of the media pipeline is exceeded. Driver needs to attempt hang recovery.	Not supported to be unmasked
5	L3 Parity interrupt	
4	PIPE_CONTROL packet - Notify Enable	0
3	Master Error	Set when error occurs, cleared when error cleared
2	Sync Status	Toggled every SyncFlush Event
1		
0	User Interrupt	0

HWSTAM - Hardware Status Mask Register IMR - Interrupt Mask Register

Hardware-Detected Error Bit Definitions (for EIR, EMR, ESR)

This section defines the Hardware-Detected Error bit definitions and ordering that is common to the EIR, EMR and ESR registers. The EMR selects which error conditions (bits) in the ESR are reported in the EIR. Any bit set in the EIR will cause the Master Error bit in the ISR to be set. EIR bits will remain set until the appropriate bit(s) in the EIR is cleared by writing the appropriate EIR bits with '1' (except for the unrecoverable bits described below).

The following table describes the Hardware-Detected Error bits:

Table: Hardware-Detected Error Bits

Hardware-Detected Error Bit Definitions Following are the the EIR, EMR and ESR registers: EIR - Error Identity Register EMR - Error Mask Register ESR - Error Status Register

Render Logical Context Support

Following are the Logical Context Support Registers: BB_ADDR - Batch Buffer Head Pointer Register RCS_BB_STATE - RCS Batch Buffer State Register CCID - Current Context Register SYNC_FLIP_STATUS - Wait For Event and Display Flip Flags Register SYNC_FLIP_STATUS_1 - Wait For Event and Display Flip Flags Register 1

Context Save Registers

Following are the Context Save Registers: RING_BUFFER_HEAD_PREEMPT_REG - RING_BUFFER_HEAD_PREEMPT_REG

Mode Registers

Following are the Mode Registers: INSTPM - Instruction Parser Mode Register EXCC - Execute Condition Code Register

NOPID - NOP Identification Register RVSYNC - Render/Video Semaphore Sync Register RBSYNC - Render/Blitter Semaphore Sync Register HWS_PGA - Hardware Status Page Address Register Hardware Status Page Layout

MI Commands for Render Engine

This chapter describes the formats of the "Memory Interface" commands, including brief descriptions of their use. The functions performed by these commands are discussed fully in the *Memory Interface Functions* Device Programming Environment chapter.

This chapter describes MI Commands for the original graphics processing engine. The term "for Rendering Engine" in the title has been added to differentiate this chapter from a similar one describing the MI commands for the Media Decode Engine.

Video Command Streamer (VCS)

The VCS (Video Command Streamer) unit primarily serves as the software programming interface between the O/S driver and the MFD Engine. It is responsible for fetching, decoding, and dispatching of data packets (Media Commands with the header DWord removed) to the front end interface module of MFX Engine.

Its logic functions include:

- MMIO register programming interface.
- Management of the Head pointer for the Ring Buffer.
- Decode of ring data and sending it to the appropriate destination: AVC, VC1, or MPEG2 engine.
- Handling of user interrupts.
- Flushing the MFX Engine.
- Handle NOP.

The register programming (RM) bus is a DWord interface bus that is driven by the Gx Command Streamer. The VCS unit only claims memory mapped I/O cycles that are targeted to its range of 0x4000 to 0x4FFFF. The Gx and MFX Engines use semaphore to synchronize their operations.

VCS operates completely independent of the Gx CS.

The simple sequence of events is as follows: a ring (say PRB0) is programmed by a memory-mapped register write cycle. The DMA inside VCS is kicked off. The DMA fetches commands from memory based on the starting address and head pointer. The DMA requests cache lines from memory (one cacheline CL at a time). There is guaranteed space in the DMA FIFO (16 CL deep) for data coming back from memory. The DMA control logic has copies of the head pointer and the tail pointer. The DMA increments the head pointer after making requests for ring commands. Once the DMA copy of the head pointer becomes equal to the tail pointer, the DMA stops requesting.

The parser starts executing once the DMA FIFO has valid commands. All the commands have a header DWord packet. Based on the encoding in the header packet, the command may be targeted towards AVC/VC1/MPEG2 engine or the command parser. After execution of every command, the actual head pointer is updated. The ring is considered empty when the head pointer becomes equal to the tail pointer.

Video Command Streamer (VCS)

The VCS (Video Command Streamer) unit primarily serves as the software programming interface between the O/S driver and the MFD Engine. It is responsible for fetching, decoding, and dispatching of data packets (Media Commands with the header DWord removed) to the front end interface module of MFX Engine.

Its logic functions include:

- MMIO register programming interface.
- Management of the Head pointer for the Ring Buffer.
- Decode of ring data and sending it to the appropriate destination: AVC, VC1, or MPEG2 engine.
- Handling of user interrupts.
- Flushing the MFX Engine.
- Handle NOP.

The register programming (RM) bus is a DWord interface bus that is driven by the Gx Command Streamer. The VCS unit only claims memory mapped I/O cycles that are targeted to its range of 0x4000 to 0x4FFFF. The Gx and MFX Engines use semaphore to synchronize their operations.

VCS operates completely independent of the Gx CS.

The simple sequence of events is as follows: a ring (say PRB0) is programmed by a memory-mapped register write cycle. The DMA inside VCS is kicked off. The DMA fetches commands from memory based on the starting address and head pointer. The DMA requests cache lines from memory (one cacheline CL at a time). There is guaranteed space in the DMA FIFO (16 CL deep) for data coming back from memory. The DMA control logic has copies of the head pointer and the tail pointer. The DMA increments the head pointer after making requests for ring commands. Once the DMA copy of the head pointer becomes equal to the tail pointer, the DMA stops requesting.

The parser starts executing once the DMA FIFO has valid commands. All the commands have a header DWord packet. Based on the encoding in the header packet, the command may be targeted towards AVC/VC1/MPEG2 engine or the command parser. After execution of every command, the actual head pointer is updated. The ring is considered empty when the head pointer becomes equal to the tail pointer.

VCS_RINGBUF—Ring Buffer Registers

RING_BUFFER_TAIL - Ring Buffer Tail RING_BUFFER_HEAD - Ring Buffer Head RING_BUFFER_START - Ring Buffer Start

RING_BUFFER_CTL - Ring Buffer Control UHPTR - Pending Head Pointer Register

Watchdog Timer Registers

The following registers are defined as Watchdog Timer registers: VCS_CNTR - VCS Counter for the bit stream decode engine VCS_THRSH - VCS Threshold for the counter of bit stream decode engine

Interrupt Control Registers

The Interrupt Control Registers described below all share the same bit definition. The bit definition is as follows:

Bit Definition for Interrupt Control Registers

Bit	Description			
31:21	Reserved. MBZ: These bits may be assigned to interrupts on future products/steppings.			
20	Reserved			
19	Page Fault: This bit is set whenever there is a pending page or directory fault.			
	This bit is set whenever there is a pending page or directory fault in Video command streamer.			
18	Timeout Counter Expired: Set when the VCS timeout counter has reached the timeout thresh-hold value.			
17	Reserved			
16	MI_FLUSH_DW Notify Interrupt: The Pipe Control packet (Fences) specified in <i>3D pipeline</i> document may optionally generate an Interrupt. The Store QW associated with a fence is completed ahead of the interrupt.			
15	Video Command Parser Master Error: When this status bit is set, it indicates that the hardware has detected an error. It is set by the device upon an error condition and cleared by a CPU write of a one to the appropriate bit contained in the Error ID register followed by a write of a one to this bit in the IIR. Further information on the source of the error comes from the "Error Status Register" which along with the "Error Mask Register" determine which error conditions will cause the error status bit to be set and the interrupt to occur.			
	Page Table Error: Indicates a page table error.			
	Instruction Parser Error: The Video Instruction Parser encounters an error while parsing an instruction.			
14	Sync Status: This bit is set when the Instruction Parser completes a flush with the sync enable bit active in the INSTPM register. The event will happen after all the MFX engines are flushed. The HW Status DWord write resulting from this event will cause the CPU's view of graphics memory to be coherent as well (flush and invalidate the MFX cache).It is the driver's responsibility to clear this bit before the next sync flush with HWSP write enabled			
13	Reserved: MBZ			
12	Video Command Parser User Interrupt: This status bit is set when an MI_USER_INTERRUPT instruction is executed on the Video Command Parser. Note that instruction execution is not halted and proceeds normally. A mechanism such as an MI_STORE_DATA instruction is required to associate a particular meaning to a user interrupt.			
11:0	Reserved: MBZ			

The following table specifies the settings of interrupt bits stored upon a "Hardware Status Write" due to ISR changes:

Bit	Interrupt Bit	ISR bit Reporting via Hardware Status Write (when unmasked via HWSTAM)
8	Reserved	
7	Page Fault: This bit is set whenever there is a pending PPGTT (page or directory) fault.	Set when event occurs, cleared when event cleared
6	Media Decode Pipeline Counter Exceeded Notify Interrupt: The counter threshold for the execution of the media pipeline is exceeded. Driver needs to attempt hang recovery.	Not supported to be unmasked
5	Reserved	
4	MI_FLUSH_DW packet - Notify Enable	0
3	Master Error	Set when error occurs, cleared when error cleared
2	Sync Status	Set every SyncFlush Event
0	User Interrupt	0

VCS_HWSTAM - VCS Hardware Status Mask Register

VCS_IMR - VCS Interrupt Mask Register

VCS Hardware - Detected Error Bit Definitions (for EIR, EMR, ESR)

This section defines the Hardware-Detected Error bit definitions and ordering that is common to the EIR, EMR and ESR registers. The EMR selects which error conditions (bits) in the ESR are reported in the EIR. Any bit set in the EIR will cause the Master Error bit in the ISR to be set. EIR bits will remain set until the appropriate bit(s) in the EIR is cleared by writing the appropriate EIR bits with '1'(except for the unrecoverable bits described below).

The following table describes the Hardware-Detected Error bits:

Hardware-Detected Error Bits

VCS Hardware-Detected Error Bit Definitions VCS_EIR - VCS Error Identity Register VCS_EMR - VCS Error Mask Register VCS_ESR - VCS Error Status Register

Logical Context Support

This section contains the registers for Logical Context Support.

BB_STATE - Batch Buffer State Register

BB_ADDR - Batch Buffer Head Pointer Register

Mode Registers

Following are Mode Registers: BBA_LEVEL2 - 2nd Level Batch Buffer Address VCS_CXT_SIZE - VCS Context Sizes VCS_MI_MODE - VCS Mode Register for Software Interface MFX_MODE - Video Mode Register VCS_INSTPM - VCS Instruction Parser Mode Register VBSYNC - Video/Blitter Semaphore Sync Register VRSYNC - Video/Render Semaphore Sync Register HWS_PGA - Hardware Status Page Address Register Hardware Status Page Layout

Registers in Media Engine

This chapter describes the memory-mapped registers associated with the Memory Interface, including brief descriptions of their use. The functions performed by some of these registers are discussed in more detail in the Memory Interface Functions, Memory Interface Instructions, and Programming Environment chapters.

GAC PWR CTX STORAGE REGISTERS

Following are GAC PWR CTX STORAGE Registers: *GFX_PEND_TLB - TLBPEND Control Register GAC_ARB_CTL_REG - GAC_GAB Arbitration Counters Register 1 GAC_ERROR - Media Arbiter Error Report Register*

GFX TLB In Use Virtual Address Registers

TLB064_VA - TLB064_VA Virtual Page Address Registers TLB132_VA - TLB132_VA Virtual Page Address Registers TLB232_VA - TLB232_VA Virtual Page Address Registers TLB304_VA - TLB304_VA Virtual Page Address Registers MTTLB064_VLD0 - Valid Bit Vector 0 for TLB064 MTTLB064_VLD1 - Valid Bit Vector 1 for TLB064 MTTLB132_VLD0 - Valid Bit Vector 0 for TLB132 MTTLB132_VLD1 - Valid Bit Vector 1 for TLB132 MTTLB232_VLD0 - Valid Bit Vector 1 for TLB232 MTTLB232_VLD0 - Valid Bit Vector 1 for TLB232 MTTLB232_VLD1 - Valid Bit Vector 1 for TLB232 MTTLB304_VLD0 - Valid Bit Vector 0 for TLB304 MTTLB304_VLD1 - Valid Bit Vector 1 for TLB304

GFX Pending TLB Cycles Information Registers

The following registers contain information about cycles that did not complete their TLB translation.

Information is organized as 64 entries, where each entry has a valid and ready bit, collapsed into separate registers.

VCS_TLBPEND_VLD0 - VCS Valid Bit Vector 0 for TLBPEND Registers

VCS_TLBPEND_VLD1 - VCS Valid Bit Vector 1 for TLBPEND Registers

VCS_TLBPEND_RDY0 - VCS Ready Bit Vector 0 for TLBPEND Registers

VCS_TLBPEND_RDY1 - VCS Ready Bit Vector 1 for TLBPEND Registers

VCS_TLBPEND_SEC0 - VCS Section 0 of TLBPEND Entry

VCS_TLBPEND_SEC1 - VCS Section 1 of TLBPEND Entry

VCS_TLBPEND_SEC2 - VCS Section 2 of TLBPEND Entry

VCS_TIMESTAMP - VCS Reported Timestamp Count

Memory Interface Commands for Video Codec Engine

This section describes the formats of the "Memory Interface" commands for the Video Codec Engine, including brief descriptions of their use. The functions performed by these commands are discussed fully in the *Memory Interface Functions* Device Programming Environment chapter.

The commands detailed in this section are used across the later products within the Gen family. However, slight changes may be present in some commands (i.e., for features added or removed), or some commands may be removed entirely. Refer to the *Preface* chapter for details.

MI_ARB_CHECK MI ARB ON OFF MI_BATCH_BUFFER_END MI_CONDITIONAL_BATCH_BUFFER_END MI_BATCH_BUFFER_START MI FLUSH DW MI_LOAD_REGISTER_IMM MI NOOP MI_REPORT_HEAD MI_SEMAPHORE_MBOX MI_STORE_REGISTER_MEM MI_STORE_DATA_IMM MI_STORE_DATA_INDEX MI_SUSPEND_FLUSH MI_USER_INTERRUPT MI_WAIT_FOR_EVENT

MI_LOAD_REGISTER_MEM

Preemption

Preemption is a means by which HW is instructed to stop executing an ongoing workload and switch to the new workload submitted. Preemption flows are different based on the mode of scheduling.

Ring Buffer Scheduling

In Ring Buffer mode of scheduling SW triggers preemption by programming UHPTR (Updated Head Pointer Register) register with a valid head pointer. UHPTR contains head pointer and head pointer valid bit, head pointer is valid only when the head pointer valid bit is set.

HW triggers preemption on a preemptable command on detecting Head Pointer Valid bit asserted in the UHPTR register. Following preemption HW updates it current head pointer with the Head Pointer from the UHPTR and starts execution i.e all the commands from current head pointer to the updated head pointer are skipped by HW. HW samples the head pointer and the batch buffer address on preemption and updates them to the RING_BUFEFR_HEAD_PREEMPT_REG and BB_PREEMPT_ADDR respectively. RING_BUFFER_HEAD_PREEMPT_REG and BB_PREEMPT_ADDR provide the graphics memory address of the preemptable command on which last preemption has occurred. HW resets the head pointer valid bit in UHPTR upon completion of preemption.

Programming Notes:

Preemption is not supported for Media Workloads. Hence preemption can be achieved only on Command Buffer boundaries. Media Command Buffers must be bracketed with MI_ARB_OFF and MI_ARB_ON command to avoid preemption of media command buffers.

Example:

Ring Buffer

$$\label{eq:mi_arg} \begin{split} \mathsf{MI}_\mathsf{ARB}_\mathsf{ON}_\mathsf{OFF} &\to \mathsf{OFF} \\ \mathsf{MI}_\mathsf{BATCH}_\mathsf{START} &- \mathsf{Media} \ \mathsf{Workload} \\ \mathsf{MI}_\mathsf{ARB}_\mathsf{ON}_\mathsf{OFF} &\to \mathsf{ON} \\ \\ \mathsf{MI}_\mathsf{ARB}_\mathsf{CHK} &\to \mathsf{preemptable} \ \mathsf{command} \ \mathsf{outside} \ \mathsf{media} \ \mathsf{command} \ \mathsf{buffer}. \end{split}$$

End Ring Buffer

The following table lists the Preemptable Commands in Ring Buffer mode of scheduling:

$\label{eq:preemptable} \textbf{Preemptable Commands} \rightarrow \textbf{Engine}$	MI_ARB_CHECK
Render	AP*
Blitter	AP*
Media	AP*
VideoEnhancement	AP*

AP*: Allow Preemption on UHPTR valid.